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We extend and improve the modeling and analysis of large-amplitude, sharp inflationary steps for second
order corrections required by the precision of the Planck cosmic microwave background power spectrum
and for arbitrary Dirac-Born-Infeld sound speed. With two parameters, the amplitude and frequency of the
resulting oscillations, step models improve the fit by Δχ2 ¼ −11.4. Evidence for oscillations damping
before the Planck beam scale is weak: damping only improves the fit to Δχ2 ¼ −14.0 for one extra
parameter, if step and cosmological parameters are jointly fit, in contrast to analyses which fix the latter.
Likewise, further including the sound speed as a parameter only marginally improves the fit to
Δχ2 ¼ −15.2 but has interesting implications for the lowest multipole temperature and polarization
anisotropy. Since chance features in the noise can mimic these oscillatory features, we discuss tests from
polarization power spectra, lensing reconstruction and squeezed and equilateral bispectra that should soon
verify or falsify their primordial origin.
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I. INTRODUCTION

Intriguingly, the cosmic microwave background (CMB)
seems to favor rapid oscillations in the curvature power
spectrum over the smooth power law spectrum given by
slow-roll inflation at a level of Δχ2 ∼ 10–20. Such oscil-
lations, first seen in the WMAP data [1–4], persist in the
recent Planck data [5–8]. While the significance of this
improvement is debatable given the ability of statistical
fluctuations from instrument noise or cosmic variance to
mimic the signal, its implications for inflationary physics
are sufficiently dramatic to merit careful consideration.
Rapidly oscillating power spectra can be generated

during inflation if the inflaton rolls over features in much
less than an efold, for example oscillations in the potential
[9,10], a step in the potential [11] or warp in the Dirac-
Born-Infeld (DBI) model [12]. In this paper we consider the
less well-explored step feature cases.
On the model side, we extend previous analyses [2,13]

by analytically treating large amplitude sharp steps in both
the potential and warp at arbitrary sound speeds including
new second order corrections that are required by the
enhanced precision of the Planck data. Having an analytic
model for the inflationary power spectrum greatly enhances
the efficiency of the analysis while varying the sound speed
provides interesting phenomenology for the lowest
multipoles.
On the analysis side, we jointly fit for step and

cosmological parameters, unlike the Planck collaboration
analysis [5]. Because the presence of step oscillations also
changes the broadband average power in the spectrum,
joint variation is crucial for interpreting constraints on step

parameters. Although more recent analyses have also
jointly varied parameters [6,8], they did so in a different
context where the oscillations persist out to arbitrarily high
multipoles. We show that joint variation is particularly
important for finite width steps and misleading constraints
arise when cosmological parameters are fixed.
The outline of the paper is as follows. In Sec. II we

describe the improvements and extensions to the modeling
of the curvature power spectrum from steps in the potential
and warp. These are derived in Appendix A and are shown
to be sufficiently accurate for Planck data in Appendix B.
The best fit step models at low and high sound speed, found
from jointly maximizing the likelihood over step and
cosmological parameters in Appendix C, are presented
in Sec. III. In Sec. IV we provide falsifiable predictions of
these models. We discuss these results in Sec. V.

II. STEP POWER SPECTRA

In this section, we summarize the description of the
curvature power spectrum for sharp potential and warp
steps in DBI inflation derived in Appendix A. This
analytic treatment generalizes previous ones [2,13] to large
amplitude, arbitrary sound speed models and employs
second order corrections to ensure sufficient accuracy
for comparison to the Planck data in the following
sections.
We consider models with step features in the DBI

Lagrangian,

L ¼ ½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X=TðϕÞ

p
�TðϕÞ − VðϕÞ; (1)
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where the kinetic term 2X ¼ −∇μϕ∇μϕ. We choose units
where Mpl ¼ ð8 πGÞ−1=2 ¼ c ¼ ℏ ¼ 1 throughout. In bra-
neworld theories that motivate the DBI Lagrangian, ϕ
determines the position of the brane, TðϕÞ gives the warped
brane tension, and VðϕÞ is the interaction potential. Note
that for X=T ≪ 1, the sound speed

csðϕ; XÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X=TðϕÞ

p
(2)

goes to 1 and this Lagrangian becomes that of a scalar with
a canonical kinetic term.
We allow steps to appear in either the warp or the

potential,

TðϕÞ ¼ ϕ4

λB
½1þ bTFðϕÞ�;

VðϕÞ ¼ V0

�
1 −

1

6
βϕ2

�
½1þ bVFðϕÞ�: (3)

Here, λB, V0, β parametrize the smooth model and are
determined by the tilt and amplitude of the power spectrum
as well as the end point for DBI inflation, whereas bT , bV
give the height of a tanh step,

FðϕÞ ¼ tanh
�
ϕ − ϕs

d

�
− 1; (4)

at field location ϕs, with field width d. Unlike previous
treatments [2,13] we allow for the possibility of potential
steps at arbitrary sound speed but for simplicity do not
consider simultaneous steps in both the warp and the
potential.
We show in Appendix A that steps in the warp or

potential, over which the inflaton rolls in much less than an
efold, generate oscillations in the power spectrum of the
following form:

lnΔ2
R ¼ lnAs

�
k
k0

�
ns−1 þ I0ðkÞ þ ln½1þ I21ðkÞ�; (5)

where we take the normalization scale k0 ¼ 0.08 Mpc−1,
which is closer to the best constrained scale for the Planck
data than the conventional choice of 0.05 Mpc−1. The
leading order contribution from the step is

I0ðkÞ¼ ½C1WðkssÞþC2W0ðkssÞþC3YðkssÞ�D
�
kss
xd

�
; (6)

and the second order contribution is

ffiffiffi
2

p
I1ðkÞ ¼

π

2
ð1 − nsÞ þ ½C1XðkssÞ þ C2X0ðkssÞ

þ C3ZðkssÞ�D
�
kss
xd

�
; (7)

where the windows

WðxÞ ¼ 3 sinð2xÞ
2x3

−
3 cosð2xÞ

x2
−
3 sinð2xÞ

2x
;

XðxÞ ¼ 3

x3
ðsin x − x cos xÞ2;

YðxÞ ¼ 6x cosð2xÞ þ ð4x2 − 3Þ sinð2xÞ
x3

;

ZðxÞ ¼ −
3þ 2x2 − ð3 − 4x2Þ cosð2xÞ − 6x sinð2xÞ

x3
; (8)

and 0 ¼ d=d ln x. The sound horizon when the inflaton
crosses the step ss controls the frequency of the oscillations,
whereas the finite width xd ∝ d−1 determines their damp-
ing via

DðyÞ ¼ y
sinhðyÞ : (9)

We give the correspondence between these phenomeno-
logical parameters and the fundamental ones in
Appendix B. There, we also test the accuracy of the
analytic model in Eq. (5) against exact calculations. We
show that the precision of the Planck data set necessitates
the inclusion of the second order I1 correction whose
analytic form is entirely new to this work (cf. [13], [5]).
Note that the second order term is determined by exactly
the same parameters as the leading order term as a
consequence of the generalized slow-roll construction [14].
The constants Ci can be related to fractional changes in

cs and the slow-roll parameter ϵH ¼ −d lnH=d ln a
induced by the step

cj ≡ csj
csa

; ej ≡ ϵHj

ϵHa
; (10)

where “a” denotes their values on the attractor after the
step, “b” is for the same before the step, and “i” is for
immediately after the step off of the attractor. More
specifically,

C1 ¼ − ln cbeb;

C2 ¼ −
2

3

ci − cb
ci þ cb

þ 2

3

ei − eb
ei þ eb

;

C3 ¼ 2
ð1 − cbÞ þ ðci − 1Þ=4

ci þ cb
: (11)

For warp steps, the attractor solutions before and after the
step and energy conservation at the step gives (bV ¼ 0)
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cb ¼ eb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2bT

1 − 2bTc2sa

s
;

ci ¼
cb

1 − 2bTð1 − csacbÞ
;

ei ¼
1 − c2sac2i
cið1 − c2saÞ

: (12)

This generalizes the results of Ref. [13] to large amplitude
steps as csa → 1. Note that in this limit, arbitrarily large
fractional steps in the warp bT → −∞ still only cause
infinitesimal changes in the slow-roll parameters cj ¼ ej ¼
1 or Ci → 0. Consequently, there are sound speeds near
unity for which a step in the warp cannot explain finite
amplitude oscillations in the data.
For potential steps (bT ¼ 0),

cb ¼ eb ¼ 1;

ci ¼ 1 −
3bVð1 − c2saÞ

3bVð1 − c2saÞ − ϵHa
;

ei ¼ 1 −
3bV ½−3bVð1 − c2saÞ þ ð1þ c2saÞϵHa�

ϵHa½−3bVð1 − c2saÞ þ ϵHa�
: (13)

This generalizes the results of Ref. [2] for potential steps
to arbitrary sound speeds. Note that for potential steps
C1 ¼ 0. We test the accuracy of these approximations in
Appendix B.
In summary, a model is parametrized by five numbers,

fC1; C2; C3; ss; xdg. To the leading order, the C1 term
represents a step in the power spectrum at kss ∼ 1, the
C2 term represents a constant amplitude oscillation out to
the damping scale kss ¼ xd, and the C3 term represents a
change to the shape of the first few oscillations.
In a given model, not all of these parameters are

independent as they are determined by the background
parameters. Specifically, the three Ci parameters are con-
trolled by the amplitude of the step and mainly the sound
speed after the step. For a potential stepC1 ¼ 0 andC3 → 0
for cs → 1. For a warp step, all three Ci are comparable but
Ci → 0 for cs → 1, even for arbitrarily large steps.

III. PLANCK DATA ANALYSIS

In this section we analyze the Planck data for the
presence of sharp inflationary steps which create high
frequency oscillations in the power spectrum. We begin in
Sec. III A with potential steps in canonical sound speed
models. In Sec. III B we extend the analysis to arbitrary
sound speed models where both warp and potential steps
can produce the oscillatory phenomenology favored by the
Planck data. In Appendix C we discuss details of the
analysis that enhance the efficiency of the model search.

A. Canonical sound speed models

We begin with the simplest case of cs ¼ 1 models. Here,
warp steps have no effect and potential steps give
C1 ¼ C3 ¼ 0. Step models are thus described by three
parameters, fss; C2; xdg, the oscillation frequency, ampli-
tude, and damping scale, respectively. The underlying
smooth cosmology is taken to be the flat ΛCDM model
as defined by fAs; ns; θA;Ωch2;Ωbh2; τg, where θA is the
angular acoustic scale at recombination, Ωch2 parametrizes
the cold dark matter density, Ωbh2 parametrizes the baryon
density, and τ parametrizes the Thomson optical depth to
reionization. We calculate CMB power spectra using a
modified version of CAMB [15,16]. In addition, the Planck
data are modeled by foreground parameters which we hold
fixed throughout to the best fit smooth model (see
Appendix C and Tables I and II).
We are interested in the question of whether the step

parameters significantly improve the fit to the Planck data
rather than marginalized constraints on the parameters
themselves. Since the Monte Carlo Markov chain technique
is highly inefficient for these purposes, we instead directly
maximize the likelihood or minimize the effective χ2 ¼
−2 lnL in the step and cosmological parameter space
jointly. For these oscillatory spectra, the likelihood is a
rapidly varying function of frequency ss with many local
minima. Fortunately, previous works have shown that ss ≈
3700 Mpc is the frequency range that contains the global
minimum [5,8]. We therefore search only around this
global minimum region. Even so, for efficiency in the
minimization it is important to choose combinations of
the parameters that are close to the principal components
of the curvature or covariance matrix. We discuss such
choices in Appendix C.
Unlike the Planck collaboration analysis [5], we simul-

taneously vary the cosmological and step parameters in the
minimization. This step is crucial, as discussed in
Appendix B, since the presence of rapid oscillations also
changes both the amplitude and shape of the broadband
power in multipole space. If the cosmological parameters
were not readjusted, the Planck data would falsely suggest
that the oscillations could not continue into the l ∼ 103

regime where the data is most constraining. For this reason,
the minimum found in Ref. [5] is not the global minimum
nor is there strong evidence for the damping of the
oscillations at high multipoles. The minimum χ2 as a
function of the damping scale xd is shown in Fig. 1 and
is nearly flat for xd > 102.
We find that the global minimum is given by

C2 ¼ 0.075; ss ¼ 3696.9 Mpc;

xd ¼ 105.0; Δχ2 ¼ −14.0; (14)

where the χ2 improvement is measured against the best fit
smooth model. In contrast, the best fit model of Ref. [5] had
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xd ¼ 87 and a similar amplitude and frequency with a
Δχ2 ¼ −11.7.1 As shown in Table III, this difference is not
due to the inclusion of second order corrections from I1 in
Eq. (5), though their omission would bias cosmological
parameters such as As and ns. The Planck data thus favor
oscillations at the few percent level in Cl, with a peak-to-
peak spacing of Δl ∼ 12. Note that at kss ¼ xd, the
damping suppression D ¼ 0.85 and for this model corre-
sponds to ld ≈ 400. Thus, the oscillations persist at least
out to the second acoustic peak (see Fig. 2).
The complete list of cosmological parameters for the best

fit step model is given in Table III. The oscillations add
broadband power and generally require a lower normali-
zation. Because in this model they damp near the well-
constrained third peak, this also requires a higher tilt to
keep the total power fixed at this best constrained region.
As a result, the model has slightly smaller broadband power
at low multipoles, reaching ∼ − 5% at the quadrupole.
Furthermore, the Planck data are also compatible with

oscillations that persist out to the highest multipole mea-
sured in the data, l ¼ 2500. Taking xd ≈ 2000, which is
indistinguishable from infinity for Planck,

C2 ¼ 0.043; ss ¼ 3704.7 Mpc; Δχ2 ¼ −11.4: (15)

This fit only differs in χ2 by 2.6 from that of the global
minimum and is comparable to the best fit found in Ref. [5].
Note that even with no damping scale in curvature
fluctuations, oscillations in Cl decline with l due to
projection and lensing effects (see [2] and Eq. (C2). Had
we fixed cosmological parameters to the best fit smooth
model then this xd would be falsely penalized by Δχ2 ¼ 9.
The cosmological parameters for this model are also given
in Table III. Notably, with no damping scale, the tilt no
longer requires significant adjustment. The change in ss
mainly reflects slightly different cosmological parameters
that produce correspondingly different distances to recom-
bination rather than a change in the angular scale.
In summary, the Planck data favor percent level oscil-

lations in Cl produced by potential step features by Δχ2 ¼
−11.4 with two parameters that control the oscillation
frequency and amplitude. Minimizing the χ2 for damping
of the oscillations confines the oscillations to roughly the
first and second peaks and marginally improves the fit with
an additional Δχ2 ¼ −2.6 for a total of −14.0 with one
additional parameter for a total of three.

B. Low sound speed models

Low sound speed DBI models allow for two different
classes of steps with two different phenomenologies that

FIG. 1. Minimum χ2 relative to the best fit smooth (no step)
model as a function of the oscillation damping scale xd for the
cs ¼ 1 potential step model (top panel). The minimization is
performed jointly over cosmological and step parameters with
step position ss and amplitude of oscillations C2 shown in the
middle and bottom panels respectively.

FIG. 2 (color online). Best fit models for a potential step with
csa ¼ 1.0 (red) and a warp step at csa ¼ 0.7 (blue). Both models
have the same few percent oscillations around the best fit smooth
model at the first and second peaks (lower panel). The warp step
is a marginally better fit of Δχ2 ¼ −15.2 versus the potential step
with Δχ2 ¼ −14.0, due to suppression of the lowest multipoles,
but introduces the sound speed as an additional parameter.

1The original version of the Planck collaboration analysis [5]
erroneously conflated C2 with Ac (see Eq. (C2) and correcting
this definition also brings the amplitude into agreement with that
found for WMAP [2].
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impact low multipoles in the Planck data. Both steps in the
potential VðϕÞ and warp TðϕÞ produce the same high
multipole oscillations driven by the amplitude parameter
C2. Given a C2 that minimizes the Planck χ2 at high
multipoles, the remaining freedom is in choosing a sound
speed after the step csa. In both the potential and warp
scenarios, this uniquely fixes the two remaining step
parameters C1 and C3. Recall that C1 controls the step
in the power spectrum around the first oscillation and C3

controls the shape of the first few oscillations. Since the fit
is driven by the C2 oscillations with only small impact from
C1 and C3, we fix all the other parameters to the global
minimum of Eq. (14) when examining the impact of csa.
For potential steps, C1 ¼ 0 and −3=8 < C3=C2 < 0.

Even for the maximal case of −3=8 and csa → 0, there
is very little impact on the CMB power spectrum.
Consequently, as shown in Fig. 3, the χ2 surface is
essentially flat across csa.
For warp steps, both C1=C2 and C3=C2 can be greater

than unity and the sound speed has a larger fractional effect
on Cl. However, their impact is still limited to the first few
oscillations and, given the preference for a horizon scale ss,
severely cosmic variance limited. Raising csa mainly
enhances the step in the power spectrum relative to the
oscillations, thus lowering the first few multipoles. Both C1

and C3 are important in establishing the shape due to a
cancellation in their effects at the first oscillation.
Since warp steps do not produce oscillatory features, as

cs → 1, there is a maximum csa ∼ 0.7 for which they can
explain the oscillations (see Fig. 3). The best fit has the
maximal possible sound speed

csa ¼ 0.70; Δχ2 ¼ −15.2 ðwarpÞ; (16)

which implies C1 ¼ −0.70, C3 ¼ −0.37 given the fixed
parameters in Eq. (14). While the step in the curvature
power spectrum is approximately 50% (see Fig. 9) in Cl,
this and the changes in the cosmological parameters
translates into a ∼20% suppression of power at the quadru-
pole relative to the smooth model (see Fig. 2). Note that the
drop between 2 ≤ l ≤ 5 is particularly sharp for warp steps
due to a local maximum in the curvature spectrum
oscillations. Nonetheless, with cosmic variance these
changes have only a small impact on the fit. As a
consequence, while warp steps have interesting phenom-
enology that may ameliorate low multipole anomalies,
there is no statistically significant preference for cs < 1.

IV. FUTURE TESTS

While an improvement of Δχ2 ≈ −11 for two parameters
and up to −15 in the full step parameter space may sound
significant, it has been shown that for more flexible
oscillatory models, where not only the amplitude and
frequency but also the phase of the oscillation is fit,
realizations of smooth models with noise often recover
this level of improvement, albeit typically with a smaller
oscillation amplitude [4] (see also [6]). Furthermore, the
improvement in the WMAP likelihood [2,4] is comparable
to that of the Planck likelihood despite the higher precision
of Planck, whereas one would have expected the latter to
increase for a true signal. For these reasons, it is important
to have more definitive tests for the origin of these
improvements. In this section we discuss predictions of
the best fit models identified above that may be used to
verify or falsify the hypothesis of their primordial origin.
As emphasized by Ref. [17], the most incisive consis-

tency test for inflationary features is the E-mode polariza-
tion power spectrum and cross spectrum. In Fig. 4 (left
panel), we show the predicted E-mode power spectrum of
the models in Fig. 2. Consistency with inflationary oscil-
lations demands that oscillations appear at the same
frequency while modulated by the acoustic transfer to
have nodes that are out of phase with the temperature.
Furthermore, due to projection effects, the polarization
oscillations are twice as prominent in polarization. In
principle, the low l. polarization can also more than double
the distinguishing power between the warp and potential
fits, albeit this is limited in practice by galactic foregrounds
and uncertainties in the reionization model.
Finally, the temperature polarization cross spectrum

must also exhibit consistent oscillations, as shown in
Fig. 4 (right panel). These predictions should be tested
in the next release of the Planck data. More generally they
can be tested in any CMB polarization data set that has
sufficient amounts of sky to distinguish modes separated by
Δl ≈ 12 and oscillations in power of 3–10%.
The best fit oscillatory models also predict different

CMB lensing effects. High frequency features act in a
similar fashion as the acoustic peaks in providing a signal

FIG. 3 (color online). χ2 improvement as a function of the
sound speed after the step csa for the warp (blueþ) and potential
(red×) steps. Other parameters are fixed to their minimum χ2

values in the cs ¼ 1 potential step model including the oscillation
amplitude C2. Note that warp steps with csa ≳ 0.7 cannot
generate the required C2 (see Eq. (A44), as marked by the
vertical line.
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for lensing. The Δl ≈ 12 fineness of the features compared
with the acoustic spacing of Δl ≈ 300 offsets the smallness
of the amplitude. In Fig. 5, we quantify this expectation by
showing, for the smooth and best fit step models,

d lnl2Cl

d lnl
; (17)

which controls lensing and squeezed bispectrum effects
[18]. Note that what was a small effect for the power
spectrum is an order unity effect for certain lensing effects.

There are two related ways in which the oscillations
impact lensing observables. First, if lensing reconstruction
were performed with the oscillatory models to construct the
filters in the optimal quadratic estimator rather than the
smooth models, the noise power in the reconstruction
should decrease if the oscillatory features are real. To
see this note that in the flat-sky approximation the sample-
variance limited reconstruction noise power NL of the
lensing potential is given by [18,19]

N−1
L ¼

Z
d2l1

ð2πÞ2
ðL · l1Cl1 þL · l2Cl2Þ2

2Cl1Cl2

; (18)

where l1 þ l2 ¼ L. For L ≪ l1, l1 ≈ −l2 and for
L ≪ Δl, Cl2 can be Taylor expanded around l1. The
numerator then scales as the derivative in Eq. (17) squared.
For the best fit models, this changes the noise for L≲ 12.
Relatedly, lensing by long-wavelength modes modulates

the angular scale of features in the power spectrum which
itself is correlated with the CMB temperature anisotropy
through the integrated Sachs-Wolfe (ISW) effect. Thus, the
presence of fine scale oscillations changes the squeezed
reduced bispectrum of temperature fluctuations [20],

bLl1l2 ≈
LðLþ 1Þ − l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ

2
CTϕ
L Cl2

þ 5perm; (19)

where CTϕ
L is the correlation of the ISW temperature and

lensing potential fields. The permutation of l1 ↔ l2 again
makes the result scale as the derivative of Cl and is

FIG. 4 (color online). Polarization (left) and temperature polarization cross (right) power spectra for the best fit models of Fig. 2. Step
oscillations provide falsifiable predictions for the polarization which would not be mimicked by chance features in the noise.

FIG. 5 (color online). Temperature power spectrum derivatives
for the best fit models of Fig. 2. Low amplitude, high frequency
oscillations produce new signals for lensing reconstruction and
squeezed bispectra.
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enhanced by the oscillation. Both of these lensing effects
are in principle detectable, though for the best fit frequency
with Δl ∼ 12 the impact will be limited by cosmic
variance. A more detailed study is required to determine
their effects on the existing Planck data set.
Features during inflation also produce primordial

non-Gaussianity in mainly the equilateral configuration
[9,21–23]. For the best fit step models, these should also be
observable in Planck [2,24]. Extracting these signals,
though, will require using specific templates that include
these rapid oscillations [25]. Since the equilateral bispec-
trum amplitude scales as x2d, the lack of a strong bound on
the damping scale implies that the bispectrum signal could
be very large at high multipoles, though these models
would be beyond the regime of validity of the effective field
theory that underlies their calculation [26].
Thus, if the oscillatory fits really reflect inflationary

features, there is a battery of consistency tests that
the CMB temperature and polarization anisotropy must
satisfy.

V. DISCUSSION

In this paper, we have extended and improved the
modeling and analysis of sharp inflationary steps for the
Planck CMB power spectrum. We find that for the two
parameters of the amplitude and frequency of the oscil-
lations, step models improve the fit by Δχ2 ¼ −11.4,
whereas additional parameters such as the finite width
of the step and sound speed of the inflaton marginally
improve the fit to Δχ2 ¼ −14.0 and −15.2, respectively. In
particular, sound speed effects for warp steps lower than the
quadrupole power by ∼20%.
We have shown that it is critical to jointly fit step and

cosmological parameters simultaneously. If cosmological
parameters, especially the amplitude and tilt, are held fixed
then one would falsely infer that the oscillations must damp
away at high multipoles due to their excess average power.
We have shown that on the contrary there is only marginal
preference for a finite damping scale. The improvement in
modeling to second order terms in the generalized slow-roll
approximation developed here is also required by the
increased precision of Planck at high multipoles but their
omission would mainly bias the cosmological parameters
rather than degrade the fit itself.
Given that chance features in the noise can masquerade

as oscillatory step features [4], we have also provided a
suite of consistency tests that can verify or falsify the
primordial origin of these improved fits. The polarization
power and cross spectra should reveal a matching and
larger set of oscillations modulated by an out of phase
acoustic transfer. The oscillations, if primordial, also
provide an extra signal for CMB lensing reconstruction
and squeezed bispectra from the lensing-ISW correlation.
Finally, the primordial non-Gaussianity in equilateral
bispectrum configurations should also be observable.

These predictions may soon be tested in the next release
of Planck data.
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APPENDIX A: ANALYTIC STEP SPECTRUM

In this Appendix, we derive and test the analytic model
for the power spectrum used in the main paper, extending
previous treatments [2,13] for large, sharp steps in the warp
and potential in the DBI context. These necessitate second
order corrections to achieve the precision required for the
Planck data. We begin with a brief review of the generalized
slow-roll (GSR) approximation [27,28] for large power
spectrum features in Sec. A 1 [29]. In Sec. A 2, we use
exact energy conservation and the attractor solutions before
and after the step to derive the general analytic model for
the power spectrum in the GSR approximation. In Sec. A 3
and Sec. A 4 we apply this model to steps in the warp and
potential.

1. Generalized slow roll

In a general PðX;ϕÞ model for inflation, the comoving
curvature power spectrum,

Δ2
R ≡ k3PR

2π2
¼ lim

ks→0

���� ksyf
����2; (A1)

is evaluated by solving the field or mode function equation
in a spatially flat gauge [28,30],

d2y
ds2

þ
�
k2 −

2

s2

�
y ¼

�
f00 − 3f0

f

�
y
s2
: (A2)

Here, deviations from de Sitter space are characterized by

f2 ¼ 8π2
ϵHcs
H2

�
aHs
cs

�
2

; (A3)

where
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ϵH ¼ −
d lnH
dN

; (A4)

with N as efolds, N ¼ 0 as the end of inflation, cs denoting
the sound speed of field fluctuations, and

sðNÞ ¼
Z

0

N
d ~N

cs
aH

(A5)

denoting the sound horizon. Here, and throughout,
0 ≡ d=d ln s.
Eq. (A2) can be formally solved with the Green function

technique by taking its right-hand side as an external source
given by the de Sitter mode function with Bunch-Davies
initial conditions,

y ≈ y0 ¼
�
1þ i

ks

�
eiks; (A6)

and iteratively improving the solution for the presence
of the deviations introduced by f. Including the leading
second order correction for large features, the power
spectrum is given by [29,31]

lnΔ2
R ≈Gðln sminÞ þ

Z
∞

smin

ds
s
WðksÞG0ðln sÞ

þ ln ½1þ I21ðkÞ�; (A7)

where the source function

G ¼ −2 ln f þ 2

3
ðln fÞ0; (A8)

and recall W is given by Eq. (8). The validity of the
approximation relies on the deviations in the mode func-
tions or the curvature being small rather than the G0
deviations from slow roll. It is monitored by the second
order corrections

I1ðkÞ ¼
1ffiffiffi
2

p
Z

∞

0

ds
s
G0ðln sÞXðksÞ; (A9)

with u ¼ ks and X given by Eq. (8). The GSR approxi-
mation itself will begin to break down unless [32]

I1 ≲ 1ffiffiffi
2

p : (A10)

Finally, G0 carries both the smooth tilt type deviations
from scale invariance as well as any impact of sharp
features. For sharp features, it can be approximated by [13]

G0 ≈ ð1 − nsÞ −
1

3
σ2 þ

2

3
δ2 −

5

3
σ1 − 2ηH

þ 8

3

�
aHs
cs

− 1

�
; (A11)

where the additional slow-roll parameters are defined by

ηH ≡ ϵH −
1

2

d ln ϵH
dN

; δ2 ≡ ϵHηH þ η2H −
dηH
dN

;

σ1 ≡ d ln cs
dN

; σ2 ≡ dσ1
dN

; (A12)

and we reabsorb the slow-roll deviations in these param-
eters into the (1 − ns) factor. Thus, modeling a sharp feature
amounts to determining its impact on cs and ϵH.

2. Step sources

We consider sharp steps in the warp TðϕÞ and potential
VðϕÞ of the DBI Lagrangian (1) which generate analogous
changes in cs and ϵH. To keep our treatment general, we
first parametrize the evolution of these quantities relying on
energy conservation and the attractor solution to define
their functional form. In the following subsections we give
the correspondence of this parametrization to specific step
parameters.
The energy density of the inflaton,

ρ ¼
�
1

cs
− 1

�
T þ V; (A13)

is conserved as long as the inflaton rolls across the step in
much less than an efold. This conservation then gives the
relationship between the sound speed before (“b”; csb) and
immediately after (“i”; csi) the step. The acceleration
equation

ϵH ¼ 3

2

ρþ p
ρ

≈
3 T
2V

�
1

cs
− cs

�
(A14)

then gives the corresponding change in ϵH. After the step,
the rolling of the inflaton,

ϕ2
N ≡

�
dϕ
dN

�
2

¼ 2csϵH; (A15)

differs from the friction dominated attractor solution,

ϕN ¼ −
cs
3

Vϕ

H2
≈ −cs

Vϕ

V
; (A16)

to which it must decay on the expansion time scale or well
after the inflaton has crossed the step (“a”). These relations
hold for arbitrarily large steps so long as ϵH ≪ 1.
Together, they imply that the functional form of cs and

ϵH is generically given by [13]
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cs
csa

¼ 1þ 1 − cb
2

F þ ci − 1

2
ðF þ 2Þe3ðNs−NÞ;

ϵH
ϵHa

¼ 1þ 1 − eb
2

F þ ei − 1

2
ðF þ 2Þe3ðNs−NÞ; (A17)

where for convenience we have scaled the quantities to
their values on the attractor after the step

cb ¼
csb
csa

; ci ¼
csi
csa

;

eb ¼
ϵHb

ϵHa
; ei ¼

ϵHi

ϵHa
: (A18)

Here, F represents a step of infinitesimal width at N ¼ Ns
normalized to −2 before the step and 0 after. We discuss the
impact of the finite width below.
Following Ref. [13], it is straightforward to derive the

source function G0 in the approximation that changes to cs
and ϵH are small by taking their derivatives and integrals to
form the quantities in Eq. (A11). Note that this limit does
not necessarily require the steps in the warp itself to be
small. In the limit of a large warp factor ϕ2

N=T ≪ 1, the
sound speed approaches unity regardless of the form of T
and hence the change in the sound speed is small even for a
large fractional change in T.
Integrals over G0 are then simply evaluated by recalling

that dF=d ln s is a delta function of amplitude 2. The result
of integrating the source by parts is

lnΔ2
R ≈ lnAs

�
k
k0

�
ns−1 þ C1WðkssÞ þ C2W0ðkssÞ

þ C3YðkssÞ; (A19)

where

C1 ¼ −ðcb − 1Þ − ðeb − 1Þ;

C2 ¼ −
1

3
ðci − cbÞ þ

1

3
ðei − ebÞ;

C3 ¼ ð1 − cbÞ þ
1

4
ðci − 1Þ; (A20)

for the leading order GSR contribution in Eq. (A7)
which, once corrected for the finite width of the step
below, we shall call GSR0. Here, we have replaced the
parameter Gðln sminÞ in Eq. (A7) with the power spectrum
normalization As at k0. Note that

YðxÞ≡ −
8

3
x
Z

d ln ~x
W0ð~xÞ

~x
; (A21)

which is given in closed form in Eq. (8).

Given that

lim
x≪1

WðxÞ ¼ 1; lim
x≫1

WðxÞ ¼ 0;

lim
x≪1

W0ðxÞ ¼ 0; lim
x≫1

W0ðxÞ ¼ −3 cosð2xÞ;
lim
x≪1

YðxÞ ¼ 0; lim
x≫1

YðxÞ ¼ 0; (A22)

we can further interpret the meaning of the Ci coefficients.
C1 represents a step in the power spectrum and its amplitude
is determined by the fact that the inflaton is on the attractor
solution before and well after the step. C2 provides a
constant amplitude oscillation whose value is determined
by the sharpest part of the feature: the fractional changes in
cs and ϵH right at the step. Finally C3 modifies the shape of
the first few oscillations due to the aHs=cs − 1 source.
Likewise, the first order corrections are given by

ffiffiffi
2

p
I1 ¼

π

2
ð1 − nsÞ þ C1XðkssÞ þ C2X0ðkssÞ þ C3ZðkssÞ;

(A23)

where

ZðxÞ ¼ −
8

3
x
Z

d ln ~x
X0ð~xÞ
~x

; (A24)

which is given in closed form in Eq. (8).
We call the analytic model with the I1 correction GSR1.

Using Eq. (A10), we thus expect the GSR expansion itself
to be under control for kss ≫ 1 so long as

jC2j < 1=3: (A25)

At kss ∼ 1, the exact requirement is a model dependent
restriction on a combination of C1, C2, C3 but in the warp
and potential step examples this gives roughly the same
criteria for the step height.
In principle, this domain of validity includes fractional

deviations in cs and ϵH that approach unity, including the
region of interest for Planck. However, although the GSR
expansion itself remains under control, Eq. (A20) is derived
by assuming small fractional deviations and requires
correction. Just as we extended the validity of the step
approximation to nonlinearities in the step amplitude
above, we can also approximately correct for weak non-
linearity in the slow-roll parameters by rescaling the Ci
coefficients. Here, we extend and generalize the approach
of Ref. [2] and [13] for arbitrary sound speeds.
The C1 amplitude gives the step in power and hence the

slow-roll attractor Δ2
R ∝ ðcsϵHÞ−1 determines it as

C1 ¼ − ln cbeb: (A26)

The changes in cs and ϵH at the step are already determined
nonlinearly and so the only further correction to C2 comes
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from the conversion to slow-roll parameters, e.g.
σ1 ¼ c−1s dcs=dN. Following Ref. [2], we evaluate cs and
ϵH at the midpoint of the step and hence

C2 ¼ −
2

3

ci − cb
ci þ cb

þ 2

3

ei − eb
ei þ eb

: (A27)

Finally, for C3, while there is no direct nonlinear constraint
to determine its amplitude, by also renormalizing to the
midpoint of the step we approximately preserve the relative
relationship between the coefficients that determines the
shape of their combined contributions. This is especially
important for warp steps where cancellations between C1

and C3 occur around the first oscillation. Thus, we take

C3 ¼ 2
ð1 − cbÞ þ ðci − 1Þ=4

ci þ cb
: (A28)

Finally, we can account for the finite width of the step.
If we replace the step function with a tanh function,

FðϕÞ ¼ tanh

�
ϕ − ϕs

d

�
− 1; (A29)

the integrals over G0 will not contribute if the windows in
Eq. (8) oscillate many times over the width of the step
k ≫ ssd=ϕN . This causes a damping such that the Ci
coefficients in Eqs. (A19) and (A23) are replaced by [2]

Ci → CiD
�
kss
xd

�
; (A30)

where the damping function

DðyÞ ¼ y
sinhðyÞ ; (A31)

with the damping scale

xd ¼
1

πd
dϕ
d ln s

: (A32)

The derivation of Eq. (5) for the functional form for the
analytic model of the step power spectrum is thus complete.
We now turn to specific forms for warp and potential steps.

3. Warp steps

For steps in the warp T, we have before and after the step

Tb ¼ Tað1 − 2bTÞ; Vb ¼ Va; (A33)

and we can then use energy conservation and the attractor
solution to give the relevant c and e parameters of the
model in Eq. (A18). Our convention is to quote these in
terms of bT and the sound speed on the attractor after the
step csa. The attractor solution tells us that

cb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2bT

1 − 2bTc2sa

s
; (A34)

and, using Eq. (A14) for ϵH, we obtain

eb ¼ cb: (A35)

Now let us consider the sharp changes immediately after
the step. Energy conservation tells us

1

csi
− 1 ¼

�
1

csb
− 1

�
ð1 − 2bTÞ; (A36)

or

ci ¼
cb

1 − 2bTð1 − csacbÞ
; (A37)

and, with Eq. (A14),

ei ¼
1 − c2sac2i
cið1 − c2saÞ

: (A38)

We show an example of the evolution of cs and ϵH in Fig. 6.
Since the analytic model only captures the evolution of the
parameters around the step and not the evolution on the
slow-roll attractor, we plot

FIG. 6 (color online). Evolution of cs (upper) and ϵH (lower)
across a warp step. The step in both parameters and transient
behavior right after the step is modeled by Eqs. (A17) and (A39)
to excellent approximation. Model parameter choices are given in
Appendix B.
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csðN − NsÞ ¼ cans ðN − NsÞ
cats ðN − NsÞ
cats ð0�Þ

; (A39)

where cans is the analytic model of Eq. (A17), cats is the
attractor on either side of the step, and cats ð0�Þ is evaluated
approaching the step from either side with csa ¼ cats ð0þÞ
approached from the side after the step. We likewise
account for the slow-roll evolution of ϵH. In practice,
rather than iterating the attractor solution of Eq. (A16) in
the equations of motion to the required accuracy, we
numerically solve the equivalent smooth model before
and after the step to determine cats .
We can now use the general description of Eqs. (A26),

(A27), and (A28) to give the Ci coefficients of the
analytic power spectrum form. Note that in the small step
limit,

lim
bT→0

cb ¼ 1 − ð1 − c2saÞbT;

lim
bT→0

ci ¼ 1þ ð1 − csaÞ2bT;

lim
bT→0

ei ¼ 1 −
ð1 − csaÞð1þ c2saÞbT

1þ csa
; (A40)

and so

lim
bT→0

C1 ¼ 2ð1 − c2saÞbT;

lim
bT→0

C2 ¼ −
2

3

1 − csa
1þ csa

bT;

lim
bT→0

C3 ¼
1

4
ð5 − 2csa − 3c2saÞbT; (A41)

in agreement with Ref. [13]. Our generalized expression
lets us explore the bT → −∞ limit,

lim
bT→−∞

cb ¼
1

csa
;

lim
bT→−∞

ci ¼
2csa

1þ c2sa
;

lim
bT→−∞

ei ¼
1

2csa

1þ 3c2sa
1þ c2sa

: (A42)

Note that for finite csa these limits are all finite and so the
maximal Ci amplitudes are also bounded:

lim
bT→−∞

C1 ¼ 2 ln csa;

lim
bT→−∞

C2 ¼ 4
1 − c4sa

9þ 42c2sa þ 45c4sa
;

lim
bT→−∞

C3 ¼ −
1

2

4 − 3csa þ 2c2sa − 3c3sa
1þ 3c2sa

: (A43)

Thus, for a fixed observed oscillation amplitude C2 > 0,
there is always a maximum cs for which a warp step
cannot explain the data,

c2sajmax ¼ −
21C2

4þ 45C2

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 36C2 þ 9C2

2

p
4þ 45C2

: (A44)

For example, if C2 ¼ 1=15, c2sajmax ≈ 0.724.

4. Potential steps

For potential steps,

Vb ¼ Vað1 − 2bVÞ;
Tb ¼ Ta: (A45)

The attractor solution says that to the leading order in
ϵH, there is no net change in cs or ϵH, only a transient
deviation at the step. Thus, ϵHb ¼ ϵHa and csa ¼ csb
(cb ¼ eb ¼ 1) or

C1 ¼ 0: (A46)

We can also use the attractor to eliminate T=Va using

ϵHa ¼
3

2

T
Va

�
1

csa
− csa

�
: (A47)

Energy conservation then gives the transient change as

ci ¼ 1 −
3bVð1 − c2saÞ

3bVð1 − c2saÞ − ϵHa
; (A48)

and, using Eq. (A14),

FIG. 7 (color online). Maximum oscillation amplitude C2 for a
warp step as a function of csa, the sound speed after the step. The
blue dashed line corresponds to C2 ¼ 1=3, where the GSR
approximation breaks down in the oscillatory regime. Note that
for cs ≳ 1=4 the oscillation amplitude is limited by physicality
rather than the GSR approximation.
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ei ¼ 1 −
3bV ½−3bVð1 − c2saÞ þ ð1þ c2saÞϵHa�

ϵHa½−3bVð1 − c2saÞ þ ϵHa�
: (A49)

The general description of Eqs. (A26), (A27), and (A28)
then gives the Ci coefficients of the analytic power
spectrum form. We show an example of the evolution of
cs and ϵH in Fig. 8. Again, to capture the slow-roll
evolution of the smooth model, we plot the analytic model
corrected, as in Eq. (A39).
In the limit of a small potential step,

lim
bV→0

ci ¼ 1þ 3
1 − c2sa
ϵHa

bV; lim
bV→0

ei ¼ 1 − 3
1þ c2sa
ϵHa

bV;

(A50)

and so

lim
bV→0

C2 ¼ −
2

ϵHa
bV; lim

bV→0
C3 ¼

3

4

1 − c2sa
ϵHa

bV; (A51)

which generalizes the results of Ref. [2] to arbitrary sound
speed. The sound speed experiences a transient dip for
downward steps bV < 0.
Note that, in the opposite limit,

lim
bV→−∞

ci ¼
1

3bV

ϵHa

1 − c2sa
; lim

bV→−∞
ei ¼

3bV
ϵHa

; (A52)

and so

lim
bV→−∞

C2 ¼
4

3
; lim

bV→−∞
C3 ¼ −

1

2
: (A53)

Since these amplitudes are beyond the limits of the GSR
approximation itself according to Eq. (A25), there is
effectively no relevant bound on the oscillation amplitude
set by energy conservation and the attractor solution unlike
the warp step case. Likewise, for a given 0 < C2 ≪ 4=3,
there is no bound on the required sound speed.

APPENDIX B: POWER SPECTRUM ACCURACY

In this section, we test the accuracy of the leading order
GSR0 approximation used in previous analyses [2] and the
first order GSR1 corrections discussed in Appendix A
against an exact computation of the power spectrum from
the DBI Lagrangian of Eq. (1). Although GSR0 was
previously demonstrated to be sufficiently accurate for
WMAP data [2,13], we show here that the increase in
precision to the 10−3 level in Planck requires second order
corrections.
The exact computation of the power spectrum follows

from solving Eq. (A2) for a DBI step model that is
parametrized by fV0; β; λb;ϕendg, defining the broadband
amplitude and slope of the power spectrum, and the step
parameters fϕs; bT; bV; dg defining the step position,
height parameters, and width (see [13] for computational
details). For testing purposes, we choose

V0 ¼ 7.1038 × 10−26; β ¼ 5.5895 × 10−2;

λb ¼ 2.1771 × 1014; ϕend ¼ 8.2506 × 10−8; (B1)

and

ϕs ¼ 3.8311 × 10−8; d ¼ 9.3835 × 10−13: (B2)

For the warp step, we choose

bT ¼ −3.364; bV ¼ 0 ðwarpÞ; (B3)

and, for the potential step,

bT ¼ 0; bV ¼ −6.543 × 10−21 ðpotentialÞ: (B4)

These parameters are in fact chosen to be close to the
Planck maximum likelihood solution for the amplitude and
frequency of warp step oscillations by inverting the steps in
this test. Notice that in that case, jbT j, the fractional change
in the warp T, exceeds unity. The width d is set so that
damping occurs in the l ∼ 103 region that Planck is most
sensitive to so as to yield the most stringent test of accuracy.
The cosmological parameters for the test are given in
Table I and coincide with the best fit model without a step.
The analytic models are specified by the conversion of

the fundamental parameters into the amplitude parameters

FIG. 8 (color online). Evolution of cs (upper) and ϵH (lower)
across a potential step. The transient change in both parameters is
modeled by Eqs. (A17) and (A39) to excellent approximation.
Model parameter choices are given in Appendix B.
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fC1; C2; C3g, the sound horizon at the step ss, the effective
number of oscillations before damping xd, as well as the
broadband amplitude and tilt parameters As and ns.
Given a solution to the background equations without

the step, we set the parameters,

csa ¼ 0.67; ϵHa ¼ 1.70 × 10−19; (B5)

according to their values at N ¼ Ns. The Ci amplitude
parameters are then determined by Eqs. (A26)–(A28)
such that

C1 ¼−0.65; C2 ¼ 0.071; C3 ¼−0.34ðwarpÞ; (B6)

and

C1 ¼ 0; C2 ¼ 0.071; C3 ¼−0.015ðpotentialÞ: (B7)

Next, the physical scale associated with the step has to be
set very precisely in order not to have a phase error after
many oscillations. We follow Ref. [13] in defining it
numerically to be the sound horizon at which the deviation
in the GSR source function due to the step is appropriately
centered to a small fraction of the step width,

G0ðln ss; bT;VÞ −G0ðln ss; 0Þ ¼ 0: (B8)

Using this definition, we obtain

ss ¼
�
3699 Mpc ðwarpÞ
3708 Mpc ðpotentialÞ : (B9)

Note that although the step is at the same position in field
space in both cases, the sound horizon differs slightly due
to the change in cs.
For the damping parameter, we likewise convert the field

width d to a physical width ss=xd with the numerical
solution for ϕðln sÞ through

dϕ
d ln s

1

πd

����
s¼ss

¼ xd: (B10)

For the test cases, we obtain

xd ¼
�
170.0 ðwarpÞ
169.9 ðpotentialÞ :

Finally, there are the broadband power parameters ns and
As. For the tilt parameter, which is slowly varying and
essentially independent of the step, we take the slope at
k ¼ k0 ¼ 0.08 Mpc−1 of the model with bT;V ¼ 0. We
have chosen parameters in Eq. (B1) so that ns coincides
with the value given in Table I. On the other hand, the
effective amplitude As depends on the presence of the step
as well as the order of the GSR approximation used. In
Eq. (A19), the broadband power gains a contribution from
the average of the oscillations

heC1WþC2W0þC3Yi ≈ I0

�
3C2D

�
kss
xd

��

≈ 1þ
�
3

2
C2D

�
kss
xd

��
2

þOðC4
2Þ; (B11)

FIG. 9 (color online). GSR approximations versus exact solutions for the curvature power spectrum (top panel) and the fractional error
of the GSR0 and GSR1 analytical solutions (bottom panel). The models are warp step (left) and potential step (right).
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where I0 here is the modified Bessel function, not to be
confused with the GSR integral I0. This nonzero average is
the fundamental reason why cosmological parameters must
be varied jointly with the step parameters when analyzing
the Planck data. In the first order correction Eq. (A7), there
is the analogous averaging effect

hI21i ≈
π2

8
ð1 − nsÞ2 þ

�
3

2
C2D

�
kss
xd

��
2

; (B12)

which is also OðC2
2Þ despite being higher order in the GSR

approximation. Moreover, around the damping scale set by
xd, the broadband average of the oscillation changes with k
in Eqs. (B11)–(B12) and is not purely an amplitude shift.
Note that the error induced by this average term scales as
δCl=Cl ∝ C2

2 and so rapidly increases with the amplitude of
the oscillations.
Since the best choice for As depends on both the method

and the data set considered, we choose As as the amplitude
which gives the best agreement between the exact compu-
tation and the given GSR computation for the Planck data
set. We therefore use the Planck likelihood itself to define
As for each method. In order to remove the ambiguity
caused by the exact model not possessing the maximum
likelihood normalization, we in practice maximize both the
Planck likelihood over As to obtain A0

s and a rescaling of the
amplitude of the exact model by R to obtain its best
normalization. We then set As ¼ A0

s=R to remove the
rescaling.
In Fig. 10 we show the residual errors in the GSR0 and

GSR1 after the normalization has been set in this way. Note
that the residuals δCl=Cl cross zero at l ∼ 103, reflecting
the pivot or best constrained portion of the Planck spec-
trum. For scales much smaller or much larger than the

damping scale of the oscillation, the difference between
GSR0, GSR1, and exact is nearly constant and can be
absorbed into the normalization. However, in our test case,
which we have chosen to be the worst case scenario, the
damping falls exactly at the pivot. The result is that even
with the best fit normalization, GSR0 produces ∼1% errors
that pivot around l ∼ 103. While the error in GSR0 can
mainly be absorbed by adjusting cosmological parameters
such as the tilt, they are large enough to bias such
parameters’ non-negligibly. These residuals are reduced
to the ∼0.1% level with the GSR1 approximation.
More quantitatively, for these specific test cases the

residuals produce a change in the Planck likelihood versus
exact of

Δχ2 ¼
�−8.6 GSR0

−0.97 GSR1
ðwarpÞ; (B13)

and

Δχ2 ¼
�−7.4 GSR0

−0.33 GSR1
ðpotentialÞ: (B14)

Thus, the GSR1 approximation is sufficiently accurate for
the Planck analysis. In fact, the χ2 errors would be even
smaller at its global minimum.
The error in these approximations also depends on the

step parameter model. For reference, if xd → ∞ the error in
the GSR0 approximation becomes Δχ2 ¼ 0.5 for the warp
step and Δχ2 ¼ 0.7 for the potential step. Here, the error is
significantly lower since it takes the form of a constant
amplitude rescaling which can be absorbed into As.

FIG. 10 (color online). GSR approximations versus exact solutions for the temperature power spectrum (top panel) and the fractional
error of the GSR0 and GSR1 analytical solutions (bottom panel). The models are warp step (left) and potential step (right).
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In our examples the result of the normalization procedure
is to set

As ¼
�
2.1432 × 10−9 GSR0

2.1295 × 10−9 GSR1
ðwarpÞ (B15)

for the warp step and

As ¼
�
2.1425 × 10−9 GSR0

2.1288 × 10−9 GSR1
ðpotentialÞ (B16)

for the potential step. In the absence of a step (bT ¼ bV ¼ 0),
the same procedurewould yieldAs ¼ 2.1554 × 10−9, which
is 1% different from the GSR1 value. These changes reflect
the broadband power introduced by the oscillations in each
case. Given the 0.1% precision of the Planck data, these
differences are significant and As cannot be held fixed when
fitting to step models.
For the minimization procedure in Appendix C, it is

nonetheless useful to have an approximate prescription
for the renormalization of As in the presence of oscil-
lations. Given the average of the oscillatory pieces in
Eqs. (B11)–(B12), the normalization parameter that the
data should hold approximately fixed is

~As ¼ Ase−2τð1þ ŌÞ; (B17)

where Ō contains the average of the oscillatory pieces in
each approximation,

Ō ¼
� 9

4
C2
2D

2

�
k0ss
xd

�
GSR0

π2

8
ð1 − nsÞ2 þ 9

2
C2
2D

2

�
k0ss
xd

�
GSR1

: (B18)

Here, the e−2τ factor accounts for the change in the
heights of the acoustic peaks due to anisotropy suppres-
sion by scattering during reionization. In our test cases,

~As ¼
�
1.8000 × 10−9 GSR0

1.7999 × 10−9 GSR1
ðwarpÞ (B19)

for the warp step,

~As ¼
�
1.7993 × 10−9 GSR0

1.7993 × 10−9 GSR1
ðpotentialÞ (B20)

for the potential step, and ~As ¼ 1.8021 × 10−9 without a
step. Note that ~As absorbs most of the changes in the As
normalization given in Eqs. (B15)–(B16) from the
presence of the step.

APPENDIX C: MINIMIZATION

In this Appendix we provide details of the effective
χ2 minimization for the various models presented in
Sec. III. In each case, we use the MIGRAD variable metric
minimizer from the CERN Minuit2 code [33].
We begin with the smooth ΛCDM cosmology specified

by the cosmological parameters f ~As; ns; θA;Ωch2;Ωbh2; τg
and 14 foreground parameters defined in the Planck like-
lihood [34]. We include the Planck low-l spectrum
(Commander, l < 50), the high-l spectrum (CAMspec,
50 < l < 2500), and WMAP9 polarization (low-like) like-
lihoods in our analysis [34,35]. ~As is the effective nor-
malization defined in Eq. (B17); in the absence of a step
~As ¼ Ase−2τ. In the standard ΛCDM model, the effective
number and sum of the masses of neutrinos are held fixed to
Neff ¼ 3.046 and

P
mν ¼ 0.06 eV, respectively, with the

helium fraction YP ¼ 0.2477. The best fit model is given in
Tables I and II and its χ2 is the baseline from which we
quantify any improvements due to the step parameters. We
fix the foreground parameters to these values for the
following analysis but have spot checked that reoptimiza-
tion over the foreground parameters does not substantially
change our results.

TABLE I. Best fit flat ΛCDM cosmological model without a
step with 6 varied parameters (top) and derived parameters
(bottom). This model provides the baseline χ2 for the smooth
model but its parameters require adjustment in the presence of a
step. ~As is an effective normalization parameter defined in
Eq. (B17).

109 ~As 1.8027
ns 0.9607
100θA 1.04144
10 Ωch2 1.1995
100 Ωbh2 2.2039
100τ 8.952
H0 67.22
109As 2.1562
D� (Mpc) 13893.1
χ2 9802.8

TABLE II. Foreground model. These parameters are jointly
minimized with those of Table I in the smooth model and held
fixed for the step analysis.

γCIB 0.538 APS
217 112.4

rPS143×217 0.906 ACIB
143 6.18

ACIB
217 27.5 c100 1.000580

AtSZ
143 6.71 c217 0.9963

ξtSZ-CIB 0.2 β11 0.55
APS
100 152 AkSZ 3

APS
143 50.8 rCIB143×217 0.365
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For the step analysis, the starting point is the canonical
cs ¼ 1 potential step where C1 ¼ C3 ¼ 0. As the oscil-
latory features from C2 dominate the fit to the Planck data,
the other cases are built from this model. In this case the
step is described by fC2; ss; xdg. While we could directly
minimize the χ2 in this joint cosmological and step
parameter space, the efficiency of the search is greatly
improved by choosing parameters that are better aligned to
the principal axes of the χ2 surface.
The angular frequency of the oscillation changes with

cosmological parameters at fixed ss. It is thus advantageous
to replace ss with

θs ¼
ss
D�

; (C1)

where D� is the distance to recombination. Note that the
oscillations in Cl are then described by sinusoids such as
sinð2lθsÞ. Next, due to projection effects, a fixed amplitude
C2 produces an oscillation in Cl that decays as
C2ðlθsÞ−1=2. In Ref. [2] this scaling was approximately
accounted for in the curvature power spectrum description
by introducing the amplitude parameter

Ac ¼ 3C2

� ffiffiffiffiffiffiffiffiffiffiffiffi
ss

1 Gpc

r �
−1
; (C2)

we adopt this convention rather than the more orthogonal
angular approach in order to compare with the previous
literature. Note that the original version of the Planck
collaboration analysis erroneously conflated this parameter
with C2 [5].
Finally, given that the oscillations produce excess broad-

band power, we use the normalization parameter ~As as
defined in Eq. (B17). For the best fit models, this parameter
rather than As itself is nearly constant. The optimized
parameters are therefore f ~As; ns; θA;Ωch2;Ωbh2; τg for the
smooth cosmology and fAc; θs; xdg for the step. The
minimum χ2 potential step model with cs ¼ 1 is given
in Table III (GSR1 column) and represents an improvement
of Δχ2 ¼ −14.0 over the smooth model of Table I. For
reference, we also show here the best fit model at
xd ¼ 2000, where the oscillations are undamped all the
way to the maximum of l ¼ 2500 for Planck. Note that
most of the improvement due to the step remains. We also
repeat the minimization for the GSR0 approximation used
in previous treatments for comparison. Note that after
adjusting cosmological parameters, steps in either approxi-
mation fit equally well but the recovery of such parameters
would be biased by using the less accurate GSR0
approximation.
For the arbitrary sound speed warp and potential step

models, C1 and C3 are set consistently with the step

amplitude fbT; bVg and slow-roll parameters after the step
fcsa; ϵHag through Eq. (11). These parameters mainly
change the power spectrum around l ∼ 1=θs and hence
produce only small changes in the χ2 due to the limitations
of cosmic variance.
We therefore keep the other parameters fixed to the

values of the xd ¼ 105 model listed in Table III when
considering the additional freedom in these models. Given
a fixed C2, which fixes the amplitude of the step, this
freedom is parametrized by csa, the sound speed after the
step. For warp step, the best fit is given by

csa ¼ 0.70; C1 ¼ −0.70;

C3 ¼ −0.37; Δχ2 ¼ −15.2 ðwarpÞ; (C3)

and this corresponds to a Δχ2 ¼ −1.2 improvement over
the potential step model at csa ¼ 1. For low sound speed
potential step models, the csa → 0 limit provides the best fit

csa → 0; C1 ¼ 0;

C3 ¼ −0.03; Δχ2 ¼ −14.1 ðpotentialÞ: (C4)

Given the additional parameter csa, neither improvement is
statistically significant.

TABLE III. Best fit potential step model with cs ¼ 1 showing
the 9 parameters jointly varied (top) and derived parameters
(bottom) using the GSR1 approximation of the main paper versus
the less accurate GSR0 approximation. The global minimum is at
xd ¼ 105 but xd ¼ 2000 where there is no damping of oscil-
lations for the Planck data gives a comparable fit, albeit with
lower a oscillation amplitude Ac. ~As is an effective normalization
parameter defined in Eq. (B17) that determines the broadband
observed CMB power in the presence of τ and a step.

GSR1 GSR0

xd 105 2000 105 2000
10θs 2.665 2.667 2.665 2.666
10Ac 1.17 0.663 1.11 0.707
109 ~As 1.8021 1.8024 1.8020 1.8021
ns 0.9690 0.9608 0.9640 0.9606
100θA 1.04140 1.04145 1.04136 1.04140
10 Ωch2 1.2091 1.1995 1.2035 1.1993
100 Ωbh2 2.1974 2.2039 2.2053 2.2039
100τ 9.421 9.117 9.361 9.205
H0 66.82 67.23 67.07 67.22
109As 2.1669 2.1420 2.1701 2.1565
D� (Mpc) 13874.7 13893.2 13882.9 13893.9
ss (Mpc) 3696.9 3704.7 3699.2 3704.5
C2 0.075 0.043 0.071 0.045
Δχ2 −14.0 −11.4 −13.8 −11.3
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