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We estimate dark matter (DM) density for the Universe with a reheating temperature smaller than the
mass of DM, assuming DM to be a weakly interacting massive particle. During the reheating process, an
inflaton decays and releases high-energy particles, which are scattered inelastically by the thermal plasma
and emit many particles. DMs are produced through these inelastic scattering processes and pair creation
processes by high-energy particles. We properly take account of the Landau-Pomeranchuk-Migdal effect
on inelastic processes and show that the resultant energy density of DM is much larger than that estimated
in the literature and can be consistent with that observed when the mass of DM is larger than Oð100Þ GeV.
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I. INTRODUCTION

Aweakly interacting massive particle (WIMP) is one of
the most attractive candidates for dark matter (DM),
motivated by new physics at a TeV scale, including
supersymmetric (SUSY) theories. DM is produced ther-
mally in the early Universe, and its abundance can be
consistent with that observed if the reheating temperature
of the Universe is sufficiently larger than its freeze-out
temperature. The coincidence of the observed DM density
and the relic density determined by the weak interaction
scale is referred to as theWIMPmiracle. Since this scenario
requires the mass of the WIMP at the electroweak or TeV
scale, there are rich implications for near-future experi-
ments, including direct and indirect detection experiments
of DM and particle collider experiments.
However, when we look at each model motivated by

particle physics, it is nontrivial to obtain a correct mass
spectrum that can account for the abundance of DM. For
example, in the constrained minimal SUSY standard
model, the lightest SUSY particle (LSP) is binolike.
Nonobservation of SUSY particles and the discovery of
the 126-GeV Higgs boson [1,2] by the LHC experiment
indicate that SUSY particles are heavy, which leads to
overproduction of the binolike LSP in the early Universe.1

Taking this situation seriously, we reconsider the
assumption of high reheating temperature.
When we consider inflationary models, a scenario with a

low reheating temperature is naturally realized as follows.
The inflaton is required to have a very flat potential, which
suggests some symmetry to control its potential. The
symmetry naturally suppresses interactions of the inflaton,

which in turn leads to a low reheating temperature of
the Universe. For example, if the mass of the inflaton is
of the order of 1011 GeV and it decays through a dimension
6 Planck-suppressed operator, the reheating temperature
of the Universe is less than about Oð1Þ GeV, which is
smaller than typical freeze-out temperatures of WIMPs.
In a scenario with low reheating temperature, the thermal

abundance of DM is much less than a scenario with a high
reheating temperature, mainly because the energy density
of the thermal plasma is a subdominant component of that
of the Universe at the time of DM freeze-out [12,13]. In
other words, the thermal abundance of DM is diluted by the
entropy production from the inflaton decay.
However, the entropy production itself provides

DM [14–19]. In Ref. [18], they have indicated that DM
is produced in a shower from the decay of the inflaton
and have calculated the resultant DM energy density
using generalized Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equations [20,21] in a certain SUSY
model. They have found that DM is produced efficiently
through this process when the inflaton decays into particles
carrying a nonzero SUð3Þc charge. The DM abundance also
depends on the mass of inflaton, and the number of DM
produced per one inflaton decay is typicallyOð100Þ for the
inflaton mass of Oð1012Þ GeV. In addition, in Ref. [19], it
has been pointed out that DM is produced by inelastic
scatterings between the thermal plasma and high-energy
particles produced by the inflaton decay.
Therefore, in a scenario with low reheating temperature,

the total amount of DM is given by the sum of the following
contributions: (suppressed) thermal production, production
through a cascade shower from the inflaton decay, and
production through inelastic scatterings between
high-energy particles and the thermal plasma. The last
contribution is closely related to thermalization processes
in the era of reheating, which has to be investigated in
detail.

1This problem can be avoided by coannihilation [3,4] with the
stau [5], but only with fine-tuning. For recent discussion on
SUSY models with a correct DM abundance, see Refs. [6–11],
for example.
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When reheating temperature is low enough, the typical
momentum of particles produced by the decay of inflaton,
which is roughly given by the mass of the inflaton, is much
larger than the (would-be) temperature of background
plasma. In this case, the thermalization process is com-
pleted by splitting processes through which the number of
high-energy particles drastically increases [22,23] (see also
Refs. [24–26]). The rate of splitting processes is suppressed
by the Landau-Pomeranchuk-Migdal (LPM) effect, which
is a destructive interference effect between emission proc-
esses [27–33]. The increases in the number of high-energy
particles as well as the LPM effect should be taken into
account in the estimation of the DM abundance produced
through inelastic processes.
In this paper, we calculate the abundance of DM

produced from inelastic scatterings between high-energy
particles and the thermal plasma with careful consideration
on the thermalization process as mentioned above. The
resultant DM abundance is independent of the mass of the
inflaton as long as the mass is sufficiently large and
depends mainly on the mass scale of the DM sector and
reheating temperature. We find that this is the dominant
contribution to the amount of DM in a scenario with a low
reheating temperature when the mass of the inflaton is
sufficiently large. We should emphasize that this mecha-
nism to produce DM is highly model independent. Even if
the decay channel of the inflaton into DM is absent in
particular, DM is produced through inelastic scatterings. In
addition, this scenario can also account for the abundance
of DM with mass of Oð1Þ PeV, which is larger than
unitarity bound of a few hundred TeV [34]. Such heavy
DM might account for the recent observation of high-
energy cosmic-ray neutrinos by the IceCube experiment
[35–38].
This paper is organized as follows. In the next section,

we explain how high-energy particles lose their energy in
the thermal plasma taking account of the LPM effect. We
also describe a thermal history of the Universe in our setup.
In Sec. III, we briefly review previous works for the thermal
and nonthermal production of DM and improve the
calculation of the DM abundance from the inflaton decay
taking account of the LPM effect. Then we discuss the
relation between our scenario and other topics, such as the
free-streaming velocity of DM, the Affleck-Dine baryo-
genesis, and SUSY theories. Section V is devoted to the
conclusion.

II. THERMALIZATION AND THERMAL HISTORY

In this section, we consider a situation in which the
inflaton with a mass of mϕ decays into light particles and
the light particles yield their energy into the thermal plasma
through elastic and inelastic scatterings. In Sec. II A, we
calculate the rate of energy loss by elastic and inelastic
scatterings, taking the LPM effect into account, and show
that inelastic scatterings are the dominant process for the

energy loss. In Sec. II B, we explain the evolution of the
thermal plasma in the expanding universe with low reheat-
ing temperature.

A. Interactions between high-energy particles and
thermal plasma

In this subsection, we review thermalization processes of
a high-energy particle with energy Ei in the thermal plasma
with a low temperature T ð≪ EiÞ. The thermalization
occurs through elastic and inelastic scatterings between a
high-energy particle and the thermal plasma.
First, let us consider elastic scattering processes. Figure 1

is one of the Feynman diagrams of elastic scattering
processes. When the exchanged particle is a gauge boson,
the scattering cross section is dominated by the t-channel
gauge boson exchange and is given as

σelastic ∼
α2

t
∼

α

T2
; (1)

where t is one of the Mandelstam variables and α is the
fine-structure constant of the gauge interaction. Although
this cross section has an infrared divergence at zero
temperature, an infrared cutoff arises due to a nonzero
mass of the internal gauge boson at finite temperature and
as large as α1=2T.2 The rate of elastic scatterings is thus
given as

Γel ¼ hσelasticni ∼ αT; (2)

where hi represents a thermal average and n ð∼T3Þ is the
number density of scattered particles in the thermal plasma.
Since the high-energy particle loses its energy by αT for
each elastic scattering, the energy loss rate by elastic
scatterings is estimated as

dE
dt

����
elastic

∼ αThσelasticni ∼ α2T2: (3)

FIG. 1. Sample diagram describing an elastic scattering.

2Strictly speaking, the total cross section still has a logarithmic
divergence since the almost static magnetic fields are not
screened perturbatively. In the following discussion, we omit
such logarithmic factors since they only change interaction rates
weakly.
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Inelastic scattering cross sections are also dominated by
t-channel contributions, as shown in Fig. 2. Since the
intermediate fields are almost on shell (i.e., t ∼ αT2 ≪ E2

i ),
this process can be regarded as an emission associated
with an elastic scattering process. The cross section is thus
given as

σinelastic ∼ ασelastic ∼
α2

T2
; (4)

where we implicitly assume that daughter particles are
massless. One may consider that the rate of the splitting
process is simply given by hσinelasticni. However, we have to
take account of an interference effect among emission
processes, known as the LPM effect [27–33]. As we show
below, the rate of inelastic processes is in fact affected and
suppressed by the LPM effect.
Here, we briefly explain how the interference and

suppression for inelastic scatterings occur, following
Ref. [29]. Let us consider classical electrodynamics as
an illustration. We assume that a classical particle with a
charge e is scattered n times at xμi ði ¼ 1; 2; :::; nÞ and
changes its momentum from pμ

i−1 to pμ
i by each scattering.

The current density in that process is calculated from

jμðxÞ ¼ e
Z

dt
dyμðtÞ
dt

δ4ðx − yðtÞÞ; (5)

where t is the time variable. The trajectory yðtÞ is written as

yμðtÞ ¼ xμi þ
pμ
i

p0
i
ðt − x0i Þ for x0i < t < x0iþ1: (6)

The Fourier transform of the current density is thus given as

jμðkÞ ¼ ie
Xn
i¼1

eikxi
�
pμ
i

kpi
−

pμ
i−1

kpi−1

�
: (7)

The spectrum of photons radiated during scatterings is
calculated from

d3nγ
dk3

¼ −
jjðkÞj2
2k0ð2πÞ3 : (8)

The incoherent limit kðxi − xjÞ ≫ 1 corresponds to the
usual Bethe-Heitler limit, in which each scattering can be

regarded as an independent inelastic scattering process. On
the other hand, in the limit of kðxi − xjÞ ≪ 1, adjacent
terms in Eq. (7) are canceled with each other, and the
radiations are suppressed. This is a physical origin of the
LPM effect. The LPM effect is thus interpreted as an
interference effect between a parent particle and a daughter
particle, which is emitted collinearly. Although we consider
the case of classical electrodynamics as an illustration, it
has been proven that the same suppression effect is realized
in quantum field theories, including QED and QCD
[27–33].
When we write the position vector of a parent particle as

xμ ¼ ðΔt;ΔtẑÞ, the interference effect remains until the
phase factor varies significantly as3

1≲ kx ∼ Δtk0θ2 ∼ Δtk2⊥=k0; (9)

where k⊥ is the perpendicular momentum of the daughter
particle and θ ð¼ k⊥=k0Þ is the emission angle of the
daughter particle. Subsequent inelastic scattering processes
are suppressed until this condition is satisfied, and thus, the
inelastic scattering rate per daughter momentum is sup-
pressed by a factor of 1=nmin ∼ 1=ΔtΓel, where nmin is the
lowest number of elastic scatterings to avoid the interfer-
ence effect. In summary, the inelastic scattering rate is
determined as

Γinelastic ∼min

�
hσinelasticni;

Z
dk0

k0
α

Δtðk0Þ
�
; (10)

where Δtðk0Þ ∼ k0=k2⊥. The first and second terms in this
equation correspond to the limit of kðxi − xjÞ ≫ 1 and
kðxi − xjÞ ≪ 1, respectively. This is the correct inelastic
scattering rate with the LPM effect taken into account.
We need to estimate Δt ð∼k0=k2⊥Þ in order to determine

the inelastic scattering rate given in Eq. (10). If we could
neglect subsequent scatterings for the daughter particle, its
perpendicular momentum is given as k⊥ ∼ α1=2T. In this
case, Δt is given as

FIG. 2. Sample diagram describing an inelastic scattering.

3In the last equation, we assume that the angle θ varies
dominantly by the change of direction of the daughter particle.
However, since the parent particle also changes its direction due
to the elastic scatterings, it contributes to the angle as θ≃ p⊥=p0.
In fact, in the case of photon emissions, for example, this effect
dominates the time scale of LPM suppression, and it is given by

Δt ∼
1

αT

�
E2
i

k0T

�
1=2

:

However, the conclusion in this subsection and calculations in the
subsequent sections are unchanged even in this case because the
parent particle similarly loses its energy dominantly through a
splitting into daughter particles with k0 ∼ Ei=2.
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Δt ∼
k0

αT2
: (11)

When we take account of soft elastic scatterings for the
daughter particle, its perpendicular momentum evolves as
random walk and is described as

ðΔk⊥Þ2 ∼ q̂elt; (12)

where q̂el is a diffusion constant written by the soft elastic
scattering rate for the daughter particle as

q̂el ∼
Z

d2q⊥
∂Γel

∂q2⊥ q2⊥ ∼ α2T3: (13)

Using these equations, we obtain

Δt ∼
�
k0

q̂el

�
1=2

∼
1

αT

�
k0

T

�
1=2

: (14)

Since Δt in Eq. (11) is larger than the one in Eq. (14), the
latter one determines the time when the LPM effect
becomes irrelevant. The rate of inelastic scatterings is
therefore determined by Eqs. (10) and (14).
Taking into account the LPM effect, we obtain the rate of

energy loss through inelastic scattering processes as

dE
dt

����
inelastic

∼
Z

Ei=2
dk0

α

Δtðk0Þ ∼ α2T2

ffiffiffiffiffi
Ei

T

r
: (15)

Since this rate is larger than the rate of energy loss through
elastic scatterings given by Eq. (3) for high-energy particles
with Ei ≫ T, they lose their energy mainly by inelastic
scatterings. Note that the energy loss rate of inelastic
scatterings per daughter momentum is larger for larger
daughter momentum. Therefore, high-energy particles
most efficiently lose their energy by a splitting into two
particles with the energy of order Ei=2. The daughter
particles continue to split, and their number density grows
exponentially.

B. Thermal history

In this subsection, we briefly explain the evolution of
the thermal plasma during the reheating process using
the scattering rate derived in the previous subsection.
For a more detailed discussion, see Ref. [23] (also
Refs. [22,24–26]).
After inflation, the energy density of the Universe is

dominated by an oscillating inflaton and decreases as a−3,
where a is the scale factor of the Universe. The inflaton
decays into radiation, which is a starting point of reheating
of the Universe. Let us write the mass and the decay rate of
the inflaton as mϕ and Γϕ, respectively. Daughter particles
produced from inflaton decay have very high energy of the
order ofmϕ, and the number density of them, nh, is given as

nhðtÞ≃
Z
t
dt0nϕðt0ÞΓϕ ∼ nϕðtÞΓϕt ∼

ΓϕM2
Pl

mϕt
; (16)

for Γϕ ≪ H, where H is the Hubble parameter. At the early
stage of reheating, inelastic scatterings between high-
energy particles generate many low-energy particles almost
without losing their energy. Soon after that, low-energy
particles thermalize by their own interaction, and the
number density of particles in the thermal plasma is larger
than that of high-energy particles at the same time.
However, the energy density of radiation is still dominantly
stored by high-energy particles with momentummϕ, which
is not thermalized yet. Eventually, high-energy particles
lose their energy via inelastic scattering processes with the
thermal plasma, which is the bottleneck process of thermal-
ization in this case. We define a momentum ksplit such that
particles with the momentum ksplit lose their energy
completely and are thermalized by the time of H−1.
Once a splitting of a momentum k becomes efficient, a
particle with a momentum smaller than k loses its energy
rapidly by splitting processes. Therefore, ksplit is given by

dΓinelastic

d log k0
ðksplitÞ ∼H: (17)

High-energy particles efficiently supply their energy into
the thermal plasma by emitting particles with the momen-
tum ksplit. Since the energy conservation implies
T4 ∼ ksplitnh, we obtain

T ∼ α4
�
ΓϕM2

Pl

m3
ϕ

�
mϕðmϕtÞ; (18)

ksplit ∼ α16
�
ΓϕM2

Pl

m3
ϕ

�
3

mϕðmϕtÞ5: (19)

Each high-energy particle completely loses its energy when
the splitting momentum becomes comparable to the maxi-
mum momentum: ksplit ∼mϕ. Thermalization of high-
energy particles is thus completed at the time given as

ðmϕtthÞ ∼ α−16=5
�
ΓϕM2

Pl

m3
ϕ

�−3=5
: (20)

This is the time when the temperature of the Universe is
maximum:

Tmax ∼ α4=5
�
ΓϕM2

Pl

m3
ϕ

�
2=5

mϕ: (21)

Note that the energy density of the Universe is still
dominated by that of the inflaton.
Until the Hubble parameter becomes comparable to the

decay rate of the inflaton (i.e., H > Γϕ), the energy density
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of the Universe is still dominated by that of the inflaton.
Thus, we obtain the following approximation during
t≲ Γ−1

ϕ :

ρϕ ≃ 4M2
Pl

3t2
; (22)

H ≃ 2

3t
; (23)

ρr ≃ 3

5
ρϕΓϕt≃ 4ΓϕM2

Pl

5t
: (24)

After the time of tth, high-energy particles from inflaton
decay are thermalized soon, and thus, the energy density of
radiation ρr is simply characterized by the temperature T.
From the last relation, we obtain the temperature of
radiation as

T ≃
�
36HΓϕM2

Pl

g�ðTÞπ2
�

1=4

∝ a−3=8; (25)

where g� is the effective number of relativistic degrees of
freedom.
We define reheating temperature TRH as the temperature

at which the energy density of the inflaton and radiation are
equal to each other. The reheating temperature is thus
obtained from the equation H ≃ Γϕ and is given as

TRH ≃
�

90

g�ðTRHÞπ2
�

1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓϕMPl

p
: (26)

After the era of reheating, the energy density of the
Universe is dominated by that of radiation and decreases
as ∝ a−4.

III. DM PRODUCTION MECHANISMS

In this section, we discuss DM production for a
theory with the inflaton mass mϕ, the WIMP (DM) mass
mDM ð≪ mϕÞ, and a low reheating temperature
TRH ð≪ mDMÞ. We explain three mechanisms to produce
DM: thermal production (Sec. III A), production through a
cascade shower from inflaton decay (Sec. III B), and
production through inelastic scatterings between high-
energy particles and the thermal plasma (Sec. III C).
These mechanisms are additional contributions with each
other, and thus, the predicted DM density is the sum of
these contributions in a scenario with low reheating
temperature.

A. Thermal production

In this subsection, we explain thermal production of DM
in the Universe with low reheating temperature. Even if
TRH ≪ mDM, DM is generated thermally during the infla-
ton-dominated era [12,13]. The condition to generate DM

thermally is given as Tmax ≳mDM, where Tmax is the
maximum temperature of the Universe derived as
Eq. (21) and is rewritten in terms of TRH and mϕ as

Tmax ∼
�
α2

T2
RHMPl

m3
ϕ

�
2=5

mϕ; (27)

where we use Eq. (26) and omit Oð1Þ factors. If
Tmax ≪ mDM, the DM density is exponentially suppressed.
In the following, we calculate the DM density for the case
of Tmax ≳mDM ð≫ TRHÞ.
As is the case with typical WIMP scenarios, we assume

that DM has an odd Z2 parity and thus is stable and has the
weak interaction.4 We express its thermal-averaged anni-
hilation cross section as

hσannvi≡ αw
m2

DM

�
cs þ

T
mDM

cp

�
; (28)

where αw is the fine-structure constant of the weak
interaction. The terms with the coefficients cs and cp
describe the s-wave and p-wave contributions in a non-
relativistic expansion of the cross section.
The number density of DM decreases through the

annihilation and the Hubble expansion. Since the rate of
the annihilation is proportional to the number density of
DM, the annihilation process becomes irrelevant, and the
number density freezes out when the following condition is
satisfied:

neqDMðTFÞhσannvi≃HðTFÞ; (29)

where neqDM is the number density of DM with the
assumption of thermal equilibrium. Since we consider
the case of TRH ≪ mDMð∼TFÞ, DM decouples from the
thermal plasma during the inflaton-dominated era, in which
the temperature of the thermal plasma obeys Eq. (25).
Defining xF ≡mDM=TF, we rewrite the condition (29) as

xF ≃ log

�
6ffiffiffi
5

p
π5=2

g1=2� ðTRHÞ
g�ðTFÞ

MPl

mDM

× αw

�
cs þ

5

4
cpx−1F

�
x1=2F

T2
RH

T2
F

�
: (30)

The DM freeze-out occurs earlier compared with the
ordinary case of thermal production of DM roughly by a
factor of log½T2

RH=T
2
F�. This is because the energy density

of radiation is less than that of inflaton during the inflaton-
dominated era, and the expansion rate of the Universe

4If DM interacts with Standard Model (SM) particles only
through a heavy mediator or a higher dimensional interaction so
that DM has never been in thermal equilibrium, DM is non-
thermally produced mainly around the end of the reheating
[39–43].
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evolves faster than in the ordinary case. We obtain the
abundance of DM as

nDMjT¼TF
≃ 2m3

DM

ð2πxFÞ3=2
e−xF : (31)

Here we comment on the case ofmDM ≳ ðT2
RHMPlÞ1=3. In

this case, DM never reaches the chemical equiliblium
because the combination of neqDMðTÞhσannvi is always less
than the Hubble parameter, HðTÞ. Since we assume
Tmax ≳mDM, DM is produced through a pair creation
(¼ inverse annihilation) process. Assuming its cross section
to be αwT−2 for T ≳mDM, we find that DM is dominantly
produced at T ¼ mDM and obtain its abundance as

nDMjT¼mDM
≃ ðneqDMÞ2T¼mDM

hσannvi
HðT ¼ mDMÞ

; (32)

≃ 9ζ2ð3Þffiffiffiffiffi
10

p
π5

αwg
1=2
� ðTRHÞ

g�ðmDMÞ
MPlT2

RH for mDM ≳ ðT2
RHMPlÞ1=3;

(33)

where ζð3Þ≃ 1.20205… is the Riemann zeta function.
The present energy density of DM from the thermal

production divided by the entropy density of the Universe
is thus given as

ρthDM
s

����
now

≃ 3TRHρ
th
DM

4ρϕ

����
RH

; (34)

≃ 3TRHρ
th
DM

4ρϕ

����
F

; (35)

≃ ρthDM
s

����
F

�
TRHρr
TFρϕ

�
F

; (36)

≃ ρthDM
s

����
F

�
TRH

TF

�
5

; (37)

where the subscripts RH and F represent the corresponding
value at the time of reheating and DM freeze-out, respec-
tively. We use s ¼ 4ρr=3T in the first and third lines, ρthDM ∝
ρϕ ∝ a−3 in the second line, and T ∝ a−3=8 in the last line.
The DM abundance is suppressed compared with the
ordinary case of thermal production of DM due to the
entropy production from the inflaton decay after the time of
DM freeze-out. This scenario has been considered in the
literature in order to suppress the abundance of WIMPs
with relatively large mass [12,13].

B. DM production through cascade shower from
inflaton decay

DM may be directly produced by the decay of the
inflaton [14–17]. The number density of DM from this
contribution at the temperature T ¼ TRH is given as

ndirDMjT¼TRH
¼ Brðϕ → DMÞnϕjT¼TRH

; (38)

where nϕ is the number density of the inflaton. We denote
the branching ratio of inflaton decay into DM as
Brðϕ → DMÞ, which depends on the model one considers.
For example, Brðϕ → DMÞ ¼ Oð1Þ in SUSY theories due
to SUSYand the R-parity conservation. From Eq. (38), one
may estimate the DM abundance from the decay of the
inflaton at the present time as

ndirDM

s

����
now

≃ TRH
3ndirDM

4ρϕ

����
T¼TRH

; (39)

≃ 3TRH

4mϕ
Brðϕ → DMÞ: (40)

However, we have to take account of the contribution from
the cascade decay of the inflaton. This has been inves-
tigated in Ref. [18], where they assume the minimal SUSY
standard model. Using generalized DGLAP equations
[20,21], they have found that more than one DM (LSP,
in that paper) is produced through each cascade decay of
the inflaton. Their results are written as

nshowerDM

s

����
now

≃ 3TRH

4mϕ

X
i

Brðϕ → iÞνi; (41)

where νi is the averaged number of DM in a shower
produced by a primary particle i. The factor νi increases
with increasing the mass of the inflaton and strongly
depends on particle species i. For example, if
mϕ ¼ 1013 GeV and mDM ¼ 1 TeV, νi is calculated as
Oð1Þ,Oð102Þ, andOð10Þ for (s)neutrinos, SUð3Þc-charged
particles, and the other particles, respectively.5

C. DM production through inelastic scatterings

In this section, we consider inelastic scattering processes
between high-energy particles and the thermal plasma.
Since relevant processes are inelastic scatterings into two
high-energy particles, as explained in Sec. II, we refer to
those processes as splittings. We concentrate on the time
when the temperature is in the interval TRH < T ≪ Tmax,
i.e., Γ−1

ϕ ≳ t ≫ tth.
The inflaton decays into particles with the energy of the

order of its mass mϕ, and the daughter particles lose their
energy by splitting continuously. DM is produced with a
certain rate throughout these splitting processes when the
energy of the splitted particles is sufficiently large. We
define a threshold energy as

5These results have been obtained by extrapolating data points
of the inflaton mass mϕ ≤ 1010 GeV, and thus, there are some
uncertainties.
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Eth ≡m2
DM

4T
: (42)

When a high-energy particle has energy larger than this
threshold energy, inelastic scatterings between the high-
energy particle and the thermal plasma can produce DM.
The cross section of a DM production process is suppressed
by the mass of DM as [19]

σDM ∼max

�
α2DM
s

;
α3DM
m2

DM

�
; (43)

where s is one of the Mandelstam variables and is given by
4ET. The former cross section is nothing but the ordinary
pair creation from an annihilation of the high-energy
particle and a particle in the thermal plasma. The physics
behind the latter cross section is equivalent to the eþe− pair
production from a high-energy photon interacting with a
nuclei, where the cross section is proportional to the inverse
of the squared electron mass. We write the fine-structure
constant of DM production processes as αDM, which is
generally different from the one appearing in the inelastic
scattering rate [see Eqs. (10) and (14)]. For a reaction with
energy just above the threshold (i.e., E≳ Eth), which we
are most interested in as explained below, the rate of the
DM production process is given as

ΓDM

����
E∼Eth

∼ hσDMni ∼
α2DMT

3

m2
DM

: (44)

Note that this is so small that the LPM effect is irrelevant
for this process [see Eqs. (10) and (14)], and thus, the rate
of the DM production process is indeed given by this
formula.
Here we estimate the number density of DM produced

through inelastic scattering processes. A more detailed
discussion is done in the Appendix, where we solve the
Boltzmann equation describing inelastic scattering proc-
esses. Let us consider the evolution of high-energy par-
ticles. First, they are produced by the decay of the inflaton
and have the energy of the order of its mass mϕ. Soon after
that, the daughter particles split into many high-energy
particles. The high-energy particles continue to split, and
their number density grows exponentially. Given a certain
time when their energy is of the order of E, we can estimate
their number density nh as

nh ∼
mϕ

E
nϕΓϕt for tth ≪ t≲ Γ−1

ϕ ; (45)

from the conservation of energy. Here we use the fact that
the splitting process is much faster than the decay of the
inflaton since they satisfy the inequality Γsplit ≫ Γϕ for
tth ≪ t≲ Γ−1

ϕ . Throughout these processes, DM is also

produced by scatterings of high-energy particles with the
rate given in Eq. (44), until they lose their energy down to
Eth. At a certain time when their energy is of the order of E,
the number density of DM that is produced during the
splitting of the high-energy particles (i.e., ΓinelasticðEÞ−1) is
therefore given by

nscaDM ∼
ΓDM

Γinelastic
nh

∼
α2DMT

3

m2
DM

ffiffiffiffi
E

p

α2T
ffiffiffiffi
T

p mϕ

E
nϕΓϕt for tth ≪ t≲ Γ−1

ϕ : (46)

Equations (25) and (46) imply that the abundance of DM
increases with decreasing E and T. Taking into account the
inequalitymϕ=2 ≥ Eth, which constrains the temperature as
T ≥ m2

DM=2mϕ to produce the DM, we conclude that the
energy density of the DM is given by

ρscaDM

s
∼mDM

α2DMT
3

m2
DM

ffiffiffiffiffiffi
Eth

p

α2T
ffiffiffiffi
T

p mϕ

Eth
Γϕt

����
T¼maxðTRH;m2

DM=2mϕÞ

×
nϕ
s

����
T¼TRH

; (47)

∼
� α2DM

α2
T3
RH

m2
DM

for mϕ ≥ m2
DM

2TRH
;

α2DM
α2

4T5
RHm

2
ϕ

m6
DM

for m2
DM

2Tmax
≪ mϕ < m2

DM
2TRH

;
(48)

where we use Eq. (25) to express t in terms of T as
Γϕt ∼ T4

RH=T
4. The first equality is justified by solving the

Boltzmann equation in the Appendix. We should empha-
size that this result is independent of the mass of the
inflaton once the condition to produce the DM is satisfied at
T ¼ TRH (i.e., mϕ ≥ m2

DM=2TRH).
In the above analysis, we assume that the thermalization

of decay products proceeds through inelastic scatterings
and elastic scatterings are negligible, which is the case
when decay products have gauge interactions as we have
shown in Sec. II A. However, when the temperature of the
thermal plasma is smaller than the QCD scale,
ΛQCD ¼ Oð100Þ MeV, SUð3Þc-charged particles hadron-
ize. Some hadrons, such as the neutral pion, have no gauge
interactions, and the energy loss by splitting processes is
suppressed. Therefore, the energy loss by elastic processes
is important, and the number density of high-energy
particles given in Eq. (45) is overestimated for
T ≲ ΛQCD. Since the estimation of the number density of
high-energy particles for T ≲ ΛQCD suffers from large
uncertainties due to the nonperturbative feature of hadro-
nization, we leave it for a future work.

D. Summary

The amount of DM at the present time has been observed
by the Planck collaboration [44] as
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ΩDMh2 ¼ 0.1196� 0.0031: (49)

Using ΩDMh2 ≃ ðρDM=sÞ=3.5 eV and Eq. (48), we obtain
the relation between the mass of DM and the reheating
temperature as

mDM ∼ 1.5 TeV

�
αDM
α

��
TRH

100 MeV

�
3=2

; (50)

once the condition of mϕ ≥ m2
DM=2TRH is satisfied and the

contribution from the decay of the inflaton is neglected.
Let us discuss whether the annihilation of DM is

negligible or not [45] for the parameter of the interest
given in Eq. (50). The annihilation of DM is irrelevant
when the following condition is satisfied:

nDMhσannvi
H

≪ 1: (51)

In the case of mϕ ≥ m2
DM=2TRH, the DM abundance is

determined at T ¼ TRH, and hence, the left-hand side of
this inequality should be calculated at T ¼ TRH, and we
obtain an upper bound on the abundance of DM as

ΩDMh2 ≪
1

3.5 eV

�
45

8π2g�ðTRHÞ
�

1=2 mDM

hσannviMPlTRH
; (52)

≃ 102
�

10

g�ðTRHÞ
�

1=2
�
10−2m−2

DM

hσannvi
�

×

�
mDM

1.5 TeV

�
3
�
100 MeV

TRH

�
: (53)

FormDM and TRH given in Eq. (50), the upper bound on the
DM abundance is larger than the observed DM abundance
as long as mDM > Oð100Þ GeV.6 Therefore, the prediction
in Eq. (50) is valid for mDM > Oð100Þ GeV.
Figures 3 and 4 summarize the results obtained in this

section. Although we take account of the production of DM
from direct decay of the inflaton, we omit the contribution
of the DM production from a shower of inflaton decay since
it depends models and has uncertainties, as we have
mentioned. We assume that αDM ¼ α and the mass of
the inflaton is 1012 GeV and 1015 GeV in Figs. 3 and 4,
respectively.7 The blue (middle gray) shaded areas are
regions in which the energy density of DM produced by
inelastic scatterings exceeds the observed one. The boun-
daries of the blue (middle gray) shaded regions are thus
given by Eq. (50), once the condition of mϕ ≥ m2

DM=2TRH
is satisfied. In the case of mϕ ≤ m2

DM=2TRH, which appears
in the upper-right regions of Fig. 3, the abundance of DM is
calculated from the second line of Eq. (48). Below the red
dotted lines, the reheating temperature is smaller than the
QCD scale, and the DM density is overestimated (see the
comment in the last paragraph of Sec. III C). Therefore, for
mDM ≲ 103 GeV, the correct DM abundance is obtained at
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FIG. 3 (color online). Exclusion plot in a scenario with low reheating temperature. We assume that the mass of the inflaton mϕ is
1012 GeV and that the branching of inflaton decay into DM is 1 (left panel) and 0.02 (right panel). We also assume αDM ¼ α. The
abundance of DM produced from thermal production (Ωth

DMh
2), direct decay of inflaton (Ωdir

DMh
2), and inelastic scatterings (Ωsca

DMh
2) is

larger than that observed in the green (dark gray), red (light gray), and blue (middle gray) shaded regions, respectively. The striped
region are TRH > mDM=10, in which DM is produced only thermally. The abundance of DM is less than that observed above the blue
dashed line due to its annihilation. Here, we have assumed that the annihilation of DM is efficient and its cross section is 10−2m−2

DM. The
red dotted lines represent the reheating temperature below which Ωsca

DMh
2 is overestimated.

6Here, we implicitly assume that DM loses its momentum just
after they are produced. If that is not the case, the annihilation
cross section of DM is as small as α2E−2

th ≪ 10−2m−2
DM, and the

upper bound on DM abundance can be much larger than the
reference value given in Eq. (53).

7The inflaton mass of 1015 GeV is possible in models
proposed in Refs. [46–48].
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a certain reheating temperature between the red dotted lines
and the lower edges of the blue (middle gray) shaded
regions. Given the mass of the inflaton mϕ and the
branching ratio of inflaton decay into DM sector
Brðϕ → DMÞ, we have an upper bound on the mass of
DM above which the amount of DM from direct decay of
inflaton is larger than that observed [red (light gray) shaded
regions]. If the annihilation of DM is efficient and its cross
section is as large as 10−2m−2

DM, the abundance of DM is
equal to and less than that observed on and above the blue
dashed lines, respectively. The blue dashed line in the
striped regions corresponds to the conventional thermal
WIMP scenario. The DM production from thermal process
calculated in Sec. III A is always subdominant in these
parameter regions. Note that DM with a mass of Oð1Þ PeV
can account for the abundance of DM if the branching ratio
of the inflaton into the DM sector is suppressed and the
reheating temperature is as large as 10 GeV.
Finally, we comment on the case in which the mass of

DM and the reheating temperature are within the
nonshaded regions or above the blue dashed lines in
Figs. 3 and 4. In this case, we need other sources of
DM or other DM candidates to account for the observed
DM abundance. The former solution is easily realized by
the decay of long-lived matter: moduli [14–16] or Q-ball
[45,49–51], for example. Axion, which is introduced by the
Peccei-Quinn mechanism [52], is one of the well-motivated
candidates for the latter solution.

IV. DISCUSSIONS

In this section, we discuss the relation between our result
and some related topics: the free-streaming velocity of DM,
Affleck-Dine baryogenesis, heavy DM with mass of Oð1Þ
PeV, and SUSY theories.

A. Free-streaming velocity of DM

Since DM is relativistic after the time of DM decoupling
in the low reheating temperature scenario, it might have a
cosmologically relevant free-streaming velocity. If
interactions between DM and the thermal plasma are
negligible, the present-day free-streaming velocity of
DM is calculated as

v0 ≃ EthjT¼TRH

mDM

T0

TRH

�
g�sðT0Þ
g�sðTRHÞ

�
1=3

; (54)

≃ 8.7 × 10−9
�

mDM

1.5 TeV

��
TRH

100 MeV

�
−2
�

g�sðT0Þ
g�sðTRHÞ

�
1=3

;

(55)

∼ 8.7 × 10−9
�

mDM

1.5 TeV

�
−1=3

�
g�sðT0Þ
g�sðTRHÞ

�
1=3

; (56)

where T0 ð≃2.3 × 10−4 eVÞ is the temperature at the
present time and g�s is the effective number of relativistic
degrees of freedom for entropy. Here, we assume thatmϕ ≥
m2

DM=2TRH and use Eq. (50) in the last line. Although the
observation of the Lyman-α forest constrains the free-
streaming velocity as v0 ≲ 2.5 × 10−8 [53] (see Ref. [54]
for review), we find that the above result satisfies this
constraint when mDM ≳ 100 GeV. The free-streaming
velocity will be further constrained by future observations
of the redshifted 21-cm line because the erasure of small-
scale structure results in delaying star formation and thus
delaying the buildup of UV and x-ray backgrounds, which
affects the 21-cm radiation signal produced by neutral
hydrogen. It is expected that future observations of the
redshifted 21-cm line would improve the upper bound to
v0 ≲ 2 × 10−9 [55]. The low reheating temperature sce-
nario with mDM ≲ 100 TeV would be tested by future
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FIG. 4 (color online). Same as Fig. 3, but assuming the mass of the inflaton to be 1015 GeV.
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observations of the redshifted 21-cm line. In many cases,
however, we have to take into account interactions between
DM and the thermal plasma and the constraint from free-
streaming velocity is absent [56–58].

B. Affleck-Dine mechanism

Since the reheating temperature is very low, mechanisms
to account for the baryon asymmetry of the Universe are
limited. One well-motivated mechanism is the Affleck-
Dine mechanism, which is naturally realized in SUSY
theories [59,60]. Note that the Affleck-Dine mechanism
predicts nonzero baryonic isocurvature fluctuation when
Hubble-induced A terms are absent during inflation. This is
indeed realized if one considers the models of D-term
inflation [61–63] or if the field which has a nonzero F-term
during inflation is charged under some symmetry and its
vacuum expectation value is less than the Planck scale
during inflation [64]. Since observations of cosmic micro-
wave background have shown that the density perturbations
are predominantly adiabatic [65,66], the isocurvature per-
turbation is tightly constrained. The Planck collaboration
puts an upper bound as [44]

jSbγj≲ ΩDM

Ωb
ð0.039 × 2.2 × 10−9Þ1=2 ≃ 5.0 × 10−5; (57)

where Sbγ is the baryonic isocurvature fluctuation and Ωb
denotes the density parameter of the baryon. This upper
bound then gives a constraint as [64]

TRH ≲ 1.1 × 10−17
1

n2
M2

Pl

m3=2

�
mDM

Hinf

�2n−6
n−2

Θ; (58)

where m3=2 is a gravitino mass, Hinf is the Hubble
parameter during inflation, and Θ is an Oð1Þ factor.
Here, we assume that the Affleck-Dine field Φ has a mass
of the order of mDM and is stabilized via a superpotential
term ∝ Φnðn ≥ 4Þ. Using Eq. (50), we obtain the following
constraints:

mDM

�
m3=2

mDM

�
3=2 ≲ 1014 GeV

�
Hinf

1012 GeV

�
−3=2

Θ3=2 (59)

for n ¼ 4 and

mDM

�
m3=2

mDM

�
6 ≲ 2 × 1019 GeV

�
Hinf

1012 GeV

�
−9
Θ6 (60)

for n ¼ 6. While the Affleck-Dine baryogenesis with n ¼ 6
puts the severe upper bound on the energy scale of inflation
Hinf , we can easily avoid this constraint for the case
of n ¼ 4.

C. PeV DM

It is worth noting that we can account for the abundance
of DM even in the case that DM is a WIMP with a mass
larger than the unitarity bound of a few hundred TeV [34].
The recent observation of high-energy cosmic-ray neutri-
nos by the IceCube experiment may indicate that DM is a
long-lived particle with a mass of Oð1Þ PeV [35–38]. The
above scenario for nonthermal production of DM can also
account for the abundance of even such a heavy DM.

D. SUSY theories

SUSY models often have difficulties in obtaining the
correct DM abundance. For example, in the constrained
minimal SUSY standard model, the LSP is
binolike in most of the parameter space, which leads to
overclosure by thermally produced binos. Although this
situation can be remedied by coannihilation [3,4] with the
stau [5], fine-tunings are required. In the low reheating
temperature scenario, the binolike LSP can be consistent
with the observed DM density without fine-tunings in the
mass spectrum. For SUSY particles with masses of
Oð1Þ TeV, the elestic scattering cross section between
the binolike LSP and nucleon is as large as
10−46 − 10−45cm2, which is detectable in future direct
detection experiments of DM such as XENON1T [67].

V. CONCLUSIONS

We have considered WIMP DM in a scenario with low
reheating temperature. Although there are several mecha-
nisms to produce DM in this scenario, including thermal
production and production in a shower from the decay of
the inflaton, the DM production by inelastic scatterings
between high-energy particles and the thermal plasma gives
the dominant contribution when the mass of the inflaton is
sufficiently large. We have found that the abundance of DM
depends mainly on the mass scale of the DM sector and the
temperature of reheating, but not on the mass of the inflaton
as long as the mass is sufficiently large. We have also found
that the observed DM abundance can be accounted for
when DM is heavier than Oð100Þ GeV. This conclusion is
highly independent of the branching ratio of the inflaton as
long as it decays into standard model particles since high-
energy particles split into a lot of particles throughout
inelastic scattering processes and the information of the
initial condition is lost.
The above scenario is related to some cosmological

topics. For example, the recent observation of high-energy
cosmic-ray neutrinos by the IceCube experiment may
indicate that DM is a long-lived particle with a mass of
Oð1Þ PeV. The above scenario for nonthermal production
of DM can also account for the abundance of even such
heavy DM. In addition, since DM is produced nonther-
mally after the time of DM decoupling, it might have a
cosmologically relevant free-streaming velocity. If
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interactions between DM and the thermal plasma are
irrelevant after the DM production, the present-day free-
streaming velocity of DM is nonzero and would be detected
by future observations of the redshifted 21-cm line.
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APPENDIX: BOLTZMANN EQUATION
DESCRIBING SPLITTINGS AND

ITS STABLE SOLUTION

In this Appendix, we solve the Boltzmann equation
describing splitting processes and justify the estimation of
the number density of DM in Sec. III C. Let us consider a
system that consists of radiation, the inflaton, and DM. In
splitting processes, perpendicular momenta of daughter
particles are negligible. Therefore, it is convenient to
consider a momentum distribution function ~fðp; tÞ reduced
to one dimension, such that the number density is given
by nðtÞ ¼ R

dp ~fðp; tÞ.
The Boltzmann equation, which controls splitting proc-

esses, is written as

∂
∂t ~fSMðp; tÞ − 3Hp

∂
∂p ~fSMðp; tÞ

¼ dΓϕ

dp
nϕðtÞ þ ðcollision termÞ; (A1)

where ~fSM is the momentum distribution of the radiation
and

nϕðtÞ ¼ nϕð0Þ
�
að0Þ
aðtÞ

�
3

e−Γϕt (A2)

dΓϕ

dp
¼ 2Γϕδðp −mϕ=2Þ (A3)

are the number density of the inflaton and its decay rate,
respectively. The collision term is given as

ðcollision termÞ ¼ −
Z

p=2

0

dk
dΓsplit

dk
ðkÞ ~fSMðp; tÞ

þ
Z

mϕ=2

2p
dk

dΓsplit

dp
ðpÞ ~fSMðk; tÞ

þ
Z

p

0

dk
dΓsplit

dk
ðkÞ ~fSMðpþ k; tÞ (A4)

(see Fig. 2), where the rate of the splitting process is given
by Eqs. (10) and (14). Here we write it as

dΓsplit

dk
ðkÞ ¼ −

1

2
Ak−3=2; (A5)

A≡ k1=2ΓsplitðkÞ ¼ ðconst.Þ. (A6)

In the above collision terms, we neglect the back reaction
coming from the DM sector because the reaction rate of
DM production is much smaller than that of splitting into
the radiation itself.
When there is a hierarchy among time scales,

Γϕ ≲H ≪ Γsplit; (A7)

which is the case of our interest in this paper, the Boltzmann
equation (A1) can be solved in the following way. Since the
time scale of the Hubble expansion is much longer than that
of the splitting process, the second term of the left-hand side
of Eq. (A1) is negligible. Further, since Standard model
particles are continuously supplied by the decay of the
inflaton and immediately participate in splitting processes,
~fSM becomes a constant in time (up to a slow variation due to
the red shift of the source term) as long as the source term is
present, that is, Γϕ ≲ t−1 ∼H. Then, the Boltzmann
equation is reduced to the following equation:

0 ¼ −
1

2
A

�Z
p=2

0

dk

k3=2
~fSMðpÞ −

Z
mϕ=2

2p

dk

p3=2
~fSMðkÞ −

Z
p

0

dk

k3=2
~fSMðpþ kÞ

�
for p < mϕ=4;

2nϕΓϕδðp −mϕ=2Þ ¼
1

2
A

�Z
p=2

0

dk

k3=2
~fSMðpÞ−

Z
mϕ=2−p

0

dk

k3=2
~fSMðpþ kÞ

�
for p > mϕ=4. (A8)

Let us focus on the momentum distribution for p ≪ mϕ and make an ansatz ~fSMðpÞ ∝ p−n. The equation is then
reduced to

0 ¼ −
Z

p=2

0

dk

k3=2
p−n þ

Z
mϕ=2

2p

dk

p3=2 k
−n þ

Z
p

0

dk

k3=2
ðpþ kÞ−n: (A9)
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This can be rewritten as

1

−nþ 1

��
mϕ

2p

�
−nþ1

− 2−nþ1

�

þ 2
ffiffiffi
2

p
þ iB−1

�
−
1

2
; 1 − n

�
¼ 0; (A10)

2
ffiffiffi
2

p
þ iB−1

�
−
1

2
; 1 − n

�

¼
Z

1

0

dx

x3=2
ð1þ xÞ−n −

Z
1=2

0

dx

x3=2
; (A11)

where B is an incomplete beta function and i is the
imaginary unit. Although the integrals in the second line
have infrared divergence, the sum of them is finite. This
relation implies n ¼ 3=2 for p=mϕ ≪ 1, that is,

~fSMðpÞ≃ nϕΓϕ

A
mϕp−3=2; (A12)

where we include the coefficient nϕΓϕ=A since the source
term is proportional to this factor [see Eq. (A8)]. We also
include a factor of mϕ by dimensional analysis.
To verify this result, let us confirm the conservation of

energy in the following way. The distribution function
~fSMðpÞ represents the distribution of particles that is
produced from the source and evolves through inelastic
scattering during the time of Oð1=ΓsplitÞ. Thus, what we
should calculate in order to confirm the conservation of
energy is the time integral of the source term and the
momentum integral of the distribution function:

Z
t0þ1=Γsplit

t0

dtmϕnϕΓϕ↔
Z

mϕ=2

0

dpp ~fSMðpÞ; (A13)

where t0ð< 1=ΓϕÞ is an arbitrary time. The left-hand side is
the total energy produced by inflaton decay during
t0 < t < t0 þ 1=Γsplit, and the right-hand side is the total
energy of radiation that evolves during the time of
Oð1=ΓsplitÞ. These integrals are both calculated as

mϕnϕΓϕ

Γsplit
; (A14)

and this result indicates the conservation of energy.
However, we should note that this stable solution violates
the conservation of energy for longer time span (≫ 1=Γsplit)
since the energy flows into the thermal plasma after the
time of Oð1=ΓsplitÞ.
We now consider the DM production process. DM is

produced from high-energy particles with energy larger
than Eth, and the rate of the production process is given as
ΓDM. Thus, the number density of DM is calculated as

nDMðtÞ ∼
Z

mϕ=2

Eth

dp ~fSMðpÞΓDMt

∼ nϕΓϕt
ΓDMmϕ

AE1=2
th

∼ nϕΓϕt
ΓDM

ΓsplitðEthÞ
mϕ

Eth
: (A15)

Let us assume that the DM production becomes ineffi-
cient at a time te, which is given by kinematics ½mϕTðteÞ ∼
m2

DM� or the disappearance of the source (te ∼ Γ−1
ϕ ). Since

the ratio of the production rate of DM to the total reaction
rate is given as

ΓDM

Γsplit
∼
α2DMT

3

m2
DM

ffiffiffiffiffiffi
Eth

p

α2T
ffiffiffiffi
T

p ; (A16)

we conclude that the energy density of DM is given by

ρDM
s

∼mDM
α2DMT

3

m2
DM

ffiffiffiffiffiffi
Eth

p

α2T
ffiffiffiffi
T

p mϕ

Eth
Γϕte ×

nϕ
s
; (A17)

where we divide the energy density by the entropy
density, s. The ratio nϕ=s should be estimated at the
reheating. This result justifies Eq. (47).
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