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We consider a covariant approach to coarse graining a network of interacting Nambu-Goto strings.
A transport equation is constructed for a spatially flat Friedmann universe. In Minkowski space and with no
spatial dependence this model agrees with a previous model. Thus it likewise converges to an equilibrium
with a factorizability property. We present an argument that this property does not depend on a “string
chaos” assumption on the correlations between strings. And in contrast to the earlier model, this transport
equation agrees with conservation equations for a fluid of strings derived from a different perspective.
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I. INTRODUCTION

Consider a very large network of one-dimensional objects
(which we shall call strings) whose individual dynamics and
interactions are described by some physical laws. These
could be cosmic strings formed after a cosmological phase
transition [1], fundamental strings near the Hagedorn temper-
ature [2], topological strings in a nematic liquid crystal [3], or
even more complicated objects such as polymer molecules
[4]. If the number of bits of information required to specify a
state of the system (or the number of degrees of freedom) is
small, then one can try to simulate it on a computer (as in
Ref. [5]), but what if the number of bits is very large? Can we
say anything meaningful about such systems?
The standard approach would be to make use of

equilibrium statistical mechanics. However, this may fail
for one or more of the following reasons: the system might
not be in equilibrium, the ergodic hypothesis might not be
obeyed, the dynamics might not be Hamiltonian, the
partition function might diverge, etc. But if it is not
equilibrium statistical mechanics, then what else can we
do to describe the collective behavior of strings? There are
at least two more options that are not completely unrelated
and both involve coarse graining of the strings on some
scales: one based on the ideas of fluid mechanics [6] and
the other based on the methods of kinetic theory [7].
The first option is to coarse grain the network of strings

and to treat it as a fluid described by a number of fields such
as the energy density, velocity, and tangent vector fields.
Then by considering flows of conserved quantities (e.g.
energy, momentum, tangent vectors, etc.) one can derive
equations analogous to Euler equations for a fluid of
particles that the coarse grained fields must obey. The
second option is to derive a transport equation, analogous
to the Boltzmann transport equation, for a distribution
function of strings by considering the dynamics as well as
interactions of individual strings. Then one can try to solve
the transport equation, either analytically or numerically, to
study the evolution of the systems towards an equilibrium
or a steady state which may or may not be unique.

Note that the two approaches are not completely inde-
pendent and the equilibrium derived in the context of the
kinetic theory can be used to simplify the fluid equations.
For example, if the coarse-graining scales in the fluid
description are sufficiently large then one can assume that
the smaller local subsystems are quickly driven towards a
state of a local equilibrium. Of course the local equilibrium
assumption is only valid on very large scales and is
guaranteed to break down on small scales where the
higher-order correction to the fluid equations become
important. Such corrections cannot be obtained by con-
sidering conserved quantities in the fluid model, but can be
obtained, for example, from a perturbative expansion of the
transport equation around equilibrium.
One should keep in mind that although the kinetic theory

approach seems to be a lot more precise, it often depends on
additional assumptions (e.g. molecular chaos, string chaos,
Markov property). Moreover, the transport equations are
usually integro-differential equations that are very hard to
solve. In contrast the fluid equations are only differential
equations that are relatively easy to solve if the solutions
exist. In reality the first-order fluid equations (e.g. Euler
equations) often develop shock waves, and even the
second-order fluid equations (e.g. Navier-Stokes equations)
may or may not have smooth solutions. The physically
relevant quantities are rarely discontinues and the break-
down of solutions indicates that the fluid description is
incomplete unless higher-order corrections are included to
smooth out the discontinuities.
Both approaches were already implemented to study the

dynamics of a network of interacting Nambu-Goto strings.
The fluid analysis revealed that in addition to conserved
currents corresponding to the symmetric energy-momentum
tensor, there are conserved currents associated with an
antisymmmetric tensor, both of which lead to the first-order
fluid equations [8]. The kinetic theory of strings was
developed by considering a distribution of velocities and
tangent vectors of uncorrelated string segments [9,10]. In a
homogenous limit the transport equation was derived and
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an H theorem for strings was proved to show that the
equilibrium distribution has a factorizability property (to be
discussed in details below) [9]. Then, under assumption of a
local equilibrium, the first-order fluid equations take a
particularly simple form [8], but their solutions are likely
to develop shock waves.
The next step could have been to expand the transport

equation around equilibrium to obtain the high-order
corrections to the fluid equations, but the transport equation
from Ref. [9] does not seem to agree with the fluid
equations from Ref. [8] even at the linear order. In this
paper we will remove the discrepancy by providing a
microscopic derivation of an inhomogeneous transport
equation that is in a full agreement with the fluid equations
derived in Ref. [8] as well as with the homogeneous
transport equation derived in Ref. [9].
This paper is organized as follows. In Sec. II the time-

slice coordinates are constructed and the corresponding
equations of motion are derived. The kinetic theory is
developed in Sec. III and the equilibrium solutions of the
transport equation are analyzed in Sec. IV. The transport
equation in the inhomogeneous limit and in the Friedmann
universe is derived in Secs. V and VI, respectively. The
main results of the paper are summarized in Sec. VII.

II. WORLDSHEET COORDINATES

In the tangent space at any point on a worldsheet there
are two distinct lightlike rays (which may coincide in the
degenerate case). If there is some physical distinction
which allows us to consistently define a right and left
direction along the length of a string, we can call the left
pointing ray A, and the right pointing ray B.
From these rays, we can choose vector fields Aμ and Bμ

over the worldsheet. One natural choice is to choose the
fields to be coordinate vectors, leading to light-cone
coordinates ζa. The equations of motion of a Nambu-
Goto string (with units chosen to set the string tension to
one), are particularly simple in these coordinates:

Bλ∇λAμ ¼ Aλ∇λBμ ¼ 0: (1)

SoA is parallel transported along the string in the direction
B, and B is parallel transported along the direction of A.
There is still some gauge freedom left in choosing light-

cone coordinates. In dealing with a network of many strings
on which coordinates can be assigned independently on
each, we must be careful to use gauge invariant quantities.
One such example is the energy-momentum tensor, which
can be written as a volume form over the worldsheet in a
manifestly covariant way (see for instance [11]),

~Tμν ¼ hab
∂xμ
∂ζa

∂xν
∂ζb

ffiffiffiffiffiffi
−h

p
d2ζ: (2)

In light-cone coordinates this can be written,

~Tμν ¼ 2AðμBνÞd2ζ: (3)

A. Time-slice coordinates

In flat spacetime we can get rid of the remaining gauge
freedom in light-cone coordinates by fixing the time
components A0 ¼ 1 and B0 ¼ 1 everywhere. Even in
general spacetime we can still choose unique vector fields
Aμ and Bμ corresponding to the rays A and B which have a
timelike component of one everywhere. Of course, since
these are null vectors the three spatial components have unit
magnitude and are often denoted by a0 and b0 in the
literature.
From Aμ and Bμ, we can define timelike vμ and spacelike

uμ as

vμ ≡ 1

2
ðBμ þ AμÞ;

uμ ≡ 1

2
ðBμ − AμÞ: (4)

And since Aμ and Bμ are lightlike we have the relations

vλuλ ¼ 0; (5)

vλvλ þ uλuλ ¼ 0: (6)

However, vμ and uμ need not be the vectors of any
coordinate system. To choose a coordinate system we take
vμ as one coordinate vector corresponding to a timelike
coordinate τ, and define a second coordinate vector propor-
tional to uμ. The newly defined coordinate vector ϵuμ is
taken to correspond to a spacelike coordinate σ. Since the
time components v0 ¼ 1 and ϵu0 ¼ 0, these coordinates
are adapted to the time slices in the target space.
The condition that these be coordinate vectors is

expressed as

vμ∂μϵuν − ϵuμ∂μvν ¼ 0: (7)

Defining _ϵ as the τ derivative vμ∂μϵ, we can express this in
terms of Aμ and Bμ,

Aμ∂μBν − Bμ∂μAν ¼ −ðBν − AνÞ _ϵ
ϵ
: (8)

We can transform the equations of motion to the time-
slice coordinate system by using the fact that both sets of
vector fields along A and B are proportional,

Aμ ¼ A0Aμ;

Bμ ¼ B0Bμ: (9)

Using this to expand the equations of motion (1), we get

DANIEL SCHUBRING AND VITALY VANCHURIN PHYSICAL REVIEW D 89, 083530 (2014)

083530-2



Aμ∂μBν þ AμΓν
μλB

λ þ Aμ
∂μB0

B0

Bν ¼ 0;

Bμ∂μAν þ BμΓν
μλA

λ þ Bμ
∂μA0

A0

Aν ¼ 0: (10)

Note that A0 ¼ B0 ¼ 1 by definition, and thus the ν ¼ 0
components of these equations imply

Aμ
∂μB0

B0

¼ Bμ
∂μA0

A0

¼ −Γ0
λμB

λAμ: (11)

And so the equations of motion (10) become

Bλ∂λAν ¼ −Γν
λμB

λAμ þ Γ0
λμB

λAμAν;

Aλ∂λBν ¼ −Γν
λμA

λBμ þ Γ0
λμA

λBμBν: (12)

Subtracting the two equations and comparing with the
differential equation (8) for ϵ gives

_ϵ

ϵ
¼ −Γ0

λμB
λAμ: (13)

B. Worldsheet measures

The differential equation (13) does not define ϵ uniquely,
so we again have the problem of gauge dependence.
Consider the gauge invariant energy-momentum tensor
(2) in time-slice coordinates:

~Tμν ¼ ðvμvν − uμuνÞϵdτdσ (14)

¼ AðμBνÞϵdτdσ: (15)

Here the factor of ϵdτdσ is itself gauge invariant, being the
00 component of the energy-momentum tensor. So in any
coordinate system on the worldsheet,

~Tμν ¼ AðμBνÞ ~T00: (16)

So the full energy-momentum tensor at any point can be
reconstructed from the energy density ~T00 and the rays
A and B.
The energy density may be gauge invariant in the sense

of not depending on the worldsheet coordinates, but it
depends on the coordinates in the target space. We can
construct a covariant volume form ~ω by contracting the
energy-momentum tensor,

~ω≡ 1

2
~Tλ

λ: (17)

This turns out to just be the ordinary volume form induced
by hab which appears in the Nambu-Goto action. Using
light-cone coordinates, the determinant h ¼ −ðAλBλÞ2. And
so using (3),

~ω ¼ AλBλd2ζ ¼
ffiffiffiffiffiffi
−h

p
d2ζ: (18)

So the energy density along with A and B is enough
information to construct the area of the worldsheet— which
may at first seem an entirely different measure.
One more way of expressing the worldsheet area will

be useful in considering intercommutations in the string
network,

jA∧Bjϵdτdσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAμBλ − BμAλÞðAλBμ − BλAμÞ

q
ϵdτdσ

¼ 2
ffiffiffi
2

p
~ω: (19)

III. KINETIC THEORY

Given a network of many interacting strings, the energy
density can be used to form coarse-grained fields. About
each point x we choose a spacetime volume ΔV and
integrate the energy density over the entire enclosed
worldsheet area. The total energy within the volume is
denoted ρðxÞΔV. Here the density ρ is taken to be
independent of the particular choice of ΔV, as long as it
is chosen from an appropriate coarse-graining scale.
Other coarse-grained fields can be formed by integrating

functions of A and B over the enclosed worldsheet area
using the energy density as a measure. Given a function g,
we denote the coarse-grained field as hgi. In particular, the
energy-momentum tensor of the coarse-grained string
network is found by integrating (15)

Tμν ¼ hAðμBνÞi: (20)

Note that in this notation hA0B0i ¼ h1i ¼ ρ.
We can also define the antisymmetric tensor Fμν,

Fμν ≡ hA½μBν�i: (21)

Just as the energy-momentum tensor is conserved, it can be
shown [8] that the Fμν tensor is conserved,

∇νTμν ¼ 0; (22)

∇νFμν ¼ 0: (23)

The conservation of the Fμν tensor is related to the
continuity of the strings in the network. In particular, in
flat spacetime the μ ¼ 0 component of (23) gives

∇ · hui ¼ 0; (24)

which is related to the fact that any string entering a volume
must leave at some point.
The conservation equations (22) and (23) can also be

written in terms of A and B,

∇νhAμBνi ¼ ∇νhBμAνi ¼ 0: (25)
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A. Distribution function

The conservation equations (22) and (23) constrain the
dynamics of string fluid but do not describe their evolution
towards equilibrium. To study the equilibration it is
convenient to describe the strings in the context of the
kinetic theory [9,10]. The main idea is to first derive the
evolution equation (known as a transport equation) for
the energy distributed over the space of all possible light
rays A and B. Then, rather than integrating over the string
network for each new function, we can calculate the coarse-
grained fields (e.g. hAμBνi) directly from the distribution of
energy.
At any point x of the spacetime manifold M, the space

of all possible combinations of A and B is homeomorphic
to S2 × S2. We can compare A and B at different spacetime
points by choosing a family of mappings fromΩ≡ S2 × S2

to the product space of null rays at each x. In the
conformally flat spacetimes dealt with here it will not be
necessary to consider these mappings explicitly. But it will
still be useful to consider Ω as a space independent of any
particular spacetime point.
Given a volume ΔV about x, we can restrict the

integration of the enclosed energy density to regions of
the worldsheets on which A and B fall within a small interval
ΔΩ about ðA0; B0Þ. The enclosed energy is then defined as
fðA0; B0; xÞΔΩΔV. As before, in the coarse-graining
approximation we take fðA0; B0; xÞ to be independent of
ΔΩ and ΔV, which can be considered infinitessimal.
Since f is a distribution over Ω ×M, its numerical value

will depend on the measure of integration onΩ. We can map
the submanifold S2 corresponding to A (the A sphere) to the
three spatial coordinates ðA1; A2; A3Þ ∈ R3, and likewise for
B. This embedding ofΩ inR6 defines a measure through the
pullback operation. This embedding will be useful when
considering gravitational effects, but most of the results in
this paper do not depend on the choice of measure.
Given f, a quantity QðA;BÞ coarse grained over the

string network can be calculated as an integral,

hQiðxÞ ¼
Z

QðA;BÞfðA; B; xÞdΩ: (26)

So all of the conservation equations can be thought of in
terms of moments of f. In particular, the requirement that
the divergence of hui vanishes (24) imposes a constraint on
possible initial conditions for f. This constraint will later
be crucial to constructing the transport equation.
The energy distribution function f can also be taken as a

probability distribution. Consider dividing the worldsheet
area within a coarse-grained volume into small patches of
equal energy. The probability that the ðA; BÞ rays of a
randomly chosen patch are in a set X⊆Ω is just

1

ρ

Z
X
fðA0; B0ÞdΩ0: (27)

If the strings in the network are treated as random walks
described by this probability distribution (in a sense to be
clarified below), we can construct a transport equation for
the evolution of f.
The idea of dividing a worldsheet into patches can be

made precise for strings which are piecewise linear paths.
In the case of flat spacetime, a string composed of linear
segments of equal energy Δσ at some initial time will
continue to be piecewise linear for all time. Moreover, at
time step intervals of Δτ ¼ Δσ=2, the energy of all seg-
ments will return to Δσ. As shown in Fig. 1, each segment
falls within a diamond-shaped worldsheet patch on which
A and B are constant.

B. Homogeneous transport equation

To construct a transport equation, consider each segment
in the string network as an independent entity that interacts
with other segments within the coarse-graining volume. If
two segments are next to each other on the same string they
will interact through Nambu-Goto dynamics, and even if
they are not on the same string they may interact through
intercommutation. To emphasize the similarities between
these interactions, they will be called longitudinal and
transverse collisions, respectively.
To determine how a given segment ðA;BÞ interacts

through transverse collisions we must have some informa-
tion on the probability distribution of segments it interacts
with in the coarse-graining volume. Much like the molecu-
lar chaos assumption made in the kinetic theory of
particles, we make the assumption that the probability
distribution for nearby segments is statistically independent

FIG. 1 (color online). The worldsheet of a piecewise linear
string. The horizontal dotted lines represent time slices at which
each segment has coordinate length Δσ. The values of A and B
are constant within each diamond-shaped worldsheet patch. The
values of A move to the right along the string (as represented by
the thick line), and the values of Bmove to the left (as represented
by the thick dotted line). As we trace the history of a segment
ðA; BÞ, we encounter other arbitrary values of A and B denoted
by primes.
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of ðA;BÞ, and so just given by (27). We will further make a
similar assumption with respect to longitudinal collisions:
the state ðA; BÞ of segment is statistically independent of
the adjacent segments on the same string. In a similar
model in an earlier paper [10], these assumptions were
referred to as the string chaos assumption. We will use this
term here specifically to contrast with the more general case
where adjacent segments may be correlated.
We will first consider the case in flat spacetime where

fðA;B; tÞ has no spatial dependence. As depicted in Fig. 1,
a segment ðA;BÞ is formed from adjacent segments ðA;B0Þ
and ðA0; BÞ in the previous time step, where A0 and B0 are
arbitrary. So the total energy of segments ðA; BÞ is equal to
the total energy of segments ðA;B0Þ times the probability
that the adjacent segment is ðA0; BÞ. Using the string chaos
assumption,

fðA;B; tþ ΔtÞ ¼
Z

dΩ0fðA;B0; tÞ fðA
0; B; tÞ
ρðtÞ : (28)

Counting the energy as instead coming from the segment
ðA0; BÞ leads to the same equation.
Expanding to linear order in time,

�∂f
∂t

�
collision

¼ 1

ρ

Z
dΩ0Γ · ½fðA;B0ÞfðA0; BÞ

− fðA;BÞfðA0; B0Þ�: (29)

The subscript indicates that these are the basic collision
terms in the transport equation—later we will consider
additional effects. Here the factor Γ ¼ 1=Δt expresses the
rate of the longitudinal collisions, and it is related to the
correlation length (here the worldsheet coordinate length
Δσ) along the string. This collision rate factor Γ will be
modified when transverse collisions are taken into account.
Under transverse collisions a string intercommutes with

another string, changing the adjacent segments next to the
intersection point. In principle, these intercommutations
will disrupt the property that the string is linear over a
segment length of Δσ. But Δσ is taken to be on the order of
the correlation length at equilibrium, so we continue to use
the piecewise linear approximation underlying the deriva-
tion of (29).
Transverse collisions will contribute to the energy

density fðA;BÞ on the next time step when a new sequence
of segments ðA; B0Þ and ðA0; BÞ is formed, and will decrease
when an existing ðA; BÞ is disrupted by an arbitrary ðA0; B0Þ.
These are just the two terms on the right-hand side of (29),
so we just expect transverse collisions to add a contribution
Γ⊥ to the collision rate Γ within the integrand. Clearly the
collision rate depends on the energy density of both
colliding segments, so Γ⊥ ∝ ρ. But Γ⊥ also depends on
the orientation and relative velocity of the segments. In fact
it should be proportional to the magnitude of worldsheet
area (19) of both interacting diamonds jA∧Bj and

jA0 ∧B0j. But if A∧B and A0 ∧B0 are linearly dependent
— for instance when the string segments are pointing in the
same direction— then it should vanish. So then,

Γ⊥ ∝ jA∧B∧A0 ∧B0j (30)

∝ jðv0 − vÞ · ðu0 × uÞj; (31)

where the second line is rewritten in terms of the three-
velocities and tangent vectors (4) of the interacting segments.
So denoting the proportionality constant as p (which

may also include the intercommutation probability if it is
not one), the transverse collisions are taken to modify the
collision rate of the transport equation (29),

Γ ¼ 1

Δt
þ pρjA∧B0 ∧A0 ∧Bj: (32)

Note that (29) together with (32) is in agreement with the
homogeneous transport equation derived in Ref. [9].

IV. EQUILIBRIUM DISTRIBUTION

In a previous paper [9], it was shown that the transport
equation (29) implies that f converges to an equilibrium
state in which the statistics of A and B are independent:

lim
t→∞

fðA;B; tÞ ¼ 1

ρ

Z
dΩ0fðA;B0ÞfðA0; BÞ: (33)

The right-hand side is a constant of the motion, and so by
choosing initial conditions it can be set equal to an arbitrary
factorizable feqðA; BÞ ¼ fAðAÞfBðBÞ. So this form of trans-
port equation need not lead to convergence to something
analogous to the Maxwell-Boltzmann distribution—in particu-
lar this need not converge to the Von Mises-Fisher distribution
discussed in [9], although it might be a useful approximation.
However, the independence of A and B under equilib-

rium is a useful result which can be used to simplify the
fluid equations constructed from (25) (see Ref. [8] for
details). The factorizable fluid model can be treated as a
generalization of models of a string dust [12], and can also
be used to describe strings with small scale structure [13],
as will be discussed in a future paper [14].
The question may arise whether the independence of A

and B under equilibrium depends on the assumption of
string chaos. It is not an innocent assumption to take each
segment of length Δσ to be completely uncorrelated to its
neighbors. To relax this assumption, we might take the
energy distribution of each segment to depend only on
its nearest neighbors. (We will refer to this property as
Markov.) The energy distribution over ðA; BÞ given that the
neighbor on the right ðA0; B0Þ is denoted fðABjA0B0Þ.
Unlike the distribution fðA;BÞ, which can be defined in
general, the conditional distribution implicitly depends on
the choice of Δσ. Relating the two distributions,
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fðA;BÞ ¼
Z

dΩ0fðABjA0B0Þ ¼
Z

dΩ0fðA0B0jABÞ: (34)

Considering Fig. 1, the energy associated with the
sequence of two segments ðAB0jA0BÞ came from
the sequence of three segments ðAB00jA0B0jA00BÞ on the
previous time step, where the double primed variables
are arbitrary. Due to the Markov property, the
energy associated to ðAB00Þ given ðA0B0jA00BÞ is just
fðAB00jA0B0Þ times the probability of the sequence

ðA0B0jA00BÞ. This can written as the longitudinal part of
a transport equation,

fðAB0jA0B; tþ ΔtÞ ¼
Z

dΩ00fðAB00jA0B0Þ fðA
0B0jA00BÞ

fðA0; B0Þ :

(35)

Extending this notation, the transport equation over n
steps can be written

fðAB0jA0B; tþ nΔtÞ ¼
Z

dΩ00…dΩðnþ1ÞfðABðnþ1ÞjA0BðnÞj…jAðnÞB0jAðnþ1ÞBÞ

¼
Z

dΩ00…dΩðnþ1ÞfðABðnþ1ÞjA0BðnÞÞ fðA
0BðnÞjA00Bðn−1ÞÞ
fðA0; BðnÞÞ � � � fðA

ðnÞB0jAðnþ1ÞBÞ
fðAðnÞ; B0Þ : (36)

The repeated product has the form of a right stochastic matrix,

FAB
A0B0 ≡ fðABjA0B0Þ

fðA; BÞ : (37)

This matrix has a normalized right eigenvector equal to fðA; BÞ=ρ, as can be verified using (34). So upon repeated matrix
multiplication, this matrix converges to a matrix G with each row equal to fðA;BÞ=ρ. Thus we can find the limit of (36),

lim
t→∞

fðAB0jA0B; tÞ ¼
Z

dΩð2ÞdΩð3ÞfðABð3ÞjA0Bð2ÞÞGA0Bð2Þ
Að2ÞB0

fðAð2ÞB0jAð3ÞBÞ
fðAð2Þ; B0Þ

¼ 1

ρ

Z
dΩð2ÞdΩð3ÞfðABð3ÞjA0Bð2ÞÞfðAð2ÞB0jAð3ÞBÞ: (38)

So the limit does not reduce to the string chaos assumption.
But the distribution once again factors into independent
distributions over A and B. In fact, if we integrate over Ω0
we see that fðA;BÞ converges to the same limit as the string
chaos case (33). This transport equation (35) did not
take the transverse collisions into account. But since the
transverse collisions do not depend on correlations of

nearby segments, we would not expect the inclusion of
the transverse collisions to lead to a nonfactorizable
equilibrium.
Finally, note that even if the probability distribution

depends on the n nearest segments, we would still expect
the factorizability to hold. The longitudinal term in this case
would be,

fðABðnÞjA0Bðn−1Þj…jAðn−1ÞB0jAðnÞB; tþ ΔtÞ

¼
Z

dΩðnþ1ÞfðABðnþ1Þj…jAðnÞB0Þ fðA
0BðnÞj…jAðnþ1ÞBÞ

f̂ðA0BðnÞj…jAðnÞB0Þ ; (39)

where f̂ is an energy distribution over n − 1 segments,
satisfying a property like (34).
Suppose that f can be factored as f ¼ fAfB, and

thus f̂ ¼ f̂Af̂B. The fB from the first factor in the in-
tegrand contains an argument Bðnþ1Þ which is integrated
over. Likewise for the fA from the second factor. Together,
these cancel with the f̂ in the denominator, and the remaining
fA and fB have arguments in the same order as on the left-
hand side. Thus any factorizable f is a fixed point of the
transport equation (39), and we would conjecture conversely
that an equilibrium has the factorizability property.

V. INHOMOGENEOUS TRANSPORT EQUATION

The spatially homogenous transport equation satisfies
the conservation equations (25) with all spatial deriva-
tives set to zero—i.e. ρ and the components hAii and hBii
are all time independent. The most straightforward way
to extend the transport equation to fðA;B; xÞ is to take
the energy associated with segments ðA; BÞ to move
through space with velocity v ¼ ðAþ BÞ=2. This agrees
with the approach taken for particles and this
was the approach taken in [9]. The resulting transport
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equation does lead to the proper conservation equation for
energy,

∂ρ
∂t ¼ −∇ · hvi; (40)

but the conservation equations describing the spatial trans-
port of hAii and hBii are not respected.
The problem is that the equations of motion (1) imply the

quantities Ai move through space in the direction of B,
whereas the quantities Bi move in the direction of A. To
enforce this situation, we can consider the segment ðA; BÞ to
describe a particle carrying energy and charge Awhich moves
with velocity B in between collisions. These A particles emit
virtual B particles that move with velocity A. In a collision, a
virtual particle is absorbed and the B velocity is changed.
So the energy associated with ðA;BÞ at a given location x

came from the energy of A particles ðA; B0Þ at locations
x − B0Δt. The only A particles that contribute are those that
collide with B particles emitted by some ðA0; BÞ at a
location x − A0Δt. This picture of independently moving
A and B charges can be thought of instead in terms of the
lower vertex of the worldsheet diamonds in Fig. 1. The A
particles are represented as circles, and their path by the
thick line. The path of the virtual B particle is represented
by the thick dotted line.
Using this picture we can form a difference equation

much like in the homogenous case:

fðA;B;x;tþΔtÞ

¼
Z

dΩ0fðA;B0;x−B0Δt; tÞfðA
0;B;x−A0Δt; tÞ

ρB
: (41)

Here ρB is the total energy density at x associated with B
particles and is used to normalize the probability of
colliding with a particle emitted by ðA0; BÞ. Calculating
ρB to linear order in Δt,

ρB ¼
Z

dΩ00fðA00; B00; x − A00Δt; tÞ

¼ ρ −∇ · hAiΔt: (42)

But due to the constraint derived from the continuity of
strings (24),

∇ · hAi ¼ ∇ · hBi ¼ ∇ · hvi: (43)

So we could instead consider the energy to flow with the B
particles and obtain the same difference equation (41).
The transverse collisions can be taken to happen at the

same point in space and so need not introduce any addi-
tional terms into the spatially dependent transport equation.
So expanding the difference equation to first order in Δt,
we again find the collision terms (29), but now there are
additional spatial terms,

�∂f
∂t

�
spatial

¼ −
1

ρ

Z
dΩ0fðA; B0Þ∇↔fðA0; BÞ; (44)

where the operator ∇↔ is defined to act on both the left
and right,

∇↔ ≡ ∇⃖ · B0 þA0 · ~∇ −
1

ρ
∇ · hvi: (45)

To check that this respects the conservation equations we
can multiply both sides of the transport equation by 1, Ai, or
Bi and integrate over Ω. The collision term on the right-
hand side integrates to zero [9], and using the constraint
(43) we find the correct conservation equations,

∂
∂t ρþ ∂khvki ¼ 0; (46)

∂
∂t hA

ii þ ∂khAiBki ¼ 0; (47)

∂
∂t hB

ii þ ∂khBiAki ¼ 0; (48)

in agreement with (25).
However, one remaining difficulty of these transport equa-

tions (44) is that they are not covariant. Under a coordinate
transformation, spatial derivatives appear on the left-hand side

and time derivatives appear within the operator ∇↔. A possible
alternate approach is to instead take the time difference to
appear on the right-hand side of (41) as t − Δt. The resulting
transport equation would also respect the conservation equa-
tions and would be Lorentz invariant (more general trans-
formations are discussed below). However, the time derivatives
only appear within the integral terms and the transport equation
would not uniquely specify f given an initial condition.

VI. FRIEDMANN UNIVERSE

So far the transport equation has been constructed
assuming the energy and A and B vectors are conserved
in the time interval between collisions. In the presence of an
external field this is no longer true. Given a nontrivial
metric, the connection coefficients in the equations of
motion (12) and (13) introduce gravitational corrections.
The corrections depend on A and B but not any higher-
order derivatives on the worldsheet. So we can account for
the effect of the gravitational field through additional terms
in the transport equation for fðA;B; xÞ.
A simple and physically relevant case is that of the

conformally flat Friedmann metric,

ds2 ¼ a2ðτÞðτ2 − x2Þ: (49)

In this case, the nonzero connection coefficients are all
equal to H≡ _a=a. The change in energy density (13)
reduces to
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_ϵ

ϵ
¼ −Hð1þA ·BÞ: (50)

And the equations of motion (12) become

Bμ∂μAi ¼ −HðBi − ðA · BÞAiÞ;
Aμ∂μBi ¼ −HðAi − ðA · BÞBiÞ: (51)

Because fðA;BÞ is proportional to ϵ, (50) will introduce
a term into the transport equation representing the overall
change in energy. Accounting for this and the change in
A and B, we can modify the left-hand side of the difference
equation (28),

�
1 −

_ϵ

ϵ
Δt

�
fðAþ ΔA;Bþ ΔB; tþ ΔtÞdΩ0dV 0: (52)

Here ΔA and ΔB are the changes in the coordinates on Ω
due to (51). Now we must also consider the changes in the
volume elements with time. Expanding to linear order in
Δt, we will find five new terms in the transport equation—
all proportional to H. The three terms resulting from the
changes in ϵ, dV, and dΩ will all be proportional to f. The
two terms due to ΔA and ΔB will result in derivatives of f
with respect to the coordinates on Ω. These terms (with H
factored out) will be written as ∂Af and ∂Bf.
As discussed in connection with the time derivative, all

of these corrections could instead be implemented on the
right-hand side of the difference equation (28). This would
lead to new integro-differential terms appearing in the

operator ∇↔. We will instead continue to consider the model
described by (52).

A. Differential terms

In the following discussion we will focus on the A sphere
in Ω. Everything will extend to the B sphere in the obvious
way. Using (51), the derivative ∂A can be written formally
in terms of the embedding of the A sphere in R3:

∂A ≡ ðB − ðA ·BÞAÞ · ∂
∂A : (53)

Of course the three components Ai do not form a coordinate
system on the two-dimensional A sphere. But note that the
vector B − ðA · BÞA is always orthogonal to the unit vector
A, and so the vector is in the tangent space of the embedded
A sphere. Thus this derivative in R3 can be considered a
push-forward of a proper two-dimensional derivative. This
expression itself will be useful in taking derivatives of
functions of Ai.
For a proper two-dimensional coordinate system, we can

take B as the z axis of a polar coordinate system ðθA;ϕAÞ
on the A sphere. In terms of these coordinates,

∂A ¼ − sin θA
∂
∂θA : (54)

For completeness, note that the ϕA derivative also has
a simple form,

∂Ai

∂ϕA
¼ ðB ×AÞi: (55)

In a practical simulation of the transport equation it may
be useful to use coordinate systems that do not vary withB.
In terms of the three fixed polar coordinate systems
ðθiA;ϕi

AÞ about the coordinate axes in R3, it is easy to show

∂A ¼ −
X
i

Bi sin θiA
∂
∂θiA : (56)

B. Measure terms

In terms of a general coordinate system ξa on Ω, the
measure dΩ ¼ ωðξÞdξ1…dξ4, for some distribution ω.
Due to the flow (51), the coordinates ξa change to
ξa

0 ¼ ξa þ Δξa. The transformed volume element dΩ0
can be written

dΩ0 ¼ ωðξþ ΔξaÞ det
���� ∂ðξ

10…ξ4
0 Þ

∂ðξ1…ξ4Þ
����dξ1…dξ4: (57)

To first order, only the diagonal terms in the Jacobian
contribute:

dΩ0 ¼ ðωþ Δξa∂aωÞ
�
1þ ∂Δξa

∂ξa
�
dξ1…dξ4

¼
�
1þ 1

ω
Δξa∂aωþ ∂Δξa

∂ξa
�
dΩ: (58)

These correction terms can be calculated rigorously
using the polar coordinate systems above. For a simple
derivation, we will treat the two Euclidean coordinates in
R3 which are perpendicular to Ai as coordinates on the
A sphere. So dΩ ¼ dA1dA2dB1dB2, and using (51) the
correction terms become

dΩ0 ¼
�
1þ

X
i¼1;2

∂ΔAi

∂Ai

����
Ai¼0

þ
X
i¼1;2

∂ΔBi

∂Bi

����
Bi¼0

�
dΩ

¼
�
1 −

X
i¼1;2

∂
∂AiHðBi − ðA · BÞAiÞΔtj

Ai¼0
−…

�
dΩ

¼ ð1þ 4HðA · BÞΔtÞdΩ: (59)

There is also a change in the volume element dV due to
the time change in

ffiffiffiffiffiffi−gp
,

dV 0 ¼
�
1þ 1ffiffiffiffiffiffi−gp ∂0

ffiffiffiffiffiffi
−g

p
Δt

�
dV

¼ ð1þ Γμ
0μΔtÞdV

¼ ð1þ 4HΔtÞdV: (60)
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Instead we could absorb the
ffiffiffiffiffiffi−gp

into the definition of f,
and consider Tμν and Fμν in the conservation equations (25)
as tensor densities. The conservation equations would then
be modified by a term involving Γμ

λμ, which vanishes except
for λ ¼ 0. So (60) is just what is needed for consistency.

C. Conservation equations

Integrating the new transport equation over Ω should
recover the conservation equations for a fluid of strings.
The new gravitational terms should just account for the
connection coefficients in the covariant derivatives in (25).
As already noted, both the term of 4Hf from (60) and the
Γμ
λμ connection coefficient can be eliminated by absorbing a

factor of
ffiffiffiffiffiffi−gp

into f. Writing the remaining gravitational
terms,

�∂f
∂t

�
gravitational

¼Hð∂Aþ∂B−ð1þA ·BÞ−4A ·BÞf: (61)

To verify the conservation equation, we integrate the
gravitational terms multiplied by a function QðA;BÞ:

H
Z

Qð∂Afþ∂BfÞdΩ−HhQð1þA ·BÞi−4HhQðA ·BÞi:

(62)

The first term can be integrated by parts using (54),

Z
Q∂AfdΩ

¼
Z

Q
�
− sin θA

∂f
∂θA

�
ðsin θAdθAdϕA · sin θBdθBdϕBÞ

¼ −
Z

f∂AQdΩþ
Z

Qfð2 cos θAÞdΩ: (63)

And since A · B ¼ cos θA ¼ cos θB, the second term is
2hQðA ·BÞi. Along with the corresponding term from the
integral involving ∂B, this cancels with the final term in
(62). So the integral of Q times the gravitational terms
becomes

−Hh∂AQþ ∂BQi −HhQð1þA ·BÞi: (64)

Choosing Q to be 1, Ai, Bi and using (53), we see this is
indeed just the gravitational correction to the conservation
equations,

∂νhvνi ¼ −Hh1þA ·Bi; (65)

∂νhAiBνi ¼ −2Hhvii; (66)

∂νhBiAνi ¼ −2Hhvii: (67)

So this transport equation (61) is fully consistent with the
fluid equations derived in [8].

VII. SUMMARY

The main result of the paper is a derivation of a transport
equation which reduces to the transport equation in Ref. [9]
in the homogeneous limit and is in agreement with the
fluid equations in Ref. [8] with spatial dependence and
background gravitational effect taken into account.
Schematically the transport equation can be written as

∂f
∂t ¼

�∂f
∂t

�
collision

þ
�∂f
∂t

�
spatial

þ
�∂f
∂t

�
gravitational

; (68)

where the terms are given by (29), (44), and (61),
respectively. We shall now briefly review the origin of
each of these terms.
The collision term defined by (29) and (32) represents

the Nambu-Goto evolution (or longitudinal collisions) ∝
ðρΔtÞ−1 and intercommutations (or transverse collisions)
∝ pjA∧B0 ∧A0 ∧Bj. The analysis of strings with Markov
property in Sec. IV had shown that the parameterΔt should
be set by the time scale of local equilibration or, equiv-
alently, by the correlation length of strings. In principle, this
should be a dynamical parameter, but since the factoriz-
ability property of an equilibrium does not depend on Δt
we do not expect the solutions to the transport equation to
change significantly given that Δt is sufficiently small. On
the other hand the equilibration of the strings with both
longitudinal and transverse collisions is an important open
question that we are currently trying to address using
numerical techniques [15].
The spatial term (44) is not a differential term as it is in the

Boltzmann transport equation but an integral term which was
derived by expanding the integral term responsible for the
longitudinal collisions. The longitudinal collisions have no
analog in the case with particles and arise due to the Nambu-
Goto evolution of strings as illustrated in Fig. 1. When the
probability of a given longitudinal collision between Aμ and
Bμ is calculated one should keep in mind that A particles
are moving with velocities Bμ and B particles are moving
with velocities Aμ. Then the spatial term (44) involves
integrals over spatial gradients of fðA;BÞ, but the time
derivatives remain outside of the integral. This breaks the
general covariance in the inhomogeneous transport equation,
although the covariance is maintained at the level of con-
servation equations (46), (47), and (48) which can also be
derived from a fluid perspective [8].
The gravitational terms (61) were calculated for a

Friedmann universe, by treating the Friedmann expansion
in the external field approximation (i.e. by neglecting the
gravitational backreaction). Once background gravitational
effects are taken into account, the transport equation gets a
contribution due to the redshift of energy −Hð1þA · BÞf.
The expansion also affects the tangent space of a
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worldsheet, changing Aμ and Bμ. This effect leads to
additional differential terms ∂Af and ∂Bf in the transport
equation, the form of which depends on the coordinates in
phase-space as discussed in Sec. VI A. In addition, there is
a correction −Hð4A ·BÞf due to the non-Hamiltonian
convergence of these phase-space trajectories (i.e. negative
Lyapunov exponents).
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