
Kinematic consistency relations of large-scale structures

Patrick Valageas
Institut de Physique Théorique, CEA, IPhT, F-91191 Gif-sur-Yvette, Cédex, France

and CNRS, URA 2306, F-91191 Gif-sur-Yvette, Cédex, France
(Received 6 November 2013; published 29 April 2014)

We describe how the kinematic consistency relations satisfied by density correlations of the large-scale
structures of the Universe can be derived within the usual Newtonian framework. These relations express a
kinematic effect and show how the ðlþ nÞ-density correlation factors in terms of the n-point correlation
and l linear power spectrum factors, in the limit where the l soft wave numbers become linear and much
smaller than the n other wave numbers. We describe how these relations extend to multifluid cases. In the
standard cosmology, these consistency relations derive from the equivalence principle. A detection of their
violation would indicate non-Gaussian initial conditions, non-negligible decaying modes, or a modification
of gravity that does not converge to general relativity on large scales.
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I. INTRODUCTION

The large-scale structure of the Universe is the main
probe of the recent evolution of the Universe and of the
properties of still mysterious components such as dark
matter and dark energy. Unfortunately, even without con-
sidering the very complex processes of galaxy and star
formation and focusing on the large-scale properties where
gravity is the dominant driver, theoretical progress is
difficult. Large scales can be described by standard
perturbative approaches [1,2], which can be improved to
some degree by using resummation schemes [3–11].
However, these methods cannot reach the truly nonlinear
regime where shell-crossing effects become important
[12–14]. Small scales are studied through numerical
simulations or phenomenological models [15] that rely
on information gained through these simulations. However,
these scales are very difficult to model with a high accuracy,
even with simulations, because of the complexities of
galaxy formation processes and feedback effects such as
active galactic nucleus and supernova outflows [16–19].
Therefore, exact results that do not depend on the small-
scale nonlinear physics are very important.
Such results have been recently obtained in [20,21] in the

nonrelativistic limit, then extended in [22] to the relativistic
case, and further explored in [23–25]. These “consistency
relations” express correlations between large-scale linear
modes and small-scale (even nonlinear) modes as a product
of the linear modes’ power spectra with the small-scale
correlation (at lowest order over the scale ratio). The great
advantage of these relations is that they remain valid
independently of the small-scale physics, which can be
highly nonlinear and involve astrophysical processes such
as star formation and supernova outflows. As nicely
described in [22], within the context of general relativity
and for standard scenarios, these consistency relations
follow from the equivalence principle. This ensures that

small-scale structures are transported without distortions by
large-scale fluctuations, which at leading order correspond
to a constant gravitational force over the extent of the small-
scale region. Thus, these consistency relations express a
kinematic effect and describe how small scales are trans-
ported with time by large-scale gravitational forces.
In this paper we present a simple and more explicit

derivation (without using the single-stream approximation)
in the nonrelativistic framework that is most often used for
studies of large-scale structures. This also provides a gener-
alization toanarbitrarynumberofsoftwavenumbersandfluid
components. This allows us to distinguish which ingredients
are required for their validity. In particular, we recover the fact
that the equivalence principle is sufficient to guarantee the
consistency relations, once we assume Gaussian initial con-
ditions and negligible decaying modes (more generally, a
weaker formof scale separation is sufficient, but thisextension
is not needed for realistic scenarios).
This paper is organized as follows. We first derive the

consistency relations in Sec. II, within a very general
framework based on Gaussian initial conditions, using
an assumption of scale separation (which states that
large-scale fluctuations have an almost uniform impact
on small-scale structures). We also consider the cases of an
arbitrary number of soft wave numbers and of several fluid
components. Next, we discuss in Sec. III the conditions of
validity of these consistency relations and we conclude
in Sec. IV.

II. CONSISTENCY RELATIONS FOR DENSITY
FIELD CORRELATIONS

A. Correlation and response functions

Let us consider a system fully determined by a field φðxÞ,
which may be for instance the initial condition of a
dynamical system [in our case φ will be the Fourier-space
linear density contrast ~δL0ðkÞ today]. We also consider
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quantities fρ1;…; ρng that are functionals of the field φ [in
our case ρi will be the Fourier-space nonlinear density
contrast ~δðki; tiÞ at wave number ki and time ti]. Then,
general relations between correlation functions and
response functions can be obtained from integrations by
parts [26,27]. Thus, considering the Gaussian case where
the statistical properties of the field φðxÞ are defined by its
two-point correlation C0ðx1; x2Þ ¼ hφðx1Þφðx2Þi, the
mixed correlations can be written as the Gaussian average

Cl;n ¼ hφðx1Þ…φðxlÞρ1…ρni

¼
Z

Dφe−ð1=2Þφ·C−1
0
·φφðx1Þ…φðxlÞρ1…ρn: (1)

If the inverse correlation matrix satisfiesC−1
0 ðxi; xjÞ ¼ 0 for

i ≠ j, we also have the functional derivatives

Dl½e−ð1=2Þφ·C−1
0
·φ�

Dφðx1Þ…DφðxlÞ
¼ ð−1ÞlC−1

0 ðx1; x01Þ · φðx01Þ � � �C−1
0 ðxl; x0lÞ · φðx0lÞe−ð1=2Þφ·C

−1
0
·φ: (2)

Therefore, we can write Eq. (1) as

Cl;n ¼ ð−1ÞlC0ðx1; x01Þ…C0ðxl; x0lÞ ·
Z

Dφρ1…ρn

×
Dl½e−ð1=2Þφ·C−1

0
·φ�

Dφðx01Þ…Dφðx0lÞ
¼ C0ðx1; x01Þ…C0ðxl; x0lÞ ·

Z
Dφe−ð1=2Þφ·C−1

0
·φ

×
Dl½ρ1…ρn�

Dφðx01Þ…Dφðx0lÞ
; (3)

where we made l integrations by parts. This gives the
relation

Cl;nðx1;…; xlÞ ¼ C0ðx1; x01Þ…C0ðxl; x0lÞ
· Rl;nðx01;…; x0lÞ (4)

between the correlation Cl;n and the response function Rl;n

defined by

Rl;nðx1;…; xlÞ ¼
�

Dl½ρ1…ρn�
Dφðx1Þ…DφðxlÞ

�
: (5)

In the cosmological context, working in Fourier space,
we take φ as the linear matter density contrast today,
~δL0ðk0Þ, and ρi as the nonlinear density contrast ~δðki; tiÞ at
wave number ki and time ti, where δ ¼ ðρ − ρ̄Þ=ρ̄. [The
system is fully defined by ~δL0 because we assume that the
linear decaying mode has had time to become negligible, so
that φ also specifies the initial condition ~δLI ¼ DþðtIÞ~δL0 at
the initial time tI → 0, where DþðtÞ is the linear growth
rate.] Then, the linear correlation function is

CL0ðk1;k2Þ ¼ h~δL0ðk1Þ~δL0ðk2Þi ¼ PL0ðk1ÞδDðk1 þ k2Þ;
(6)

where PL0 is the linear matter power spectrum, with the
inverse

C−1
L0ðk1;k2Þ ¼ PL0ðk1Þ−1δDðk1 þ k2Þ: (7)

Thus, if the wave numbers fk0
ig satisfy k0

i þ k0
j ≠ 0 for all

pairs fi; jg, Eq. (4) can be written as

Cl;nðk0
1;…;k0

l;k1; t1;…;kn; tnÞ
¼ PL0ðk01Þ…PL0ðk0lÞRl;nð−k0

1;…;−k0
l;k1; t1;…;kn; tnÞ;

(8)

where

Cl;nðk0
j;ki; tiÞ ¼ h~δL0ðk0

1Þ…~δL0ðk0
lÞ~δðk1; t1Þ…~δðkn; tnÞi

(9)

and

Rl;nðk0
j;ki; tiÞ ¼

�
Dl½~δðk1; t1Þ…~δðkn; tnÞ�
D~δL0ðk0

1Þ…D~δL0ðk0
lÞ

�
: (10)

In this paper, we denote all wave numbers associated with
the initial field ~δL0 or soft wave numbers with a prime.

B. Consistency relations

Turning to a Lagrangian point of view, matter particles
follow trajectories xðq; tÞ labeled by their initial
(Lagrangian) coordinate q. The conservation of matter
means that ð1þ δÞdx ¼ dq, and the Fourier-space density
contrast can also be written as

~δðk; tÞ ¼
Z

dx
ð2πÞ3 e

−ik·xδðx; tÞ ¼
Z

dq
ð2πÞ3 e

−ik·xðq;tÞ;

(11)

where we discarded a Dirac factor that does not contribute
for k ≠ 0. Therefore, the density-contrast response func-
tions can be written as
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Rl;n ¼
�Z

dq1…dqn

ð2πÞ3n
Dl

D~δL0ðk0
1Þ…D~δL0ðk0

lÞ

× e−ik1·ðq1þΨ1Þ−…−ikn·ðqnþΨnÞ
�
; (12)

where we introduced the displacement field Ψðq; tÞ ¼
xðq; tÞ − q.
Let us first consider the case l ¼ 1, where Eq. (12) reads

R1;n ¼ −i
�Z

dq1…dqn

ð2πÞ3n
Xn
i¼1

ki ·
DΨi

D~δL0ðk0Þ

× e−ik1·ðq1þΨ1Þ−…−ikn·ðqnþΨnÞ
�
: (13)

We now assume that, if we look at a fixed region of size L
and volume V ¼ L3, a perturbation to the initial conditions
~δL0 at a larger-scale linear wave number k0 ≪ 1=L gives
rise to an almost uniform displacement of the small-size
region, at leading order over ðk0LÞ. Thus, we write

k0 → 0; k0L ≪ 1∶
DΨðqÞ
D~δL0ðk0Þ≃

Z
V

dq0

V
DΨðq0Þ
D~δL0ðk0Þ ;

(14)

where we integrate over a volume V centered on q. Next, in
the limit k0 → 0 we can take for instance L ∼ 1=

ffiffiffiffi
k0

p
so that

the size L also goes to infinity (while keeping it much
smaller than 1=k0). Then, we also assume that on large
scales we recover the linear theory,

k → 0∶ ~ΨðkÞ → ~ΨLðkÞ; (15)

so that Eq. (14) implies

k0 → 0∶
DΨðqÞ
D~δL0ðk0Þ →

DΨLðqÞ
D~δL0ðk0Þ : (16)

On the other hand, the conservation of matter can also be
expressed through the continuity equation,

∂δ
∂τ þ∇ · ½ð1þ δÞv� ¼ 0; (17)

where τ ¼ R
dt=a is the conformal time and v the peculiar

velocity (v ¼ dx=dτ ¼ dΨ=dτ). At linear order this gives
∂τδL þ∇ · vL ¼ 0, whence

~ΨLðk; τÞ ¼ i
k
k2

~δLðk; τÞ ¼ i
k
k2

Dþðk; τÞ~δL0ðkÞ: (18)

The linear growth rate of the density contrastDþðτÞ (which
we normalize to unity today) does not depend on scale in
the standard Λ-CDM cosmology, but this is no longer true
in some modified-gravity scenarios. Therefore, we include

a possible k dependence for completeness. Substituting into
Eq. (16) we obtain

k0 → 0∶
DΨðqÞ
D~δL0ðk0Þ → i

k0

k02
D̄þðτÞ; (19)

where we note with the overbar the low-k limit of the linear
growth rate, D̄þðτÞ ¼ Dþð0; τÞ. We postpone to Sec. III a
more explicit derivation of Eq. (19) than the intuitive
argument (14), as well as the discussion of its validity,
because we first wish to show how consistency relations for
arbitrary numbers of soft wave numbers and fluid compo-
nents follow from this property.
Then, using the expression (19) in Eq. (13), we obtain

R1;n
k0→0

¼
�Z

dq1…dqn

ð2πÞ3n
Xn
i¼1

ki · k0

k02
D̄þðtiÞ

× e−ik1·ðq1þΨ1Þ−…−ikn·ðqnþΨnÞ
�
: (20)

Thus, the prefactor generated by the functional derivative in
Eq. (13) has a deterministic large-scale limit, which does
not depend on the initial conditions, and the statistical
average gives [compare with Eq. (11)]

R1;n
k0→0

¼ h~δðk1; t1Þ…~δðkn; tnÞi
Xn
i¼1

ki · k0

k02
D̄þðtiÞ: (21)

Substituting into Eq. (8) we obtain

h~δL0ðk0Þ~δðk1;t1Þ…~δðkn;tnÞi0k0→0

¼−
Xn
i¼1

ki ·k0

k02
D̄þðtiÞPL0ðk0Þh~δðk1;t1Þ…~δðkn;tnÞi0: (22)

Here and in the following, the prime in h…i0 denotes that
we removed the Dirac factor δDð

P
kiÞ from the correlation

functions.
The result (22) can be extended at once to l ≥ 2. Indeed,

each derivative D=D~δL0ðk0
iÞ in Eq. (12) generates a

constant prefactor, given by Eq. (19), which is not affected
by the next derivatives. This yields

Rl;n
k0j→0

¼ h~δðk1; t1Þ…~δðkn; tnÞi
Yl
j¼1

�Xn
i¼1

ki · k0
j

k02j
D̄þðtiÞ

�
:

(23)

Substituting into Eq. (8) we obtain
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h~δL0ðk0
1Þ…~δL0ðk0

lÞ~δðk1; t1Þ…~δðkn; tnÞi0k0j→0

¼
Yl
j¼1

�
−PL0ðk0jÞ

Xn
i¼1

ki · k0
j

k02j
D̄þðtiÞ

�

× h~δðk1; t1Þ…~δðkn; tnÞi0; (24)

where the soft wave numbers must satisfy the condition
k0
i þ k0

j ≠ 0 for all pairs fi; jg. Since on large scales we

have ~δLðk; tÞ≃Dþðk; tÞ~δL0ðkÞ, Eq. (24) can also be
written as

h~δðk0
1; t

0
1Þ…~δðk0

l; t
0
lÞ~δðk1; t1Þ…~δðkn; tnÞi0k0j→0

¼ PLðk01; t01Þ…PLðk0l; t0lÞh~δðk1; t1Þ…~δðkn; tnÞi0

×
Yl
j¼1

�
−
Xn
i¼1

ki · k0
j

k02j

D̄þðtiÞ
D̄þðt0jÞ

�
; (25)

with the condition k0
i þ k0

j ≠ 0 for i ≠ j. Thus, Eq. (25)

shows how the density correlation functions h~δ1…~δlþni
factorize when lwave numbers are within the linear regime
and become very small as compared with the fixed n other
wave numbers. This generalization to multiple soft lines
agrees with the results obtained in [24].
We can check that the formula (25) is self-consistent, that

is, when we first let l wave numbers go to zero, and next
decrease the lþ 1wave number, we recover the expression
(25) where we directly take lþ 1 soft wave numbers.
Indeed, the results obtained from the two procedures differ
by terms of the form ðk0

lþ1 · k
0
jÞ=k02j that are negligible with

respect to the terms of the form ðki · k0
jÞ=k02j . However, the

general expression (25) is not a mere consequence of the
iterated use of the equation at l ¼ 1. Indeed, the iterative
procedure only applies when there is a strong hierarchy
between the soft wave numbers, k01 ≪ k02 ≪ … ≪ k0l,
whereas Eq. (25) is also valid when the soft wave numbers
are of the same order.
The remarkable property of these relations is that they do

not require the hard wave numbers ki in Eq. (25) to be in
the linear or perturbative regime. In particular, they still
apply when these high wave numbers ki are in the highly
nonlinear regime governed by shell-crossing effects and
affected by baryon processes such as star formation and
cooling. The only requirement is the “scale-separation”
property (14)–(19), which states that long wavelength
fluctuations have a uniform impact on small-scale struc-
tures, which are merely transported by the large-scale
velocity flow without deformation, at leading order in
the ratio of scales. We discuss in more details the derivation
and the meaning of this property in Sec. III below.

In the lowest order case, l ¼ 1 and n ¼ 2, this gives

lim
k0→0

Bðk0; t0; k1; t1; k2; t2Þ
¼ −PLðk0; t0ÞPðk1; t1; t2Þ

×

�
k1 · k0

k02
D̄þðt1Þ
D̄þðt0Þ

þ k2 · k0

k02
D̄þðt2Þ
D̄þðt0Þ

�
; (26)

where we introduced the bispectrum defined by

Bðk1; t1; k2; t2; k3; t3Þ ¼ h~δðk1; t1Þ~δðk2; t2Þ~δðk3; t3Þi0:
(27)

To summarize the derivation above, the consistency
relations (25) rely on the following conditions:
(a) Gaussian initial conditions, to write Eq. (8),
(b) the scale-separation property (19), to write Eqs. (21)

or (23),
(c) the convergence to the linear regime on large scales, to

use Eq. (25) rather than Eq. (24). This is also a
necessary condition for the property (19).

C. Multicomponent case

The results obtained in the previous section also apply to
cases where there are several fluids, when their large-scale
linear growth rates are identical. Thus, let us consider N
fluids, which may interact with each other and with gravity
(which may be “modified” for instance through additional
scalar fields that mediate a fifth force). Then, each fluid ðαÞ
satisfies its own continuity equation,

α ¼ 1;…; N∶
∂δðαÞ
∂τ þ∇ · ½ð1þ δðαÞÞvðαÞ� ¼ 0: (28)

We again assume that decaying or subdominant linear
modes have had time to become negligible with respect to
the fastest growing mode, so that we can define the initial
conditions by a single field ~δL0ðkÞ and in the linear regime
we have

~δðαÞL ðk; τÞ ¼ DðαÞ
þ ðk; τÞ~δL0ðkÞ: (29)

(The k dependence arises if we consider modified-gravity
scenarios.) The normalization of ~δL0 is arbitrary and it is not
necessarily equal to one of the density contrasts or to the
total density contrast. As in Eq. (18), each linear displace-
ment field obeys

~ΨðαÞ
L ðk; τÞ ¼ i

k
k2

~δðαÞL ðk; τÞ ¼ i
k
k2

DðαÞ
þ ðk; τÞ~δL0ðkÞ: (30)

Then, we can follow the derivation presented in Sec. II B.
The only critical point is the assumption (14), which states
that a large-scale perturbation of ~δL0 leads to a uniform
displacement. It is clear that this requires the large-scale
growing modes D̄ðαÞ

þ ðτÞ to be identical for all fluids,
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k → 0∶ DðαÞ
þ ðk; τÞ → D̄þðτÞ; (31)

so that a distant large-scale perturbation does not give rise
to a local relative velocity between the different fluids. [An
alternative is for the different fluids to be independent (i.e.,
they are determined by the same initial conditions but do
not interact), so that we only need each fluid to respond by
its own uniform displacement. In the cosmological context,
because all fluids interact through gravity, we only have the
possibility (31).] The large-scale common limit (31) is
satisfied in most cosmological scenarios, for instance when
we consider dark matter and baryons in a Λ-CDM universe
[10,28]. Indeed, on large scales the dominant force is
gravity, which acts in the same fashion on all particle
species thanks to the equivalence principle, and we recover
the same linear growing mode that is driven by the
gravitational instability. Effects due to different initial
velocities correspond to decaying modes, which we neglect
throughout this paper. Therefore, in practice the condition
(31) is not a serious limitation. Then, Eq. (24) becomes

h~δL0ðk0
1Þ…~δL0ðk0

lÞ~δðα1Þðk1; t1Þ…~δðαnÞðkn; tnÞi0k0j→0

¼
Yl
j¼1

�
−PL0ðk0jÞ

Xn
i¼1

ki · k0
j

k02j
D̄þðtiÞ

�

× h~δðα1Þðk1; t1Þ…~δðαnÞðkn; tnÞi0: (32)

As in Eq. (25), this may also be written as

lim
k0j→0

�Yl
j¼1

~δðα
0
jÞðk0

j; t
0
jÞ
Yn
i¼1

~δðαiÞðki; tiÞ
�0

¼
Yl
j¼1

P
ðα0jÞ
L ðk0j; t0jÞ

�Yn
i¼1

~δðαiÞðki; tiÞ
�0

×
Yl
j¼1

�
−
Xn
i¼1

ki · k0
j

k02j

D̄þðtiÞ
D̄þðt0jÞ

�
: (33)

Thus, our approach provides a straightforward generaliza-
tion to the multifluid case. In addition to the conditions (a),
(b), and (c) given at the end of Sec. II B, it requires the
additional condition (31):
(d) the linear growing modes of the different fluids have

the same large-scale limit.
The constraint (31) agrees with the authors of Ref. [23],

who also find that the usual consistency relations no longer
hold when there is a large-scale velocity bias and the linear
growth rates of the various fluids are different. This is also
clear from the fact that these consistency relations express a
kinematic effect, that is, how small-scale structures are
moved about by large-scale modes. Then, new terms arise

when different fluids respond in different fashions to large-
scale modes [23].

D. Isocurvature or subdominant modes

In Sec. II C, as in the single-fluid case described in
Sec. II B, we assumed for simplicity that decaying or
subdominant linear modes have become negligible, so that
we can focus on the fastest linear growing mode, which
also defines our initial conditions. However, it is also
interesting to discuss the case of nonzero initial isocurva-
ture modes, which correspond to isodensity modes on the
Newtonian scales that we consider. In standard scenarios,
these modes are subdominant with respect to the adiabatic
mode (because the gravitational instability couples all
matter components in the same fashion) and the discussion
is similar to the single-fluid case where we include the
decaying mode δL−ðx; tÞ. This means that in addition to the
field δL0ðxÞ, the complete determination of the initial
conditions requires one or several other fields δðiÞL0−ðxÞ.
For a given value of the decaying or subdominant fields

δðiÞL0−, the analysis of Sec. II A and Eq. (8) remain valid,
where δL0 is taken as the dominant linear growing mode.
Then, Eq. (8) still holds after we take the average over the
decaying modes δðiÞL0−, provided they are independent from
δL0. In particular, it is not necessary that these additional
fields be Gaussian. Then, the consistency relations (24) and
(32) remain valid, provided the different fluids have the
same large-scale limit (31) for this dominant linear mode
δL0 and we still have the scale-separation property (14) or
(19). In the standard cosmological scenario, this remains
true for several fluids thanks to the equivalence principle,
which ensures that they respond in the same manner to the
Newtonian gravitational potential. More precisely, as
described in Sec. III B 2 below, we can still absorb a
large-scale fluctuation of the linear mode δL0 through the
single change of coordinate (46).
Therefore, the consistency relations in the form (24) and

(32) remain valid when there are other decaying or
subdominant modes (such as isocurvature modes in multi-
fluid cases). They would also hold if δL0 is not the
dominant growing mode provided its large-scale limit
(31) is again the same for all fluids. However, in practice
we do not measure the linear field δL0 but only the matter
field δ. Then, the consistency relations in their more useful
form (25) and (33) only apply in the regime where
~δðk0; t0Þ≃ D̄þðt0Þ~δL0ðk0Þ. This means that the consistency
relations can only be verified by observations in the regime
where decaying and subdominant modes are negligible.

III. CONDITIONS OF VALIDITY

A. Perturbative check

The derivation presented in Sec. II is very general, since
it only relies on Gaussian initial conditions, the linear
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regime on large scales, and the scale-separation prop-
erty (19).
In particular, it also applies to most modified-gravity

scenarios and multifluid systems. Then, it is interesting to
follow in detail how this property appears in an explicit
perturbative treatment of the equations of motion, inde-
pendently of the form of the interaction vertices, as long as
they respect the conditions above. For our purpose, we only
check the “squeezed” bispectrum relation (26) at the
lowest order of perturbation theory. Following the notations
used in Refs. [4,29] for the Λ-CDM cosmology and
Refs. [30,31] for modified-gravity scenarios, we write
the equations of motion as

Oðx; x0Þ · ~ψðx0Þ ¼
X∞
n¼2

Ks
nðx; x1;…; xnÞ · ~ψðx1Þ… ~ψðxnÞ;

(34)

where we introduced the coordinate x ¼ ðk; η; iÞ, where
η ¼ ln is the time coordinate, and i is the discrete index of
the 2N-component vector ~ψ. Here, we consider N fluids,
which are described by their continuity equations (28) and
their Euler equations, and focusing on the growing-mode
curl-free velocity component, ~ψ can be written as

~ψðk; ηÞ ¼ ð~δð1Þ;−~θð1Þ= _a;…; ~δðNÞ;−~θðNÞ= _aÞ; (35)

where ~θðαÞ ¼ ∇ · vðαÞ. These (matter) fluids are subject to
the usual Newtonian gravitational potentialΦN as well as to
possible fifth-force potentials ΦðαÞ. This includes the case
of fðRÞ theories and scalar field models, where using the
quasistatic approximation we can write the additional scalar
fields as functionals of theN (matter) density fields [30,31].
Then, if the coupling constants are different or the matter
fields interact in a different manner with the various scalar
fields, the new potentials ΦðαÞ can be different for the N
matter fields. The linear operator O contains the first-order
time derivatives ∂=∂η and other linear terms. The vertices
Ks

n are equal-time vertices (within this quasistatic approxi-
mation) of the form

Ks
nðx; x1;…; xnÞ ¼ δDðη1 − ηÞ…δDðηn − ηÞ

× δDðk1 þ � � � þ kn − kÞ
× γsi;i1;…;in

ðk1;…;kn; ηÞ: (36)

In the standard Λ-CDM case, the gravitational potential is a
linear functional of the density field, thanks to the Poisson
equation, and the nonlinearities only come from the terms
∇ · ½ð1þ δÞv� and ðv ·∇Þv of the continuity and Euler
equations. Then, the equations of motion are quadratic and
the only nonzero vertices are those given by Eqs. (A1)–
(A3) in Appendix A. In the case of modified-gravity
scenarios, or nonlinear fluid interactions, the potentials

ΦðαÞ can be nonlinear functionals of the density field that
contain terms of all orders and give rise to vertices
γs2α;2α1−1;…;2αn−1. They correspond to source terms, which
only depend on the density fields, in the Euler equations.
As described in Appendix A, one can solve the equation

of motion (34) in a perturbative manner over powers of ~ψ .
This allows us to explicitly check, in a very general setting,
the bispectrum relation (26) at the lowest order of pertur-
bation theory. In particular, it shows that this result only
relies on two ingredients:
(a) the linear growth rates of the different fluids coincide

in the large-scale limit, as in (31).
(b) the new vertices γnew associated with nonlinear inter-

actions, that may arise for instance from modified-
gravity scenarios (or models of baryonic physics) must
be subdominant with respect to the standard vertices in
the limit k0 → 0 in Eq. (A11). This means that
γnewi;i0;i00 ðk0;k2Þ grow more slowly than 1=k0 for k0 →
0 at fixed k2.

The point (a) was already noticed in Sec. II C and follows
from the requirement (19). The point (b) is satisfied in usual
fðRÞ theories and scalar-field models, including a nonlinear
screening mechanism as for dilaton and symmetron mod-
els, as can be seen from the expressions of the vertices γs2;1;1
given in [31] (we only need the soft mode k0 to be on larger
scales than the range m−1 of the scalar field). This remains
valid at the general level, for higher-order vertices and up to
the highly nonlinear regime, and for n-point correlation
functions, as discussed in Sec. III B below.

B. Validity requirements

1. Separation of scales and kinematic response

As described in Sec. II B, in addition to the constraints of
Gaussian initial conditions and recovery of the linear
regime on large scales, the consistency relations only rely
on the property (19). Using Eq. (11), the critical property
(19) can also be written in terms of the nonlinear density
contrast as

k0 → 0∶
D~δðk; tÞ
D~δL0ðk0Þ ¼ D̄þðtÞ

k · k0

k02
~δðk; tÞ: (37)

Then, we do not need to introduce the displacement field
and by substituting Eq. (37) into Eq. (10) we directly obtain
Eqs. (23) and (24). This is more general and consistency
relations such as Eq. (24) hold for any system, beyond the
cosmological context, where the derivative (37) takes the
form of a simple multiplicative factor in the low-k limit. An
obvious example is the case where the field ~δðkÞ, which is
no longer interpreted as a density field, is a functional of the
form
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~δðkÞ ¼ exp

�X∞
n¼1

Z Yn
i¼1

dkiδDðk1 þ � � � þ kn − kÞ

× Es
nðk1;…;knÞ~δL0ðk1Þ…~δL0ðknÞ

�
; (38)

where the symmetric kernels Es
n satisfy Es

nð0; k2;…; knÞ ¼
0 for n ≥ 2.
In the cosmological case, the property (37) means that if

we perturb the initial condition ~δL0 by a small perturbation
Δ~δL0 that only modifies large-scale linear modes [i.e.,
Δ~δL0ðk0Þ ¼ 0 for k0 > kc where the cutoff kc is far in the
linear regime and much below the other wave numbers of
interest], the nonlinear density contrast transforms, at linear
order over Δ~δL0, as

~δL0 → ~δL0 þ Δ~δL0

~δðkÞ → ~δðkÞ þ
Z

dk0Δ~δL0ðk0ÞD̄þðtÞ
k · k0

k02
~δðkÞ

¼ ~δðkÞek·Δx; (39)

with

Δx ¼ D̄þðtÞ
Z

dk0Δ~δL0ðk0Þ k
0

k02
: (40)

[The last line in Eq. (39) simply means that expðxÞ ¼ 1þ x
at linear order.] Then, in configuration space this yields

δðx; tÞ → δðxþ Δx; tÞ: (41)

This corresponds to a uniform translation, as was clear from
Eq. (19), where the displacement fieldΨðqÞ is modified by
a uniform (q-independent) amount.
Thus, the critical assumption that gives rise to the

consistency relations (25) is that, at leading order, a very
large-scale perturbation of the initial conditions only leads
to an almost uniform translation of small structures. This is
a hypothesis of scale separation: large scales do not
strongly modify small-scale structures and only move them
around. In fact, as noticed above, the hypothesis can be
made more general: as the leading order effect does not
need to be a uniform shift, it could also be any uniform
multiplicative factor. If this assumption is satisfied, then the
details of the small-scale structures are not important and
the latter can be deep in the nonlinear regime, which is why
the consistency relations (24) remain valid when the
smaller-scale wave numbers ki are in the nonlinear regime.

2. Derivation of the kinematic effect

In the standard cosmological case, the reason why the
property (37), or equivalently (19), is valid is due to the
equivalence principle and it can be seen as follows; see also
[20,22]. By definition of the functional derivative, an

infinitesimal change of the initial condition ΔδL0 leads
to a change of the nonlinear displacement field given by

ΔΨðqÞ ¼
Z

dk0 DΨðqÞ
D~δL0ðk0ÞΔ

~δL0ðk0Þ: (42)

Therefore, to obtain the low-k0 limit of the functional
derivative we can look at a perturbation Δ~δL0ðk0Þ that is
restricted to k0 < kc with k0c → 0. For instance, we can
choose a Gaussian perturbation of size R → ∞ centered on
a point qc at a large distance from point q (jqc − qj ≫ R).
This limit also means that the distance jqc − qj is much
greater than the scale associated with the transition to the
linear regime, so that this localized perturbation always
remains far away. Because we are perturbing the linear
growing mode, by definition of the field δL0, the perturba-
tion ΔδL0 does not correspond to just adding a mass ΔM
around qc. It also means that we are perturbing the initial
velocity field vL0 by the precise amount that corresponds to
the relation between velocity and density in the growing
mode. In other words, we look at the impact of the change
of the linear growing mode

δLðq; τÞ → δ̂L ¼ δL þ D̄þΔδL0; (43)

vLðq; τÞ → v̂L ¼ vL −
dD̄þ
dτ

∇−1
q · ΔδL0 (44)

[because R → ∞ it is the large-scale limit Dþðk0 ¼ 0; τÞ
that appears]. At the linear level, this means that the small-
scale region around q is falling towards the distant large-
scale mass ΔM centered on qc as in the growing-mode
regime. In particular, if the fields are everywhere linear, we
have at once the relation (16), which becomes exact, as well
as the property (19). Thus, what we must show is that even
when the small-scale region around q is nonlinear, the
impact of the distant mass M is still to attract the small
region with the same acceleration as in the linear regime,
and with negligible tidal effects. This is most easily seen
from the equation of motion of the trajectories xðq; τÞ of
the particles,

∂2x
∂τ2 þH

∂x
∂τ ¼ −∇xΦ ¼ F; (45)

whereH ¼ d ln a=dτ is the conformal expansion rate andΦ
and F are the Newtonian gravitational potential and force.
When we add the perturbation ΔM, the trajectories are
modified as x → x̂ and the Newtonian force as F → F̂, and
they follow Eq. (45) with a hat on each field. In a fashion
similar to the method used for inflation consistency
relations [22], we can look for a simple solution of this
perturbed equation of motion built from the unperturbed
one xðq; τÞ by a simple transformation. In our case, we
simply need to consider new trajectories x0 defined by
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x0ðq; τÞ≡ xðq; τÞ þ D̄þðτÞΔΨL0ðqÞ; (46)

where ΔΨL0 ¼ −∇−1
q · ΔδL0 is the perturbation to the

linear displacement. Then, since the unperturbed trajecto-
ries obey Eq. (45), these auxiliary trajectories satisfy

∂2x0

∂τ2 þH
∂x0

∂τ ¼ Fþ
�
d2D̄þ
dτ2

þH
dD̄
dτ

�
ΔΨL0 (47)

¼ F0ðx0; τÞ þ ΔFLðq; τÞ: (48)

In the second line, we used the relation F0ðx0Þ ¼ FðxÞ
because the uniform translation (46) only gives rise to the
same translation of the Newtonian force, since F ∝ ∇−1 · δ.
The last term follows from Eq. (45), which implies at linear
order that the displacement field and the force obey

∂2ΨL

∂τ2 ðq; τÞ þH
∂ΨL

∂τ ðq; τÞ ¼ −∇qΦLðq; τÞ ¼ FLðq; τÞ:
(49)

Then, we note that the auxiliary trajectories x0ðq; τÞ satisfy
the same initial conditions as the perturbed trajectories
x̂ðq; τÞ, since they coincide in the linear regime thanks to
the construction (46). Moreover, they follow the same
equations of motion if we can write ΔF0ðx0; τÞ≃
ΔFLðq; τÞ. This is valid in the limit R → ∞, because the
far-away large-size region produces a Newtonian force ΔF
that varies on scale R and can be approximated as a
constant on the extent of the small-scale region q that we
consider. Moreover, since we consider an infinitesimal
perturbation ΔM, with power restricted to wave numbers
k0 → 0, the size-R region is deep in the linear regime and its
gravitational potential is set by the Poisson equation with
the linear density ΔδL as a source term, whence
ΔF≃ ΔFL. Therefore, we conclude that x̂ ¼ x0 and the
effect of the large-size perturbation ΔM is to induce the
uniform translation (46), which is set by the linear force
ΔFL. This gives the property (16), and hence the results
(19) or (37), which directly lead to the consistency relations
(24)–(25).
To simplify the analysis above, we chose the perturba-

tion ΔM to be located at a far-away distance qc. Since the
result does not depend on qc, this is indeed legitimate, but
one may wonder why this is the case. More precisely, one
might think that the result could be different if the
perturbation ΔM overlaps with the small-scale region q.
(As in the case of halo bias [32], one could imagine that
adding a uniform overdense background accelerates the
collapse and even makes qualitative changes to the density
field.) This is not the case, at leading order in the limit
R → ∞, because the dominant effect is the purely
kinematic transformation (41). Indeed, the large-scale
perturbation gives rise to coupled perturbations
fΔδL0;ΔΨL0;ΔvL0;ΔΦL0;ΔFL0g, which by definition

are related as in the linear growing mode. Then, from
the Poisson equation and the continuity and Euler equa-
tions, we have the scalings δL ∝ ∇2ΦL ∝ ∇ · FL and
ΨL ∝ vL ∝ ∇ΦL ∝ FL. Thus, at constant force ΔFL0 and
velocity ΔvL0, the perturbation to the density scales as
ΔδL0 ∼ R−1jΔFL0j, which vanishes in the large-scale limit
R → ∞. Therefore, in the low-k0 limit, a perturbation
Δ~δL0ðk0Þ corresponds to adding a uniform force field, to
which the system reacts by uniform velocity and displace-
ment fields, while the initial density in the small region of
interest is not perturbed [and it is merely transported by this
uniform flow at t > 0]. Therefore, at leading order for
k0 → 0, we only have the purely kinematic effect (41).
In the cosmological context, it is possible to go to the

next order over k0 beyond the kinematic consistency
relations (25), at the price of an additional approximation
[33,34]. To remove the dominant kinematic part that scales
as 1=k0, which is the focus of this paper, it is convenient to
consider spherical averages of the correlations (9). Then,
the leading-order terms of the form ki · k0

j=k
02
j in Eq. (25)

vanish as we integrate over the angles of the vectors k0
j.

Physically, the spherical average means that the large-scale
fluctuation ΔδL0 in Eq. (43) is spherically symmetric and
does not select any preferred direction. Then, by symmetry
there is no kinematic effect because there is no direction
towards which small scales should be transported.
Therefore, the spherically averaged correlations become
sensitive to the next-to-leading order effect, of order
k00PLðk0Þ instead of k0−1PLðk0Þ. This probes the depend-
ence of the small-scale dynamics on a large-scale uniform
density background, or uniform curvature of the gravita-
tional potential. However, this does not give rise to
universal consistency relations such as (25), which derive
from the purely kinematic effect (41), because the small-
scale structures are distorted by a uniform curvature of the
gravitational potential in a manner that depends on the
physical properties of the system (e.g., the gravitational
interaction or the density dependence of cooling processes
if one considers galaxies). Then, to make some progress
one must use approximate symmetries that relate the dark
matter dynamics in different backgrounds but do not
apply to all nonlinear processes, such as galaxy formation
[33,34].

3. The equivalence principle as a sufficient condition

The derivation above might seem a bit superfluous, as
the result may look obvious. However, it helps to explicitly
show which ingredients are required to obtain the consis-
tency relations. In particular, it is clear that the argument
does not depend on the structure of the small nonlinear
object at q. It can be in the highly nonlinear regime where
complex baryon astrophysical processes (e.g., star forma-
tion) are taking place. Thus, the consistency relations
(24)–(25) hold even when the hard wave numbers ki are
in the highly nonlinear regime and we take into account
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shell crossing and astrophysical processes (star formation,
outflows, etc.).
In the standard case, going back to Newton’s equation,

mIẍ ¼ −mG∇ΦN, where mI and mG are the inertial and
gravitational masses and ΦN is Newton’s potential, the
requirement that the distant large-scale structure leads to
the same displacement for all particles means that the
inertial and gravitational masses are equal. Thus, in the
standard framework, the consistency relations follow from
the equivalence principle, in agreement with the analysis in
[22]. In particular, for the multifluid case discussed in
Sec. II C, we explicitly recover the condition (31) of
identical large-scale linear growth rates. Indeed, this is
the condition to have a unique coordinate transforma-
tion (46).

4. More general scenarios

On a more general setting, to derive the kinematic effect
(41) in Sec. III B 2, we did not explicitly need the Poisson
equation or the specific form of the potential Φ. We only
needed to recover the linear regime on large scales and to
ensure that the force ΔFðxÞ exerted by a large-scale
fluctuation of size R was almost constant over a smaller-
scale region and independent of its small-scale structure.
This means that the consistency relations remain valid
when we include (speculative) long-range forces other than
the standard Newtonian (more precisely, general relativity)
gravity. The only requirement is that a weak form of the
equivalence principle remain valid on large scales. For
instance, we can imagine the following three cases.
(a) There exists a long-range fifth force, FΞ ¼ −∇ · Ξ,

which derives from a potential Ξ that obeys a modified
Poisson equation, such as ð∇2 þ R2

c∇4ÞΞ ¼ δ.
Although this can be seen as a deviation from general
relativity if we include FΞ in the gravitational inter-
action, it obeys the equivalence principle in the sense
that we use the same coupling constant for all matter
particles. Thus, we still have Eq. (45), with
Φ → Φþ Ξ, that is, equality of inertial and gravita-
tional masses, and we recover the consistency relations
as in the standard case because of the equivalence
principle, as in Sec. III B 3.

(b) The equivalence principle can be violated on small
scales, associated with the hard wave numbers ki in
Eq. (25). It is sufficient that the equivalence principle
applies in the large-scale limit, that is, for k0 → 0 or
R → ∞, where R is the size of the distant perturbation
ΔM. An example would be modified-gravity scenarios
associated with a new scalar field that mediates a fifth
force. At the linear level, this gives rise to modified
Newton’s constants GN → ½1þ ϵðαÞðk; tÞ�GN in the
equations of motion of the matter particles. If different
fluids have different couplings to the scalar field, the
factors ϵðαÞ can be different. However, if they coincide
at low k [typical models have ϵðkÞ ∝ k2, which

vanishes at k → 0, as discussed in Appendix B], the
consistency relations remain valid although the differ-
ent fluids behave in a different fashion on small scales.
We discuss in more details these scenarios in Appen-
dix B. (In another class of scenarios, such as some
coupled dark energy models where dark matter and
baryons show different couplings to the scalar field
[35,36], a bias develops between particle species and
the consistency relations are violated [23].)

(c) The equivalence principle is violated on all scales,
except for the linear growing mode. Indeed, we only
need an almost constant force ΔFL in Eq. (48) (with
respect to small-scale structures and particle species)
for the force exerted by a large-scale linear growing-
mode fluctuation. In principle, we could imagine for
instance a scenario where only the linear growing
mode obeys the equivalence principle but arbitrary
large-scale fluctuations do not. Such an example is
given in Appendix C. However, this is not expected to
be a realistic model and in practice consistency
relations follow from the equivalence principle, as
in the standard case [22].

C. Galilean invariance

Because the effect of a long-wavelength perturbation
is to move the small-scale structures as in Eq. (41), the
net effect on equal-time density correlations vanishes, as
can be checked in the consistency relation (24), usingP

iki ¼ −
P

jk
0
j → 0. The same cancellation for equal-

time statistics appears in perturbation theory computations
of the density correlations [37,38]. This cancels the infrared
divergent contributions from different diagrams that appear
if the initial power spectrum has significant power on large
scales (i.e., the variance of the initial velocity is infinite). In
this context, this property is somewhat loosely referred to
as “Galilean invariance,” by which it is meant that small
scales are only transported without deformation by long-
wavelength modes. This terminology refers to the usual
case (in the laboratory or in a static Universe) where the
Euler equation reads ∂tv þ ðv ·∇Þv ¼ −∇ΦN, which is
invariant through a uniform velocity change v → v þ v0. In
the case of the expanding universe, using comoving
coordinates, the dynamics is actually invariant through
an extended Galilean transformation (EGT) [20], that can
be written as

x0 ¼ x − nðτÞ; v0 ¼ v − _nðτÞ; δ0 ¼ δ; (50)

Φ0
N ¼ ΦN þ ðn̈þH _nÞ · x0; (51)

where the dot denotes the derivative with respect to the
conformal time τ ¼ R

dt=a, H ¼ _a=a, and the shift nðτÞ
between the primed and unprimed solutions of the equa-
tions of motion is arbitrary.
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As pointed out by Ref. [22], the transformation (50)–(51)
with the specific case nðτÞ ¼ n0τ is not the reason for the
consistency relations (24)–(25), because it does not have
the form of a perturbation to the linear growing mode. The
perturbation that is relevant implies both a change of the
velocity field and of the gravitational potential, with a time-
dependent uniform displacement that is proportional to the
linear growing mode D̄þðtÞ; see Eqs. (43)–(44). In other
words, the consistency relations rely on the invariance of
the small-scale structure (at leading order over k0) as it falls
towards a distant large-scale mass ΔM, with its displace-
ment and velocity coupled as in the linear growing mode,
rather than a pure constant velocity boost.
It is interesting to see through explicit examples that

Galilean invariance and the validity of the consistency
relations are independent properties.
(a) A counterexample, where Galilean invariance is vio-

lated (as well as the equivalence principle) but the
consistency relations are still valid, is provided by the
toy model of Appendix C. Through the transformation
(50)–(51), we find that the equation of motion of
the fluid component ðαÞ keeps the same form if
the gravitational potential transforms as Φ0

N ¼
ΦN þ 1

ϵðαÞ ½n̈þ ðHþ βðαÞÞ _n� · x0. This is only possible
when the right-hand side does not depend on ðαÞ, that
is, when nðτÞ ∝ D̄þðτÞ where D̄þ satisfies the con-
ditions (C2). Thus, in this toy model, the standard
Galilean invariance is not satisfied and the extended
Galilean invariance is satisfied by a single time-depen-
dent function nðτÞ (up to a proportionality factor),
which is sufficient to yield the consistency relations.

(b) In the multifluid case, it is possible to build a dynamics
that obeys the extended Galilean invariance (as
boosted frames generate new solutions) but breaks
the invariance principle and the consistency relations,
by choosing different coupling constants to the gravi-
tational interaction or a fifth-force potential (e.g., see
[39]). However, even for a single-component system it
is possible to satisfy the extended Galilean invariance
while violating the consistency relations (and the
equivalence principle). Thus, let us consider models
with an additional fifth-force long-range potential Ξ in
the modified Euler equation, ∂τv þ ðv ·∇Þv þHv ¼
−∇ΦN −∇Ξ, and with Ξ½δ� as a functional of the
density field. Then, the extended Galilean invariance is
satisfied, with the transformations (50)–(51) supple-
mented by Ξ0 ¼ Ξ.

We may consider two examples,

ðb1Þ∶ Ξ ∝ ð∇−2δÞ2; γs2;1;1ðk1;k2Þ ∝
k2

k21k
2
2

; (52)

ðb2Þ∶ Ξ ∝ ð∇−1δÞ · ð∇−1δÞ;

γs2;1;1ðk1;k2Þ ∝
k2ðk1 · k2Þ

k21k
2
2

; (53)

where k ¼ k1 þ k2. In these two cases, the fifth-force
potential is quadratic over the density contrast δ and this
gives rise to a new quadratic vertex γs2;1;1 in the equation of
motion, following the notations of Eq. (36). Then, going
through the check of the bispectrum consistency relation at
the lowest order of perturbation theory, described in
Sec. III A, we find that the new vertex γs2;1;1ð−k0;−k2Þ
can no longer be neglected as k0 → 0, because it diverges at
least as fast as the 1=k0 divergence of the standard vertices
γs1;2;1 and γs2;2;2. Therefore, the consistency relations
(24)–(25) no longer apply.
We can easily see where the demonstration presented in

Sec. III B 2 breaks down. Let us first consider the model
(b1). The force associated with the potential Ξ is
FΞ ¼ −∇Ξ ∝ ΦN∇ΦN. Then, the perturbation to the fifth
force due to a distant large-scale perturbation ΔM reads at
linear order

ΔFΞ ∝ ðΔΦNÞ∇ΦN þ ΦN∇ðΔΦNÞ ∼ ðΔΦNÞ∇ΦN; (54)

where we used ∇ΦN ∼ ΦN=r and ∇ðΔΦNÞ ∼ ΔΦN=R,
where r and R are the size of the small object and of
the distant large-scale perturbation, with r ≪ R. Thus, the
distant large-scale mass ΔM no longer generates an almost
constant force ΔF over the extent of the small object,
because the slowly varying factor ðΔΦNÞ is modulated by
the fast varying factor ∇ΦN. Therefore, we can no longer
make the approximation ΔFLðq; τÞ≃ ΔF0ðx0; τÞ in
Eq. (48) to prove that the auxiliary trajectories (46) are
solutions of the perturbed equations of motion (at lowest
order over k0). This coupling between small and large scales
is due to the nonlinearity of the potential Ξ, and the same
result applies to the model (b2).
This means that both models (b1) and (b2) violate the

equivalence principle, in the sense that two different small-
scale structures do not feel the same force from a distant
large-scale fluctuation, which results in the violation of the
consistency relations. However, there is an additional
difference between the models. In the case (b1), the strong
infrared divergence 1=k2i of the vertex γ

s
2;1;1 actually implies

that we do not recover linear theory on large scales. For
instance, the one-loop contribution to the power spectrum
arising from hψ ð3Þψ ð1Þi, where ψ ðnÞ is the term of order n of
the perturbative expansion over powers of δL, scales as
PLðkÞ [instead of k2PLðkÞ in the standard case], because
one factor k2, that arises from the Laplacian of Ξ as we take
the divergence of the Euler equation, is canceled by a
denominator 1=k2 from a new vertex γs2;1;1.
In the case (b2), the vertex (53) shows a softer diver-

gence, ∝ 1=ki, and it actually has the same form as the
standard γs2;2;2 of Eq. (A3). Then, linear theory is recovered
on large scales, and the breakdown of the consistency
relations is due to the violation of the equivalence principle.
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IV. CONCLUSION

We have presented in this paper a simple nonrelativistic
derivation of the consistency relations that express the
ðlþ nÞ correlation between l soft modes and n hard
modes in terms of the correlation of the hard modes alone,
with prefactors that involve the Gaussian power spectrum
of the soft modes. This applies to arbitrary numbers of soft
wave numbers and fluid components. This simple deriva-
tion explicitly shows that these consistency relations only
rely on three ingredients: (a) Gaussian initial conditions;
(b) a scale-separation property, which states that at leading
order large-scale fluctuations merely transport small-scale
structures without distortions; and (c) the linear regime,
which is recovered on large scales.
In most of this paper we neglected decaying modes, so

that the initial conditions and large-scale fields are fully
specified by a single linear growing mode. However, we
have described in Sec. II D that the consistency relations
remain valid in the theoretical forms (24) and (32) when we
include other decaying or subdominant linear modes. In
practice, we do not directly observe each linear mode,
which enters these forms of the consistency relations, but
only the total (nonlinear) matter density contrast. This
means that we can only measure these consistency relations
in the regime where the decaying modes are negligible, so
that the observed large-scale density field can be approxi-
mated by the linear growing mode.
In agreement with previous works, the critical scale-

separation property that is the basis of the consistency
relations follows from the equivalence principle, as it
means that all objects and small-scale structures fall in
the same way in a homogeneous gravitational potential. In
nonstandard scenarios, for instance with a fifth force, the
consistency relations remain valid if (a) the fifth force still
obeys the equivalence principle (e.g., it derives from a
potential Ξ that obeys a modified linear Poisson equation
and it shows the same coupling to all particles), or (b) the
equivalence principle is recovered on the scales probed by
the soft wave numbers [e.g., k0 ≪ m where 1=m is the
range of the fifth force mediated by the additional scalar
field, in fðRÞ or dilaton models]. In a third scenario (c), the
equivalence principle can be violated on all scales except
for fluctuations that follow the linear growing mode.
However, this is rather ad hoc and does not apply to
practical cosmological models.
We have also described simple explicit models that obey

the extended Galilean invariance but violate the consistency
relations, because they break the equivalence principle
(through nonlinear effects, which can also preserve or
prevent the recovery of the linear regime on large scales,
depending on the model).
Because they only involve a kinematic effect, the form

of these consistency relations is very simple and general,
and it does not depend on the details of small-scale physics.
They remain valid despite whatever small-scale

nonperturbative processes take place, such as shell crossing
of dark matter trajectories or complex astrophysical proc-
esses like star formation and outflows due to supernovae.
Thus, a detection of a violation of these relations would
signal either non-Gaussian initial conditions, significant
decaying mode contributions, or a modification of gravity
that does not converge to general relativity on large scales.
These relations become identically zero for equal-time

statistics in the standard scenario (because equal-time
statistics cannot distinguish such uniform displacements).
In this perspective, equal-time correlations could be used to
detect deviations from general relativity if one detects a
nonzero signal [39]. If the equivalence principle is satisfied,
equal-time statistics are governed by next order effects,
associated with the curvature of the gravitational potential
(as the leading order associated with the constant gradient
approximation vanishes). This distorts the small-scale
structures and leads to more complex and approximate
relations that do not share the same level of general-
ity [33,34].
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APPENDIX A: PERTURBATIVE CHECK

We describe in this appendix the check of the “squeezed”
bispectrum relation (26) at lowest order of perturbation
theory, in a very general setting that includes a large class of
modified-gravity scenarios. The equation of motion can be
written as Eq. (34), with the nonlinear vertices (36). In the
standard Λ-CDM scenario, the equations of motion are
quadratic and the only nonzero vertices are

γs2α−1;2α−1;2αðk1;k2Þ ¼
ðk1 þ k2Þ · k2

2k22
; (A1)

γs2α−1;2α;2α−1ðk1;k2Þ ¼
ðk1 þ k2Þ · k1

2k21
; (A2)

γs2α;2α;2αðk1;k2Þ ¼
jk1 þ k2j2ðk1 · k2Þ

2k21k
2
2

: (A3)

In the case of modified-gravity scenarios, or nonlinear fluid
interactions, the potentials ΦðαÞ can be nonlinear func-
tionals of the density field that contain terms of all orders
and give rise to vertices γs2α;2α1−1;…;2αn−1.
Solving the equation of motion (34) in a perturbative

manner, we write the expansion
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~ψ ¼
X∞
n¼1

~ψ ðnÞ; with ~ψ ðnÞ ∝ ð~δL0Þn; (A4)

and the first two terms read

~ψ ð1Þ ¼ ~ψL; ~ψ ð2Þ ¼ RL · Ks
2 ~ψL ~ψL; (A5)

where ψL is the linear growing mode and RL the linear
response function (i.e., the retarded Green function),

O · ~ψL ¼ 0; O · RL ¼ δD; (A6)

η1 < η2∶ RLi1;i2ðk; η1; η2Þ ¼ 0: (A7)

The linear growing mode also satisfies

η > η0∶ ~ψLiðk; ηÞ ¼
X
j

RLi;jðk; η; η0Þ ~ψLjðk; η0Þ; (A8)

where there is no integration over time. As in Eq. (29), we
also write the linear growing mode as

~ψ iðk; ηÞ ¼ Diðk; ηÞ~δL0ðkÞ;O ·D ¼ 0 (A9)

where Diðk; ηÞ is the linear growth rate of the i element of
the vector ~ψ andD ¼ ðD1;…; D2NÞ. The linear growth rate
and the response function may depend on wave number,
depending on the form of the potentials ΦðαÞ.
At lowest order, the density bispectrum B reads

Bðk0; k1η1; k2; η2Þ≡ h~δL0ðk0Þ~δðα1Þðk1; η1Þ~δðα2Þðk2; η2Þi0

¼ h~δL0ðk0Þ~δðα1Þð2Þðk1; η1Þ~δðα2ÞL ðk2; η2Þi0
þ sym

¼ h~δL0ðRL · Ks
2 ~ψL ~ψLÞ1ð ~ψLÞ2i0 þ sym:

(A10)

where “sym.” stands for the symmetric term by 1↔2, and
we use simplified notations. Taking the Gaussian average
gives

B ¼ 2PL0ðk0ÞPL0ðk2ÞDi0 ðk0; η01ÞDi00 ðk2; η01ÞDj2ðk2; η2Þ
× RLj1;iðk1; η1; η01Þγsi;i0;i00 ð−k0;−k2; η

0
1Þ þ sym: (A11)

where j ¼ 2α − 1 is the component associated with the
ðαÞ density. Next, in the large-scale limit k0 → 0, we
are dominated by the vertices γs2α−1;2α;2α−1 and γs2α;2α;2α
of Eqs. (A2)–(A3), with γs2α−1;2α;2α−1 ≃ γs2α;2α;2α≃
ðk2 · k0Þ=ð2k02Þ. [We discuss the nonstandard vertices
below Eq. (A15).] This yields

B0 ¼
k2 · k0

k02
PL0ðk0ÞPL0ðk2ÞDj2ðk2; η2Þ

X
α

D2αðk0; η01Þ

× ½RLj1;2α−1ðk1; η1; η01ÞD2α−1ðk2; η01Þ
þ RLj1;2αðk1; η1; η01ÞD2αðk2; η01Þ� þ sym: (A12)

Using the property (31), we can factor the term
D2αðk0; η01Þ → D̄2ðη01Þ out of the sum. Here D̄2 is the
common large-scale velocity growing mode and D̄1 ¼
D̄þ is the common large-scale density growing mode.
Then, the sum can be resummed at once from Eq. (A8),
using k2 → k1 in the limit k0 → 0. This gives

B0 ¼
k2 · k0

k02
PL0ðk0ÞPL0ðk2ÞDj2ðk2; η2ÞD̄2ðη01ÞDj1ðk1; η1Þ

þ sym: (A13)

Next, we can integrate over the time η1
0 [because of

causality, in the equations above there was an implicit
Heaviside term Θðη01 < η1Þ, which arises from Eq. (A7)],
using the continuity equation which implies that
D̄2ðηÞ ¼ dD̄1ðηÞ=dη. This yields

B0 ¼
k2 · k0

k02
PL0ðk0ÞPL0ðk2ÞDðα2Þþ ðk2; η2ÞD̄þðη1Þ

×Dðα1Þþ ðk1; η1Þ þ sym; (A14)

and using k2 → −k1,

B0 ¼ −PL0ðk0ÞPðα1;α2Þ
L ðk1; η1; η2Þ

�
k1 · k0

k02
D̄þðη1Þ þ sym

�
:

(A15)

This agrees with Eq. (32), and with Eq. (33) when we
change the variable from ~δL0ðk0Þ to ~δLðk0; η0Þ. This explicit
derivation provides a general check of Eq. (26) at the lowest
order of perturbation theory.

APPENDIX B: MODIFIED-GRAVITY SCENARIOS

Here we briefly consider the case of modified-gravity
models, such as fðRÞ theories or scalar field models. To
simplify the analysis we focus on a single matter fluid (we
have already seen the general conditions for multifluid
cases above), which feels the usual Newtonian gravitational
potential ΦN and an additional fifth-force potential ΦA. For
scalar-tensor theories, which involve a new field φ that
couples to matter particles through a conformal rescaling of
the Jordan-frame metric [31,40–44], ~gμν ¼ A2ðφÞgμν; this
potential reads ΦA ¼ c2 lnAðφÞ, while the scalar field
obeys the Klein-Gordon equation c2

a2 ∇2φ ¼ dV
dφ þ ρ dA

dφ,
where VðφÞ is the scalar-field potential. Here we used
the quasistatic approximation (as well as the nonrelativistic
limit). In the weak field limit, we can linearize the Klein-
Gordon equation around the background, φ ¼ φ̄þ δφ, and
we obtain
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weak field∶ ~ΦA ∝ δ ~φ ∝
δ~ρ

k2 þ a2m2
; (B1)

where c2m2 ¼ d2V=dφ̄2 and we consider models where
A≃ 1þ βφ=MPl with βφ=MPl ≪ 1. Thus, the total poten-
tial ~Φ ¼ ~ΦN þ ~ΦA is amplified with respect to the
Newtonian potential by a factor 1þ ϵ with

ϵðk; tÞ ∝ k2

k2 þ a2m2
: (B2)

In very dense objects, a screening mechanism takes place
[41], due to the nonlinearities of the Klein-Gordon equa-
tion. As we take ρ → ∞, at fixed scale R, the left-hand side
becomes negligible with respect to each term in the right-
hand side and the field φ in the objects settles down to
the solution of dV=dφþ ρdA=dφ ¼ 0 [e.g., for V ¼
V0e−φ=MPl we have φ ∼ lnðβρ=V0Þ]:

strong field∶ φ≃ φc with
dV
dφ

ðφcÞ þ ρ
dA
dφ

ðφcÞ ¼ 0:

(B3)

Then, gradients of the scalar field φ and of the potential ΦA
are negligible and the fifth force vanishes, so that we
recover the usual Newtonian gravity.
As noticed in [45], the screening mechanism also means

that a very dense object, which is screened, and a moderate
density object, which is in the weak-field regime (B1), do
not feel the same fifth force from a given distant object.
Indeed, the fifth force due to a distant mass M acts on a
small object at x through the local gradients of the potential
ΦA at x, and therefore, through the local gradients of the
scalar field φ. In the weak-field regime (B1), the fifth force
is proportional to the gravitational force, with a factor ϵ that
depends on the distance to the massM (k ∼ 1=jx0 − xj), and
does not depend on the small object structure. This is due to
the linear approximation: solutions to the Klein-Gordon
equation and to the potential simply add up. In contrast, in
the strong-field regime (B3), the field φ is pinned down to
the solution φc, with a very high curvature of the effective
potential V þ ρA, and adding a distant mass only gives rise
to a small deviation of the local value of φ. Then, the fifth
force due to the distant object is negligible. Therefore,
moderate-density and high-density objects do not respond
in the same way to the distant mass M, which corresponds
to a violation of the equivalence principle [45].
Nevertheless, the consistency relation (25) remains valid

in the soft mode limit k0 → 0, in the regime k0 ≪ am.
Indeed, Eq. (B2) shows that for k ∼ 1=R → 0, in the weak-
field regime for the small object, the fifth force vanishes as
k2 as compared with the Newtonian gravity. This is because
Newtonian gravity is a long range force, with ~ΦN ∼ ~δ=k2,
whereas the fifth force is a relatively “short-range” force
mediated by the scalar field φ, with a characteristic length

∼1=m (realistic models take 1=m≲ 1 Mpc=h because of
observational constraints from the Solar System). This fifth
force is also negligible when the small object is in the
strong-field regime, where the screening mechanism makes
it insensitive to external fluctuations. Therefore, the fifth
force is subdominant with respect to Newtonian gravity at
leading order in 1=k and it does not contribute to the
response (19) of the small object to a large-scale distant
mass, provided k0 ≪ am.
Going back to the explicit perturbative check presented

in Appendix A, this feature explicitly appears as we go
from Eq. (A11) to Eq. (A12), where we assume that the new
nonlinear vertices generated by the fifth-force potential are
subdominant with respect to the usual vertices γs1;2;1 and
γs2;2;2. As seen from the explicit expressions given by
Eqs. (78)–(79) in Ref. [31], this is true because the vertices
are rational functions with denominators of the form
1=ðk2 þ a2m2Þ that remain finite as k → 0. This is the
same denominator as in Eq. (B2) and again it is due to the
small-range character of the fifth force. The same result
holds for the fðRÞ theories, for the same short-range
reason, as can be checked in the explicit expression of
the low-order vertices given by Eqs. (75)–(76) in Ref. [31].

APPENDIX C: TOY MODEL VIOLATING THE
EQUIVALENCE PRINCIPLE ON ALL SCALES

We give here an example of a toy model where the
consistency relations are verified although the equivalence
principle is violated. This relies on the fact that the
equivalence principle is recovered for the specific case
of the linear growing mode, which is sufficient to recover
the consistency relations (33). Thus, let us consider the
following toy model, made of different particle species ðαÞ
that obey the equations of motion

∂2xðαÞ

∂τ2 þ ðHþ βðαÞðτÞÞ ∂x
ðαÞ

∂τ ¼ −ϵðαÞðτÞ∇xΦN; (C1)

where ΦN ¼ 4πGNa2∇−2P
αδρ

ðαÞ is Newton’s potential.
As compared with the standard case (45), we have added a
friction term βðαÞ and an effective Newton’s constant ϵðαÞGN
that depend on the particle species (and on time). (We could
imagine that there is some friction with respect to a
noninteracting component that exactly follows the
Hubble flow and gravity is modified, but this example is
not meant to be realistic.) This model clearly violates the
equivalence principle on all scales when the coefficients
ϵðαÞ are different.
However, following the procedure described in

Sec. III B 2, we can still build auxiliary trajectories as in
Eq. (46), with a common displacement D̄þðτÞΔΨL0 so that
all particles move by the same amount and the potential ΦN
is only displaced without deformation. Then, the right-hand
side of Eq. (47) contains a term ½d2D̄þ=dτ2 þ ðHþ
βðαÞÞdD̄þ=dτ�ΔΨL0 that is again identical to ΔFðαÞ

L ðq; τÞ
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if all linear growing modes D̄ðαÞ
þ are equal to D̄þ. Using the

Poisson and continuity equations and the equation of
motion (C1) in its linear form, the different linear growing
modes are identical if D̄þ is simultaneously the solution of

d2D̄þ
dτ2

þ ðHþ βðαÞÞ dD̄þ
dτ

¼ ϵðαÞ
3

2
H2ΩmD̄þ: (C2)

Choosing for instance for D̄þ the usual solution associated
with the coefficients βðαÞ ¼ 0, ϵðαÞ ¼ 1, we can see that for
any set of functions ϵðαÞðτÞ we can find functions βðαÞðτÞ

so that Eq. (C2) is satisfied. For such a choice, we obtain a
toy model that violates the equivalence principle on all
scales, but where the consistency relations (24)–(25)
remain valid. The reason for this is that to derive the
consistency relations we only need the response of small-
scale objects to a large-scale perturbation of the linear
growing mode (i.e., the initial conditions). This is not the
same thing as adding a large mass ΔM far away, because
we must modify the density and velocity fields in a coupled
manner.
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