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We study the two-point cross-correlation function between two populations of galaxies: for instance, a
bright population and a faint population. We show that this cross-correlation is asymmetric under the
exchange of the line-of-sight coordinate of the galaxies, i.e. that the correlation is different if the bright
galaxy is in front of, or behind, the faint galaxy. We give an intuitive, quasi-Newtonian derivation of all the
effects that contribute to such an asymmetry in large-scale structure: gravitational redshift, Doppler shift,
lensing, light-cone, evolution and Alcock-Paczynski effects; interestingly, the gravitational redshift term is
exactly canceled by some of the others, assuming geodesic motion. Most of these effects are captured by
previous calculations of general relativistic corrections to the observed galaxy density fluctuation; the
asymmetry arises from terms that are suppressed by the ratio (H=k)—H is the Hubble constant and k is
the wave number—which are more readily observable than the terms suppressed by ðH=kÞ2. Some of the
contributions to the asymmetry, however, arise from terms that are generally considered “Newtonian”—the
lensing and evolution—and thus represent a contaminant in the search for general relativistic corrections.
We propose methods to disentangle these different contributions. A simple method reduces the
contamination to a level of ≲10% for redshifts z≲ 1. We also clarify the relation to recent work on
measuring gravitational redshifts by stacking clusters.
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I. INTRODUCTION

It is often implicitly assumed that the galaxy two-point
correlation function is symmetric under the exchange of the
pair of galaxies, but this needs not be the case when the two
galaxies in question are distinguished by certain properties,
such as luminosity, color or overdensity. Expressing such a
cross-correlation as hΔBðx1ÞΔFðx2Þi, where the subscripts
B and F represent “bright” and “faint” galaxies, it is evident
that this quantity does not need to be symmetric under the
exchange of the positions x1 and x2. This is especially so
for the interchange of the line-of-sight coordinate: it makes
a difference whether the bright galaxy is in front of, or
behind, the faint galaxy.
Consider a measurement of the cross-correlation function,

ξBF ¼
X
ij

WijΔi
BΔ

j
F; (1)

where we imagine the survey is pixelized into cells labeled
by i or j, with the galaxy overdensity ΔB and ΔF defined in
each cell. The kernelWij determines which pairs of galaxies
are counted towards the correlation function. We are
typically interested in the correlation function at some fixed
line-of-sight (chosen to lie along the z-direction, say) and
transverse separation:

Δxz ≡ xzB − xzF; Δx⊥ ≡ x⊥B − x⊥F: (2)

The correlation function ξBF can be written as the sum of
symmetric and antisymmetric parts,

ξBF ¼ ξBFS þ ξBFA ; (3)

where

ξBFS ≡ 1

2
½ξBFðΔxz;Δx⊥Þ þ ξBFð−Δxz;−Δx⊥Þ�;

ξBFA ≡ 1

2
½ξBFðΔxz;Δx⊥Þ − ξBFð−Δxz;−Δx⊥Þ�: (4)
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In general, we do not expect an asymmetry associated with
flipping the sign of the transverse separation. Thus, hence-
forth we think of ξBF as a function of Δxz and jΔx⊥j.
It is customary in measurements of galaxy correlation

functions to use a kernel Wij that is symmetric under the
exchange of i and j, which necessarily captures only the
symmetric part ξBFS . In this paper, we are interested in the
antisymmetric part ξBFA . To measure it we need to be careful
about the choice of kernel and use a Wij that is antisym-
metric under the exchange of i and j. Under ensemble
averaging, such an antisymmetric kernel would cancel out
the symmetric part ξBFS and isolate the contributions from
hΔi

BΔ
j
Fi − hΔj

BΔi
Fi.1 Note that here we are interested in

constructing a Wij which is antisymmetric under the
flipping of the line-of-sight, but not the transverse,
coordinates.
The asymmetry of interest should be distinguished from

the asymmetry that exists in the more familiar case of
redshift-space distortions. Redshift-space distortions give
rise to a correlation function that depends on the line-of-
sight separation in a way that is different from the trans-
verse separation (i.e. this asymmetry is often described as
an anisotropy of the redshift-space correlation function).
The asymmetry we are interested in is a cross-correlation
function that depends on the sign of the (line-of-sight)
separation.
Why should one expect an asymmetry at all? To get an

intuitive feel for this, let us consider a highly idealized
situation where we have galaxies sitting inside the
symmetric gravitational potential well of a cluster (see
Fig. 1). We observe from afar (O in the figure). Let us
denote by B the central cluster galaxy, located at the
bottom of the gravitational potential. Let us use F to label
the other cluster members. We use the subscript 1 and 2
to denote two such members, one on each side of B; i.e.,
F1 is behind and F2 is in front of B, physically
equidistant from B (in real space). In redshift space,
the relative positions of the three galaxies are shifted.
Figure 1 shows the Doppler effect due to infall: the
galaxies are squeezed closer together, but the effect is
symmetric, in the sense that F1 and F2 remain equidistant
from B. Virialized motions would give a stochastic shift
in redshift space, but on average, would still yield a
symmetric effect meaning that it does not matter whether
F is in front of, or behind, B.

The situation is different when one considers the effect of
gravitational redshift, depicted in Fig. 2. Here, all three
galaxies are shifted in the same direction, but B is suffering
the largest gravitational redshift. The net effect is asym-
metric: F1 now appears closer to B than F2.
This is of course a highly idealized example, but the

basic principle is sound: gravitational redshift yields an
asymmetric effect, which one can hope to isolate from
realistic clusters by averaging or stacking. This idea was
carried out in a ground-breaking paper by Wojtak, Hansen
and Hjorth [1] (WHH). By stacking ∼8000 clusters, they
detected a net blueshift of the average of the cluster
members relative to the central brightest galaxy.
From our point of view, this is essentially a cross-

correlation measurement. One can see intuitively from
Fig. 2 that the cross-correlation between B and F is different
if F is behind B or if F is in front of B. As will become clear

FIG. 1. Sketch of the redshift-space distortion effect. The
observer is sitting at O. Due to their peculiar velocities the faint
galaxies F1 and F2 are shifted towards the bright galaxy and the
correlation function is squeezed along the line-of-sight direction.
The redshifted separation d1 and d2 are the same so that the effect
is completely symmetric.

FIG. 2. Sketch of the gravitational redshift effect. The observer
is sitting at O. Galaxy B suffers the largest gravitational redshift
because it is sitting at the bottom of the potential well. F1 and F2
shifts by a somewhat smaller amount. The net effect is an
asymmetric, d1 ≠ d2. This generates an asymmetric cross-
correlation function: B is differently correlated with F galaxies
behind it than in front of it.

1An example is Wij ∝

Θðxzi − xzj ∈ dz � δdzÞΘðjx⊥i − x⊥jj ∈ d⊥ � δd⊥Þ
− Θðxzj − xzi ∈ dz � δdzÞΘðjx⊥i − x⊥jj ∈ d⊥ � δd⊥Þ;

where Θ ¼ 1 if jxi − xjj falls within the range of interest, and
Θ ¼ 0 otherwise. Here dz and d⊥ are the line-of-sight and
transverse components of the separation.
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in Sec. IV, the correlation is actually stronger for faint
galaxies behind, than in front of, the bright one. This is due
to the fact that bright galaxies have a larger bias than faint
galaxies (see also Fig. 13 in Appendix B). This cross-
correlation was first studied by McDonald [2] and Yoo et al.
[3] in Fourier space, and by Croft [4] in configuration space.
The equivalent in Fourier space of the antisymmetric
correlation function defined in Eq. (4) is an imaginary
power spectrum. In [2], McDonald showed that, in large-
scale structure, the gravitational redshift effect depicted in
Fig. 2 is not the only effect contributing to the imaginary part
of the power spectrum. Other relativistic effects, directly
proportional to the line-of-sight galaxy peculiar velocity,
contribute in a similar way. At linear order in perturbation
theory, these effects have been calculated in Refs. [5–7].
Our paper expands on these previous studies in three

ways. First, we give an intuitive derivation of all the effects
that contribute to the antisymmetric part of the correlation
function and we show how this recovers the general
relativistic expression of [5–7]. Second, we propose methods
to disentangle the antisymmetries directly generated by the
relativistic terms from antisymmetries induced by the red-
shift evolution of the density and redshift-space distortion
terms (that we call hereafter “Newtonian terms”). This
second class of antisymmetries, which is not due to new
physical effects, constitute a potential contaminant in the
measurement of relativistic effects. We provide analytical
expressions, in real space, of the dipolar and the octupolar
modulations of the correlation function, generated by the
relativistic terms and by the contaminating Newtonian terms.
Based on these expressions we then propose model-
independent ways to disentangle the two classes of
contributions. Finally, we use our intuitive derivation to
investigate possible new effects contributing to the antisym-
metric correlation function. In particular, we study how our
imperfect knowledge of the background cosmology gener-
ates antisymmetries, through the so-called Alcock-Paczynski
effect [8]. We show that this contribution is significantly
suppressed with respect to the relativistic contributions.
In practice, what we need is to work out

Δobs ¼ Δþ δΔ; (5)

where Δobs is the observed overdensity, Δ is the true
overdensity, and δΔ is the difference. The B and F labels
have been suppressed. Schematically, the general relativ-
istic contributions to δΔ look like

δΔ ∼
1

H
∂xzΨ; (6)

where H is the comoving Hubble parameter i.e. H ¼ _a=a
with a being the scale factor and _ denoting derivative with
respect to conformal time. That it is the gradient of the
gravitational potential Ψ that matters should be apparent
from Fig. 2: it is the difference in gravitational potential

between B and F that is observationally relevant. The fact
that it is a single gradient is the key to why the cross-
correlation function acquires an antisymmetric part; squar-
ing Eq. (5), we see that there is a cross term of the form

hΔðx0ÞδΔðxÞi ∼H∂xz∇−2hΔðx0ÞΔðxÞi; (7)

where we have used the Poisson equation to relateΔ andΨ.
Clearly, whether the derivative is with respect to xz or x0z
matters. This by itself is not so interesting if we have only
one population of galaxies, in that case the two cross terms
cancel: hΔðx0ÞδΔðxÞi þ hΔðxÞδΔðx0Þi ¼ 0. It is only
when one of the cross terms carries a B label, and the
other F, that something nontrivial remains.
Equation (6) gives only one among many general

relativistic corrections to Δ. They have been systematically
worked out by a number of authors [5–7]. Two comments
are in order about them. One is that the term displayed in
Eq. (6) is in fact exactly canceled by some other terms,
assuming geodesic galaxy motion (i.e. no equivalence
principle violation such as in [9]). This will be made
explicit in our quasi-Newtonian derivation. However, there
remain terms that give a similar asymmetric effect. In fact,
they turn out to arise from Doppler terms, despite what we
said about the Doppler effect in Fig. 1. Precisely how this
comes about will be made clear in the next section.
The other comment is that δΔ contains a lot of terms of

order ∼Ψ, with no derivatives. It is thus useful to compare
three kinds of terms: Δ, ∂Ψ=H, and Ψ.2 Making use of the
Poisson equation, they are, respectively, ∼Δ, ðH=kÞΔ, and
ðH=kÞ2Δ, where we have freely switched to Fourier space
with comoving momentum k. Therefore, to the extent we are
interested mostly in sub-Hubble fluctuations i.e.H=k some-
what smaller than unity, the ∼ðH=kÞ2Δ general relativistic
corrections can be ignored compared to the ∼ðH=kÞΔ ones.
Another good reason we focus on the ðH=kÞΔ terms is that
only they give rise to asymmetric effects, by virtue of
carrying an odd number of gradients. This is what allows us
to separate them from the orderΔ terms which are larger, but
by themselves do not effect an asymmetry.
The other class of contributions to δΔ we refer to as

Newtonian includes lensing and evolution effects. We use
the term Newtonian fairly loosely here: they are in a sense
contributions we have known about all along, but somehow
the fact that they give rise to asymmetric cross-correlations
has not been emphasized. For reasons that will be apparent
below, the lensing-induced asymmetry is generally small.
The evolution effect is easy to explain: ΔF evolves with
redshift, thus whether F is in front of, or behind, a fixed B
galaxy would give different cross-correlation even for the

2δΔ of course also contains Newtonian terms which are order
∼Δ, for instance from the classic redshift distortion:
δΔ ∼ ∂xzV

z=H, where Vz is the peculiar velocity along the
line-of-sight.
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same physical separation. Such an effect becomes a
contaminant in the search for general relativistic effects,
although it could be interesting in its own right.
One comment on the ordering of fluctuations before we

proceed. In this paper, we will be using linear perturbation
theory exclusively. There are non-negligible higher order
effects in the case of clusters, as pointed out by Zhao,
Peacock and Li [10] and Kaiser [11]. We are, on the other
hand, primarily interested in large-scale structure on linear
scales, where these higher order effects are negligible [see
discussion before Eq. (14)]. Ordering in the sense of
counting powers of fluctuation variables, should not be
confused with ordering in the sense of counting powers of
(H=k) as explained above. We mostly rely on context to
differentiate between the two different meanings.
The rest of the paper is organized as follow: in Sec. II we

provide an intuitive, quasi-Newtonian derivation of the
observed number density of galaxiesΔobs keeping terms up
to orderH=k. A fully relativistic calculation can be found in
[5–7]. In Sec. III we calculate the cross-correlation between
two populations of galaxies and we expand this correlation
in multipoles. In Sec. IV we compare the different con-
tributions in the antisymmetric correlation function and we
discuss ways to isolate the relativistic contribution. We
conclude in Sec. V. In Appendix Awe give a brief summary
of a systematic, fully general relativistic derivation, which
is nicely consistent with the intuitive derivation in the main
text where they overlap. Relegated to Appendixes B, C and
D are technical details of our derivation of the correlation
function and its moments. Finally, in Appendix E we
connect our cross-correlation viewpoint to WHH’s meas-
urement by stacking clusters.

II. DERIVATION

Our goal here is to provide an intuitive derivation of all
effects, first order in perturbations, that contribute to an
asymmetric correlation function. The main point wewish to
get across is that to the order ofH=k of interest, Newtonian
or quasi-Newtonian reasoning is sufficient for grasping the
relevant effects. More careful and systematic derivations
can be found in [5–7], to which we are adding a few effects
that are generally ignored, or not emphasized. For the
convenience of the reader, we summarize the more formal
general relativistic derivation in Appendix A.
In the derivation, we use the small angle approximation,

meaning that the line-of-sight direction n̂ always points
approximately in the z direction. Deviation from the z
direction is assumed small. However, the final expression
will turn out to be valid on the full-sky.
We begin by relating the observed galaxy overdensity to

the true galaxy overdensity; after that, we compute the
cross-correlation function between two populations of
galaxies. We use the words bright (B) and faint (F) to
distinguish between them, but they could also be distin-
guished by different properties, such as color.

For any given galaxy, we can measure its redshift and
angular position on the sky. In this paper, we assume the
correct (homogeneous) FRW background cosmology is
known, so that these can be turned into the apparent three-
dimensional comoving position xobs. In reality, our knowl-
edge of the background cosmology is imperfect of course.
However, as we will show in Secs. II C 3 and III D our
current knowledge is sufficiently precise that effects asso-
ciated with varying the background cosmology within
experimental bounds are small; more precisely, their anti-
symmetric contributions to the cross-correlation function
are suppressed compared to the relativistic effects of
interest by close to two orders of magnitude.
The true position of a galaxy x differs from the apparent

position xobs, because the universe is in fact not exactly
FRW. For convenience, we use a perturbed FRW metric of
the form

ds2 ¼ a2½−ð1þ 2ΨÞdη2 þ ð1 − 2ΦÞjdxj2�; (8)

where a is the scale factor as a function of conformal time
η, andΨ and Φ are scalar fluctuations as a function of space
and time. This is in the so-called conformal Newtonian
gauge. Observable quantities are of course gauge
independent.
Our goal is to relate the true position of a galaxy x to the

apparent position xobs, let

xobs ¼ xþ δx: (9)

Our task is to write down the different contributions to δx,
and derive corrections δΔ to the galaxy overdensity,

Δobs ¼ Δþ δΔ; (10)

where Δobs and Δ are the observed and true overdensity
respectively. The true overdensity needs to be defined
carefully, which we will do as we go over the different
effects.

A. The spatial Jacobian: Doppler/gravitational
redshift and lensing corrections

The two densities are related by

ð1þ ΔobsÞd3xobs ¼ ð1þ ΔÞd3x: (11)

At first order in perturbations, the correction to the density
is therefore given by the Jacobian

δΔ ∼ 1 − det:
�∂xiobs
∂xj

�
: (12)

It is sensitive to both perturbations along the line-of-sight
and transverse to the line-of-sight.
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1. Gravitational and Doppler shifts: light propagation
effects in the line-of-sight direction

It is a familiar fact that peculiar motion contributes to the
observed redshift, and thus affects the apparent line-of-
sight position inferred from it. Gravitational redshift has a
similar effect. Combining the two,

δx ¼ 1

H
½n̂ · ðV − V0Þ − ðΨ −Ψ0Þ�n̂; (13)

where n̂ is the unit vector pointing from the observer to the
(apparent) position of the galaxy, V and Ψ are respectively
the peculiar motion and gravitational potential (time-time
part of the metric perturbation) at the location of the galaxy,
and V0 and Ψ0 represent the same at the observer’s
location. The fact that there is an overall factor of 1=H
comes precisely from the conversion between the observed
redshift and the line-of-sight comoving position, assuming
knowledge of the background FRW cosmology. It is
important to emphasize that the expression inside [ ] in
Eq. (13) includes only some of the large-scale structure
contributions to the net redshift of the object. However,
they are sufficient to account for all effects up to orderH=k
when working out corrections to Δ, as we will see.
Note also that in Eq. (13) we keep only linear contri-

butions in the velocity and gravitational potential and we
neglect higher order terms. Zhao et al. [10] and Kaiser [11]
showed that in cluster measurements, terms quadratic in the
velocity are of the same order as the gravitational redshift
and cannot be neglected. Here however we are interested in
large-scale structure in the linear regime, where we can
show that V2 ≪ Ψ. Indeed, using that V ∼ k=HΨ, we have

V2 ∼
�
k
H

�
2

Ψ2 ∼ δ ·Ψ ≪ Ψ; (14)

where in the last inequality we have used that δ ≪ 1 in the
linear regime. Equation (14) therefore justifies why second-
order terms can be neglected in Eq. (13) with respect to
linear relativistic terms.

2. Lensing: light propagation effect in the
transverse direction

Angular deflection orthogonal to the z direction is given
by the well-known expression [12],

δxi⊥ ¼ −
Z

r

0

dr0ðr − r0Þ∂i⊥ðΦþΨÞ: (15)

This expression is not exact, but once again, is adequate
within our approximation. Here, r is the line-of-sight
comoving distance, or approximately the z component of x.

3. Combining the effects

Combining the gravitational/Doppler shifts and the
lensing effect into Eq. (12) one finds that the correction
to the density is, to first order in perturbations,

δΔ ¼ − 1

H
n̂in̂j∇iVj −

Z
r

0

dr0
ðr − r0Þr0

r
∇2⊥ðΨþ ΦÞ

−
�
2

rH
þ

_H
H2

�
n̂iðVi − V0iÞ þ

1

H
n̂i½ _Vi þ∇iΨ�: (16)

The first line of Eq. (16) contains the well-known Kaiser
[13] and lensing corrections. The terms on the second line
are subleading, smaller than the first line by order H=k. In
working out the Jacobian, we have to take a derivative with
respect to z (i.e. r), and it is important to keep in mind the r
dependence hidden in time η (i.e. to the lowest order, η ¼
η0 − r where η0 is the conformal time today): this is the
origin of the velocity terms on the second line.
So far, we have not accounted for the fact that objects are

often selected by flux, and therefore there are further
(magnification bias) corrections. They will be included
below. The lensing correction in the first term accounts
only for the fact that galaxy density is diluted by lensing
magnification, due to a purely geometrical stretching of the
apparent area on the sky.

B. Connecting observables on the light-cone
to observables at equal time: Light-cone

and evolution corrections

Note that the expression Δþ δΔ should be understood
as being evaluated at position x, and at time η ¼ η0 − r,
with η0 being the conformal time today (actually, the
precise η is slightly different from η0 − r due to photon
propagation in a perturbed universe, but the difference
would only contribute to terms higher order in fluctua-
tions). It is crucial to keep in mind that the time η is tied to
the location x (or its z component). In other words, a galaxy
further away also emitted the observed photon further back.
To understand how this affects the observed galaxy

overdensity let us connect these to fluctuations at a fixed
time, say η�. This seems straightforward,

½Δþ δΔ�η ∼ ½Δþ δΔ�η� þ
∂
∂η ½Δþ δΔ�jη�ðη − η�Þ; (17)

with η − η� small compared to Hubble time, i.e.
Hðη − η�Þ ≪ 1. The time difference η − η� can also be
thought of as the spatial difference along the line-of-sight
r� − r where r� ≡ η0 − η�, and thus the smallness of
Hðη − η�Þ has the same meaning as the smallness of
H=k. In the spirit of keeping only terms up to OðH=kÞ,
we need only keep Oð1Þ terms in ð∂=∂ηÞ½Δþ δΔ�, mean-
ing only Δ and the first line contribution to δΔ [Eq. (16)]
needs to be included in this derivative. We refer to the
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second term on the right of Eq. (17) as the evolution
correction, it obviously is related to the evolution of the
fluctuations at a given spatial position x.
There is, however, amore subtle effect arising from the fact

that galaxies havemoved between the times η and η�, an effect
that is not capturedbydifferentiating the fluctuations at a fixed
x. FollowingKaiser [11],we call this the light-cone effect. It is
easier to explain by first imagining that all galaxiesmovewith
the same velocityV. Let q be the position of these galaxies at
the time of interest η�. Their positions at time η is thus:
x ¼ qþ Vðη − η�Þ. On the other hand, we know ðx; ηÞ lies
on the light-cone, meaning r ¼ η0 − η (to lowest order); see
Fig. 3 for an illustration. The line-of-sight component of
x ¼ qþ Vðη − η�Þ thus tells us r ¼ uþ n̂iViðη − η�Þ ¼
uþ n̂iViðr� − rÞ, where u denotes the line-of-sight compo-
nent of q. Solving for r gives r − r� (which is also η� − η)
¼ ðu − r�Þ=ð1þ n̂iViÞ ∼ u − r�, thus telling us r ¼ uþ
n̂iViðr� − uÞ, or more generally,

x ¼ qþ Vðr� − uÞ: (18)

This provides the mapping between the galaxy position x on
the light-cone and the galaxy position q at the time of interest
η�. The Jacobian between them gives us an additional
correction to the density, connecting the density in x space
to the density (of interest) in q space, i.e.

Δ → Δþ
�
1 − det:

�∂xi
∂qj

��
∼ Δþ n̂iVi: (19)

This effect can be grasped in an intuitiveway from inspecting
Fig. 3: due to the peculiar velocity of the two galaxiesG and
G0, the true line-of-sight separation between them, r0 − r,
differs from their line-of-sight separation at the timeof interest
η�: u0 − u. This argument assumes V has no spatial depend-
ence. If it does, itwould seem the Jacobian should introducean
additional correction proportional to the divergence ofV. One
recognizes that such a term iswhat contributes to ∂Δ=∂η, and

has already been accounted for by the evolution corrections in
Eq. (17). More precisely, if the galaxy number is conserved,
we know to linear order, −∇iVi ¼ ∂Δ=∂η, which is con-
tained in the corrections in Eq. (17) already. The term ∂Δ=∂η
couldofcoursehaveadditional contributionscoming from the
fact that galaxies merge or form. In any case, there is no need
to account for the spatial dependence ofV when working out
the light-cone effect. Note that in the general relativistic
derivation [5–7], the light-cone effect is automatically taken
into account in the four-dimensional space-time Jacobian.
Let us summarize, by combining Eqs. (16), (17)

and (19),

Δobs ¼ Δ − 1

H
n̂in̂j∇iVj −

Z
r

0

dr0
ðr − r0Þr0

r
∇2⊥ðΨþ ΦÞ

−
�
2

rH
þ

_H
H2

�
n̂iðVi − V0iÞ þ

1

H
n̂i½ _Vi þ∇iΨ�

þ n̂iVi þ
∂
∂η

�
Δ − 1

H
n̂in̂j∇iVj

�����
η�

ðr� − rÞ; (20)

where we have only kept terms up to order H=k. Note that
the time evolution correction from the lensing term is
implicit: one can expand the line-of-sight integral

R
r
0 dr

0…
around r ¼ r�, and the first order correction will be
proportional to r − r� just like other evolution corrections
(on the last line). The right-hand side of Eq. (20) should be
understood to be evaluated at position x (we need not
distinguish between q and x at this point because the
difference would contribute terms of higher order in the
context of this equation), and at time η ¼ η�.
Equation (20) is perfectly compatible with the general

relativistic expression of [6,7], up to order H=k (see also
Eq. (A7) of Appendix A). The only difference is that here the
evolution term (third line) has been made explicit, whereas in
[6,7] it is part of the standard term (first two terms).

C. Observational selection effects

Lastly, we wish to include three selection effects related
to observations: magnification bias, radial density varia-
tions and the Alcock-Paczynski effect.

1. Magnification bias

Galaxy samples are often flux limited. This means the
magnification of the flux by intervening structure causes
the apparent density to fluctuate. The lensing term in the
first line of Eq. (20) already accounts for the simple
geometrical stretching of the apparent area. Here, we want
to account for the fact that behind a magnified region, faint
sources that otherwise would not have made it into one’s
sample now do. Previous calculations tell us that this effect
gives a correction of the form 5sδf=2, where δf is the
fractional fluctuation in the flux, and s is the effective
number count slope (see e.g. [14,15]),

FIG. 3 (color online). Schematic representation of the light-cone
effect. Due to the peculiar velocity of the two galaxies G and G0,
the true line-of-sight separation between them, r0 − r, differs from
their line-of-sight separation at the time of interest η�: u0 − u.
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s≡ 1

2.5

�Z
dfϵðfÞN0ðfÞ

�−1 Z
df

dϵ
df

fN0ðfÞ; (21)

where N0ðfÞdf is the number density of sources with flux
f � df=2, and ϵðfÞ describes the detection efficiency,
e.g. a step function would be an example with a sharp
flux threshold; in that case it can be shown that s ¼
dlog10Ntot=dm with Ntot being the number of galaxies
brighter than magnitude m. The flux fluctuation δf is
related to the convergence part, κ, of the magnification
matrix δf ¼ 2κ and has been calculated in [16,17] (see also
computations of the luminosity distance fluctuation:
δf ¼ −2δdL , where δdL is the fractional fluctuation in
luminosity distance [18,19]). The magnification bias cor-
rection [to be added to the right-hand side of Eq. (20)] is
therefore (see also [7])

δΔm:b: ¼ 5s

�
−n̂iVi þ

1

rH
n̂iðVi − V0iÞ

þ 1

2

Z
r

0

dr0
ðr − r0Þr0

r
∇2⊥ðΨþ ΦÞ

�
: (22)

2. Radial selection

Another effect we wish to include is the fact that in
practice we often do not know the selection function of a
given galaxy survey precisely. The correct fluctuation Δ
should be ðn − n̄Þ=n̄, where n is the number density and n̄
its mean. In practice, we do not know n̄ precisely; suppose
the assumed mean density ~n differs from n̄ in the form
~n ¼ n̄ð1 − δΔsel:Þ. It is easy to see that Δobs, which is
inferred from ðn − ~nÞ= ~n, would contain a correction which
is δΔsel:, to lowest order. Since the selection function is
typically smooth, we can Taylor expand δΔsel: around the
mean redshift of the survey,

δΔsel: ∼ αrðr − r�Þ; (23)

where αr is simply a constant, describing the slope of the
extent to which the assumed selection function differs from
the true selection function. We neglect here higher order
terms in the Taylor expansion, ∝ ðr − r�Þ2, which are
symmetric around r� and would therefore not contribute
to the antisymmetric correlation function.3 Note that δΔsel:
could in principle contain a constant piece as well, but such
a piece is generally removed by ensuring that the density
averaged within the survey is zero. Note also that we
assume the only selection issue is in the z direction. This is
not true in general: there could well be a similar selection

issue in the angular directions as well; we will ignore this
possibility. As we will see, a term like Eq. (23) would not
give an interesting asymmetry in the cross-correlation
function, even though it looks like it could.

3. Alcock-Paczynski effect

Finally, the last effect we want to discuss here is how
using a (slightly) wrong background cosmology can
impact the observed overdensity of galaxies Δ. We need
to assume a cosmology when transforming redshift
coordinates (at the level of the background) to comoving
coordinates. Let us denote by Ω the true cosmology, and
by ~Ω ¼ Ωþ δΩ the wrong cosmology, that we are using
to infer r from z. The wrong r is a function of the
redshift and of the wrong cosmology, r ¼ rðz; ~ΩÞ, and it
is related to the true r by

rðz; ~ΩÞ ¼ rðz;Ωþ δΩÞ≃ rðz;ΩÞ þ ∂rðz;ΩÞ
∂Ω · δΩ; (24)

where we have neglected higher order terms in the Taylor
expansion based on the fact that our knowledge of the
background cosmology is relatively accurate, i.e. that
δΩ=Ω ≪ 1. Note that the direction n̂ of the incoming
photon is not affected by the transformation from redshift
to radial distances.4

The overdensity of galaxy then reads, in term of the
wrong comoving coordinates,

Δðrðz; ~ΩÞ; n̂Þ≃ Δðrðz;ΩÞ; n̂Þ

þ dΔðrðz;ΩÞ; n̂Þ
dr

∂rðz;ΩÞ
∂Ω · δΩ: (25)

Here d=dr is a total derivative, that takes into account that if
r is wrongly inferred from z, then the conformal time
coordinate η ¼ η0 − r will also be wrong:

dΔ
dr

¼ ∂Δ
∂r þ ∂Δ

∂η
dη
dr

¼ ∂Δ
∂r − ∂Δ

∂η : (26)

Combining Eqs. (25) and (26) gives a correction in the
overdensity, ΔAP, of the form

ΔAPðr; n̂Þ ¼ ð∂r − ∂ηÞΔðr; n̂Þ
∂rðz;ΩÞ

∂Ω · δΩ: (27)

The first term, proportional to ∂r, brings in an additional
factor k and seems therefore to give an important contribu-
tion at small scales. In Sec. III D we will see however that

3Note that the cross-correlation between a linear term and a
quadratic term would give an antisymmetric contribution propor-
tional to ðr − r�Þ3. Such a contribution is however negligible as
long as the redshift width of the survey is smaller than its depth
r − r� ≪ r�.

4This however does not mean that the transverse separation
between a pair of galaxies is not affected by the Alcock-
Paczynski effect. On the contrary, from Fig. 4 [and Eq. (43)]
we see that if r and r0 are wrongly inferred, then the comoving
separation d between a pair of galaxies is also wrongly
calculated.
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this contribution is suppressed and that the antisymmetric
Alcock-Paczynski effect is actually smaller than the other
antisymmetric contributions by a factor δΩ=Ω≲ 0.01.

D. The total observed overdensity

Putting Eqs. (20), (22), (23) and (27) together, we finally
obtain

Δobs ¼ b · δ− 1

H
n̂in̂j∇iVj −

Z
r

0

dr0
ðr− r0Þr0

r
∇2⊥ðΨþΦÞ

−
�
2

rH
þ

_H
H2

�
n̂iðVi −V0iÞ þ

1

H
n̂i½ _Vi þ∇iΨ� þ n̂iVi

− ∂
∂η

�
b · δ− 1

H
n̂in̂j∇iVj

�����
η�

ðr− r�Þ

þ 5s

�
−n̂iVi þ

1

rH
n̂iðVi −V0iÞ

þ 1

2

Z
r

0

dr0
ðr− r0Þr0

r
∇2⊥ðΨþΦÞ

�

þ αrðr− r�Þ þΔAP; (28)

where we have related the true galaxy overdensity Δ to
the matter density contrast5 δ with the bias b.
Equation (28) is perfectly compatible with the general
relativistic result of [6,7], up to order H=k. Our derivation
provides therefore an intuitive explanation of the H=k
terms contributing to the relativistic correlation function.
To that we are adding two selection effects: the radial
selection effect and the Alcock-Paczynski effect, in the
last line of Eq. (28).
The goal of our paper is now to identify the terms that

would give rise to an asymmetry in the cross-correlation
function i.e. squaring the above but keeping track of the fact
that there are two populations of galaxies. As explained in
Sec. I, terms that turn out to contain a single gradient of the
potential give rise to an asymmetry: these are terms on
the second and fourth line of Eq. (28), as well as some of
the terms in ΔAP. Evolution terms, which scale as r − r�,
also give rise to an asymmetry—they are those on the third
line; there are also contributions from expanding the
lensing terms on the first and fifth lines around r ∼ r�.
The first term in the last line—the radial selection effect—
does not give anything interesting, since its only possible
antisymmetric contribution to the cross-correlation func-
tion comes from something like hbδαrðr − r�Þi which
vanishes because αr is not a fluctuating variable. We will
henceforth drop this selection effect term from Δobs.

III. CORRELATIONS BETWEEN TWO
POPULATIONS

Let us now study in detail the cross-correlation of Δobs
between twodifferent populationsofgalaxies, thatwe label by
B forbright galaxies andF for faint galaxies, butFandBcould
also refer to other selection criterion, such as color. In the
followingwe ignore the contributions of the observer velocity
V0 that onlycontributes toaglobal dipolearound theobserver,
andwe ignore theselectioneffect in the last lineofEq. (28) that
averages to zerowhen correlatedwith any stochastic variable.
For convenience we also do not write explicitly the evolution
effect [third line of Eq. (28)]: we simply absorb it into the
density and redshift-space distortion terms (first two terms on
the first line); the two terms should then be thought of as being
evaluated at time η ¼ η0 − r, instead of at some fixed fiducial
time η�. We will make the evolution terms explicit again in
Sec. III B. With this, Eq. (28) becomes

Δobs ¼ b · δ − 1

H
∂rðV · n̂Þ −

Z
r

0

d~r
ðr − ~rÞ~r

r
∇2⊥ðΨþ ΦÞ

−
�
2

rH
þ

_H
H2

− 1

�
V · n̂þ 1

H
½ _V · n̂þ ∂rΨ�

þ 5s

��
1

rH
− 1

�
V · n̂

þ
Z

r

0

d~r
ðr − ~rÞ~r

2r
∇2⊥ðΨþ ΦÞ

�
þ ΔAP: (29)

It is convenient to group the terms in Eq. (29) into four
contributions: the standard contribution, the relativistic con-
tribution, the lensing contribution and the Alcock-Paczynski
contribution. With this the overdensity of bright galaxies
simply reads

ΔBðz; n̂Þ ¼ Δst
Bðz; n̂Þ þ Δrel

B ðz; n̂Þ
þ Δlens

B ðz; n̂Þ þ ΔAP
B ðz; n̂Þ; (30)

where

Δst
Bðz; n̂Þ ¼ bBδðz; n̂Þ − 1

H
∂rðV · n̂Þ; (31)

Δrel
B ðz; n̂Þ ¼ 1

H
∂rΨþ 1

H
_V · n̂ −

�
_H
H2

þ 2

rH
− 1

þ 5sB

�
1 − 1

rH

��
V · n̂; (32)

Δlens
B ðz; n̂Þ ¼ ð5sB − 2Þ

Z
r

0

d~r
ðr − ~rÞ~r

2r
∇2⊥ðΦþΨÞ; (33)

ΔAP
B ðz; n̂Þ ¼ ð∂r − ∂ηÞðΔst

B þ Δrel
B þ Δlens

B Þ · ∂rðz;ΩÞ∂Ω · δΩ:

(34)

5Here δ denotes the density contrast in the comoving gauge,
where the simple linear relation between the galaxy and matter
density is valid [20,21]. Note however that the differences
between the different gauges are of order H2=k2, i.e. negligible
for us.
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The quantity bB denotes the bias of the bright galaxies and sB
is their effective number count slope. Expressions (31) to (34)
are valid in any theory in which photons travel on null
geodesics; no assumptions have beenmade about the dynam-
ics of gravity. In theories in which the galaxies (i.e. non-
relativistic tracers) also move on geodesics, we can use the
Euler equation

_V · n̂þHV · n̂þ ∂rΨ ¼ 0; (35)

to simplify Eq. (32) to

Δrel
B ðz; n̂Þ ¼ −

�
_H
H2

þ 2

rH
þ 5sB

�
1 − 1

rH

��
V · n̂: (36)

The gravitational redshift effect, ∂rΨ=H, is therefore
canceled by a combination of the light-cone effect and
part of the Doppler effect. The overdensity of faint galaxies
can be split in a similar way into a standard, relativistic,
lensing and Alcock-Paczynski contribution. These contri-
butions differ from thebright population through thebiasbF
and the effective number count slope sF. We can then
compute the cross-correlation function ξBF between the two
populations

ξBFðz; z0; θÞ ¼ hΔBðz; n̂ÞΔFðz0; n̂0Þi: (37)

Due to statistical homogeneity and isotropy ξBF depends
only on the redshift of the bright galaxy z, the redshift of the
faint galaxy z0 and the angular separation between the
bright and the faint, that we denote by θ (see Fig. 4).6 ξBF

contains four contributions:

ξstðz; z0; θÞ ¼ hΔst
Bðz; n̂ÞΔst

F ðz0; n̂0Þi; (38)

ξrelðz; z0; θÞ ¼ hΔst
Bðz; n̂ÞΔrel

F ðz0; n̂0Þi
þ hΔrel

B ðz; n̂ÞΔst
F ðz0; n̂0Þi; (39)

ξlensðz; z0; θÞ ¼ hΔst
Bðz; n̂ÞΔlens

F ðz0; n̂0Þi
þ hΔlens

B ðz; n̂ÞΔst
F ðz0; n̂0Þi

þ hΔlens
B ðz; n̂ÞΔlens

F ðz0; n̂0Þi; (40)

ξAPðz; z0; θÞ ¼ hðΔst
B þ Δrel

B þ Δlens
B Þðz; n̂ÞΔAP

F ðz0; n̂0Þi
þ hΔAP

B ðz; n̂ÞðΔst
F þ Δrel

F þ Δlens
F Þðz0; n̂0Þi:

(41)

Note that in Eq. (39) we have neglected the correlation
between the relativistic terms hΔrel

B ðz; n̂ÞΔrel
F ðz0; n̂0Þi since it

is a factor H=k smaller than the other two terms. We also
neglect the correlation between the relativistic term and the
lensing term that, as will become clear in Sec. III C, are
subdominant both in Eq. (39) and in Eq. (40). Finally in
Eq. (41) we neglect the contribution hΔAP

B ðz; n̂ÞΔAP
F ðz0; n̂0Þi

since it is quadratic in δΩ=Ω ≪ 1.
We now want to calculate the antisymmetric part of ξBF

that, as we will show hereafter, provides a way of isolating
the relativistic part of the correlation function, ξrel. Since we
have split galaxies into two populations, we are able to
differentiate faint galaxies that are in front of a bright
galaxy, from faint galaxies that are behind a bright galaxy.
One simple way to exploit this information is to expand the
two-point correlation function in multipoles around the
bright galaxies. More precisely, denoting by β the angular
position of the faint galaxy with respect to the bright one
(see Fig. 4) we can expand the correlation function in
multipoles of β. Even multipoles will contribute to the
symmetric part of ξBF whereas odd multipoles will con-
tribute to the antisymmetric part.

A. Relativistic contribution

Let us start by calculating the relativistic contribution ξrel

in the full-sky regime. Following Refs. [22–26] we expand
ξrel in tripolar spherical harmonics. We introduce a coor-
dinate system where the triangle formed by the observer, the
bright galaxy and the faint galaxy lies in the (x1-x2) plane
(see Fig. 5). The unit vector N̂ connecting the bright to the
faint galaxy is chosen to be aligned with the x2 axis. In this
coordinate system the directions n̂, n̂0 and N̂ all have a polar
angle ~θ ¼ π

2
. The azimuthal angle of N̂ is zero and we denote

FIG. 4. Schematic representation of the position of the bright
galaxy (B) and faint galaxy (F) with respect to the observer (O).

6It is worth underlying that here z, z0 and θ are the observed
redshifts and angular separation. However the important point is
that we are now allowed to relate these observed quantities to the
comoving radial coordinates r and r0 and to the transverse
separation x⊥, using background expressions with the wrong
cosmology. All the effects arising from the fact that fluctuations
in the observed redshift and the use of a wrong cosmology modify
the comoving distances have already been consistently included
in the observed Δ up to linear order.
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by α the azimuthal angle of n̂0 and β the azimuthal angle of
n̂. Note that β is also the angle between the directions n̂ and
N̂: it is therefore the angle in which we want to perform our
multipole expansion. The coordinate r ¼ η0 − η, denotes the
radial comoving distance of the bright galaxy, r0 ¼ η0 − η0
the radial comoving distance of the faint galaxy, and d is the
comoving distance between the bright and the faint galaxies.
Our goal is to express the correlation function in terms of this
new coordinate system, more precisely as a function of r (or
η), d and β. Note that here we consider η as an “observable”
coordinate, in the sense that we can relate it to the measured
redshift z using the background relation between redshift and
comoving time. The perturbations of the redshift have been
consistently included in the derivation of the observed
galaxy overdensity.
A detailed derivation of the two-point function ξrel is

given in Appendix B. Here we simply write the final result,

ξrel ¼ 2A
9Ω2

mπ
2
fR1 cosðαÞ þ R2 cosðβÞ

þ R3 cosðαÞ cosð2βÞ þ R4 cosðβÞ cosð2αÞ
þ R5 sinðαÞ sinð2βÞ þ R6 sinðβÞ sinð2αÞg; (42)

where the coefficients R1 to R6 are given in Appendix B.
These coefficients depend on r, r0 and d. We can then
explicitly rewrite Eq. (42) in terms of r, d and β using the
trigonometric relations

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2 þ 2dr cosðβÞ

q
; (43)

cosðαÞ ¼ dþ r cosðβÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2 þ 2dr cosðβÞ

p ; (44)

sinðαÞ ¼ r sinðβÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2 þ 2dr cosðβÞ

p : (45)

Note that Eq. (42) agrees with the previous calculation
of [25,26].
Expression (42) is valid in the full sky. For small angular

separations between the bright and faint galaxies it can be
further simplified. Indeed in this case d ≪ r so that
expressions (43) to (45) can be expanded in series of
d=r ≪ 1. Moreover, the coefficients R1 to R6 are smooth
and slowly varying functions (see Appendix B). In the
regime where jr0 − rj ≪ r these functions can be Taylor
expanded around r,

gðr0Þ ¼ gðrþ r0 − rÞ≃ gðrÞ þ g0ðrÞðr0 − rÞ

≃ gðrÞ þ rg0ðrÞ d
r
cosðβÞ; (46)

where here a prime denotes a derivative with respect to r.
In this regime, at lowest order in d=r, expression (42)
becomes

ξrelðr; d; βÞ ¼ 2A
9Ω2

mπ
2

H
H0

D2
1f

�
ν1ðdÞ · P1ðcos βÞ

×

��
_H
H2

þ 2

rH

�
ðbB − bFÞ þ

�
1

rH
− 1

�

× ð5ðsBbB − sFbFÞ þ 3ðsB − sFÞfÞ
�

þ ν3ðdÞ · P3ðcos βÞ2
�
1 − 1

rH

�
ðsB − sFÞf

�
;

(47)

where all the functions are evaluated at r. Here D1 is the
linear growth factor, P1 and P3 are the Legendre poly-
nomial of degree 1 and 3, respectively, and

f ¼ d lnD1

d ln a
;

νlðdÞ ¼
Z

dk
k

�
k
H0

�
3

ðkη0Þns−1T2ðkÞjlðkdÞ;

l ¼ 1; 3: (48)

We see that the relativistic correlation function is completely
antisymmetric around the bright galaxy: ξrelðr; d; β þ πÞ ¼
−ξrelðr; d; βÞ. It vanishes when bB ¼ bF and sB ¼ sF. This
shows that to measure the relativistic correlation function at
lowest order in d=r it is essential to have two distinct
populations of galaxies. From Eq. (47) we see that if there is
no magnification bias, sB ¼ sF ¼ 0, then the relativistic term
has only a dipolar modulation. With magnification bias
however, we have also an octupole modulation.

FIG. 5. Definition of our coordinate system. The triangle
composed of the observer (O), the bright galaxy (B) and the
faint galaxy (F) lies in the (x1-x2) plane. The unit vector N̂
relating the bright to the faint galaxy is parallel to the axis x2. In
this coordinate system, the azimuthal angle of the bright galaxy β
is also the angle between n̂ and N̂.
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At higher order in d=r, Eq. (47) receives two types of
corrections. First, the evolution of the density and velocity
growth factor generates corrections to the coefficients R1 to
R6, that can be calculated using Eq. (46). Second, observa-
tions are performed on our past-light-cone, and the directions
n̂ and n̂0 are not parallel. In the wide-angle regime, this
induces geometrical corrections to the relativistic correlation
function that can be calculated by expanding Eqs. (44) and
(45) at next order in d=r. At linear order, d=r, these
corrections produce a quadrupole, P2ðβÞ, and hexadecapole,
P4ðβÞ, modulation. From this we understand that the
contribution of the relativistic terms to the even multipoles
is strongly suppressed with respect to the standard density
and redshift-space contributions. In addition to the well-
knownH=k suppression, there is an extra suppression due to
the factor d=r. This is consistent with the analysis of [27]
which shows that the relativistic terms have a very negligible
effect on the even multipoles. On the other hand, from
Eq. (47) it is clear that the dipole does not suffer from this
extra d=r suppression and is therefore much more promising
to measure relativistic corrections.

B. Standard contribution

We now perform the same derivation for the standard
correlation function ξst. As shown in [23–25] in the full-sky
ξst reads

ξst ¼ 2A
9π2Ω2

m
fS1 þ S2 cosð2βÞ þ S3 cosð2αÞ

þ S4 cosð2αÞ cosð2βÞ þ S5 sinð2αÞ sinð2βÞg; (49)

where the coefficients S1 to S5 are given in Appendix C.
They depend on r; r0 and d. Using Eqs. (43) to (45), we can
express ξst as a function of r; d and β. In the small-angle
regime, and using the expansion (46) we find that at lowest
order in d=r, the standard correlation function ξst takes
the form

ξstðr; d; βÞ ¼ 2AD2
1

9π2Ω2
m

��
bBbF þ ðbB þ bFÞ

f
3
þ f2

5

�
μ0ðdÞ

−
�
ðbB þ bFÞ

2f
3
þ 4f2

7

�
μ2ðdÞ · P2ðcos βÞ

þ 8f2

35
μ4ðdÞ · P4ðcos βÞ

�
; (50)

where all the functions are evaluated at r and

μlðdÞ ¼
Z

dk
k

�
k
H0

�
4

ðkη0Þns−1T2ðkÞjlðkdÞ; l¼ 0;2;4:

At lowest order in d=r we see that the standard correlation
function is completely symmetric: it contains a monopole, a
quadrupole and an hexadecapole. This is simply the well-
known Kaiser formula [13,28,29].

Comparing Eqs. (47) and (50) we see that at order zero in
d=r, the odd multipoles are only generated by the relativ-
istic terms, whereas the even multipoles are only generated
by the standard terms. The antisymmetric correlation
function provides therefore in principle a clean way to
isolate the relativistic terms from the standard ones. This
distinction between the standard and relativistic terms
based on their symmetry has already been discussed by
McDonald in [2]. Instead of looking at the correlation
function, Ref. [2] studies the power spectrum and shows
that the relativistic terms contribute to the imaginary part of
the power spectrum whereas the standard terms contribute
to the real part.
This distinction (in redshift space or in Fourier space)

suffers however from a caveat. Indeed since the amplitude
of the standard terms is enhanced by a factor k=H ∼ r=d
with respect to the relativistic terms, it may not be sufficient
to keep only the lowest order in d=r in the standard term.
Even in the regime where d=r ≪ 1 it is possible that the
next-to-leading order in the standard terms, i.e. the term
linear in d=r, contaminates the lowest order in the relativ-
istic terms, ðd=rÞ0.
Let us therefore calculate the linear order d=r. We are

interested in the antisymmetric correlation function at
this order,

ξstA ¼ 1

2
½ξstðr; r0; dÞ − ξstðr0; r; dÞ�: (51)

The coefficients S1; S2 and S3 are not symmetric under
the exchange of r and r0 due to their dependence on the bias
bB and bF. They will therefore contribute to the antisym-
metric part of the correlation function. As an example,
let us look at the first term in the coefficient S1, which is of
the form

bBðrÞbFðr0ÞD1ðrÞD1ðr0Þμ0ðdÞ:

The antisymmetric part of this term is

1

2
½bBðrÞbFðr0Þ − bBðr0ÞbFðrÞ�D1ðrÞD1ðr0Þμ0ðdÞ

≃ r
2
½bBðrÞb0FðrÞ − b0BðrÞbFðrÞ�D2

1ðrÞμ0ðdÞ
d
r
cosðβÞ;

where in the second line we have used the expansion (46)
and kept only the linear order in d=r. We see therefore that
the difference in the evolution of the bright and faint
galaxies generates a dipolar asymmetry in the standard
correlation function.
In addition to this kind of asymmetry due to evolution,

there is another asymmetry related to the fact that we
observe on our past light-cone. As a consequence, under
the exchange of r and r0, β does not transform as β þ π but
as β þ π − θ ¼ αþ π, where θ denotes the angular sepa-
ration between the two galaxies (see Fig. 4). This generates
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an additional dipolar modulation in ξst. In particular, at
linear order in d=r, the term S2ðr; r0Þ cosð2βÞ in Eq. (49)
becomes under the exchange of r and r0,

S2ðr0; rÞ
�
cosð2βÞ þ 4

d
r
ðcos β − cos3βÞ

�
;

and the term

S3ðr;r0Þcosð2αÞ≃S3ðr;r0Þ
�
cosð2βÞþ 4

d
r
ðcosβ− cos3βÞ

�
;

becomes under the exchange of r and r0,

S3ðr0; rÞ cosð2βÞ:

These terms therefore generate an additional asymmetry in
the correlation function of the form 4d=rðcos β − cos3 βÞ.
Note that the terms S4 and S5 do not contribute to the
antisymmetric correlation function since they are symmet-
ric S4ðr; r0Þ ¼ S4ðr0; rÞ and S5ðr; r0Þ ¼ S5ðr0; rÞ and their
associated angular dependence is also symmetric:
cosð2αÞ cosð2βÞ and sinð2αÞ sinð2βÞ do not change under
the exchange of r and r0. Putting everything together we
find that the antisymmetric correlation function has a total
dipolar modulation of the form

ξstdipðr; d; βÞ ¼
2AD2

1

9π2Ω2
m

�
−ðbB − bFÞ

2f
5
· μ2ðdÞ

þ ðbB − bFÞ
rf0

6

�
μ0ðdÞ − 4

5
μ2ðdÞ

�

− rf
6
ðb0B − b0FÞ

�
μ0ðdÞ − 4

5
μ2ðdÞ

�

þ r
2
ðbBb0F − b0BbFÞ · μ0ðdÞ

�
·
d
r
· P1ðcos βÞ;

(52)

and an octupole modulation of the form

ξstoctðr; d; βÞ ¼
2AD2

1

9π2Ω2
m

�
ðbB − bFÞ

2f
5
− ðbB − bFÞ

rf0

5

þ ðb0B − b0FÞ
rf
5

�
μ2ðdÞ ·

d
r
· P3ðcos βÞ; (53)

where all the functions are evaluated at position r and a
prime denotes a derivative with respect to r. Comparing
Eq. (52) with the dipolar modulation of the relativistic term,
Eq. (47), we see that the standard contribution is suppressed
by a factor d=r with respect to the relativistic contribution.
As discussed before this reflects the fact that the relativistic
term is intrinsically antisymmetric, due to its direct
dependence in the line-of-sight peculiar velocity, whereas
the standard term is intrinsically symmetric. The

asymmetry of the standard term comes from the evolution
of the bias and growth factor [lines 2 to 4 in Eq. (52)] as
well as from the wide-angle correction related to the fact
that we observe on our past light-cone (first line). As such
this dipolar modulation tends to zero with d=r. On the other
hand, the standard term depends on the functions μlðdÞ that
are a factor k=H larger than the functions νlðdÞ in the
relativistic term. Hence Eqs. (52) and (53) can potentially
be of the same order of magnitude as Eq. (47).

C. Lensing contribution

The lensing contribution in Eq. (40) contains three types
of term: the correlation between the density of the bright
galaxies and the lensing of the faint galaxies ξlensBL , the
correlation between the density of the faint galaxies and the
lensing of the bright galaxies ξlensFL , and the lensing-lensing
correlation ξlensLL . These three terms can be calculated using
Limber approximation, in which the contributions of k∥ ¼
k · n̂ to the power spectrum are neglected. In this approxi-
mation the correlation between redshift-space distortions
(sensitive to k∥ only) and lensing vanishes. The first term
reads

ξlensBL ≃ 2A
3Ωmπ

bBðrÞð5sFðr0Þ − 2Þ rðr
0 − rÞ
2r0

D2
1ðrÞ
aðrÞ θðr0 − rÞ

×
Z

∞

0

dk⊥
�
k⊥
H0

�
2

T2ðk⊥ÞJ0ðk⊥jΔx⊥jÞ; (54)

where θðxÞ is the Heaviside function: θðxÞ ¼ 1 if x > 0 and
zero elsewhere. Equation (54) describes how the density of
the faint galaxies is lensed by the density of the bright
galaxies that are in front, i.e. with r < r0. The second
contribution, ξlensFL , describes how the density of the bright
galaxies can be lensed by the density of the faint galaxies in
front of the bright. This term has exactly the same form as
Eq. (54), with bB replaced by bF, sF replaced by sB and r
and r0 exchanged. It contributes to the correlation function
only if r > r0. To that we need to add the lensing-lensing
correlation that can also be simplified using Limber
approximation. Putting the three terms together and keep-
ing only the lowest order in d=r we find

ξlens ¼ 2A
3Ωmπ

·
Z

∞

0

dk⊥
k⊥

�
k⊥
H0

�
3

T2ðk⊥ÞJ0ðk⊥jΔx⊥jÞ

×

�
3ΩmH3

0ð5sB − 2Þð5sF − 2Þ

×
Z

r

0

d~r
D2

1ð~rÞ
a2ð~rÞ

ðr − ~rÞ2 ~r2
4r2

þ ½bBð5sF − 2Þθðcos βÞ − bFð5sB − 2Þθð− cos βÞ�

×
D2

1ðrÞ
2aðrÞH0d cosðβÞ

�
: (55)
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The multipole expansion of this expression is not trivial,
due to the dependence in β of the argument of the Bessel
function jΔx⊥j ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2ðβÞ

p
. The multipoles can

however easily be calculated numerically by projecting
Eq. (55) over the Legendre polynomial

ξlensl ¼ 2lþ 1

2

Z
1

−1
dμξlensðr; d; μÞPlðμÞ; (56)

where μ ¼ cosðβÞ. If one considers only one galaxy
population, bB ¼ bF and sB ¼ sF, the lensing contribution
Eq. (55) is completely symmetric and only the even
multipoles are nonzero (see [15] for a detailed study of
the lensing anisotropies with one population). However,
when bB ≠ bF and sB ≠ sF there is a an antisymmetric
contribution to the correlation function, due to the fourth
line of Eq. (55), which reads

ξlensA ¼ 1

2
½ξlensðr; r0; dÞ − ξlensðr0; r; dÞ�

≃ A
6Ωmπ

D2
1ðrÞ
aðrÞ ½bBð5sF − 2Þ − bFð5sB − 2Þ�

×H0d cosðβÞ ·
Z

∞

0

dk⊥
k⊥

�
k⊥
H0

�
3

T2ðk⊥Þ

× J0ðk⊥d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2ðβÞ

q
Þ: (57)

The lensing-lensing correlation does not contribution to
this antisymmetry at lowest order, where r ¼ r0, but it
would contribute at next-to-leading order. The dipolar
contribution is then simply

ξlensdip ¼ 3

2

Z
1

−1
dμξlensA ðr; d; μÞP1ðμÞ: (58)

Comparing Eq. (57) with the relativistic and standard
dipolar contributions Eqs. (47) and (52), we see that the
lensing contribution is suppressed by a factor H0d with
respect to the relativistic contribution, and by a factor
H0=k ∼H0d with respect to the standard dipole contribu-
tion. This suppression is due to the fact that the lensing is
sensitive to the projection of the density perpendicular to
the line-of-sight. Consequently, the lensing contribution to
the dipole will be negligible with respect to both the
relativistic and the standard contributions.

D. Alcock-Paczynski contribution

The Alcock-Paczynski contribution in Eq. (41) can be
rewritten as

ξAP ¼ hΔBðr; n̂Þð∂r0 − ∂η0 ÞΔFðr0; n̂0Þi ∂r
0

∂Ω · δΩ

þhð∂r − ∂ηÞΔBðr; n̂ÞΔFðr0; n̂0Þi ∂r∂Ω · δΩ; (59)

where ΔB regroups the standard, relativistic and lensing
contributions,

ΔB ¼ Δst
B þ Δrel

B þ Δlens
B ; (60)

and similarly for ΔF. We can Taylor expand r0ðz0;ΩÞ
around z so that

∂r0ðz0;ΩÞ
∂Ω δΩ≃

�∂rðz;ΩÞ
∂Ω − z0 − z

H2ð1þ zÞ
∂H
∂Ω

�
δΩ

¼ r

� ∂ ln r
∂ lnΩ − ∂ lnH

∂ lnΩ
d
r
cos β

�
δΩ
Ω

: (61)

1. Radial derivatives

Let us start by looking at the terms that contains radial
derivatives in Eq. (59). Using Eq. (61) the antisymmetric
contribution generated by this term is

ξAPA ¼ r
2
ð∂r þ ∂r0 Þ½hΔBðr; n̂ÞΔFðr0; n̂0Þi

− hΔFðr; n̂ÞΔBðr0; n̂0Þi� ∂ ln r∂ lnΩ ·
δΩ
Ω

− r
2
∂r0 ½hΔBðr; n̂ÞΔFðr0; n̂0Þi

− hΔFðr; n̂ÞΔBðr0; n̂0Þi� d
r
cos β

∂ lnH
∂ lnΩ ·

δΩ
Ω

: (62)

The contribution from the first two lines brings in a factor
krðik̂ · n̂0 − ik̂ · n̂Þ. In the flat sky approximation, n̂0 ¼ n̂,
and this term vanishes. In the full sky however, there
is a contribution proportional to krðcos β − cos αÞ≃
krðcos2β − 1Þd=r. We see that the enhancement brought
by the radial derivative (∼kr ≫ 1) is counterbalanced by
the wide-angle correction (∼d=r ≪ 1). As a consequence
this contribution is roughly of the order of

1

2
½hΔBðr; n̂ÞΔFðr0; n̂0Þi − hΔFðr; n̂ÞΔBðr0; n̂0Þi�

· ðcos2β − 1Þ ∂ ln r∂ lnΩ ·
δΩ
Ω

:

It is only generated by the antisymmetric terms in the
correlation function, and it is further suppressed
by δΩ=Ω≲ 0.01.
The contribution from the two last lines in Eq. (62) is of a

similar order. The radial derivative generates a factor ikrk̂ ·
n̂0 which, combined with the other terms, gives a contri-
bution proportional to kr cos β cos αd=r≃ krcos2βd=r. As
previously, the factor d=r counterbalances the enhancement
kr, so that the contribution is of the order

1

2
½hΔBðr; n̂ÞΔFðr0; n̂0Þi − hΔFðr; n̂ÞΔBðr0; n̂0Þi�

· cos2β
∂ lnH
∂ lnΩ ·

δΩ
Ω

:
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This term as well is only generated by the antisymmetric
terms in the correlation function, and it is further sup-
pressed by δΩ=Ω≲ 0.01.
These antisymmetric contributions are therefore negli-

gible with respect to the relativistic and evolutionary
standard terms. In Appendix D we give an explicit
calculation of one of these contributions.

2. Time derivatives

The antisymmetric contributions with time derivatives in
Eq. (59) read

ξAPA ¼ − 1

2
ð∂η þ ∂η0 Þ½hΔBðr; n̂ÞΔFðr0; n̂0Þi

− hΔFðr; n̂ÞΔBðr0; n̂0Þi� ∂ ln r∂ lnΩ ·
δΩ
Ω

þ 1

2
∂η0 ½hΔBðr; n̂ÞΔFðr0; n̂0Þi

− hΔFðr; n̂ÞΔBðr0; n̂0Þi� d
r
cos β

∂ lnH
∂ lnΩ ·

δΩ
Ω

: (63)

Contrary to the radial derivatives, the time derivatives ∂η

and ∂η0 do not bring any additional k factor. Using that ∂ηΔ
is roughly of the same order of magnitude as Δ and that the
time derivatives do not change the symmetry of the various
contributions, we see immediately that the contribution
from the first two lines is only generated by the antisym-
metric correlation function and that it is further suppressed
by δΩ=Ω. The contribution from the two last lines is
manifestly antisymmetric due to the cos β, and it is also
suppressed with respect to the standard terms that have a
similar factor d=r but not the extra factor δΩ=Ω. In
Appendix D we give an explicit calculation of one of
the time derivative contributions.
In summary, this calculation shows that the Alcock-

Paczynski effect does not generate any new antisymmetric
terms in the correlation function. It only induces corrections
to the antisymmetric contributions that already exist (namely
those created by the relativistic terms and the evolution of the
standard terms). Since the Alcock-Paczynski corrections are
suppressed by a factor δΩ=Ω≲ 0.01, we can safely neglect
them in our analysis.

E. Extinction

Before computing the amplitude of the different terms,
let us mention one additional effect that may generate
antisymmetries in the correlation function: dust absorp-
tion.7 The existence of cosmic dust has been detected
recently in [30]. Measurements of the cross-correlation of
the brightness of high redshift quasars with the clustering of
foreground galaxies have indicated the presence of dust

well beyond the star forming region of the galaxies. In [31],
it has been shown that this extended dust, which is
correlated with galactic haloes and the large-scale structure,
generates anisotropies in the two-point correlation function.
Here we also expect that it would generate antisymmetries
in the cross-correlation between faint and bright galaxies. A
faint galaxy behind a bright one will indeed be obscured by
the dust correlated with the bright galaxy, whereas a faint
galaxy in front will not. If the bright and faint galaxies are
associated with the same amount of dust, this effect will
cancel out in average. But if the dust depends on the galaxy
population (which is expected) then it will generate anti-
symmetries in the cross-correlation function. We defer the
calculation of the this effect, which requires a careful
modelling of the dust distribution, to a subsequent paper.
Note however that it should be possible to separate this
effect from the relativistic term by using the fact that dust
extinction depends on the colour of galaxies whereas the
relativistic contribution does not.

IV. RESULTS

We now compare the relativistic, standard and lensing
contributions in a flat ΛCDM universe. We choose ns ¼ 1,
Ωm ¼ 0.24, h ¼ 0.73 and σ8 ¼ 0.75 so that the primordial
amplitude of the power spectrum is A ¼ 1.8 × 10−8. We
use CAMB [32] to compute the transfer function TðkÞ. We
ignore magnification bias (except in Fig. 10) so that sB ¼
sF ¼ 0 and we assume that the bias of the bright and faint
galaxies evolves as [33]

bBðzÞ ¼ 1þ ðbiB − 1ÞD1ðziÞ
D1ðzÞ

; (64)

bFðzÞ ¼ 1þ ðbiF − 1ÞD1ðziÞ
D1ðzÞ

; (65)

where biB and biF are the initial values of the bias at redshift
zi ≃ 3. We choose biB and biF such that at z ¼ 0.5 bB ¼ 2
and bF ¼ 1.5. With this we have that at z ¼ 0.25: bB ¼ 1.9
and bF ¼ 1.45, at z ¼ 1: bB ¼ 2.25 and bF ¼ 1.62 and at
z ¼ 2: bB ¼ 2.8 and bF ¼ 1.9.

A. Comparison of the multipoles

In Fig. 6 we plot the amplitude of the monopole, the
quadrupole and the hexadecapole, calculated in Eqs. (50)
and (56). The redshift of the bright galaxy is kept fixed and
the multipoles are plotted as a function of the comoving
separation d. The top panel is for zB ¼ 0.25 and the bottom
panel for zB ¼ 1. We see that at small scales the monopole
dominates but at large scales d ≳ 50h−1 Mpc the quadru-
pole becomes important. The hexadecapole remains a
factor 10 times smaller than the quadrupole at all scales.
The lensing contribution to the monopole and quadrupole is
smaller than a percent at all scales. The contribution to the

7We thank Jeremiah Ostriker and the anonymous referee for
bringing this important point to our attention.
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hexadecapole is however more important: at d≳
100h−1 Mpc the lensing contributes to 5%, whereas at d ≳
200h−1 Mpc it reaches 35%. In all cases the dominant
lensing contribution comes from the cross-correlation
between the density and lensing. The lensing-lensing
correlation is always at least 3 orders of magnitude smaller.
In Fig. 7 (top panel) we plot the amplitude of the total

dipole, i.e. the sum of the relativistic contribution, Eq. (47),
the standard contribution, Eq. (52) and the lensing con-
tribution, Eq. (58). The different curves are for different
redshift values of the bright galaxy, from zB ¼ 0.25 (top) to
zB ¼ 2 (bottom). We see that the dipole decreases with d
and with redshift. The bottom panel of Fig. 7 shows the
ratio of the dipole over the monopole for the same four
values of redshift. The dipole decreases less quickly than
the monopole with d so that the ratio becomes larger at
large scales. This is due to the fact that the dipole contains
relativistic effects that are suppressed by a factor H=k with
respect to the standard terms. At small d, both the
monopole and the dipole are sensitive to small wavelengths
k ≫ H and the dipole is therefore strongly suppressed with
respect to the monopole. At large d however, the long
wavelengths k ∼H start to contribute so that the suppres-
sion becomes less and less effective.

In Fig. 8 we compare the amplitude of the different
dipolar contributions: the relativistic term (blue solid
line), standard term (magenta dotted line) and lensing
term (green dash-dotted line). The meaning of the red
dashed line will be explained in Sec. IV B. The four
panels correspond to four values of the redshift of the
bright galaxies zB ¼ 0.25, 0.5, 1 and 2. We see that the
relativistic dipole is always positive; the correlation
function is therefore stronger for faint galaxies behind
the bright galaxy than for faint galaxies in front of the
bright galaxy. From Eq. (47), we see that the sign of the
relativistic dipole is governed by the bias difference bB −
bF > 0 (neglecting magnification bias, sB ¼ sF ¼ 0).
As discussed in more detail in Appendix B, this reflects
the fact that the dominant contribution to the cross-
correlation function is due to the gravitational redshift of
the faint galaxies weighted by the density of the bright
galaxies, δB ¼ bB⋅δ.
Interestingly, we see in Fig. 8 that the relativistic

contribution dominates over the other terms at all redshifts
and scales. This shows that the dipole provides a powerful
way to measure relativistic corrections in large-scale struc-
ture. Comparing the different panels we see that the relative
importance of the standard contribution versus the relativistic

50 100 150 200
10 4

0.001

0.01

0.1

1

10
E

ve
n

m
ul

tip
ol

es

50 100 150 200
10 4

0.001

0.01

0.1

1

10

d Mpc h

E
ve

n
m

ul
tip

ol
es

FIG. 6 (color online). The monopole (blue solid line), quadru-
pole (red dashed line) and hexadecapole (magenta dotted line)
plotted as a function of d. The top panel is for zB ¼ 0.25 and the
bottom panel for zB ¼ 1. In both cases, the monopole is positive
at small scales and negative at large scales. The quadrupole is
always negative, whereas the hexadecapole is always positive.
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FIG. 7 (color online). Top panel: the total dipole as a function of
d at zB ¼ 0.25 (blue solid line), zB ¼ 0.5 (red dotted line), zB ¼ 1
(magenta dashed line) and zB ¼ 2 (green dash-dotted line). The
dipole is positive, except at zB ¼ 2 where it changes sign. Bottom
panel: the ratio of the total dipole over the monopole for the same
four values of zB.
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contribution increases with redshift. The lensing contribution
on the other hand remains always subdominant.
In Fig. 9 we show the ratio between the standard dipole +

lensing dipole, and the relativistic dipole (blue line):
ðξstdip þ ξlensdip Þ=ξreldip. The meaning of the red dashed line will
be explained in Sec. IV B. We see that at small redshift
zB ¼ 0.25 the standard and lensing contributions contami-
nate the measurement of the relativistic term by 47% at
d ¼ 50h−1 Mpc. This contamination increases with red-
shift and reaches 83% at zB ¼ 2. Below we propose a
method to suppress this contamination and disentangle the
relativistic terms from the standard terms.
But before doing so let us first look at the octupole

modulation, plotted in Fig. 10. If there is no magnification
bias, the octupole only receives a contribution from the
standard term. With magnification bias however, the
relativistic term also contributes to the octupole and is
proportional to the slope difference sB − sF. This difference
depends on the characteristics of the survey. In Fig. 10 we
choose for illustration a difference sB − sF ¼ 1. We com-
pare the relativistic octupole (blue solid line) and the
standard octupole (magenta dotted line). The meaning of
the red dashed line will be explained in Sec. IV B. The top
panel is for redshift zB ¼ 0.25 and the bottom panel for
redshift zB ¼ 1. We see that the relativistic term varies
strongly with redshift and becomes smaller than the
standard term at zB ¼ 1. This is due to the pre factor ð1 −
1
rHÞ which decreases with redshift and passes through zero
around z ¼ 1.7. The standard octupole is very similar to the
standard dipole: it is dominated by the wide-angle effect
which is the same as the one in the dipole, but with
opposite sign.

B. Isolating the relativistic contribution

Let us now discuss how to reduce the contamination
from the standard term (through wide-angle and evolution
effects) in the dipole and the octupole.

1. Removing the wide angle term

In Fig. 11 we compare the various contributions to
the standard dipole, calculated in Eq. (52): the black
solid line is the total standard dipole, the red dotted line
is the contribution from the first line of Eq. (52), the
magenta dash-dotted line is the contribution from the
second line, the green solid line is the contribution from
the third line and the dashed blue line the contribution from
the last line. We see that the contributions from the first line
and the last line dominate at most scales. The term in the
first line is a wide-angle effect, due to the fact that we
observe on our past light-cone. The term in the last line on
the other hand reflects the fact that the density of the bright
and faint galaxies does not evolve in exactly the same way
due to the different bias evolution.
We can use the specific form of these terms to remove

them from the dipole and octupole modulation and isolate
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FIG. 8 (color online). The various dipoles as a function of d: the
relativistic contribution (blue solid), the standard contribution
(magenta dotted), and the lensing contribution (green dash-
dotted). The red dashed line is the standard contribution corrected
for the wide-angle effect as described in Sec. IV B. The four
panels are for redshift (from top to bottom) zB ¼ 0.25, zB ¼ 0.5,
zB ¼ 1 and zB ¼ 2. The relativistic dipole is positive and the
standard and lensing dipoles are negative.
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the relativistic terms. From Eq. (50) we see that the
quadrupole modulation is very similar to the wide-angle
dipolar and octupolar contamination. The quadrupole
contributes not only to the cross-correlation between the
bright and faint galaxies as in Eq. (50), but also to the
autocorrelation of the bright galaxies and the autocorrela-
tion of the faint galaxies. The difference between these two
autocorrelations reads

ξstBquadðr; d; βÞ − ξstFquadðr; d; βÞ

¼ − 2A
9π2Ω2

m

4

3
ðbB − bFÞD2

1fμ2ðdÞ · P2ðcos βÞ: (66)

Comparing Eq. (66) with the first term in Eq. (52) we see
that they differ only by a factor 3d=10r. Hence, we can
correct for the wide-angle effect by measuring the quadru-
pole of the bright and faint populations, taking their
difference and multiplying the result by 3d=10r. In
Fig. 8 the red dashed line represents the standard dipole
after having corrected for the wide-angle effect. This
corrected standard dipole is significantly smaller than the
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FIG. 9 (color online). The blue solid line shows the ratio
between the standard dipole + lensing dipole and the
relativistic dipole ðξstdip þ ξlensdip Þ=ξreldip, plotted as a function of
d. The red dashed line shows the ratio between the corrected
standard dipole (described in Sec. IV B) + lensing dipole, and
the relativistic dipole as a function of d. The four panels are
for redshift (from top to bottom) zB ¼ 0.25, zB ¼ 0.5, zB ¼ 1
and zB ¼ 2.
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FIG. 10 (color online). The various octupoles as a function of d:
the relativistic contribution (blue solid) and the standard con-
tribution (magenta dotted). The red dashed line is the standard
contribution corrected for the wide-angle effect as described in
Sec. IV B. The relativistic octupole has been calculated for
sB − sF ¼ 1. The top panel is at redshift zB ¼ 0.25 and the
bottom panel at zB ¼ 1. The relativistic octupole is negative
whereas the standard octupole is positive.
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relativistic dipole at all redshifts and scales. In Fig. 9 the
ratio of the corrected standardþ lensing dipoles over
the relativistic dipole is plotted in dashed red. With this
correction, at d ¼ 50h−1 Mpc the contamination amounts
to only 5% at redshift zB ¼ 0.25, 9% at zB ¼ 0.5, 15% at
zB ¼ 1 and 29% at zB ¼ 2. Hence this correction greatly
improves the precision with which one can extract the
relativistic contribution from the dipolar modulation. Note
that this correction is completely model independent. It
does not require any modelling of the density evolution or
the bias evolution. It only necessitates a measurement of
the quadrupole of the bright and faint populations sepa-
rately. The exact same correction can be applied to the
octupole (with opposite sign) since it contains the same
wide-angle term, first term in Eq. (53). In Fig. 10 the red
dashed line represents the standard octupole after having
corrected for the wide-angle effect. This correction is even
more effective for the octupole than for the dipole since
the other terms in the octupole are strongly subdominant
with respect to the wide-angle effect.

2. Removing the evolution effects

To go further and correct for the other important term in
the dipole; i.e., the evolution term in the last line of Eq. (52)
is more involved. The shape of this term is given by μ0ðdÞ

and is therefore the same as the shape of the monopole term
in Eq. (50). The amplitude however is more complicated to
model since it is given by ðbBb0F − b0BbFÞD2

1 and requires a
knowledge of the bias evolution.
One possibility that can help us determine the bias

evolution is to look at asymmetries in the autocorrelation
function of the bright and the faint population separately.
We argued in Sec. I that asymmetric correlation functions
can only be found by cross-correlating two populations of
galaxies. The validity of this statement depends however on
what we call an asymmetry and how the measurement is
done. An antisymmetry under the exchange of the position
of two galaxies in the pair can obviously only exist if one
cross-correlates two populations. However, an antisymme-
try around a fixed galaxy can exist even in the case where
one has only a single galaxy population. This asymmetry
was first discussed by [34].
Suppose we select galaxies situated at a redshift z�

(corresponding to a radial coordinate r� on our past light-
cone). Let us call these galaxies the central galaxies. We
then correlate the central galaxies with galaxies behind
them (i.e. at a higher redshift) with r ¼ r� þ Δr, and with
galaxies in front of them (i.e. at a lower redshift) with
r ¼ r� − Δr. It is important that in this process, z� for the
central galaxies is held fixed. The correlation function
ξðr�;r�þΔr;jΔx⊥jÞ needs not equal ξðr�; r� − Δr; jΔx⊥jÞ,
for some transverse separation jΔx⊥j, and radial separation
Δr. Their difference arises entirely from the evolution
terms, and not from the relativistic terms, that cancel out for
one population of galaxies. This shows that the asymmetry
around the central galaxies can be used to isolate evolution
effects. Let us emphasize that to do so, one needs to be
careful in the averaging procedure. It is essential to fix the
position of the central galaxies and only average over the
other galaxies. If one also averages over the redshift of
the central galaxies within the same volume as the other
galaxies, the evolution asymmetry is washed out, for in that
case, all galaxies are treated on equal footing and there
cannot be any asymmetry.
Denoting by r� the fixed position of the central galaxies,

one finds a dipolar modulation of the form

ξ1pop:dip ¼ 2AD1

9π2Ω2
m

�
− 4

5
bD1fμ2ðdÞ

þD1f2
�
8

25
μ0ðdÞ − 4

7
μ2ðdÞ þ

54

175
μ4ðdÞ

�

þ r

��
bþ f

3

�
ðbD1Þ0 þ

�
b
3
þ f

5

�
ðD1fÞ0

�
μ0ðdÞ

− r

��
2b
3
þ 4f

7

�
ðfD1Þ0 þ

2f
3
ðbD1Þ0

�
μ2ðdÞ

�

×
d
r�
P1ðcos βÞ; (67)
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FIG. 11 (color online). The various contributions of Eq. (52)
to the standard dipole: the first line wide-angle effect (red dotted),
the second line (magenta dash-dotted), the third line (green solid),
the fourth line (blue dashed) and the total (black solid). The top
panel is at zB ¼ 0.25 and the bottom panel at zB ¼ 1.
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where b denotes the bias of the galaxy population under
consideration. From this dipole—measured by averaging
around a fixed redshift where the central galaxies are
located—we can learn something about the bias evolution
of each population separately. This knowledge can then be
used in principle to eliminate the contamination to the
cross-correlation dipole from evolution effects, though
probably in a model-dependent way.
A more ambitious approach would be to make use of the

fact that the evolution effects contribute to both the
symmetric and antisymmetric parts of the cross-correlation
function, while the relativistic effects contribute only to the
latter. One of the distinguishing features of the evolution
effects is that they break translational invariance i.e. it
matters how far away the galaxies are from us (and
therefore how long ago they emitted the photons that reach
us). This can be used to isolate the evolution contributions
to the symmetric part of the cross-correlation function,
which can then be used to clean out their contributions to
the antisymmetric part. Details will be presented in a
separate paper.

C. Validity of our approximations

To finish this section, let us discuss the validity of the
approximations used in the calculation of the multipoles, in
Eqs. (47), (50), (52) and (53). In these expressions we have
performed an expansion in d=r ≪ 1 and kept only the
lowest order contributions. For the standard terms we have
found that the lowest order contribution to the monopole,
quadrupole and hexadecapole is ðd=rÞ0, whereas the lowest
order contribution to the dipole and octupole is d=r. On the
other hand for the relativistic terms, we have found that the
lowest order contribution to the dipole and octupole is
ðd=rÞ0, and the lowest order contribution to the quadrupole
and hexadecapole is d=r (the contribution to the monopole
is even higher). At small separation, d ≪ r, these approx-
imations are expected to be accurate. However, at large
separation d ∼ r, wide-angle corrections may become
relevant.
To quantify the importance of these corrections, we can

simply use the full-sky expressions, Eqs. (42) and (49),
which can be expressed as functions of d; r and β using
Eqs. (43), (44) and (45). The even multipoles can be
computed numerically through

ξl ¼ 2lþ 1

2

Z
1

−1
dμξðr; d; μÞPlðμÞ: (68)

At z ¼ 1, we find that the fractional monopole and
quadrupole difference between our approximation (50)
and the full-sky expression is smaller than a percent up
to 200h−1 Mpc. At z ¼ 0.25, this difference is smaller than
a percent up to 100h−1 Mpc and reaches 7% at
200h−1 Mpc. The hexadecapole on the other hand receives
larger corrections at wide angle: at z ¼ 1 the fractional

difference is of 6% at 200h−1 Mpc, whereas at z ¼ 0.25 it
is already of 20% at 100h−1 Mpc. This suggests that at
small redshift, the full-sky expression for the hexadecapole
should be used for scales larger than 100h−1 Mpc (see
[35–37] for a detailed study of the full-sky effects on the
even multipoles). Note however that here we are comparing
the approximation and full-sky expression at fixed redshift.
As shown in [27], averaging over wide redshift bins tends
to decrease the difference between small-angle approxi-
mations and full-sky expressions since for a given sepa-
ration d, there are more pairs of galaxies at high redshift,
where the small-angle approximation is better, than at low
redshift.
To compute the relativistic and standard dipoles in the

full sky, we first need to antisymmetrize Eqs. (42) and (49),
using that under the exchange of r and r0, β becomes αþ π
and α becomes β þ π. We can then compute the dipole with

ξ1 ¼
3

2

Z
1

−1
dμξAðr; d; μÞP1ðμÞ: (69)

In Fig. 12 we plot the relativistic dipole (top panel)
and standard dipole (bottom panel) at z ¼ 0.25 and
z ¼ 1. The solid curves are our approximate expressions
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FIG. 12 (color online). Comparison of our approximations
Eqs. (47) and (52) with the full-sky expressions. The top panel
shows the relativistic dipole at z ¼ 0.25 (top curves, red and black)
and z ¼ 1 (bottom curves, green and black). The solid lines are the
approximations and the dotted lines the full-sky expressions. The
bottom panel shows the same quantities but for the standard dipole.
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Eqs. (47) and (52) and the dotted curves are the full-sky
expressions. We see that the approximations recover well
the full-sky expressions at sufficiently small separations,
but are not accurate at very large separations. Up to
200h−1 Mpc, our approximations are however sufficient:
the fractional difference for both the relativistic and
standard terms is smaller than a percent at those scales
at z ¼ 1 and a few percent at z ¼ 0.25. The approximations
capture therefore very well the dipole behavior in the
regime we are interested in.

V. CONCLUSION

A lot of interest has been devoted recently to the study of
relativistic effects in large-scale structure [5–7,34,38–43].
In [5–7] a general relativistic derivation of the clustering of
galaxies has been presented, showing that besides redshift-
space distortions, two types of relativistic effects appear:
effects that are suppressed by power ofH=k with respect to
the standard Newtonian terms, namely gravitational red-
shift and velocity terms; and effects that are suppressed by a
double power ðH=kÞ2, namely gravitational potential terms,
integrated Sachs-Wolfe and Shapiro time delay. These
effects are expected to carry complementary information
to the standard density and redshift-space distortions and
may be useful to test dark energy and modified gravity
theories.
In this paper, we concentrate on the first kind of effect,

that are more likely to be detected first, and we investigate
how they can be isolated. The key point is to focus on the
cross-correlation between two different populations of
galaxies, and make use of the different symmetries
between the standard Newtonian terms and the relativistic
terms to disentangle them. If we ignore the time evolution
of the density and velocity perturbations, then in the flat-
sky approximation the standard terms are purely sym-
metric whereas the relativistic terms are purely antisym-
metric (up to contributions of the order H2=k2, that are
subdominant). By performing a multipole expansion of
the two-points correlation function, we can therefore
unambiguously separate the relativistic terms from the
standard terms. Note that a similar multipole expansion of
the relativistic terms has been investigated in Fourier
space by McDonald [2] and Yoo et al. [3], and simulated
by Croft [4] (see also [34] for the case of one population of
galaxies).
In this paper, we show furthermore that the time

evolution of the density and velocity perturbations and
the wide-angle effects complicate the splitting: taking those
into account we have found that the standard Newtonian
terms also contribute to the antisymmetric correlation
function. However, this contribution is smaller than the
relativistic contribution and we have proposed a method to
measure and remove the majority of this contamination.
The antisymmetric correlation function, and more precisely
its dipolar modulation, seems therefore very promising to

measure relativistic effects in large-scale structure. In a
forthcoming paper we will apply our method to SDSS data.
One can then wonder how these relativistic effects can be

useful in cosmology and what can be learned from them.
One potential application would be to use them to test dark
energy and modified theories of gravity. For example, we
have seen that in theories of gravity where the Euler
equation holds (i.e. galaxies move on geodesics: they
respect the equivalence principle), the contribution from
gravitational redshift cancels out with the light-cone effect
and part of the Doppler effect. This needs not be the case in
some classes of modified gravity models [9]. A measure-
ment of the relativistic effects can therefore be used to
perform consistency checks and to test for deviations from
the standard paradigm of general relativityþ ΛCDM.
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APPENDIX A: SUMMARY OF THE
FULLY GENERAL RELATIVISTIC

CALCULATION OF Δobs

We present here a summary of the calculation of Δobs
based on Ref. [6] (note that here n̂ is the direction of
observation, which points in the opposite direction as the n̂
used in Ref. [6] which denotes the photon direction). We
start by calculating the redshift density perturbation δz,
defined as

δzðz; n̂Þ ¼
ρðz; n̂Þ − hρiðzÞ

hρiðzÞ ¼
Nðz;n̂Þ
Vðz;n̂Þ − hNiðzÞ

VðzÞ
hNiðzÞ
VðzÞ

¼ Nðz; n̂Þ − hNiðzÞ
hNiðzÞ − δVðz; n̂Þ

VðzÞ ; (A1)

where hi denotes the average over the direction n̂. The
observed galaxy overdensity can therefore be expressed in
terms of the redshift density perturbation δz and the volume
perturbation
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Δobsðz; n̂Þ ¼
Nðz; n̂Þ − hNiðzÞ

hNiðzÞ ¼ δzðz; n̂Þ þ
δVðz; n̂Þ
VðzÞ :

(A2)

The redshift density perturbation can be related to the
density contrast by

δzðz; n̂Þ ¼
ρðz; n̂Þ − ρ̄ðzÞ

ρ̄ðzÞ ¼ ρ̄ðz̄Þ þ δρðz; n̂Þ − ρ̄ðzÞ
ρ̄ðzÞ

¼ ρ̄ðz − δzÞ þ δρðz; n̂Þ − ρ̄ðzÞ
ρ̄ðzÞ

¼ δρðz; n̂Þ
ρ̄ðz̄Þ − dρ̄

dz̄
δzðz; n̂Þ
ρ̄ðz̄Þ ; (A3)

where z̄ ¼ 1=aðηÞ − 1 is the background redshift of a
Friedmann universe and δz is the redshift perturbation.
The perturbation δz can be calculated at linear order in the
metric potentials and δzðz; n̂Þ becomes

δzðz; n̂Þ ¼ b · δ− 3V · n̂þ 3Ψ− 3
H
k
V þ 3

Z
r

0

dr0ð _Φþ _ΨÞ:

(A4)

Here δ is the density contrast in the comoving gauge and b
is the bias.
The volume element can be expressed as (for more

details see [6])

δV
V

ðz; n̂Þ ¼ −3Φþ
�
cot θO þ ∂

∂θ
�
δθ þ ∂δφ

∂φ þ V · n̂

þ 2δr
r

− dδr
dλ

þ 1

Hð1þ zÞ
dδz
dλ

−
�

2

rH
þ

_H
H2

− 4

�
δz

1þ z
; (A5)

where λ is the affine parameter of the geodesic, δr denotes
the radial perturbation along the geodesic and δθ, δφ are the
transverse geodesic perturbations. These perturbations can
be calculated by solving the null geodesic equation for the
perturbed metric Eq. (8). With this we find for the volume
perturbation

δV
V

¼ −2ðΨþ ΦÞ þ 4V · n̂þ 1

H

�
_Φþ ∂rΨ − dðV · n̂Þ

dr

�

þ
�

_H
H2

þ 2

rH

��
Ψ − V · n̂þ

Z
r

0

dr0ð _Φþ _ΨÞ
�

− 3

Z
r

0

dr0ð _Φþ _ΨÞ þ 2

r

Z
r

0

dr0ðΦþΨÞ

− 1

r

Z
r

0

dr0
r − r0

r0
ΔΩðΦþΨÞ; (A6)

where ΔΩ denotes the Laplacian transverse to the line-
of-sight.
Combining Eq. (A4) with (A6) the observed overdensity

of galaxies reads

Δobsðz; n̂Þ ¼ b · δ − 1

H
∂rðV · n̂Þ þ 1

H
_V · n̂

þ
�
1 − _H

H2
− 2

rH

�
V · n̂þ 1

H
∂rΨ

− 1

r

Z
r
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dr0
r − r0
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ΔΩðΦþΨÞ þ

�
_H
H2
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rH

�

×
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Ψþ

Z
r

0

dr0ð _Φþ _ΨÞ
�
þ 2

r

Z
r

0

dr0ðΦþΨÞ

þΨ − 2Φþ 1

H
_Φ − 3

H
k
V: (A7)

This is consistent with Eq. (29) toOðH=kÞ, setting s ¼ 0.

APPENDIX B: DETAILS OF THE DERIVATION
OF THE RELATIVISTIC TWO-POINT

CORRELATION FUNCTION

We want to calculate the relativistic correlation
function

ξrelðz; z0; θÞ ¼ hΔst
Bðz; n̂ÞΔrel

F ðz0; n̂0Þi: (B1)

We use the Fourier convention

fðx; ηÞ ¼ 1

ð2πÞ3
Z

d3ke−ikxfðk; ηÞ; (B2)

and we relate the density, velocity and Bardeen potentials
to the initial metric perturbation ΨinðkÞ via the transfer
functions

Dðk; ηÞ ¼ TDðk; ηÞΨinðkÞ; (B3)

Vðk; ηÞ ¼ TVðk; ηÞΨinðkÞ; (B4)

Ψðk; ηÞ ¼ TΨðk; ηÞΨinðkÞ; (B5)

Φðk; ηÞ ¼ TΦðk; ηÞΨinðkÞ: (B6)

In general relativity, if we neglect the anisotropic stress of
the neutrinos, these functions become

TΦ ¼ TΨ; (B7)

TD ¼ − 2a
3Ωm

�
k
H0

�
2

TΨ; (B8)

TV ¼ 2aH
3ΩmH0

k
H0

�
TΨ þ 1

H
_TΨ

�
: (B9)
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Following [12], we furthermore decompose TΨðk; ηÞ into a growth rate D1ðaÞ and a time-independent transfer
function8 TðkÞ

TΨðk; ηÞ ¼
D1ðaÞ
a

TðkÞ: (B10)

The initial power spectrum is characterized by an amplitude A and a scalar spectral index ns

k3hΨinðkÞΨinðk0Þi ¼ ð2πÞ3Aðkη0Þns−1δðkþ k0Þ: (B11)

With these definitions, the relativistic correlation functions becomes

ξrelðr; r0;θÞ ¼ A
Z

d3k
ð2πÞ3 e

ikðx0−xÞ ðkη0Þns−1
k3

��
_Hðr0Þ
H2ðr0Þþ

2

r0Hðr0Þþ 5sBðr0Þ
�
1− 1

r0Hðr0Þ
��

· iðk̂ · n̂0ÞTVðk;r0Þ
�
bBTDðk;rÞ− k

HðrÞ ðk̂ · n̂Þ2TVðk;rÞ
�
−
�
_HðrÞ
H2ðrÞþ

2

rHðrÞþ 5sBðrÞ
�
1− 1

rHðrÞ
��

· iðk̂ · n̂ÞTVðk;rÞ
�
bFTDðk;r0Þ− k

Hðr0Þ ðk̂ · n̂0Þ2TVðk;r0Þ
��

: (B12)

Following [22–25], we expand the exponential and the
powers of k̂ · n̂ (and similarly k̂ · n̂0) in terms of spherical
harmonics,

eikðx0−xÞ ¼ eidk·N̂ ¼ 4π
X
LM

iLjLðkdÞY�
LMðk̂ÞYLMðN̂Þ;

k̂ · n̂ ¼ P1ðk̂ · n̂Þ ¼ 4π

3

X1
m¼−1

Y�
1mðk̂ÞY1mðn̂Þ;

ðk̂ · n̂Þ2 ¼ 2

3
P2ðk̂ · n̂Þ þ 1

3
¼ 8π

15

X2
m¼−2

Y�
2mðn̂ÞY2mðk̂Þ þ

1

3
:

We can then perform the integrals over the direction of k.
Terms with only one spherical harmonic enforce L and M
to be zero,

Z
dΩkY�

LMðk̂Þ ¼
ffiffiffiffiffiffi
4π

p
δL0δM0: (B13)

Terms with two spherical harmonics give rise to delta
functions, e.g.,

Z
dΩkY�

LMðk̂ÞY2mðk̂Þ ¼ δL2δMm; (B14)

and terms with three spherical harmonics give rise to 3J
Wigner symbols,

Z
dΩkY�

LMðk̂ÞY�
2mðk̂ÞY�

1m0 ðk̂Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ 1Þ5 · 3

4π

r �
L 2 1

−M −m −m0

��
L 2 1

0 0 0

�
:

(B15)

Due to the properties of the Wigner symbols, only a finite
number of terms contribute to the correlation function. The
remaining spherical harmonics that depend on n̂; n̂0 and N̂
take a simple form in the coordinate system of Fig. 5. With
this the correlation function becomes

ξrel ¼ 2A
9Ω2

mπ
2
fR1 cosðαÞ þ R2 cosðβÞ þ R3 cosðαÞ cosð2βÞ

þ R4 cosðβÞ cosð2αÞ þ R5 sinðαÞ sinð2βÞ
þ R6 sinðβÞ sinð2αÞg: (B16)

The coefficients Ri depend on r, r0 and d. They read

R1ðr; r0; dÞ ¼ GFðr0ÞD1ðrÞD1ðr0Þfðr0Þ

×

��
bBðrÞ þ

2

5
fðrÞ

�
ν1ðdÞ − 1

10
fðrÞν3ðdÞ

�

(B17)

R2ðr; r0; dÞ ¼ −GBðrÞD1ðrÞD1ðr0ÞfðrÞ

×

��
bFðr0Þ þ

2

5
fðr0Þ

�
ν1ðdÞ− 1

10
fðr0Þν3ðdÞ

�

(B18)
8Note that we include here the prefactor 9=10 of [12] in the

transfer function TðkÞ.
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R3ðr; r0; dÞ ¼ GFðr0ÞD1ðrÞD1ðr0ÞfðrÞfðr0Þ
1

5

×

�
ν1ðdÞ − 3

2
ν3ðdÞ

�
(B19)

R4ðr; r0; dÞ ¼ −GBðrÞD1ðrÞD1ðr0ÞfðrÞfðr0Þ
1

5

×

�
ν1ðdÞ − 3

2
ν3ðdÞ

�
(B20)

R5ðr; r0; dÞ ¼GFðr0ÞD1ðrÞD1ðr0ÞfðrÞfðr0Þ
1

5
½ν1ðdÞþ ν3ðdÞ�

(B21)

R6ðr; r0; dÞ ¼ −GBðrÞD1ðrÞD1ðr0ÞfðrÞfðr0Þ
1

5

× ½ν1ðdÞ þ ν3ðdÞ�; (B22)

where D1 is the linear growth factor, and f ¼ d lnD1

d ln a . The
functions GF and GB are defined as

GFðr0Þ ¼
�
_Hðr0Þ
H2ðr0Þ þ

2

r0Hðr0Þ þ 5sFðr0Þ
�
1 − 1

r0Hðr0Þ
��

×
Hðr0Þ
H0

(B23)

GBðrÞ ¼
�
_HðrÞ
H2ðrÞ þ

2

rHðrÞ þ 5sBðrÞ
�
1 − 1

rHðrÞ
��

HðrÞ
H0

(B24)

and

νlðdÞ ¼
Z

dk
k

�
k
H0

�
3

ðkη0Þns−1T2ðkÞjlðkdÞ;

l ¼ 1; 3: (B25)

In the flat sky approximation, Eq. (B16) reduces to Eq. (47)
In the absence of magnification bias, sB ¼ sF ¼ 0, the sign
of the correlation function (47) is governed by the bias
difference bB − bF > 0. Two competing effects contribute
to the cross-correlation: first the gravitational redshift of the
bright galaxies modulated by the density of the faint
galaxies, and second the gravitational redshift of the faint
galaxies modulated by the density of the bright galaxies. As
shown in Fig. 13, the first effect (left panel) generates a
correlation which is stronger for faint galaxies in front of
the bright galaxy (negative dipole), whereas the second
effect (right panel) generates a correlation which is stronger
for faint galaxies behind the bright galaxy (positive dipole).
Since the bias of bright galaxies is larger than the bias of
faint galaxies (bB > bF), the second effect dominates over
the first one and the relativistic dipole is positive.

FIG. 13. Sketch of the gravitational redshift effect. Left panel: we assume that only the bright galaxy is affected by gravitational
redshift. The true position of B is denoted by a filled circle. Its observed position (open circle) is redshifted. The faint galaxies
F1 and F2 are (by construction) symmetrically distributed around the observed position of the bright. This is because we are interested
in comparing the observed correlation behind and in front of B, separated by the same redshift separation. In real space, the faint galaxy
in front, F2, is therefore closer to B than the faint galaxy behind, F1. The cross-correlation is consequently stronger for galaxies in front
than behind the bright one. Right panel: we assume that only the faint galaxies are affected by gravitational redshift. The observed
position of the faint galaxies (open circles) are by construction symmetrically distributed around the bright galaxy. Since F1 and F2 are
both redshifted, in real space (filled circles) the faint galaxy behind, F1 is closer to B than the faint galaxy in front, F2. The
cross-correlation is therefore stronger for galaxies behind than in front of the bright one. In reality, we measure a combination of the right
and left panel. Since the right panel is weighted by the bias of the bright, bB, its contribution dominates over the left panel which is
weighted by the bias of the faint, bF < bB. The total cross-correlation is therefore stronger for faint galaxies behind that in front of
the bright.
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APPENDIX C: EXPLICIT EXPRESSION FOR THE
MULTIPOLAR COEFFICIENTS OF THE

STANDARD CONTRIBUTION Si

The standard coefficients of Eq. (49) are

S1ðr; r0; dÞ ¼ D1ðrÞD1ðr0Þ
��

bBðrÞbFðr0Þ þ
bBðrÞ
3

fðr0Þ

þ bFðr0Þ
3

fðrÞ þ 2

15
fðrÞfðr0Þ

�
μ0ðdÞ

− 1

3

�
bBðrÞ
2

fðr0Þ þ bFðr0Þ
2

fðrÞ þ 2

7
fðrÞfðr0Þ

�
μ2ðdÞ

þ 3

140
fðrÞfðr0Þμ4ðdÞ

�
(C1)

S2ðr; r0; dÞ ¼ −D1ðrÞD1ðr0Þ
��

bFðr0Þ
2

fðrÞ þ 3

14
fðrÞfðr0Þ

�

× μ2ðdÞ þ
1

28
fðrÞfðr0Þμ4ðdÞ

�
(C2)

S3ðr; r0; dÞ ¼ −D1ðrÞD1ðr0Þ
��

bBðrÞ
2

fðr0Þ þ 3

14
fðrÞfðr0Þ

�

× μ2ðdÞ þ
1

28
fðrÞfðr0Þμ4ðdÞ

�
(C3)

S4ðr; r0; dÞ ¼ D1ðrÞD1ðr0ÞfðrÞfðr0Þ

×

�
1

15
μ0ðdÞ − 1

21
μ2ðdÞ þ

19

140
μ4ðdÞ

�
(C4)

S5ðr; r0; dÞ ¼ D1ðrÞD1ðr0ÞfðrÞfðr0Þ

×

�
1

15
μ0ðdÞ − 1

21
μ2ðdÞ − 4

35
μ4ðdÞ

�
; (C5)

where

μlðdÞ ¼
Z

dk
k

�
k
H0

�
4

ðkη0Þns−1T2ðkÞjlðkdÞ;

l ¼ 0; 2; 4.

APPENDIX D: EXPLICIT CALCULATION
OF SOME OF THE ALCOCK-PACZYNSKI

CONTRIBUTIONS

Let us look at the Alcock-Paczynski contribution
generated by the density term Δðr; n̂Þ ¼ bðηÞδðr; n̂Þ.

1. Radial derivatives

The density contribution in Eq. (62) is

ξAPA ¼ r
2
½bBðηÞbFðη0Þ − bBðη0ÞbFðηÞ�ð∂r þ ∂r0 Þ

× hδðr; n̂Þδðr0; n̂0Þi ∂ ln r∂ lnΩ ·
δΩ
Ω

− r
2
½bBðηÞbFðη0Þi − bBðη0ÞbFðηÞ�

× ∂r0 hδðr; n̂Þδðr0; n̂0Þi d
r
cos β

∂ lnH
∂ lnΩ ·

δΩ
Ω

; (D1)

where the partial radial derivatives do not act on the bias
bB and bF that are assumed to be scale independent.
Expanding bBðη0Þ and bFðη0Þ around η, and using
Eq. (44) to relate cos α to cos β, Eq. (D1) becomes

ξAPA ðr; d; βÞ ¼ A
9Ω2

mπ
2
D2

1rðbBb0F − b0BbFÞ
Z

dk
k

�
k
H0

�
5

ðkη0Þns−1T2ðkÞj1ðkdÞ

· rH0

�
d
r

�
2
�
2

5
ðP3ðcos βÞ − P1ðcos βÞÞ

∂ ln r
∂ lnΩþ 1

5
ð2P3ðcos βÞ þ 3P1ðcos βÞÞ

∂ lnH
∂ lnΩ

�
δΩ
Ω

: (D2)

Comparing this with Eqs. (52) and (53), we see that here there is an additional factor k=H0 which is compensated by the
extra factor d=r (note that the factor rH0 at the beginning of the second line is of order 1). Consequently, Eq. (D2) is
suppressed by an overall factor δΩ=Ω with respect to Eqs. (52) and (53).

2. Time derivatives

The density contribution in Eq. (63) is

ξAPA ¼ − 1

2
ð∂η þ ∂η0 Þ½ðbBðηÞbFðη0Þ − bBðη0ÞbFðηÞÞhδðr; n̂Þδðr0; n̂0Þi� ∂ ln r∂ lnΩ ·

δΩ
Ω

þ 1

2
∂η0 ½ðbBðηÞbFðη0Þ − bBðη0ÞbFðηÞÞhδðr; n̂Þδðr0; n̂0Þi� d

r
cos β

∂ lnH
∂ lnΩ ·

δΩ
Ω

;
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where the time derivatives act both on the bias and the
density contrast δðr; n̂Þ. Expanding bBðη0Þ and bFðη0Þ and
their time derivatives ∂η0bBðη0Þ and ∂η0bFðη0Þ around η, and
using Eq. (44) to relate cos α to cos β, we find

ξAPA ðr; d; βÞ ¼ A
9Ω2

mπ
2

Z
dk
k

�
k
H0

�
4

ðkη0Þns−1T2ðkÞj0ðkdÞ

×

�
r2½ðbBb00F − bFb00BÞD2

1

þ 2ðbBb0F − bFb0BÞD1D0
1�
∂ ln r
∂ lnΩ

− rðbBb0F − b0BbFÞD2
1

∂ lnH
∂ lnΩ

�

×
d
r
P1ðcos βÞ

δΩ
Ω

: (D3)

Here rD0
1 ¼ −rHfD1 is of the order of fD1 and r2b00 is

roughly of the order of r2H2d2b=dz2 ∼ d2b=dz2. Conse-
quently Eq. (D3) is similar to Eqs. (52) and (53), apart from
an overall suppression from the factor δΩ=Ω.

APPENDIX E: COMPARISON WITH
CLUSTER MEASUREMENTS

Let us compare our approach with cluster measurements,
as in the case of WHH [1]. WHH measures a mean redshift
difference between the brightest central galaxy and the rest
of the cluster galaxies. The estimator can be thought of as

hzF − zBi ¼
X
i;j

1

n̄Fn̄B
ðzi − zjÞnFi nBj

¼
X
i;j

ðzi − zjÞð1þ δFi Þð1þ δBj Þ; (E1)

where conceptually, we can think of the survey as being
pixelized such that each pixel contains either one or zero
galaxy, with nBj denoting the bright galaxy number (1 or 0)
in pixel j and nFi denoting the corresponding number in
pixel i for the rest of the cluster members, and n̄j and n̄i
being their respective mean. The summation over i and j
over the whole survey is equivalent to stacking many
clusters to pull out a signal.
There are two, subtly different, ways to think about this

estimator. From one point of view (ours), redshifts are
converted into distances using some background cosmol-
ogy. Once that is done, zj and zi are merely coordinate
labels, and the factor of ðzj − ziÞ can be pulled out of an
ensemble average. Thus, the ensemble average of Eq. (E1)
really has to do with hnFi nBj i; the sum over i and j with the
ðzj − ziÞ weighting serves to isolate the antisymmetric part
of the cross-correlation function between the central bright-
est galaxy and the rest of the cluster. Hence, from our point
of view, Eq. (E1) essentially measures the first moment of
the cross-correlation function.

There is another way to think about this estimator,
however. One can think of the redshift (zi and zj) as a
stochastic quantity; i.e., after all, it contains fluctuations
due to Doppler and gravitational redshifts. From that point
of view, an ensemble average of Eq. (E1), to the lowest
order in fluctuations, gives cross-correlations between
fluctuations in redshift to fluctuations in the galaxy density.
In this second point of view, one should think of the
pixelization as being done in the true x space, as opposed to
the apparent x space (inferred using some background
cosmology). It is only in the former where one can
meaningfully talk about the redshift as a fluctuation
variable (i.e. dependent on the true x).
The two approaches should be equivalent. However,

translating our result in terms of redshift differences, we see
that the sign of our average redshift difference at first sight
seems inconsistent with the cluster result. We predict
indeed a positive dipole: the correlation function is there-
fore stronger for faint galaxies behind the bright galaxy,
which in turn results in a net redshift of the faint galaxies
with respect to the bright one

hzF − zBi ¼
Z

zBþΔz

zB−Δz
dz0Fðz0F − zBÞξðz0F; zBÞ

¼ 2

Z
zBþΔz

zB

dz0Fðz0F − zBÞξAðz0F; zBÞ; (E2)

for a chosen redshift range Δz and a fixed value of zB.
9 In

the second equality we have used that the symmetric part of
the correlation function vanishes due to the anti-symmetry
of z0F − zB and to the symmetric boundaries of integration.
Since ξA > 0 for z0F > zB, the right-hand side of Eq. (E2)
is manifestly positive.
Cluster measurements on the other hand find a net

blueshift of the faint galaxies with respect to the central
brightest galaxy. This apparent inconsistency comes from
the fact that, in the cluster measurements, the redshift
difference is averaged over all galaxies that belong to the
cluster

hzF − zBi ¼
Z

zBþΔzmax

zB−Δzmin

dz0Fðz0F − zBÞξðz0F; zBÞ. (E3)

Here Δzmin and Δzmax denote the physical boundaries of
the cluster. Since the brightest central galaxy is in average
more redshifted than the other galaxies in the cluster,
Δzmin > Δzmax. Equation (E3) becomes then

9Note that stacking different clusters simply adds an additional
average over the redshift of the bright galaxy, zB, in Eq. (E2).

ASYMMETRIC GALAXY CORRELATION FUNCTIONS PHYSICAL REVIEW D 89, 083535 (2014)

083535-25



hzF − zBi ¼ 2

Z
zBþΔzmax

zB

dz0Fðz0F − zBÞξAðz0F; zBÞ

þ
Z

zB−Δzmax

zB−Δzmin

dz0Fðz0F − zBÞξðz0F; zBÞ. (E4)

The second term dominates over the first one since it
depends on the total correlation function ξ which is
significantly larger than the antisymmetric contribution
ξA. This second term is negative since within zB − Δzmin
and zB − Δzmax, z0F − zB is negative and ξ is positive. The
net redshift difference is therefore negative in the case of
the clusters, as found in [1]. Equation (E4) clearly shows

that what dominates in the cluster measurements is actually
the gravitational redshift of the boundaries of the cluster,
which in redshift space are asymmetrically distributed
around the centre of the cluster. As such the cluster
measurement is a measurement of the three-point correla-
tion function between the density of the bright galaxies, the
density of the faint galaxies and the gravitational redshift of
the boundaries. On the other hand, in our case, from
Eq. (E2) we see that we really measure a two-point
correlation function, because the range of integration is
defined arbitrarily around the central galaxy and is by
construction symmetric.
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