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We investigate the effects of the background primordial magnetic field (PMF) on the cosmic microwave
background (CMB). The sound speed of the tightly coupled photon-baryon fluid is increased by the
background PMF. The increased sound speed causes the odd peaks of the CMB temperature fluctuations to
be suppressed and the CMB peak positions to be shifted to a larger scale. The background PMF causes a
stronger decaying potential and increases the amplitude of the CMB. These two effects of the background
PMF on a smaller scale cancel out, and the overall effects of the background PMF are the suppression of the
CMB around the first peak and the shifting of peaks to a larger scale. We also discuss obtaining information
about the PMF generation mechanisms, and we examine the nonlinear evolution of the PMF by the
constraint on the maximum scale for the PMF distributions. Finally, we discuss degeneracies between the
PMF parameters and the standard cosmological parameters.
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I. INTRODUCTION

From the discovery of magnetic fields in clusters of
galaxies [1–4] and many theoretical studies of cosmologi-
cal magnetic fields [5–44], it was suggested that there is a
possibility of the presence of a primordial magnetic field
(PMF) from the early Universe. The effect of the PMF on
the early Universe and constraints on the PMF from
cosmological observations are among the best-researched
phenomena.
The cosmic microwave background (CMB) [45] pro-

vides important information about the Universe. The
positions of peaks and the amplitude of the CMB temper-
ature perturbations are reflected by the sound speed of
the photon-baryon fluid and the changing potential (see
Ref. [46]). Since a magnetic field increases the sound speed
of fluid and affects the evolution of density perturbations, if
this amplitude as background is large enough, the magnetic
field produces the critical effects on the CMB.
A power law (PL) is one of the most familiar spectra for

the various physical processes including the PMF on a
cosmological scale (see Refs. [47–49] and references
therein). Therefore, the effects of the PL-PMF on various
physical phenomena in the Universe have been studied
by many authors [5,47–50]. The main parameters of the
PL-PMF are the field strength on the coherent scale λ, Bλ,
and the spectral index, nB. Many authors also have tried
constraining these parameters from the cosmological obser-
vations [48–50].
Since an average of the strength of the PMF as the

background is zero, while an average of the background
PMF energy density is a finite value, previous studies have
constrained the background PMF energy density (ρPMF)
from big bang nucleosynthesis (BBN). ρPMF is proportional

to the scale-invariant field strength of the PMF (BSI), which
is as a function of λ; Bλ; nB, and the upper and lower scales
of the PMF at its generation time [50]. From previous
studies [50], ρPMF for larger nB is comparable to the
constrained PMF energy density by BBN, and this influ-
ence in the CMB is not negligible.
In this paper, we investigate the effects of the back-

ground PMF on the CMB as a function of the PL-PMF
parameters: the field strength on the coherent scale, the
spectral index, and the maximum scales of the PMF. We
also report degeneracies of these PL-PMF parameters and
the standard cosmological parameters in the PMF
influences in the CMB for the first time.
We explain how to introduce the effects of the back-

ground PMF on the CMB in Sec. II. In Sec. III, we show the
equations for the numerical computation of the CMB with
the PMF. In Sec IV, we report the PMF effects on the CMB,
discuss obtaining information about the PMF generation
mechanisms, and examine the nonlinear evolution of the
PMF by the constraint on the maximum scale for the PMF
distributions. We also discuss the degeneracies of the PL-
PMF parameters and the standard cosmological parameters
in Sec. IV. We summarize our research in Sec. V.

II. MODEL

In this section, we mention how to consider the effects of
the PMF on the CMB. We modify the CAMB code [51],
which is the most familiar numerical program for comput-
ing the theoretical CMBs, taking into consideration the
PMF effects. In this paper, we use the natural units in which
ℏ ¼ c ¼ 1, where ℏ is the reduced Planck constant (the
Dirac constant) and c is the speed of light.
From Appendix A, the magnetic field on a scale length

much bigger than LFI is difficult to dissipate within the age
of the Universe tage, and such a magnetic field is “frozen in”*yamazaki.dai@nao.ac.jp
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in the dominant fluids [52]. From Eq. (A4), the comoving
minimum scale length of the magnetic field at last scatter-
ing is of the order of 10−11 Mpc. Thus, we can assume that
the PMF is “frozen in” on the cosmological scale.

A. The PMF spectra

We will introduce the power-law PMF spectra in this
subsection. The detailed mathematical descriptions for
them are defined in Refs. [42,49]. A power-law function
is one of the most familiar spectra for distributions of the
PMF [5,47–49]. A lot of authors have studied effects of
PMFs with the power-law spectrum on various physical
processes in the cosmology [5,47–49], and were challenged
to constrain such PMFs. In this paper, as in previous work,
the PMF spectrum is given by the power law.
We assume that the PMF is statistically homogeneous,

isotropic, and random. In this case, the ensemble average of
the magnetic strength is zero, while the ensemble average
of the energy density of the magnetic field, which is
proportionate to the squared magnetic strength, has a finite
value. The PMF fluctuation spectrum can be formulated [5]
as a power law by hBðkÞB�ðkÞi ∝ knB, where nB is the
spectral index of the PMF. We can also define a two-point
correlation function of the PMF [5]:

hBiðkÞBj�ðk0Þi ¼ ðð2πÞnBþ8=2knBþ3
λ Þ

�
B2
λ=Γ

�
nB þ 3

2

��

× knBPijðkÞδðk − k0Þ; k < kmax; (1)

where PijðkÞ ¼ δij − kikj

k2 ; Bλ ¼ jBλj is the PMF comoving
amplitude, derived by smoothing over a Gaussian sphere of
radius λ ¼ 1 Mpc (kλ ¼ 2π=λ); and kmax is an upper wave
number of the PMF distribution. Considering the nonlinear
dispersion of the PMF on much smaller than cosmological
scales, kmax is derived as a cutoff wave number kC at the last
scattering by Ref. [53,54].
We use the PMF spectrum of the energy density

[E½EM∶S�ðkÞ], shear stress [Z½EM∶S�ðkÞ], Lorentz forces for
the scalar [Π½EM∶S�ðkÞ] and vector modes [Π½EM∶V�ðkÞ], and
the metric source for tensor modes [Π½EM∶T�ðkÞ] that are
formed by Refs. [42,49]. We also estimate them by the full
numerical methods developed in our previous studies
[41,42,49].
As mentioned above, an average of the background PMF

strength is zero, while an average of the background PMF
energy density is a finite value. From Ref. [50] and
Appendix B, the energy density and the effective amplitude
of the background PMF are defined by

ρMF ¼
1

8π

B2
λ

ΓðnBþ5
2
Þ ½ðλkmaxÞnBþ3 − ðλk½min�ÞnBþ3� (2)

and

BSI ≡ Bλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðλk½max�ÞnBþ3 − ðλk½min�ÞnBþ3�

ΓðnBþ5
2
Þ

s
; (3)

where ΓðxÞ is the gamma function, and k½min� gives the
minimum wave numbers and is dependent on PMF gen-
eration models. If the PMF is generated in the inflation
epoch or produced by some vorticity anisotropies of an
inflationary origin, we assume that k½min�=kmax is very
small, and the last term of Eq. (2) is negligibly small.
The energy density and amplitude of the background PMF
then reduce to

ρMF ∼
1

8π

B2
λ

ΓðnBþ5
2
Þ ðλkmaxÞnBþ3 (4)

and

BSI ¼ Bλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλkmaxÞnBþ3

ΓðnBþ5
2
Þ

s
: (5)

B. Cosmic expansion rate with background PMF
energy density

In this subsection, we introduce the effect of the back-
ground PMF on the cosmic expansion. In a homogeneous
and isotropic flat universe, we can find the Hubble
parameter H from the Friedmann equation and the con-
servation of energy-momentum tensor as follows:

�
_a
a

�
2 ≡H2 ¼ 8πG

3
ρ; (6)

_ρ ¼ −3Hðρþ pÞ; (7)

where overdots represent derivatives with respect to time,G
is Newton’s constant, ρ is the total energy density, and p is
the total pressure. We assume that the main fluid compo-
nents in the Universe are the photon, the neutrino, cold
dark matter (CDM), and the baryon. In this paper, variables
with the subscripts “γ,” “ν,” “CDM,” and “b” indicate
the photon, neutrino, CDM, and baryon, respectively.
Therefore, the total energy density and pressure with the
background PMF are ρ ¼ ργ þ ρν þ ρCDM þ ρb þ ρMF and
p ¼ pγ þ pν þ pMF, where ρMF and pMF are the energy
density and pressure of the background PMF, and we
consider the matter pressures to be much smaller than the
radiation ones.
If ρMF is large enough in the radiation-dominated era, the

effect of the energy density of the background PMF on the
cosmic expansion is not small, and the matter-radiation
equality time teq becomes later. In this case, the decaying
potential by the radiation becomes relatively strong on
larger scales at the recombination, and it makes the forced

DAI G. YAMAZAKI PHYSICAL REVIEW D 89, 083528 (2014)

083528-2



oscillation of the photon-baryon fluid and the early
integrated Sachs-Wolfe (ISW) effect stronger. Therefore,
a sufficiently large energy density of the PMF in the
radiation-dominated era has no small effect on the primary
temperature fluctuations of the CMB for lower l, and we
can expect that the PMF energy density can be constrained
by the CMB temperature fluctuations for lower l.

C. A magnetosonic wave

In this subsection, we will introduce the magnetohydro-
dynamics (MHD) equations and derive a magnetic sonic
speed considering the background PMF.
The MHD equations [55] are

ρ

� ∂
∂tþ u ·∇

�
u ¼ −∇pþ 1

4π
ð∇ × BÞ × B; (8)

∂
∂t ρ ¼ −∇ · ðρuÞ; (9)

∂
∂tB ¼ ∇ × ðu × BÞ: (10)

We assume ρ ¼ ρ0, p ¼ p0, u ¼ 0, and B ¼ B0 as the
steady state and δρ, δu, δp, δB as the small perturbations.
The first-order perturbations of MHD equations then are

ρ0
∂
∂t δu ¼ −∇δpþ 1

4π
∇ × ðδB × BÞ; (11)

∂
∂t δρ ¼ −∇ · ðρ0δuÞ; (12)

∂
∂t δB ¼ ∇ × ðδu × BÞ; (13)

δp ¼ c2sδρ; (14)

where cs is a sound speed without a magnetic field. We
assume the oscillation of the first-order perturbation to be
exp ½iðk · x − ωtÞ�; we can use the following relations:
∂=∂t → −iω, ∇ → ik, and ∇× → ik×. Therefore, using
Eq. (14), Eqs. (11)–(13) become

ωρ0δu ¼ c2sδρk −
1

4π
ðk × δBÞ × BÞ; (15)

ωδρ ¼ ρ0ðk · δuÞ; (16)

ωδB ¼ −k × ðδu × BÞ: (17)

Using Eqs. (16) and (17), Eq. (15) then becomes

ω2δu¼ c2sðk · δuÞkþ
1

4πρ0
fk× ½k× ðδu×BÞ�g×B: (18)

Using A × ðB × CÞ ¼ ðA · CÞB − ðA · BÞC and ðA × BÞ×
C ¼ ðA · CÞB − ðB · CÞA, the last term of Eq. (18) is

1

4πρ0
fk × ½k × ðδu × BÞ�g × B

¼ 1

4πρ0
½ðk · BÞ2δu − ðk · BÞðδu · BÞk − ðk · δuÞðk · BÞB

þ ðk · δuÞB2k�: (19)

We assume that the direction of the magnetic field is fixed,
as previous work and the texts [55,56] indicate so far. In
statistical cosmological study, we are interested not in local
magnetic effects but in global ones, which are average
universe-wide. We also assume that the background PMF is
stochastic isotropic and homogenous. In this case, the
ensemble average of the magnetic strength is zero, while
the ensemble average of the energy density of the magnetic
field has a finite value. Therefore, the relation between the
mean square of the background PMF amplitude hB2

bci ¼
B2
SI ∝ ρMF and each spatial component hB2

xi, hB2
yi, and hB2

zi
is hB2

xi ¼ hB2
yi ¼ hB2

zi ¼ 1
3
B2
SI. From these interpretations,

in Eq. (19), the average of k · B ¼ kB cos θ per θ becomes
zero, and the average of ðk · BÞ2 ¼ k2B2ðcos θÞ2 per θ
becomes k2B2

SI=6. Then, we obtain

ω2δu ¼ c2sðk · δuÞkþ
B2
SI

12πρ0

�
1

2
k2δuþ ðk · δuÞk

�
: (20)

From the inner product of Eq. (20) and k, the effective
sound speed with the background PMF is derived by

c2sA ¼ c2s þ
1

2
c2A; (21)

where c2A is the Alfven speed from the background PMF,

defined by c2A ¼ hB2
bci

4πρ0
.

III. EQUATIONS WITH THE PRIMORDIAL
MAGNETIC FIELD

In this section, we will introduce the essential evolution
equations with the PMF for each mode. For details, see
Refs. [42,57]. In this paper, we choose the conformal
Newtonian gauge that is defined by Refs. [57–59]. After
this section, we also use the conformal time, which is
defined by

R
t
0 dt

0=aðt0Þ, instead of physical time, t. In the
linear approximation, we should consider the zeroth-order
factor, e.g. radiation, matter, and background PMF
energy densities, for solving all equations as mentioned
in Sec. II B, while solutions of perturbations can be divided
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into those with and without PMF as the first-order pertur-
bation by Green’s function method as

fðkÞ ¼ f½FL�ðkÞ þ f½PMF�ðkÞ: (22)

In this paper, we assume that there is no correlation
between the PMF and the primary perturbations. In this
case, we do not have to consider the correlation term
between the PMF and primary in Eq. (22). Since the
equations for f½FL�ðkÞ are equal to the equations for
f½PMF�ðkÞ which are removed the PMF terms as the first
order perturbation source except the background PMF, we
do not write down the equations for f½FL�ðkÞ in this paper.
From Refs. [42,46,57–62], the evolution equations of the

scalar mode with the PMF are

k2ϕþ 3Hð _ϕþHψÞ ¼ 4πGa2fE½EM∶S�ðk; τÞ − δρg; (23)

k2ðϕ − ψÞ ¼ −12πGa2fZ½EM∶S�ðk; τÞ − ðρν þ PνÞσν
− ðργ þ PγÞσγg; (24)

_δðSÞCDM ¼ −vðSÞCDM þ 3 _ϕ; (25)

_vðSÞCDM ¼ −
_a
a
vðSÞCDM þ k2ψ ; (26)

_δðSÞγ ¼ −
4

3
vðSÞγ þ 4 _ϕ; (27)

_δðSÞν ¼ −
4

3
vðSÞν þ 4 _ϕ; (28)

_vðSÞγ ¼ k2
�
1

4
δðSÞγ − σγ

�
þ aneσTðvðSÞb − vðSÞγ Þ þ k2ψ ; (29)

_vðSÞν ¼ k2
�
1

4
δðSÞν − σν

�
þ k2ψ ; (30)

_δðSÞb ¼ −vðSÞb þ 3 _ϕ; (31)

_vðSÞb ¼ −
_a
a
vðSÞb þ c2bAk

2δðSÞb þ 1

R
aneσTðvðSÞγ − vðSÞb Þ þ k2ψ

þ k2
Π½EM∶S�ðk; τÞ

ρb
; (32)

where ψ is the perturbation of gravitational potential in the
Newtonian limit; ϕ is the perturbation of the spatial
curvature; R is ð3=4Þðρb=ργÞ; σγ and σν are the shear
stresses of the photons and the neutrino, respectively; vðSÞX
and δðSÞX are the velocity and density perturbations for
each component; X, ne is the free electron number
density; and σT is the Thomson scattering cross section.
Here c2bA ¼ c2b þ c2A=2 is the magnetosonic speed in baryon
fluid [see Eq. (21)], where c2b is the sound speed of the
baryon fluid without the background PMF and is defined
by Ref. [58].
The evolution equations of the vector mode with the

PMF are

k
�
_V þ 2

_a
a
V
�

¼ −8πa2G½2Π½EM∶V�ðk; τÞ þ pγπγ þ pνπν�;

(33)

_vðVÞν − _V ¼ −k
� ffiffiffi

3
p

5
ΘðVÞ

ν2

�
; (34)

_vðVÞγ − _V þ _τcðvðVÞγ − vðVÞb Þ ¼ −k
� ffiffiffi

3
p

5
ΘðVÞ

γ2

�
; (35)

_vðVÞb − _Vþ _a
a
ðvðVÞb −VÞ− 1

R
_τcðvðVÞγ −vðVÞb Þ¼k

Π½EM∶V�ðk;τÞ
ρb

;

(36)

where Vðτ;kÞ is the vector potential; pX, πX, v
ðVÞ
X are the

pressure, the anisotropic stress, and velocity for each
component X; and ΘðVÞ

ν2 and ΘðVÞ
γ2 are quadrupole

moments of the neutrino and photon angular distributions,
respectively [59,61].
The evolution equations of the tensor mode with the

PMF are

Ḧþ 2
_a
a
_Hþ k2H ¼ 8πGa2

�
Π½EM∶T� þ

8

5
ΘðTÞ

2

�
; (37)

where H is the tensor potential and ΘðTÞ
2 is the quadrupole

moment of the photon angular distribution [59,61].
We shall explain the effects of the vector and tensor

modes with the background PMF on the CMB. The vector
and tensor modes do not have terms which are directly
dependent on the oscillatory propagations, as the second
term on the left side of Eq. (32). These modes also do not
have terms which are directly dependent on energy-density
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perturbations. Since it is difficult for the radiation-like
energy densities including the PMF to contribute to the
expansion rate of the Universe around the epoch of the
recombination, the effect of the PMF energy density on H
is subdominant. Thus, the background PMF effects on the
vector and tensor mode are relatively small.
Since the sonic speed of the baryon fluid with the

background PMF is not an effective factor for the men-
tioned equations at the subhorizon and superhorizon, for
deriving initial conditions, we do not have to consider cbA,
and it is only necessary to consider the background PMF
for Eqs. (6) and (7). Therefore, the values of the initial
conditions are dependent on the total energy density and
Eqs. (6) and (7), which are affected by the background
PMF, and we just have to change ρ and p without the
background PMF to their values with the background PMF.
Finally, we do not have to change the expression of the
initial conditions in Refs. [42,57].

IV. RESULTS AND DISCUSSIONS

As mentioned in Sec. II, since there is no density
perturbation term in the equations of the vector and tensor
modes, we have no need to consider the sonic speed term
for these modes as the second term on the left side of
Eq. (32). Therefore, at first, to understand the pure
background PMF effect on the CMB from the scalar
mode, we derive the analytical solution from the adiabatic
initial condition for the acoustic oscillation of the photon-
baryon fluid without the PMF term as the first-order
perturbation, which is the last term of Eq. (32), in the
scalar mode.
From Eqs. (23), (24), (27), (29), (31), and (32) without

the last term, we obtain

δ̈ðSÞγ þH
R

1þ R
_δðSÞγ þ k2c2Sδ

ðSÞ
γ ¼ ϕ̈ −

R
1þ R

_a _ϕ−
k2

3
ψ :

(38)

Here c2S ¼ c2pb þ c2A=2, where c2pb ¼ 1
3ð1þRÞ is the

sound speed of the photon-baryon fluid without the back-
ground PMF, and c2A is derived using the cutoff scale
derived by the nonlinear dispersion model [53,54]. On the
right side of Eq. (38), the first term is a time delay from
the Universe expansion, the second term is an effect
of the Universe expansion, and the third term is a blue
(or red) shift from the gravity potential. Since we are
interested in phenomena of the photon-baryon fluid around
the epoch of the recombination, we consider the matter-
dominant era. In the matter-dominant era, the potential
terms are not dependent on time before the cosmological
constant dominates the Universe. Therefore, we can neglect
the first and second terms of the right side of Eq. (38), and

the third term also is not dependent on time. Finally, we
obtain

δ̈ðSÞγ þH
R

1þ R
_δðSÞγ þ k2c2Sδ

ðSÞ
γ ∼ −

k2

3
ψ : (39)

The special solution of Eq. (39) is

δðSÞγ ¼ −
1

3c2S
ψ : (40)

In case of the adiabatic condition, the homogeneous
solution of Eq. (39) is

δðSÞγ ¼ A cos ðkdSÞ; (41)

where dS is the sound horizon as
R η
0 cSðη0Þdη0. From the

large-scale limit of the Boltzmann equation, the initial

condition of δðSÞγ in the matter-dominant epoch is
−2ψð0Þ=3. Therefore, from Eqs. (40) and (41), the general
solution of Eq. (39) is

δðSÞγ ðηÞ ¼
�
1

3c2S
−
2

3

�
ψ cos ðkdSÞ −

1

3c2S
ψ : (42)

FIG. 1 (color online). The effects of the background
magnetic field on the CMB. The dotted curve is the theoretical
result from the WMAP nine-year best-fit parameter in ΛCDM
and the tensor mode [64]. (The main papers of the Planck
project are under review, so we refrain from using their
results.) These standard cosmological parameters are
ðΩb; ΩCDM; ns; 109Δ2

R; H0; τ; rÞ ¼ ð0.0442; 0.210; 0.992; 2.26;
72:6; 0.091; 0.38Þ, where Ωbh2 is the baryon density, ΩCDMh2 is
the CDM density, ns is the scalar spectral index, 109Δ2

R is the
amplitude of the initial fluctuation, H0 is the Hubble parameter, τ
is the optical depth, and r is the tensor-to-scalar ratio. The bold
curve is the theoretical result with the background PMF effects of
(0.0, 3 nG) (without the first-order perturbation of the PMF). In
this case, ρMF=ργ ¼ 0.0161.
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An observable which we can obtain from the CMB is

δðSÞγ ðηÞ þ ψ , because the temperature fluctuations of the
CMB are affected by the gravitational redshift from the
gravitational potential. We also assume the gravitational
potential to be an external field, and a gravitational
potential has a negative value if a density fluctuation has
a positive value. Taking into account these considerations,
and from Eq. (42), we therefore show that the observable

δðSÞγ ðηÞ þ ψ is

jδðSÞγ ðηÞ þ ψ j ¼
��

2

3
−

1

3c2S

�
cos ðkdSÞ

�
1

3c2S
− 1

��
jψ j:

(43)

From this equation, the amplitudes of odd peaks decrease
when the sound speed increases, while the amplitudes of
even peaks are not affected by the increased sound speed.
Furthermore, the wavelength of Eq. (43) increases when the

sound speed increases, and the peak positions are shifted to
a larger scale.
If we consider the energy density of the background

PMF, the total radiation-like energy density ρR increase and
the epoch of equality occur closest to the recombination, so
that ρR has to be accounted for in estimating the temper-
ature fluctuations of the CMB at the recombination. In this
case, the decaying potential by the radiation becomes
relatively strong on larger scales at the recombination,
and it provides a stronger driving force for the oscillations
and the stronger early ISW effect. Thus, the amplitude of
the CMB is larger than in a universe without the back-
ground PMF. Since the decaying potentials occur in the
horizon, and the smaller scales enter the horizon earlier, the
potentials of larger scales decay more weakly. Therefore,
the increase in the amplitude from these effects is smaller
around the first peak, and this effect also cancels out the
effects of cS on the odd peaks less than the third peak of the
CMB. Finally, the total changing amplitudes of the CMB
from the pure effects of the background PMF around the
first peak are stronger than in smaller scales. Actually, these

FIG. 2 (color online). The effects of the PMF on the CMB. The dotted curve is the theoretical result from the WMAP nine-year best-fit
parameter in ΛCDM and the tensor mode [64]. (The main papers of the Planck project are under review, so we refrain from using their
results.) The bold curves in panels (a), (b), (c), and (d) are the theoretical results with the PMF effects of
ðnB; Bλ; ρMF=ργÞ ¼ ð−2.0; 15 nG; 0.00116Þ; ð−2.0; 20 nG; 0.00185Þ; ð0.0; 2 nG; 0.00910Þ, and ð0.0; 3 nG; 0.0161Þ, respectively. The
dots with the error bars are the results of the CMB observations [64–66], as shown by the legend in this figure.
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features are illustrated by theoretical computed results of
CMB temperature fluctuations with the background PMF
in Fig. 1 [63].
Considering these effects of the background PMF on the

CMB, we can effectively constrain them by the observation
results on lower l. Therefore, next, we shall focus on the
effect of the background PMF on the CMB for l < 1000.
Figure 2 shows the temperature fluctuations of the CMB
with total PMF effects (scalar + vector + tensor modes and
the background PMF). From Eq. (4) and Fig. 3, the energy
density of the background PMF is dependent on the
power-law index nB and becomes much smaller with lower
nB. Therefore, the effects of the PMF at lower nB are
dominated by the perturbation-like PMF as in previous
studies. Actually, in Figs. 2(a) and 2(b), the effects of the
background PMF on the CMB around the first peak are
very small, even if the Bλ’s are larger than the previous
constrained values. On the other hand, the effects of the
PMF of bigger nB on the CMB are not negligible around
the first peak [Figs. 2(c) and 2(d)]. Since the observational
result of the CMB around the first peak is much better than
at higher peaks, we expect that the PMF of the nonlinear
cutoff model on bigger nB can be constrained more
strongly.
We shall discuss kmax being assumed as a free parameter

as an academic interest. Mathematically, in this case, the
energy density of the PMF is dependent on the wave-
number upper limit kmax [Eq. (2)], and kmax is dependent on
a generation mechanism of the PMF. Using this property,
we can obtain the prior limits of kmax and constrain PMF
generation models indirectly from the CMB. Figure 4
shows the contribution of kmax to the CMB. A larger
kmax induces larger ρMF and cS. Thus, the locations of the
peaks and troughs of the CMB are shifted to smaller l, and
the amplitude of the CMB around the first peak is sup-
pressed. This change is very unique, and we expect that
kmax can be constrained by the CMB of lower l. The

constraint on kmax also helps to determine whether or not
the diffusion model of the PMF on the nonlinear region is
plausible. If the large-kmax model has a better likelihood,
we should construct a new physical model for the PMF
time evolution in the nonlinear region; on the other hand,
we will be able to confirm that the previous model that
derives kC is suitable.
Finally, we discuss degeneracies between the back-

ground PMF, the baryon, and CDM. Considering the
fundamental understanding of the baryon and matter-
density effects on the CMB [46], we expect a positive
correlation between Ωb and the background PMF, and a
negative correlation between Ωm and the background
PMF. In fact, the affected CMB by the PMF can be
adjusted by changing Ωb and ΩCDM, as shown in Fig. 5.
In previous constraints on the PMF without the background
effects, the degeneracy between the PMF and the
standard cosmological parameters is negligibly small. If
nB and kmax are sufficiently small, the ρMF is too small to
affect the CMB, and the previous result is no problem.
However, a lot remains to be established about the PMF; it
is too early to discuss the PMF effects and generation
mechanisms in such a narrow parameter range. To under-
stand the PMF correctly, we should constrain the back-
ground PMF and the standard cosmological parameters
simultaneously.

FIG. 3 (color online). The ratio of the background magnetic
field to photon density. The bold, dotted, and dashed curves are
Bλ ¼ 10, 1, and 0.1 nG, respectively.

FIG. 4 (color online). The contribution of the upper-limit
wave number of the PMF to the CMB. The dotted curve is
the theoretical result from the WMAP nine-year best-fit
parameter in ΛCDM and the tensor mode [64]. The bold, dashed,
and thin curves are the theoretical results with the PMF effects
of ðnB;Bλ;kmax;ρMF=ργÞ¼ð−2.0;15 nG;1000Mpc−1;0.0240Þ;
ð−2.0;15 nG;500Mpc−1;0.0120Þ, and ð−2.0; 15 nG; 50 Mpc−1;
0.00120Þ, respectively.
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V. SUMMARY

We consider the background PMF effects on the CMB
for the first time. The background PMF increases the sound
speed of the tightly coupled photon-baryon fluid and causes
a stronger decaying potential. The overall effect of the
background PMF changes amplitudes of the CMB around
the first peak more strongly than in smaller scales. Since the
observational result of the CMB around the first peak is
much better than at higher peaks, we expect that the PMF of
bigger nB’s can be constrained more strongly. We report the
case in which kmax is assumed to be a free parameter. The
energy density of the background PMF is dependent on
kmax, and kmax is dependent on a PMF generation model.
Hence, if one determines the kmax by constraining the
magnetic energy density from the CMB, we obtain infor-
mation about the PMF generation mechanisms. We also
discuss the constraint on the kmax as being an examination
for the nonlinear evolution of the PMF.
Finally, we discuss the possibility of degeneracies

between the background PMF, the baryon, and the CDM.
If we promote the effects of the background PMF on the

CMB, and constrain them by the latest and future obser-
vations, it will permit the development of better studies for
the generation and evolution of the PMF and provide new
insight into the early Universe with the PMF.
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APPENDIX A: A MINIMUM SCALE OF THE PMF

In this appendix, we mention briefly how to estimate a
minimum scale of the PMF in the early Universe. The
electrical resistance in the early Universe is defined by

ωe ≡ 1

σ
¼ me

nee2
cnγσT ¼ cσTme

ηe2
; (A1)

where σ is the electric conductivity,me is the electron mass,
ne is the electron number density, e is the charge of an
electron, c is the speed of light, nγ is the photon number
density, σT is the Thomson scattering cross section, and η is
the baryon-to-photon ratio. From Eq. (A1), the magnetic
diffusivity is

ζ ≡ c2

4πσ
¼ c2ωe

4π
: (A2)

Since statistically average motions of fluids are assumed to
be negligibly small in the early Universe, the induction
equation from Eq. (A2), Ohm’s law, and Maxwell’s
equations is [52]

∂B
∂t ¼ ζ∇2B: (A3)

This equation indicates the magnetic field dissipating, and
that the magnetic field dissipates rapidly with time and
cannot survive on the scale length [47,52]

L < LFIðtÞ≡
ffiffiffiffiffiffiffiffiffi
ζtage

q
¼ 7.5046 × 10−2

cm

sec
1
2

�
tage
η

�1
2

; (A4)

FIG. 5 (color online). The contribution of the PMF and the standard cosmological parameters to the CMB. The dotted curves
are the theoretical results without PMF effects. The bold curves are the theoretical results with PMF effects of
ðnB; Bλ; kmax; ρMF=ργÞ ¼ ð−2.0; 10 nG; 1500 Mpc−1; 0.0160Þ. The standard cosmological parameters of all curves in this figure
except the bold curves of panel (b) are the WMAP nine-year best-fit parameters in ΛCDM and the tensor mode [64]. These
standard cosmological parameters are ðΩb;ΩCDM; ns; 109Δ2

R;H0; τ; rÞ ¼ ð0.0442; 0.210; 0.992; 2.26; 72:6; 0.091; 0.38Þ. The different
standard cosmological parameters of the bold curve in the right panel (b) are the baryon density and the CDM density. These parameter
values are ðΩb;ΩCDMÞ ¼ ð0.0461; 0.195Þ.
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where tage is the Universe’s age. The magnetic field on the
scale length L ≪ LFIðTÞ is also difficult to produce. On the
other hand, the magnetic field on a scale length much
bigger than LFI is difficult to dissipate by time tage, and such
a magnetic field is “frozen in” in the dominant fluids [52].
For example, from Eq. (A4), the comoving minimum scale
length of the magnetic field at last scattering is of the order
of 10−11 Mpc.

APPENDIX B: A BACKGROUND ENERGY
DENSITY OF PMF IN THE UNIVERSE

In this appendix, we derive the background energy
density of the power-law PMF. A two-point correlation
function of the PMF strength [38,41,49] is defined by

hBiðkÞBj
�ðk0Þi ¼ ð2πÞ3P½PMF�ðkÞPi

jðkÞδðk − k0Þ; (B1)

where

Pi
jðkÞ ¼ δij −

kikj
k2

(B2)

and

P½PMF�ðkÞ ¼ AknB : (B3)

We use the convention for the Fourier transform as

fðkÞ ¼
Z

expðik · xÞFðxÞd3x: (B4)

Equation (B1) gives

hBiðkÞBi
�ðk0Þi ¼ 2ð2πÞ3P½PMF�ðkÞδðk − k0Þ

¼ 2ð2πÞ3AknBδðk − k0Þ: (B5)

Next, we shall derive A. We define

hBiðxÞBiðxÞijλ ¼ B2
λ ; (B6)

where λ is a comoving scale for a Gaussian sphere on the
present, and Bλ is a comoving strength of PMF, and it is
scaled to the present value on λ. From Eqs. (B1)–(B3)
and (B6),

hBiðxÞBiðxÞijλ ¼ B2
λ

¼ 1

ð2πÞ6
Z

d3k
Z

d3k0 expð−ix · kþ ix · k0Þ

× hBiðkÞB�
i ðk0Þi × jW2

λðkÞj; (B7)

where WλðkÞ is a Gauss window function as
WλðkÞ ¼ expð−λ2k2=2Þ. So we finally have

A ¼ B2
λ

ð2πÞ2
4

�Z
dkknBþ2 expð−λ2k2Þ

�
−1

¼ B2
λ

ð2πÞ2
2

λnBþ3

ΓðnBþ3
2
Þ

¼ B2
λ

ð2πÞnBþ5

2

1

knBþ3

½PMF�ΓðnBþ3
2
Þ ; (B8)

where ΓðxÞ is the gamma function and λ ¼ 2π=k½PMF�.
Substituting this into Eq. (B3) leads to

P½PMF�ðkÞ ¼
ð2πÞ2B2

λλ
nBþ3

2ΓðnBþ3
2
Þ knB : (B9)

From Eqs. (B1)–(B5) and (B9), the PMF energy density is
derived by

ρMF ¼
hB2i
8π

¼ 2

8π

Z
k½max�

k½min�

dk
k

k3

2π2
P½PMF�ðkÞ

¼ 2

8π

Z
k½max�

k½min�

dk
k

k3

2π2
ð2πÞ2B2

λλ
nBþ3

2ΓðnBþ3
2
Þ knB

¼ 1

8π

B2
λ

ΓðnBþ5
2
Þ ½ðλk½max�ÞnBþ3 − ðλk½min�ÞnBþ3�: (B10)

Here k½max� and k½min� are the maximum and minimum wave
numbers, respectively. They are dependent on PMF gen-
eration models. The main goal of this study is to research
the effects of the PMF energy density on the CMB and to
discuss the degeneracy between the PL-PMF parameters
and distribution models of the PMF. In order to effectively
proceed with such research and discussions, from
Eq. (B10), the scale-invariant (SI) strength of the PMF
is defined by

ffiffiffiffiffiffiffiffi
ρMF

p
∝ BSI ≡ Bλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðλk½max�ÞnBþ3 − ðλk½min�ÞnBþ3�

ΓðnBþ5
2
Þ

s
(B11)

and

BλðnB; k½max�; k½min�Þ ¼ BSI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓðnBþ5

2
Þ

ðknBþ3

½max� − knBþ3

½min� ÞλnBþ3

vuut ;

(B12)

where B2
SI is directly proportional to the PMF energy, and

not dependent on other PMF parameters. Therefore, these
formulations are useful for directly understanding the PL-
PMF energy density effects on the CMB, and also make it
relatively easy to discuss the degeneracy of the PL-PMF
parameters.
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