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We investigate the creation of cold dark matter (CCDM) cosmology as an alternative to explain the
cosmic acceleration. Particular attention is given to the evolution of density perturbations and constraints
coming from recent observations. By assuming negligible effective sound speed we compare CCDM
predictions with redshift-space-distortion based fðzÞσ8ðzÞ measurements. We identify a subtle issue
associated with which contribution in the density contrast should be used in this test and then show that the
CCDM results are the same as those obtained with ΛCDM. These results are then contrasted with the ones
obtained at the background level. For the background tests we have used type Ia supernovae data (Union
2.1 compilation) in combination with baryonic acoustic oscillations and cosmic microwave background
observations and also measurements of the Hubble parameter at different redshifts. As a consequence of
the studies we have performed at both the background and perturbation levels, we explicitly show that
CCDM is observationally degenerate with respect to ΛCDM (dark degeneracy). The need to overcome the
lack of a fundamental microscopic basis for the CCDM is the major challenge for this kind of model.
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I. INTRODUCTION

Explaining the recent cosmic acceleration, believed to
be related to some form of dark energy, and supported by
the observations of high redshift supernovae and by other
independent observational data, such as the results coming
from cosmic microwave background radiation (CMBR)
and with baryonic acoustic oscillation (BAO), is one of the
present day challenges in cosmology. Among the many
possible proposals (for recent reviews, see, e.g., Ref. [1]
and also references therein), possibly a cosmological
constant (Λ) is the simplest answer to explain the late-
time cosmic acceleration. Of course, this also brings some
theoretical difficulties, which are how to explain its origin,
right magnitude and why it comes to dominate just now.
Just like the early-time cosmic acceleration associated

with inflation, a negative pressure can be seen as a possible
driving mechanism for the late-time accelerated expansion
of the Universe as well. One of the earliest alternatives that
could provide a mechanism producing such accelerating
phase of the Universe is through a negative pressure
produced by viscous or particle production effects. For
instance, one of the first works relating particle production,
in particular as a result of a nonstationary gravitational field
and that can be described phenomenologically by means of
a negative pressure, is due to Zeldovich [2]. This is much
similar to the idea put forward by Murphy [3] and also later

by Hu [4], that particle production might also be described
equivalently in terms of a bulk viscous pressure in the
cosmological fluid. In this context, since a bulk viscous
pressure is a negative pressure contribution in the energy-
momentum stress tensor [5], it has lead to an extensive
literature on applications related to bulk viscous cosmology
(for a partial sample of the earliest works on bulk viscous
cosmologies, see for example Refs. [3,4,6,7]). In addition,
more recently, there has also been a surge of interest in
exploring the effects of the bulk pressure as the origin of
the present accelerated expansion of the Universe (see, e.g.,
Ref. [8]). A closed related scenario to the bulk viscous
cosmology is that of the so-called adiabatic matter creation,
which makes use of ideas of the thermodynamics of open
systems in the context of cosmology and initiated by
Prigogine and collaborators [9]. A covariant formalism
approach has later been formulated in Ref. [10].
Despite the fact that bulk viscous and matter creation

cosmologies apparently look similar, they have some fun-
damental differences. Bulk viscous cosmologies are asso-
ciated with a generalization of the hydrodynamics of ideal
fluids for the case of nonideal ones, with constitutive
equations describing the viscous pressures built as additional
correction terms to the equilibrium energy-momentum stress
tensor [5]. As such, the viscous pressure contributions can be
seen as small nonequilibrium contributions for the energy-
momentum tensor for nonideal fluids. It happens, however,
that most of the effects of a bulk viscous pressure to
cosmology, as for example when it is used as a mechanism
for inflation, it typically requires an extrapolation beyond
the limit of validity for these theories [11] (see, however,
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Ref. [7]). In the context of matter creation, even though also
a negative effective pressure can be associated with it, there
is in principle no such limitation as with a negative bulk
viscous pressure.
Particle creation models [9,10,12–18], as the one treated

in this work, should also not be confused with other
cosmological scenarios where particle production is present,
like, e.g., in warm inflation [19]. In warm inflation models
the inflationary evolution can be strongly influenced by
relativistic (radiation) particle production. In these models
there can also be negative pressure effects as a result of a
bulk viscous pressure from the radiation bath, but these
effects are in general small in the inflationary context [20].
Many authors have explored scenarios of matter creation

in cosmology, but here we are particularly interested in
the gravitationally induced particle creation scenario
denominated “creation of cold dark matter” (CCDM)
[15–18] in which a special choice of the particle production
rate produces a cosmology that, at the background level,
is indistinguishable from the standard Λ cold dark matter
(ΛCDM) model. However, as we are going to discuss in
this paper, at the perturbative level this degeneracy is more
subtle and care should be taken when contrasting CCDM
predictions with those obtained in the standard ΛCDM
cosmology. Furthermore, perturbations in the case of
CCDM cosmology have mostly been studied in the context
of the so-called neo-Newtonian formalism [21]. Following
Ref. [22], here we will show that this formalism for
studying density perturbations has limitations and a fully
relativistic one (like that, for example, of Ref. [23]) is
required in the case in which the effective speed of sound
cannot be neglected.
The rest of this paper is organized as follows. In Sec. II

we briefly review the thermodynamics for matter creation
cosmology. In Sec. III we discuss the background equations
and their solutions. In Sec. IV both the neo-Newtonian and
relativistic approaches are discussed and the differences
between the two are given. In Sec. V we analyze the
observational constraints on the CCDM model we have
considered here. Finally, our conclusions and final remarks
are given in Sec. VI.

II. THERMODYNAMICS OF MATTER
CREATION IN A SIMPLE FLUID

Let us briefly review here the thermodynamics of matter
creation. For simplicity, we will restrict to the case of a
single fluid, but it can easily be generalized to multiple
coupled fluids as well. To describe the thermodynamic
states of a relativistic simple fluid we use the following
macroscopic variables: the energy-momentum tensor Tαβ;
the particle flux vector Nα; and the entropy flux vector sα.
The energy-momentum tensor satisfies the conservation
law, Tαβ

;β ¼ 0, and here we consider situations in which it
has the perfect-fluid form:

Tαβ ¼ ðρþ PÞuαuβ − Pgαβ: (2.1)

In the above equation ρ is the energy density, P is the
isotropic dynamical pressure, gαβ is the metric tensor and
uα is the fluid four-velocity (with normalization uαuα ¼ 1).
The dynamical pressure P is decomposed as

P ¼ pþ Π; (2.2)

where p is the equilibrium (thermostatic) pressure and Π
is a term present in scalar dissipative processes. Usually, it
is associated with the so-called bulk pressure [5]. In the
cosmological context, besides this meaning, Π can also be
relevant when particle number is not conserved [9]. In this
case, Π≡ pc is called the “creation pressure.” It is
important to mention that the bulk pressure, as already
mentioned in the Introduction, can be seen as a correction
to the thermostatic pressure when near to equilibrium, thus,
it should be always smaller than the thermostatic pressure,
jΠj < p. This restriction, however, does not apply for the
creation pressure. So, when we have matter creation, the
total pressure P may become negative and, in principle,
drive an accelerated expansion.
The particle flux vector is assumed to have the following

form:

Nα ¼ nuα; (2.3)

where n is the particle number density. Nα satisfies the
balance equation Nα

;α ¼ nΓ, where Γ is the particle pro-
duction rate. If Γ > 0, we have particle creation, particle
destruction occurs when Γ < 0 and if Γ ¼ 0 particle number
is conserved.
The entropy flux vector is given by

sα ¼ nσuα; (2.4)

where σ is the specific (per particle) entropy. Note that the
entropy must satisfy the second law of thermodynamics
sα;α ≥ 0. Here we consider adiabatic matter creation; that
is, we analyze situations in which σ is constant. With this
condition, by using the Gibbs relation, it follows that the
creation pressure is related to Γ by [9,10]

pc ¼ −
ρþ p
3H

Γ; (2.5)

where H ¼ _a=a is the Hubble parameter, a is the scale
factor of the Friedmann-Robertson-Walker (FRW) metric
[see Eq. (3.1) below] and the overdot means differentiation
with respect to the cosmic time. It is also straightforward to
show that, if σ is constant, the second law of thermody-
namics implies that Γ ≥ 0 and, as a consequence, particle
destruction (Γ < 0) is thermodynamically forbidden [9,10].
Since Γ ≥ 0, it follows from Eq. (2.5) that, in an expanding
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universe (H > 0), the creation pressure pc cannot be
positive.

III. COSMOLOGICAL MODELS WITH
PARTICLE CREATION

Before we discuss the evolution of linear perturbations in
cosmological models with matter creation, we first consider
their background equations. By assuming spatial homo-
geneity and isotropy, which is a good approximation at
large scales, we are lead to the FRW line element,

ds2 ¼ dt2 − a2ðtÞ
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdφ2Þ

�
: (3.1)

Here k ¼ 0, �1 characterizes the curvature of the spatial
sections of space-time and we are assuming c ¼ 1, as usual.
For the sake of simplicity, from now on we also assume
flat space (k ¼ 0), which is in good agreement with CMBR
observations. In this paper we are mainly interested in
processes that occurred after radiation domination.
Therefore, as a first approximation, we neglect radiation
and, for the sake of simplicity, we also neglect baryons
considering only the presence (and creation) of pressureless
(p ¼ 0) dark matter particles.
The Einstein equations for the models we consider can

be expressed simply as

H2 ¼
�
a
:

a

�
2

¼ 8πG
3

ρ; (3.2)

a
::

a
¼ H

: þH2 ¼ −
4πG
3

ðρþ 3pcÞ: (3.3)

To the above equations we add Eq. (2.5) (with p ¼ 0) to get

ρ
: þ 3Hρ ¼ ρΓ: (3.4)

In order to integrate the above equations, it is necessary
to assume a special form for Γ. Several models that have
previously been studied in the literature can all be gener-
alized by the following expression for the particles pro-
duction rate [13]:

Γ ¼ 3βH0

�
H
H0

�
α

; (3.5)

where α and β are Oð1Þ dimensionless constants and H0 is
the present value of the Hubble parameter. Throughout this
paper we use the subscript “0” to denote the present value
of quantities. From the above equations, we get the
following differential equation for H:

dH
dz

ð1þ zÞ ¼ 3

2
H0

�
H
H0

− β

�
H
H0

�
α
�
; (3.6)

where z ¼ 1=a − 1 is the redshift. The above equation can
easily be integrated, leading to the result [13]

H ¼
�
H0½β þ ð1 − βÞð1þ zÞ32ð1−αÞ� 1

1−α; if α ≠ 1;

H0ð1þ zÞ32ð1−βÞ; if α ¼ 1.
(3.7)

From now on we focus on the particular case α ¼ −1 in
Eq. (3.5). Following Ref. [18], we refer to this model as
creation of cold dark matter (CCDM). With α ¼ −1, from
Eq. (3.7), we obtain

H2

H2
0

¼ ð1 − βÞð1þ zÞ3 þ β: (3.8)

The above equation indicates that the expansion rate H in
CCDM has the same exact form as in flat ΛCDM models
with β playing the role of the cosmological constant density
parameter at present time [13,14], ΩΛ0. Notice that, by
using Eq. (3.2), the expression for the particle production
rate Eq. (3.5) can be written as [15]

Γ ¼ 3βH2
0

H
¼ 3β

�
ρc0
ρ

�
H; (3.9)

where ρc0 ≡ 3H2
0=ð8πGÞ is the critical density at present

time, which, in our flat-space and simple-fluid approxima-
tion, is equal to the value of dark matter energy density at
present. Notice also that for α ¼ −1, the creation pressure,
pc ¼ −βρc0, is constant and by using Eq. (3.2), the dark
matter energy density can be written as

ρ ¼ ρc0½ð1 − βÞð1þ zÞ3 þ β�: (3.10)

As remarked above, the CCDM model mimics exactly
the ΛCDM background expansion history, so we should
expect good accordance of this model with kinematic
cosmological tests like from supernovae type Ia (SNIa)
and BAO, that essentially depend only on distances and,
thus, does not depend on the perturbation results. Does this
mimicry remains at the perturbation level? Answering
this question is somewhat subtle and we will discuss it
in Sec. V.
Another point to be stressed here is that, although in

CCDM we have a kind of unification of the dark sector, it
does not solve or alleviate the so-called cosmological
constant problems. For instance, the old cosmological
constant problem is not solved since, like in quintessence,
Λ is assumed to be zero from the beginning. Of course we
hope that this problem will be resolved in the context of
quantum field theory and not by cosmology. However, the
fine-tuning and the cosmic coincidence problems are
essentially the same as in ΛCDM. To better understand
this, we now write the total dark matter energy density ρ as

ρ ¼ ρconserved þ ρcreated; (3.11)
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where ρconserved ¼ ρc0ð1 − βÞð1þ zÞ3 is the conserved part
of the dark matter energy density and ρcreated ¼ ρc0β is the
created one. The cosmological problems can now be cast as
follows: Why was the created (and constant) part so small
(as compared to the energy densities of other fields) and
finely adjusted in the beginning of the Universe evolution?
Why only at recent times are the conserved and the created
(and constant) dark matter energy densities comparable?
Therefore, CCDM model has essentially the same con-
ceptual difficulties as ΛCDM. Indeed, from the theoretical
point of view the situation is even worse in CCDM.
Although some authors (see, e.g., Refs. [15,17,18] and
references therein) try to motivate the CCDM scenario in
terms of gravitational particle production in an expanding
universe, currently there is no fundamental basis for the
chosen particle production rate and we can only treat
CCDM as a phenomenological model. In this context,
we adopt a more pragmatic approach and, in the following
sections, we discuss if observations that depend on the
growth of perturbations can distinguish CCDM from
ΛCDM. If yes, the CCDM model can be tested. If it
produces results that are not compatible with the observa-
tions, then it can be discarded from the beginning. If the
results are better than the ones produced with the ΛCDM,
then we can pursue further and look more closely for the
microscopic motivations for the model. However, if the
CCDM and ΛCDM are observationally degenerated with
each other, then we must resort to the Occam’s Razor
principle to guide us. Accordingly, the simplest model (i.e.,
ΛCDM) becomes preferable unless further theoretical
developments change the current situation.

IV. EVOLUTION OF LINEAR DENSITY
PERTURBATIONS: NEO-NEWTONIAN
VERSUS RELATIVISTIC APPROACH

We now turn our attention to the growth of linear
perturbation in matter creation models. Following
Refs. [15,17], we first consider it in the neo-Newtonian
context. The idea of a Newtonian expanding universe was
developed by Milne [24] and also by McCrea and Milne
[25] in the 1930’s. By considering a pressureless fluid and
assuming Newtonian dynamics and gravitation, it was
shown that the governing Newtonian differential equations
are identical in form to the relativistic ones. This approach,
known as Newtonian cosmology (NC), is quite helpful in
giving insight into the physical significance of an expand-
ing universe. The NC equations were generalized to include
uniform pressure by McCrea [26] in a paper in which the
hypothesis of continuous creation of matter was inves-
tigated. The same equations were reobtained later in
Ref. [27] in a different context. However, as pointed out
in Ref. [28], although the Newtonian background evolution
equations with pressure are identical in form to the
relativistic ones (assuming zero spatial curvature), at the
perturbative level they are only equivalent when pressure is

zero. To circumvent this difficulty, in Ref. [21] it was
suggested a modification of the continuity equation. This
formulation, known as neo-Newtonian approach, has also
limitations, as pointed out in Ref. [22], as we now discuss.
The basic equations that describe the neo-Newtonian

formulation are [21,26,27]

∇2
rϕ ¼ 4πGðρþ 3PÞ; (4.1)

�∂u
∂t

�
r
þ ðu · ∇rÞu ¼ −∇rϕ − ðρþ PÞ−1∇rP; (4.2)

�∂ρ
∂t
�

r
þ∇r · ðρuÞ þ P∇r · u ¼ 0: (4.3)

Equations (4.1), (4.2) and (4.3) are, respectively, the
modified Poisson, Euler and energy conservation equa-
tions, where relativistic effects of pressure were included.
In the above equations, u is the velocity field and ϕ is the
gravitational potential of the cosmic fluid.
As usual in perturbation theory [23], we assume small

perturbations around the homogeneous background solu-
tion in the form ρ ¼ ~ρþ δρ ¼ ~ρð1þ δÞ, P ¼ ~Pþ δP,
ϕ ¼ ~ϕþ φ, and u ¼ Hrþ v. We use a tilde to denote
background quantities. Introducing comoving coordinates
x ¼ r=a, neglecting shear and vorticity and taking into
account the background equations, after some algebra we
can derive the following differential equation for the
density contrast [22]:

δ̈ − ½3ð2w − c2s − c2effÞ − 2�H_δ

þ 3H2

��
3

2
w2 − 4w −

1

2
þ 3c2s

�

þ c2effð3c2s − 6w − 1Þ þ ðc2effÞ:
H

þ k2

a2
c2eff
3H2

�
δ ¼ 0; (4.4)

where w¼ ~P=~ρ, c2eff ¼ δP=δρ, c2s ¼ _~P=_~ρ¼w− _w=½3Hð1þ
wÞ� and k is the comoving wave number. We are looking for
solutions of the form δðx; tÞ ¼ P

kδkðtÞeik·x and for the
sake of simplicity, we have dropped the index k from δ in
Eq. (4.4). We have also assumed that c2eff is a function of
time only.
Let us now consider the evolution of density perturba-

tions in a general-relativistic framework. In this case,
following standard calculations [23], assuming zero aniso-
tropic pressure perturbations, besides flat space, we obtain

Δ̈ − ½3ð2w − c2sÞ − 2�H _Δ

þ 3H2

��
3

2
w2 − 4w −

1

2
þ 3c2s

�
þ k2

a2
c2s
3H2

�
Δ

¼ −
k2

a2
wΓ̂; (4.5)
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where

Γ̂≡ δP
~P
− c2s

δ

w
¼ ðc2eff − c2sÞ

w
Δ (4.6)

is the gauge-invariant entropy perturbation, c2eff ≡ δP
δρ

���
rest

is

the effective sound speed (defined in the matter rest frame)
[29] and the gauge-invariant quantityΔ represents the matter
density contrast in the slicing such that the matter four-
velocity is orthogonal to constant time hypersurfaces [23],

Δ ¼ δþ 3ð1þ wÞHa
k
ðv − BÞ; (4.7)

where v − B is associated with the deviation of the matter
four-velocity from the vector normal to the constant time
hypersurfaces.
To compare the relativistic and neo-Newtonian differ-

ential equations for the density contrast, we go to the rest
gauge [29], where Δ ¼ δ, and write Eq. (4.5) as

δ̈ − ½3ð2w − c2sÞ − 2�H_δ

þ 3H2

��
3

2
w2 − 4w −

1

2
þ 3c2s

�
þ k2

a2
c2eff
3H2

�
δ ¼ 0:

(4.8)

Therefore, by simple inspection, we see that even for time-
independent c2eff , Eqs. (4.4) and (4.8) are only identical
when the effective sound speed c2eff is equal to zero. It
should also be remarked that in the more general case, in
which c2eff ≠ 0, the last term inside the braces in Eq. (4.8)
can only be neglected in the long-wavelength limit (k ¼ 0),
in which case the Newtonian approximation is not valid.
Therefore, using Eq. (4.4), assuming c2eff ≠ 0 and neglect-
ing the last term inside the braces is not a correct procedure
(as adopted for example in Ref. [18]), first because
Eq. (4.4) is not valid for c2eff ≠ 0, and second because
the Newtonian approximation is also not valid in the long-
wavelength limit.

V. THE CCDM MODEL: THEORY
VERSUS OBSERVATIONS

Let us now consider the observational constraints on the
CCDM model from the linear growth of energy density
perturbation data. For this model, the background creation
pressure ~pc ¼ −βρc0 is constant and, therefore, c2s ¼ 0. We
first assume c2eff ¼ 0, such that the neo-Newtonian and the
general-relativistic approaches are equivalent. Notice that
this corresponds to adiabatic perturbations (Γ̂ ¼ 0), since
c2eff and c2s are equal. By changing the variable from the
cosmic time t to the scale factor a, recalling Eq. (3.8) and
that for a constant creation pressure, as we are considering
here, we haveH2

0 ¼ −wH2=β, we then obtain that Eq. (4.8)
can be written as

δ00 þ 3

2a
ð1 − 5wÞδ0 þ 3

2a2
ð3w2 − 8w − 1Þδ ¼ 0; (5.1)

where the prime denotes derivative with respect to the scale
factor a and the equation of state parameter is given by
wðaÞ ¼ −β=½β þ ð1 − βÞa−3�. Observe that for β ¼ 0
(w ¼ 0), there is no matter creation and the model reduces
to the Einstein–de Sitter model. In the opposite limit, β ¼ 1
(w ¼ −1), there is no conserved dark matter and the de
Sitter model is recovered. To integrate Eq. (5.1), we
introduce a new variable x ¼ −a3β=ð1 − βÞ and write
the density contrast as δðxÞ ¼ a=ð1 − xÞGðxÞ. With these
definitions we rewrite Eq. (5.1) as

xð1 − xÞG00ðxÞ þ
�
11

6
−
7

3
x

�
G0ðxÞ − 1

3
GðxÞ ¼ 0: (5.2)

The exact solution of the above equation can be expressed
in terms of hypergeometric functions 2F1ða; b; c; xÞ as

GðxÞ ¼ C12F1

�
1

3
; 1;

11

6
; x

�
þ C2x−

5
6
2F1

�
−
1

2
;
1

6
;
1

6
; x

�
;

(5.3)

where C1 and C2 are arbitrary constants. The first term on
the right-hand side of Eq. (5.3), by looking at the
asymptotic behavior of the hypergeometric function, can
be identified with the growing mode, while the second term
is a decaying mode. Neglecting the decaying mode, we
write δ as

δða; βÞ ¼ a

1þ a3β
1−β

2F1

�
1

3
; 1;

11

6
;−

a3β
1 − β

�
; (5.4)

where the density contrast is normalized such that for
a ≪ 1 we have δ ¼ a, since at high redshifts the CCDM
behaves like the Einstein–de Sitter model. In Fig. 1 we
show the density contrast δ for dark matter in CCDM as a
function of the scale factor for several values of β.
The density contrast for dark matter (δm ¼ δρm

ρm
) in a

flat ΛCDM model, such that Ωm0 ¼ 1 − β, can expressed
as [30]

δmða; βÞ ¼ a2F1

�
1

3
; 1;

11

6
;−

a3β
1 − β

�
: (5.5)

In Fig. 2 we show the density contrast δm as a function of
the scale factor for several values of β. By comparing Fig. 1
with Fig. 2, it is clear the density contrast suppression in
CCDM, as we increase β, when compared to the ΛCDM
case. We remark that this suppression is stronger than the
one obtained by the authors in Ref. [31], who have used a
different approach, and is in accordance with Fig. 1 of
Ref. [17]. But we are then left with the question, what is the
origin of this suppression? To answer this question note that
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δ

δm
¼ 1

1þ a3β
1−β

¼ ð1 − βÞa−3
ð1 − βÞa−3 þ β

¼ ρm
ρ
; (5.6)

where ρm ¼ ρc0Ωm0a−3 is the energy density of dark matter
in flat ΛCDM and ρ, given by Eq. (3.10), is the total CDM
energy density in CCDM. Notice that ρm is also equal to
ρcl ¼ ρc0ð1 − βÞa−3, the CDM clustered part in CCDM.
From Eq. (5.6), we get that δρ ¼ δρm and, therefore, the
mentioned suppression in the density contrast appears,
when the constant, nonclustered and created part of the
CCDM energy density starts to become non-negligible. It is
important to keep in mind that matter in CCDM clusters

exactly in the same manner as it does in ΛCDM, since the
gravitational potential is the same. Furthermore, light also
follows the same geodesics and, since we have assumed
c2eff ¼ 0, we cannot observationally distinguish CCDM
from ΛCDM. This property is related to the dark degen-
eracy [32] and remounts to the discussion on the ΛCDM
limit of the generalized Chaplygin gas model [33,34].
The above consideration is particularly relevant when

one wants to compare CCDM model predictions with
observations that depend on how linear perturbations grow.
Consider, for instance, the fðzÞσ8ðzÞ test [35], where fðzÞ
is the linear growth rate and σ8ðzÞ is the redshift-dependent
root-mean-square mass fluctuation in spheres with radius
8h−1 Mpc. In CCDM, which of the two quantities, δ or δm,
should we use in this test? Unlike in Ref. [18], in this work
we use δm ¼ δcl ≡ δρ

ρcl
instead of δ ¼ δρ

ρ . The justification for
this choice is based on the fact that for the fðzÞσ8ðzÞ test
only clustered matter is important.
To compare CCDMmodel predictions with observations

we use the redshift-space-distortion based fðzÞσ8ðzÞ mea-
surements [35], which are displayed in Table I. The data
were obtained by the following surveys: 6dFGRS [36],
2dFGRS [37], WiggleZ [38], SDSS LRG [39], BOSS
CMASS [40] and VIPERS [41].
Here fðzÞ is the linear growth rate given by

fðzÞ≡ d ln δcl
d ln a

¼ −ð1þ zÞ d ln δcl
dz

; (5.7)

and

σ8ðzÞ ¼ σ80
δclðzÞ

δclðz ¼ 0Þ (5.8)

is the redshift-dependent root-mean-square mass fluc-
tuation in spheres with radius 8h−1 Mpc.
For the fσ8 test we use the following χ2 statistics:

χ2fσ8 ¼
X10
i¼1

½fσobs8 ðziÞ − fðzi; βÞσ8ðzi; σ80; βÞ�2
σ2fσ8ðziÞ

: (5.9)

FIG. 2 (color online). Thematterdensitycontrastδm inΛCDMas
a function of the scale factor a, for different values of β ¼ 1 − Ωm0.

FIG. 1 (color online). The density contrast δ in CCDM as a
function of the scale factor a, for different values of β.

TABLE I. Observational data for redshift-space-distortion
based fðzÞσ8ðzÞ and the sources from where we have obtained
them.

z fσ8 Survey Ref.

0.07 0.42� 0.06 6dFGRS [36]
0.17 0.51� 0.06 2dFGRS [37]
0.22 0.42� 0.07 WiggleZ [38]
0.25 0.35� 0.06 SDSS LRG [39]
0.37 0.46� 0.04 SDSS LRG [39]
0.41 0.45� 0.04 WiggleZ [38]
0.57 0.43� 0.03 BOSS CMASS [40]
0.60 0.43� 0.04 WiggleZ [38]
0.78 0.38� 0.04 WiggleZ [38]
0.80 0.47� 0.08 VIPERS [41]
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To obtain the probability distributions (PDFs) in all the
considered tests in this work, the Metropolis-Hasting
algorithm has been used [42]. Generally, to obtain the
PDFs,40chainsweregeneratedwith106 points foreachchain.
The results for the fσ8 test are displayed in Fig. 3 (left

panel). For this test, we obtain that β ¼ 0.63þ0.09ð0.17Þ
−0.12ð0.26Þ , and

σ80 ¼ 0.70þ0.05ð0.11Þ
−0.04ð0.07Þ . In Fig. 3 (right panel) we also show

the fσ8 data points we have used, along with their
respective error bars, given by the results shown in
Table I, and fσ8 for the best fit model, as a function of
redshift. In Fig. 4, after a flat marginalization with respect
to σ80, we show the one-dimensional PDF for β (given by
the solid curve).
For the background tests, which involve essentially only

distances and, thus, are independent of the perturbation

FIG. 3 (color online). Results for the fσ8 test. Left panel: Confidence regions in the ðβ; σ80Þ plane. From the outer to inner curves:
Regions of 99.7%, 95.5% and 68.3% C.L. Right panel: The fσ8 data points (from Table I) and the best fit model curve fσ8, as a function
of redshift.

FIG. 4. Left panel: The one-dimensional β PDF for the redshift-space-distortion based fðzÞσ8ðzÞ test (solid curve) and for each
background test, shown by the dotted, dashed and dash-dotted curves. Right panel: The one-dimensional PDF for β obtained by
combining the previous four tests.
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results, we use the following observables: (i) The Union 2.1
type Ia supernovae compilation [43]—this compilation is
an update of the Union 2 [44] and include supernovae
observed by the Hubble Space Telescope Cluster Survey.
This compilation is composed of 580 selected supernovae
fitted by the SALT2-1 lightcurve fitter [45]. In our approach
we have considered the covariance matrix with systematics
errors (available in the site mentioned in [45]), obtaining

β ¼ 0.70þ0.04ð0.08Þ
−0.04ð0.09Þ . (ii) The CMB/BAO test—we followed

the procedure described in Sec. 3.2 of Ref. [46], including
one new data point from the BOSS survey [47] and new
data from WMAP-9 yrs [48]. With this test we get

β ¼ 0.69þ0.02ð0.03Þ
−0.02ð0.04Þ . (iii) Measurements of the Hubble

parameter at different redshifts—for this observable we
use the same data set and procedure as described in

Ref. [49] and we obtain β ¼ 0.75þ0.02ð0.04Þ
−0.02ð0.05Þ .

In the left panel of Fig. 4, besides the result for the fσ8
test (solid curve), we also display the one-dimensional PDF
for β for each background test: CMB/BAO (dotted curve),
SNeIa (dashed curve) and OHD (dash-dotted curve). We
also display in Fig. 4 (right panel) the β one-dimensional
PDF for the combined fσ8 plus the three background tests,

which gives β ¼ 0.71þ0.01ð0.02Þ
−0.01ð0.03Þ .

At this point it is important to make the following
remark. If we have considered c2eff ≠ 0, instead of Eq. (5.1),
we would get from Eq. (4.8) the following differential
equation:

δ00 þ 3

2a
ð1 − 5wÞδ0 þ 3

2a2
ð3w2 − 8w − 1Þδþ c2effk

2

H2a4
δ ¼ 0:

(5.10)

It can be shown that below the Jeans length,
λJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijc2eff jπ=Gρ
p

, the k dependence of the last term in
the left-hand side of the above equation can cause strong
oscillations if c2eff > 0, or exponential growth if c2eff < 0.
Only models with jc2eff j ≪ 1 are acceptable at linear scales.
An interesting question, but that is beyond the scope of this
paper, is to estimate upper limits that will be imposed on
c2eff by future surveys like Euclid.
In our approximation, we have not considered the

presence of baryons. If we had taken them into account,
still assuming c2eff ¼ 0, it can be shown that their density
contrast has the same dependence with redshift as clustered
dark matter [given by Eq. (5.5)]. Since the dependence with
redshift of both energy densities is also the same, it will not
be possible to distinguish the CCDM scenario from
ΛCDM, by using measurements of the gas mass fraction
in clusters [50], as suggested in Ref. [18].

VI. CONCLUSIONS

In this paper, we have studied the CCDM scenario as a
possible explanation for the late-time cosmic acceleration.

We have compared the relativistic and neo-Newtonian
differential equations for the density contrast for the
CCDM model. Both relativistic and neo-Newtonian cases
agree with each other only when the effective sound speed
c2eff is equal to zero. We have argued that even in the more
general case, in which c2eff is considered nonvanishing,
but the momentum dependent term in the equation for
the density contrast is neglected, a somewhat common
consideration assumed by some authors, that this is also
not a consistent approximation for the density contrast
differential equation. This approximation of neglecting the
momentum dependent term is only justifiable in the long-
wavelength limit (k ¼ 0), which is in turn exactly the case
where the Newtonian approximation is not valid. Thus, the
neo-Newtonian approach is not consistent with the full
relativistic equations when c2eff ≠ 0, and the Newtonian
approximation is not valid in the long-wavelength limit.
Next, we have compared the CCDM predictions at the

perturbative level with those obtained from the ΛCDM. We
have used for this comparison redshift-space-distortion
observational data. We have shown that the CCDM model
produces results for the parameter β (that at the background
level plays the role of the cosmological constant density
parameter) that are fully consistent with the ones expected
from ΛCDM. Independent tests were also carried out at the
background level. These tests show that the result for β
predicted by the CCDM models is also consistent with the
result from ΛCDM. We pointed out that this consistency
with the ΛCDM can only be achieved when we properly
identify the clustering part (δcl) of the density contrast, as
analyzed and argued in Sec. V. This subtle issue concerning
the density contrast may be related to the difficulties
with the CCDM model found in previous works. For
example, the authors of Ref. [31] have found that
CCDM models tend to overestimate peculiar velocities
of galaxies in the linear regime. They have also found that
because the density contrast today, obtained from the
ΛCDM model, tends to be higher than the one predicted
by the CCDM, that this would result also in an overestimate
of the present density of massive galaxies clusters in these
alternative models. This result comes as a consequence of
the density contrast suppression as we increase β and
shown in the previous section. However, this difficult is no
longer present when the clustering part δcl is used instead.
As pointed out in Sec. V, the matter in CCDM clusters
exactly in the same manner as it does in ΛCDM, since the
gravitational potential is the same.
In summary, we have shown that CCDM models with

c2eff ¼ 0 are degenerate with ΛCDM not only at the back-
ground level, but also at the linear perturbative level. We
can generally expect this degeneracy to remain at higher
order. Although ΛCDM has several conceptual problems
(smallness of Λ, cosmic coincidence problem, etc.), the
CCDMmodel does not solve any of them either. Therefore,
in the absence of a more fundamental microscopic basis for

RAMOS, VARGAS DOS SANTOS, AND WAGA PHYSICAL REVIEW D 89, 083524 (2014)

083524-8



the particles creation rate and that originates the specific
CCDM model treated here, ΛCDM is a simpler alternative
to explain observations (Occam’s Razor).
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