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We examine the possibility of dealing with gravitational singularities on a quantum level through the use
of coherent state or wavelet quantization instead of canonical quantization. We consider the Robertson-
Walker metric coupled to a perfect fluid. It is the simplest model of a gravitational collapse, and the results
obtained here may serve as a useful starting point for more complex investigations in the future. We follow
a quantization procedure based on affine coherent states or wavelets built from the unitary irreducible
representation of the affine group of the real line with positive dilation. The main issue of our approach is
the appearance of a quantum centrifugal potential allowing for regularization of the singularity, essential
self-adjointness of the Hamiltonian, and unambiguous quantum dynamical evolution.
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I. INTRODUCTION

The purpose of this article is to examine the implemen-
tation of the coherent state quantization, as presented, for
instance, in Chap. 11 of the recent Ref. [1], in the study of
the gravitational singularities. We consider the Robertson-
Walker metric coupled to a perfect fluid. It is the simplest
model of a gravitational collapse, and the results obtained
here may be a useful starting point for more complex
investigations in the future. In particular, the examination of
such issues as the probability for inflation in the presence
of a scalar field in a quadratic potential (see, e.g., [2]) are
postponed until future papers.
Canonical, or Weyl, or Weyl-Wigner, quantization of a

Friedmann-Lemaître universe with an eye towards the fate
of the gravitational singularity has been studied extensively.
Early treatments include Blyth and Isham [3], featuring a
discussion on the ambiguous meaning of singularity reso-
lution, and the work by Lapchinskii and Rubakov [4], who
obtained a quantum nonsingular perfect fluid-filled universe.
However, the interpretation of these and other, more recent,
results is not obvious for at least three reasons. First, in
Ref. [4] it was shown that the classical and singular evolution
can be replaced by a unitary and thus nonsingular one,
provided one fixes an appropriate boundary condition to
ensure self-adjointness of the Hamiltonian. Unfortunately,
there are infinitely many “equally good” choices for the
boundary condition, and the choice has to be made without a
clear justification. Furthermore, the singularity resolution

corresponds simply to a reflection of the wave function
against the singularity, while one would expect the quantum
effects to appear and play a role in dynamics already before
the singularity is reached. Second, at the fundamental level,
the prevailing attitude towards quantum gravity is that one
needs some additional input, let it be loops, strings, or
triangulations. The inclusion of these basic premises should
give rise to novel effects in the context of minisuperspaces.
Finally, there is the so-called “problem of time”: in canonical
quantum gravity one is forced to describe the evolution of
the space with respect to a chosen degree of freedom, and it
may be shown that the resultant quantum theory significantly
depends on this choice [5]. In this light, the expectation that
Weyl quantization of minisuperspaces should lead to some
important clues about the singularity may seem doubtful.
Recently, it has been argued that quantum cosmologymay

become an empirical science but only if developed as an
effective theory [6]. There are simply too many unknowns,
including unresolved conceptual issues and technical com-
plexities, to have a hope that a fundamental and rigorous
approach is feasible. Bojowald suggests that a good cos-
mological theory should therefore be flexible enough to
parameterize our ignorance. Canonical quantization is in a
sense rigid and will not provide us with parametrizable
physical models. For a clear and comprehensive review of
various quantization methods (e.g., canonical, geometric,
deformation, etc.), we refer to Ali and Engliš in [7]. In what
follows, we propose to relax the usual, canonical, quantiza-
tion prescription by implementing coherent state (CS)
quantization in the study of the cosmological singularity.
The coherent state quantization was demonstrated to be a

valid alternative to canonical quantization in dealing with
various simple systems (see [1,8,9], particularly Ref. [10]
for deep probabilistic aspects of the procedure, and
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references therein). It is a flexible method, because it allows
for a reasonable amount of freedom due to the free choice
of coherent states (or “wavelet basis”) which determine the
quantum realm of a model. In CS quantization one does not
require that the Poisson bracket of basic variables is strictly
mapped into the corresponding Lie algebra of the operators.
Besides the standard linearity, identity correspondence
1↦ I, and the self-adjointness of quantum observables,
the only minimal conditions are (i) the quantization must
agree with available measurements and (ii) it should
consistently admit the classical limit. In this way, one
allows for many more possibilities. This seems to be a
desired quality for quantizing the gravitational field.
Surprisingly, relaxing some of the usual quantization
constraints leads to the occurrence of a quantum repulsive
potential, which regularizes the singularity and leads to a
unique unitary evolution across the bounce. This is the
central result of this work. On top of that, CS quantization
naturally provides a semiclassical counterpart for the
quantum “true” Hamiltonian through the so-called “lower
symbol.” Last but not least, CSs have the advantage of
being well suited to deal with nonstandard (e.g., non-
polynomial) Hamiltonians occurring in gravitational sys-
tems, which may be useful in future investigations.
Let us emphasize that it is not an ad hoc, fine-tuned,

ordering of basic operators that leads to the regularization
of singularity. Rather, having given up the usual Weyl-
Wigner quantization, we follow an alternative and equally
general prescription based on coherent states. Since the
cosmological model considered herein is defined in
the phase space, which is the half-plane, and since the
half-plane is also the affine group, it is natural (and
straightforward) to employ the affine group, and not the
Weyl-Heisenberg group, for the construction of coherent
states. Actually, it turns out that the same mechanism of
the singularity avoidance can also be derived with Weyl-
Heisenberg coherent states, as is shown in Appendix D.
However, the derivation is less immediate.
The time problem understood as the ambiguity in the

choice of time function is beyond the scope of the present
paper. We choose to introduce perfect fluids into the model
and use them to “gauge” the evolution of the remaining
variables. The advantage of this approach is twofold. First,
we obtain a time-independent true Hamiltonian. This prop-
erty simplifies the subsequent analysis and can be readily
extended to anisotropic models, including the Bianchi IX
type.1 Second, with this choice of time all the geometrical
quantities are “physical,” and, thus, we may proceed with
quantization of the symmetry-reduced Arnowitt-Deser-
Misner phase space with its characteristic ranges of canoni-
cal coordinates.

This paper is organized as follows. In Sec. II, we recall
briefly the equations of the Friedmann-Lemaître-Robertson-
Walker (FLRW) model, and we define the Hamiltonian and
the relevant physical quantities. In Sec. III, we present the
details of our covariant quantization scheme based on an
unitary irreducible representation (UIR) of the affine group.
At this stage some important parameters of the representa-
tion are not specified. The expressions of quantized observ-
ables are given in Sec. IV. In Sec. V, the parameters of the
representation are specified, we obtain analytical expres-
sions, and we perform numerical simulations. We analyze
the physical aspects of our results in Sec. VI, and we
conclude in Sec. VII. For connections of our approach with
the affine quantization of gravity, see Appendix A.
Appendix B is a short review of the affine group and its
representation(s). Appendix C introduces affine coherent
states in full generality. The main result of the present paper,
namely, the appearance on the quantum level of the
centrifugal potential and its regularizing role, is rederived
with Weyl-Heisenberg coherent states in Appendix D.

II. THE FLRW MODEL

A. Hamiltonian constraint

The space þ time split in the Hilbert-Einstein action
leads to the Hamiltonian density as a sum of first-class
constraints [11]:

H ¼ NC0 þ NiCi; (1)

where

C0 ¼ −q1=2
�

3Rþ q−1
�
1

2
ðpk

kÞ2 − pijpij

��
;

Ci ¼ −2pij
;j : (2)

Generalized variables qij correspond to the three-metric on
spatial sections of space-time, 3R is the three-metric Ricci
scalar, and pij are generalized momenta (associated with
extrinsic curvature of the three-hypersurfaces) equipped
with the Poisson structure

fqijðxÞ; pklðx0Þg ¼ δkðiδ
l
jÞδðx − x0Þ: (3)

Scalar N and covector Ni encode the remaining compo-
nents of the space-time metric, which here play the role of
Lagrange multipliers. In the above, we have put

κ≔
16πG
c3

≈ 1.24 × 10−34 s kg−1 ≡ 1: (4)

The units will be restored if necessary within the quantum
framework when we substituteH↦ ð1=κÞĤ while inserting
the Planck area like aP ¼ κaP ≈ 8.2 × 10−68 m2 instead of
aP. This ap yields the natural length standard

ffiffiffiffiffiffi
aP

p
.

1Contrary to massless scalar fields, which are often employed
in quantum cosmology, perfect fluids generally do not suppress
the oscillatory nature of the singularity in the Bianchi IX model.
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In the FLRW universe the line element is given by

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2δijωiωj; (5)

where 1-forms ωi are invariant with respect to the homo-
geneity group of the spatial section. The specific form of ωi

depends on the spatial curvature (see, e.g., [12]).
For the metric tensor’s components in (5), we introduce

~a≔
R
adω

ðR dωÞ23 ; ~pa ≔
−12

ðR dωÞ13
Z

a
_a
N
dω;

f ~a; ~pag ¼ 1; ~a > 0: (6)

where dω ¼ ω1 ∧ω2 ∧ω3. The integration is performed
over the whole universe if it is compact and over any finite
patch otherwise. Thanks to the definition of basic variables
(6), we get rid of the Dirac delta featuring in (3), identify
the three nonzero metric components, give ~a the interpre-
tation of a length, and make it convenient to express the
(integral form of) Hamiltonian in terms of them.
The vacuum formulation (1) and (2) was extended to

include perfect fluids by Schutz [13]. He used the potential-
velocity formulation: uν ¼ 1

hal
ðϕ;ν þ αβ;ν þ θs;νÞ, where uν

are the components of the proper velocity of the fluid’s
element, ðϕ; α; β; θ; sÞ are independent potentials, and hal is
the specific enthalpy, which is fixed via uνuν ¼ −1. The
specification of the indicated framework to the FLRW
models filled with barotropic fluid subject to the equation
of state p ¼ wρ (w ¼ const) is straightforward and may be
found in Ref. [4]. In this case, the Hamiltonian constraint is
(see, e.g., [14])

H ¼ N

�
− ~p2

a

24~a
− 6~k ~aþ pT

~a3w

�
≈ 0; (7)

where the dimensionless ~k ¼ ðR dωÞ2=3k and k ¼ 0, −1, or
1 depending on whether the universe is flat, open, or
closed.2 Parameters ðT; pTÞ ∈ R × R�þ are a canonical pair
associated with the fluid. More specifically, the meaning
of pT is the fluid’s energy times the volume in which it
appears at the power w, and T is an auxiliary function of
physical dimension of length at the power 1 − 3w. The
dimensions will explicitly agree in (7) once we restore 1

κ in
front of the gravitational part of the Hamiltonian constraint.
In order to bring (7) to a more convenient form, we define
new basic variables for geometric observables:

ðq; pÞ≔
�
~a3ð1−wÞ=2; 2

3ð1 − wÞ ~pa ~að3w−1Þ=2
�
;

fq; pg ¼ 1; q > 0: (8)

Note that the physical dimensions of q and p:

½q� ¼ L3ð1−wÞ=2; ½p� ¼ Lð3wþ1Þ=2; (9)

so that ½qp� ¼ L2. Thus, after specifying the lapse
N ¼ q2w=ð1−wÞ, we eventually obtain

H ¼ ð−αðwÞp2 − 6~kqμðwÞ þ pTÞ ≈ 0; (10)

where

μðwÞ≔ 2ð3wþ 1Þ
3ð1 − wÞ ; αðwÞ≔ 3ð1 − wÞ2

32
;

and ½H� ¼ Lð3wþ1Þ.

B. Reduced phase space

The Hamiltonian formulation of general relativistic
models introduces first-class constraints, given in (2),
which reflect the coordinate freedom in the Einstein theory.
Here, the physical symmetry of the FLRW models enables
one to make use of the preferred foliation of space-time and
reduce the formulation considerably to a single constraint
(10). To implement quantization, one may employ either
the Dirac approach (“first quantize, then solve constraints”)
or the reduced phase-space approach (“first solve con-
straints, then quantize”). However, both the constrained and
the reduced phase space will accommodate an incomplete
dynamical flow due to the singularity (in a suitable choice
of time variable).3 In what follows, we restrict ourselves to
the reduced (unconstrained) phase-space analysis, with the
choice of the variable “T” as a clock.
The reduction of the model goes this way: we start with

reducing the symplectic form Ω to a closed two-form ΩR:

Ω ¼ dq∧ dpþ dT ∧ dpT → ΩR

¼ dq∧ dpþ dT ∧ dðαðwÞp2 þ 6~kqμðwÞÞ; (11)

where we solved the constraint for pT. The form ΩR lives
on the constraint surface and is not symplectic, because it is
degenerate with the Hamiltonian vector field υH ¼ f·; Hg
being in its null direction. In order to get the physical
Poisson bracket we put T ¼ const and then invert ΩR. Now
our system, reduced and no longer constrained, is given by

fq; pg ¼ 1; hT ¼ αðwÞp2 þ 6~kqμðwÞ; q > 0: (12)

Hence we model a singular universe as a particle moving on
the half line, where the end point of the half line signals the

2Note that the value of
R
dω is not arbitrary, for “a” has the

geometrical meaning of the radius of curvature. For example, in
the case of the 3-sphere (k ¼ 1) we have

R
dω ¼ 2π2.

3One may argue that even for nonsingular models there may
exist a choice of clock with an incomplete Hamiltonian flow.
Here we exclude such clocks. For a discussion of the dependence
of quantum theory on the choice of time (so-called “multiple
choice problem”), we refer the reader to Ref. [5].
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singularity at which the classical dynamics terminates.
From the explicit form of the Hamiltonian, it is apparent
that the clock T is slow gauge.4 Two cases are particularly
interesting: (i) w ¼ 1=3, which corresponds to the radiation
as the content of universe; (ii) k ¼ 0, which corresponds to
a flat FLRW universe, which apparently can be modeled as
a freely moving particle.
The compound geometric observables of physical inter-

est include the volume V and the expansion rate θ, i.e., the
trace of extrinsic curvature:

V≔
Z

a3dω ¼ q
2

1−w;

θ≔
2

1 − w
_q
Nq

¼ 3

8
ð1 − wÞpq−1þw

1−w: (13)

As the singularity is approached, V → 0 and θ → −∞
or þ∞.

III. QUANTIZATION OF THE HALF-PLANE

Because we are going to use affine transformations of
physical quantities, we should keep control of the physical
dimensions. In view of this, we introduce the parameter
σ ¼ a3ð1−wÞ=4P which has the physical dimension of q. The
dimensionless scale-momentum half-plane is then defined
as Πþ ¼ fðq; pÞjp ∈ R; q > 0g, where

q≔
q
σ
; p≔ σ

p
aP

: (14)

Equipped with the multiplication

ðq; pÞ · ðq0; p0Þ ¼
�
qq0;

p0
q
þ p

�
;

q ∈ R�þ; p ∈ R; (15)

it is viewed as the affine group AffþðRÞ of the real line (see
Appendix B for more details). This group possesses two
nonequivalent UIRs U ~p, besides the trivial one. Both are
square integrable, and this property is fundamental for the
continuous wavelet analysis [1,16–20]. Equivalent realiza-
tions of one of them, say,Uþ ≡U, are carried on by Hilbert
spaces Hα ¼ L2ðR�þ; dx=xαþ1Þ, where α is an arbitrary
real number. Nonetheless, detailed calculations prove
that these multiple possibilities do not introduce noticeable
differences. Therefore, we choose in the sequel the standard
case α ¼ −1 and denote H ¼ H−1 ¼ L2ðR�þ; dxÞ. The
UIR of AffþðRÞ, expressed in terms of the physical
phase-space variables, acts on H as

Uðq; pÞψðxÞ ¼ eipx
1ffiffiffi
q

p ψðx=qÞ: (16)

Given a normalized vector ψ0 ∈ H, a continuous family
of unit vectors is defined as

jq; pi ¼ Uðq; pÞjψ0i; hxjq; pi ¼ eipx
1ffiffiffi
q

p ψ0ðx=qÞ;

(17)

where orthonormal basis jxi in a distributional sense obeys
hxjyi ¼ δðx − yÞ. The transported ψ0 is named the signal
analysis (mother) wavelet or fiducial vector. For the sake
of simplicity, we assume in the sequel that ψ0ðxÞ is real
valued (for a discussion of complex-valued fiducial vectors,
see Appendix C).
Let us define the constants cα (for real α) as

cα ≔
Z

∞

0

ψ0ðxÞ2
dx
x2þα : (18)

The resolution of the unity is straightforward:

Z
Πþ

dqdp
2πaPc−1

jq; pihq; pj ¼ 1; (19)

provided that c−1 < ∞, which means that ψ ∈ L2ðR�þ;
dx=xÞ or, equivalently, that its Fourier transform is of null
average, a classical requirement of continuous wavelet
analysis. Because of this crucial property, the family (17) is
called a continuous wavelet basis (in signal analysis) or
coherent state family for the affine group within a more
quantum oriented context. Thanks to (19), the CS quan-
tization of classical functions fðq; pÞ can be implemented
through

f↦Af ¼
Z
Πþ

dqdp
2πaPc−1

fðq; pÞjq; pihq; pj: (20)

Indeed, when properly defined, this map is linear; to f ¼ 1
there corresponds the identity operator, and to real semi-
bounded f there corresponds a symmetric operator with
self-adjoint extension(s), i.e., the three basic requirements
of any quantization procedure.
By construction, the map (20) is covariant with respect

to the unitary affine action U:

Uðq0; p0ÞAfU†ðq0; p0Þ ¼ AUðq0;p0Þf;

ðUðq0; p0ÞfÞðq; pÞ ¼ fððq0; p0Þ−1ðq; pÞÞ; (21)

U being the left regular representation of the affine
group.

4A clock is slow gauge if the singularity is reached within a
finite time interval [15].
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IV. PHYSICAL OPERATORS

A. Functions of q

The quantization of coordinate functions reads as

q↦Aq ¼
c0
c−1

Q; QϕðxÞ≔ σxϕðxÞ; (22)

provided that c0 < ∞. This operator is self-adjoint.
More generally, for β ∈ R,

qβ ↦Aqβ ¼
cβ−1
c−1

Qβ; (23)

provided that cβ−1 < ∞.
In particular, the quantization of the volume V ¼ q

2
1−w

reads as

AV ¼
c1þw

1−w
c−1

Q
2

1−w: (24)

B. Functions of p

The quantization of momentum reads as

p↦Ap ¼ P; PϕðxÞ≔ − i
aP
σ
ϕ0ðxÞ: (25)

This operator is symmetric when defined on rapidly
decreasing functions with support in R�þ, but one can show
that there is no self-adjoint extension [the deficiency
indices are (1,0) [21]].
One notices that the affine quantization yields canonical

commutation rule ½Aq; Ap� ¼ iaPc0=c−1.
For the “free” Hamiltonian H0 ¼ Ap2 we have

H0 ¼ P2 þ a2P
K
Q2

;

with K ¼ Kðψ0Þ≔
Z

∞

0

udu
c−1

ðψ0
0ðuÞÞ2: (26)

We notice that the quantization procedure always yields
an additional term. This term depends only on the fiducial
vector, and its importance will be explained below.

C. The quantized Hamiltonian

The classical Hamiltonian hT of (12) reads as

hTðq; pÞ ¼ αðwÞp2 þ 6~kqμðwÞ;

with ~k ¼ ðdωÞ2=3k;
k ¼ −1; 0; 1; (27)

therefore, the quantum Hamiltonian H ¼ AhT reads as

H ¼ αðwÞP2 þ a2PαðwÞ
K
Q2

þ 6~k
cμðwÞ−1
c−1

QμðwÞ: (28)

Let us notice that K > 0, whatever the choice of ψ .
Therefore, the singularity x ¼ 0 cannot be reached: this
dressing of the classical singularity is an outcome of the
followed CS quantization scheme (throughK). Furthermore,
our procedure yields a renormalization of the coupling
constant of the potential.
If we assume a closed universe with a radiation content,

thenw ¼ 1=3, k ¼ þ1, and ~k ¼ ðR dωÞ2=3; then variables q
and p both get a length dimension [Eq. (9)], and we obtain
the special Hamiltonian Hcr:

Hcr ¼
1

24
P2 þ a2PK

24

1

Q2
þ 6~k

c1
c−1

Q2: (29)

This Hamiltonian is an ordinary differential Sturm-
Liouville operator, singular at the end point x ¼ 0. The
functional properties depend on the value of K, as follows
from the analysis of Gesztesy and Kirsch [22] (see also
[21]). In particular, K ¼ 3=4 is the critical value, while one
would naively expect K ¼ 0, i.e., the infinite barrier, to
play the role. By using the standard approach and termi-
nology of Ref. [21], the potential term in Hcr is in the limit
point case at the end point x ¼ 0 if K ≥ 3=4 and in the limit
circle case at x ¼ 0 if 0 ≤ K < 3=4. The potential is in the
limit point case at infinity. It follows that Hcr (defined on
the domain of smooth compactly supported functions) is
essentially self-adjoint in the former case. In the latter range
of K, the deficiency indices of Hcr are (1,1), and therefore
more self-adjoint extensions exist; see [22] for a detailed
analysis. In this paper, we choose the fiducial vector ψ0 in
such a way that K ≥ 3=4 in order to comply with essential
self-adjointness of the Hamiltonian. This ensures unam-
biguous time evolution and singularity resolution at the
quantum level.

D. The quantum expansion rate Θ
We have

θ ¼ 3

8
ð1 − wÞpq−1þw

1−w

↦Aθ ¼ Θ ¼
3c− 2

1−w
8c−1

ð1 − wÞ 1

Q
1þw

2ð1−wÞ
P

1

Q
1þw

2ð1−wÞ
: (30)

This operator is symmetric when defined on a suitable
domain, but it is not self-adjoint (or does not possess any
self-adjoint extension), from the reasoning previously
developed for P.

V. EXPLICIT FORMULAS IN
A PARTICULAR CASE

In the previous formula, the wavelet ψ0 is a free
parameter of our CS quantization. In order to obtain explicit
expressions, we decide to fix ψ0 as the following unit
vector in H:
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ψν;ξ
0 ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2xK0ðνÞ
p e−ν

4
ðξxþ 1

ξxÞ;

with ν > 0 and ξ > 0: (31)

We notice that ψν;ξ
0 ðxÞ falls off with all its derivatives at the

origin and at infinity. To calculate the normalization
constant involved in the previous definition of ψν;ξ

0 (and
in order to obtain other useful integrals), we take benefit of
the formula [23]

∀ a; b; c ∈ C; ℜðbÞ > 0; ℜðcÞ > 0;Z
∞

0

xa−1e−cx−b=xdx ¼ 2

�
b
c

�
a=2

K−að2
ffiffiffiffiffi
bc

p
Þ: (32)

Here, Ka is a modified Bessel function [24]. We recall
that its asymptotic behavior at large argument ν is
KaðνÞ ∼ e−ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð2νÞp

, whereas at small ν ≪
ffiffiffiffiffiffiffiffiffiffiffi
aþ 1

p
,

KaðνÞ ∼ ð1=2ÞΓðaÞð2=νÞa for a > 0 and K0ðνÞ ∼ −
lnðν=2Þ − γ.
The coefficients cα defined in Eq. (18) read as

cα ¼
ξαþ2

K0ðνÞ
Kαþ2ðνÞ: (33)

The coefficient ξ is fixed in the sequel as being

ξ ¼ K1ðνÞ
K2ðνÞ

: (34)

The interest of this choice will become apparent with the
study of the operator Aq. Also note that it implies that, in
view of the study of the semiclassical regime, aP and ν
remain the only free parameters.
The coefficient c−1 involved into the resolution of unity is

c−1 ¼
K1ðνÞ2

K0ðνÞK2ðνÞ
: (35)

A. The physical operators

The quantization of the variable q reads as

Aq ¼
c0
c−1

Q ¼ Q; (36)

due to the choice of ξ. The quantization of the potential qβ

leads to

Aqβ ¼
cβ−1
c−1

Qβ ¼ K1ðνÞβ−1Kβþ1ðνÞ
K2ðνÞβ

Qβ: (37)

This formula can be applied in particular to the classical
volume V ¼ q2=ð1−wÞ.

The quantization of the momentum P ¼ Ap is as in (25)
while the free Hamiltonian H0 ¼ Ap2 becomes

H0 ¼ P2 þ a2P
KðνÞ
Q2

; KðνÞ≔ 1

4

�
1þ ν

K0ðνÞ
K1ðνÞ

�
:

(38)

The Hamiltonian H of Eq. (28) reads as

H ¼ αðwÞP2 þ a2PαðwÞ
KðνÞ
Q2

þ 6~k
K1ðνÞμðwÞ−1KμðwÞþ1ðνÞ

K2ðνÞμðwÞ
QμðwÞ: (39)

The last quantized observable is the expansion rate Θ ¼ Aθ

that reads as

Θ ¼ 3ð1 − wÞ
8

K− 2w
1−wðνÞ

K2ðνÞ1þw
1−w

K1ðνÞ 2
1−w

1

Q
1þw

2ð1−wÞ
P

1

Q
1þw

2ð1−wÞ
: (40)

Finally, as was already pointed out above [Eq. (29)], the
special interesting case of Hamiltonian H is obtained
when we assume a closed universe with a radiation content
[k ¼ þ1, w ¼ 1=3, and ~k ¼ ðR dωÞ2=3] and yields the
Hamiltonian

Hcr ¼
1

24
P2 þ a2P

24

KðνÞ
Q2

þ 6~k
K1ðνÞK3ðνÞ
K2ðνÞ2

Q2: (41)

B. Analysis of Hcr

1. Semiclassical point of view

If we perform a semiclassical analysis of the dynamics
due to Hcr obtained in Eq. (41), we see that the supple-
mentary repulsive potential generated by the quantization
leads to a displacement of the equilibrium point of the
potential. While the harmonic potential alone possesses
an equilibrium point located at the singularity q ¼ 0, the
harmonic potential corrected with the supplementary repul-
sive term exhibits a different equilibrium point which is
located at

q4e ¼
a2P
144

K2ðνÞ2
K1ðνÞK3ðνÞ

KðνÞ: (42)

We recover qe ¼ 0 when aP ¼ 0, but for aP ≠ 0 we find
that the smallest value qe ≃ ffiffiffiffiffiffi

aP
p

=5.8 is obtained for ν → 0,
while qe → ∞ when ν → ∞. Moreover the renormalized
coupling constant of the potential in Eq. (41) converges to
the classical counterpart when ν → ∞. Therefore the free
parameter ν and the standard aP can be used to specify the
renormalized coefficient of the potential and the position of
the new equilibrium point.
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Hence we observe that the semiclassical dynamical
behavior of the system is an oscillation around this point
qe and the “bare (or true) classical singularity q ¼ 0” is
never reached.

2. Eigenstates and evolution operator

With the quantities l, ω, and λ defined as

l ¼ 1

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ν

K0ðνÞ
K1ðνÞ

s
− 1

!
;

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~kK1ðνÞK3ðνÞ

q
K2ðνÞ

;

and λ ¼ 6ω; (43)

the eigenvalues En, n ¼ 0; 1; :::::, of Hcr read as

En ¼ aPωð2nþ lþ 3=2Þ: (44)

The corresponding normalized eigenvectors ψn are

ψnðxÞ ¼ Nnxlþ1Llþ1=2
n ð2λx2Þe−λx2 : (45)

The functions Llþ1=2
n are the associated Laguerre poly-

nomials [24], and the normalization factor Nn is given by

Nn ¼
�

2ð2λÞlþ3=2n!
Γðnþ lþ 3=2Þ

�
1=2

: (46)

Introducing a dimensionless evolution parameter τ, related
to time t through some scaling, for instance, the evolution
operator UðτÞ ¼ e−iHcrτ=aP is periodic with period π=ω.
It is given in terms of matrix elements hxjUðτÞjyi by

hxjUðτÞjyi ¼ 2λ

ffiffiffiffiffi
xy

p
j sinðωτÞj e

iλðx2þy2Þ cotðωτÞ

× Jlþ1=2

�
λxy

j sinðωτÞj
�
; (47)

where Jν is a Bessel function. This expression is derived
from series involving Laguerre polynomials [23]. The
right-hand side of Eq. (47) is singular for sinðωτÞ ¼ 0,
hxjUðτÞjyi being in that case the distribution δðx − yÞ,
corresponding to UðτÞ ¼ 1.

C. Lower symbols

The expectation values hq; pjAjq; pi of quantum oper-
ators allow one to map the quantum world to the classical
one, and they are called “lower symbols” [25] or “covariant
symbols” [26]. Therefore we can examine the semiclassical
map fðq; pÞ↦ f̌ðq; pÞ ¼ hq; pjAfjq; pi that exhibits the
corrections (regularizations) induced from our quantization
procedure. The map f↦ f̌ reads as the integral transform

f̌ðq; pÞ ¼
Z
Πþ

dp0dq0

2πaPc−1
jhq; pjq0; p0ij2fðq0; p0Þ: (48)

It is the average value of the function fðq; pÞwith respect to
the probability distribution ðq0; p0Þ↦ 1

2πaPc−1 jhq; pjq0; p0ij2.

FIG. 1 (color online). The contour plots of phase-space distributions (58): on the left for the eigenstate ψ0 of Hcr, on the right for the
coherent state jq0; p0i with q0 ¼ 2 and p0 ¼ 0. The parameters are fixed to the values ν ¼ 80, aP ¼ 1, and ~k ¼ 1. The thick curve
(figure on the right) is the expected phase trajectory, deduced from the semiclassical Hamiltonian in Eq. (60). The ranges of variables q
and p are, respectively, [0.2, 2.8] and ½−35;þ35�.
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Viewedasakernel, the latter isexpected toplaya regularizing
role under the form of a generalized convolution. Because
of the resolution of the unity (19), the scalar product
hq; pjq0; p0i is a reproducing kernel for a Hilbert subspace
of L2ðΠþ; dqdpÞ. It is given by

hq; pjq0; p0i ¼ 1

K0ðνÞ
K0

 
ν
qþ q0

2
ffiffiffiffiffiffiffi
qq0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4iqq0ðp0 − pÞ

aPνξðqþ q0Þ

s !
;

with ξ ¼ K1ðνÞ
K2ðνÞ

: (49)

For the powers of q we have

hq; pjAqβ jq; pi ¼
KβðνÞKβþ1ðνÞ
K0ðνÞK1ðνÞ

qβ; (50)

in particular,

hq; pjAqjq; pi ¼ hq; pjQjq; pi ¼ K2ðνÞ
K0ðνÞ

q: (51)

We recover hq; pjAqjq; pi≃ q if ν → ∞. Otherwise, we
obtain for P ¼ Ap

hq; pjApjq; pi ¼ hq; pjPjq; pi ¼ p: (52)

The expectation value hq; pjP2jq; pi reads as

hq; pjP2jq; pi ¼ p2 þ a2P
K1ðνÞ2KðνÞ
K0ðνÞK2ðνÞ

1

q2
: (53)

We notice the supplementary term in 1=q2. Using the
previous equations (37), (50), and (53), we obtain

hq; pjAp2 jq; pi ¼ p2 þ 2a2P
K1ðνÞ2KðνÞ
K0ðνÞK2ðνÞ

1

q2
: (54)

We notice that the 1=q2 coefficients in hq; pjAp2 jq; pi and in
hq; pjP2jq; pi differ from a factor of 1=2.
The coupling constant of the supplementary term in q−2

vanishes as aP → 0 or ν → 0, and it becomes infinite as
ν → ∞ (for a fixed value of aP). Finally, we obtain for the
classical Hamiltonian hT of Eq. (12)

ȟTðq; pÞ ¼ αðwÞp2 þ 2a2PαðwÞ
K1ðνÞ2KðνÞ
K0ðνÞK2ðνÞ

1

q2

þ 6~k
KμðwÞðνÞKμðwÞþ1ðνÞ

K0ðνÞK1ðνÞ
qμðwÞ: (55)

We recover ȟT → hT (and q̌β → qβ, p̌2 → p2) if we assume
first aP → 0 and then ν → ∞ (the limits are not commut-
ing). If we want to keep two independent parameters
and to have independent limits, we need to “renormalize”
aP, including in its definition some of the K-Bessel
functions involved in the coupling coefficient of q−2 as,
for example,

aP ¼ ~aP
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0ðνÞK2ðνÞ
K1ðνÞ2KðνÞ

s
; (56)

where ~aP would be the new renormalized Planck area.
Another solution (to avoid the problem of noncommuting
limits) is to assume that ν is in fact a function of aP.
The expression νðaPÞ must be well chosen: we need to
impose both a2PνðaPÞ → 0 and νðaPÞ → ∞ as aP → 0
[a simple solution is νðaPÞ ∝ 1=aP].

D. Time evolution in phase space

For any normalized state ϕ ∈ H, the resolution of unity
allows us to get its phase-space representation:

Φðq; pÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πaPc−1

p hq; pjϕi (57)

and the resulting probability distribution on the phase
space Πþ:

Πþ∋ðq; pÞ↦ 1

2πaPc−1
jhq; p:jϕij2 ¼ ρϕðq; pÞ: (58)

In Fig. 1, two phase-space distributions ρϕðq; pÞ are
shown: for the ground state ψ0 of Hcr and for the coherent

FIG. 2 (color online). The contour plot of time average phase-
space distribution of Eq. (61) for jq0; p0iðτÞ evolving following
the Hamiltonian Hcr. The values of parameters and the thick
curve are those of Fig. 1. The ranges in q and p are, respectively,
[0.2, 2.8] and ½−35;þ35�. The domain 0 ≤ q < 0.2 is not
represented because of numerical instabilities.
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state jq0; p0i with ðq0; p0Þ ¼ ð2; 0Þ. In both cases the
quantization parameters are chosen as ν ¼ 80, aP ¼ 1,
and ~k ¼ 1.
Let us now examine the time behavior τ↦ ρϕðτÞðq; pÞ for

a state ϕðτÞ evolving under the action of the Hamiltonian
Hcr of Eq. (41):

jϕðτÞi ¼ e−iHcrτ=aP jϕi

¼
X∞
n¼0

e−iEnτ=aPhψnjϕijψni; (59)

where jψni is the eigenstate of Hcr with eigenvalue En
given in Eqs. (44) and (45).
With jϕi ¼ jq0; p0i as an initial state and using Eq. (55),

we have for a given ν

hq0; p0; τjHcrjq0; p0; τi ¼
1

24
p2
0 þ a2P

K1ðνÞ2KðνÞ
12K0ðνÞK2ðνÞ

1

q20

þ 6~k
K2ðνÞK3ðνÞ
K0ðνÞK1ðνÞ

q20: (60)

Since for large values of ν the lower symbols ofQ ¼ Aq and
P ¼ Ap correspond to their classical original functions q

and p, one can expect that the time average of the probability
law ρjq0;p0;τiðp; qÞ, defined in (58), corresponds to some
fuzzy extension in phase space of the classical trajectory
corresponding to the time-independent Hamiltonian in the
right-hand side of Eq. (60). Similar dynamical issues of
CS quantization are encountered in the case of Pöschl-Teller
potentials [8].
This key result is illustrated in Fig. 2, where we have

represented the time average distribution ρ̄ defined as

ρ̄ðq; pÞ ¼ lim
T→∞

1

T

Z
T

0

ρjq0;p0;τiðq; pÞdτ

¼ 1

2πaPc−1

X∞
n¼0

jhq; pjψnij2jhψnjq0; p0ij2; (61)

for the same values of the parameters as in Fig. 1.
The time average distribution ρ̄ allows us to compare
the quantum behavior with the classical trajectory,
but the expression (61) hides the details of the
wave-packet dynamics, i.e., the bouncing of the wave
packet during its periodic motion. Figure 3 represents
this behavior.

FIG. 3 (color online). The contourplots of phase-space distributionsρjq0;p0;τiðp; qÞ at different times equally spaced (from top left to bottom
right). The values of parameters and the thick curve are those of Fig. 1. The ranges in q and p are, respectively, ½0.2; 2.8� and ½−35;þ35�.
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VI. DISCUSSION AND CONCLUSION

In this paper, we employed integral quantization based on
the affine coherent states to derive quantum models of a
homogeneous and isotropic universe. As we already noticed,
the Weyl quantization brings unsatisfactory results, particu-
larly when one considers essential self-adjointness of the
quantum Hamiltonian. This invites departures from the
canonical prescription. Our approach, based on the group
structure of the phase space, the affine group, provides a
general quantization procedure for an arbitrary observable
and preserves the basic commutation rule. In the obtained
quantum model of the Friedmann-Lemaître universe, the
classical big bang singularity is replaced with a quantum big
bounce resulting in a smooth and complete evolution. At the
most general level, the removal of the singularity is due to a
unitary evolution: a gravitational collapse, represented by the
Dirac delta peaked at q ¼ 0, can never be reached, as this
state does not belong to the Hilbert space. The novelty
introduced by CS quantization is that the singularity reso-
lution is accompanied by the occurrence of a repulsive
potential. The potential’s role is twofold: (i) on the quantum
level it may lead to a nonambiguous unitary evolution across
the bounce, and (ii) on the semiclassical level it provides a
mechanism for the universe to stop contraction, bounce, and
begin expansion, which is so much more natural than the
hard bounce of the usual quantizations. The prefactor in the
potential term (which will be discussed below) is the desired
free parameter that provides a way to match our theory to
observational constraints. In particular, it may be used to set
the energy scale at which quantum effects come into play.
Let us emphasize that this inverse quadratic potential arises
not only for all possible choices of the fiducial vector ψ0 in
our quantization scheme, but also with a quantization
procedure issued from Weyl-Heisenberg coherent states.

A. Finite universe

In the case for which the universe is noncompact, the
Hamiltonian formulation is derived through the restriction
to a finite patch of space. The inspection of the semi-
classical Hamiltonian and the definition of the basic
variables (6) and (8) and the curvature constant ~k shows
the following: both the kinetic and curvature terms of the
Hamiltonian depend on the size of the patch like ðR dωÞwþ1

while the potential term behaves like ðR dωÞw−1. In other
words, the classical dynamics is invariant with respect to
the choice of the patch, whereas the quantum dynamics is
not. The repulsive potential breaks the invariance, and so
the physical content of the theory depends on the patch.
Thus, one has to exclude a noncompact universe from
quantum modeling. We note that it does not imply the
curvature of the universe: for k ¼ 0 we may consider, e.g.,
torus topology; for k ¼ 1 the universe is necessarily
compact, and for k ¼ −1 there are infinitely many possible
compact spatial sections [27].

B. Planck era and the quantum phase

From the lower symbol of Hamiltonian (55) we deduce
that the quantum effects become important once the
repulsive potential gets comparable with the kinetic part,
that is, p2 ≈ ðβ2ðνÞ=q2Þ, where

β2ðνÞ ¼ 2a2PK1ðνÞ2KðνÞ=ðK0ðνÞK2ðνÞÞ:

In other words, the region of phase space in which classical
dynamics cannot be trusted is given by the inequality (with
curvature neglected)

jpqj≲ βðνÞ;
which by making use of the definitions collected in the
introductory section one can translate into the geometric
observables:

jVθj≲ 3ð1 − wÞ
8

βðνÞ: (62)

Thus the quantum effects depend neither on the size of the
universe nor on its expansion rate alone but rather on the
specific combination of them both. It is a common belief
that the quantum dynamics begins roughly when the energy
density of matter hits the Planck scale and the universe is
said to enter the Planck era. However, our result does not
confirm this assumption. First we note that by virtue of the
Friedmann equation the energy density of matter content is
proportional to the expansion rate squared if the curvature
term is neglected.5 However, inequality (62) says that even
for the Planck scale value of expansion rate the universe
may still be classical provided it is large enough. On the
other hand, a low energy density universe, which is small
enough, may undergo a quantum phase.
Let us take a look at our Universe. For simplicity, we will

assume that the Universe has been filled with radiation
from the big bang up to the present. Since we are exploring
the extension of the classical phase, we may use the
classical equation of motion. In addition, we set the
intrinsic curvature to zero, as the current observations
suggest it has not played a significant role in the evolution
of the Universe so far. Then Vθ ¼ V0θ0 · a

a0
, where the

subscript 0 refers to the present value. Let us fix V0 ∼
1081 m3 to be the size of the observable Universe today
and θ0 ∼ 10−11c−1 s−1. Let the unit of βðνÞ be m2.
Inequality (62) is saturated for

a
a0

≈ 10−62βðνÞ: (63)

Hence the size of the Universe on the brink of the quantum
era cannot be smaller than V ≈ 10−186β3ðνÞ m3 ≈ β3ðνÞl3P,

5This is a reasonable assumption, because as the universe
approaches the singularity the intrinsic curvature term becomes
dominated by the energy density of fluid.
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while the expansion rate is at least θ ≈ 10113c−1 s−1
β−2ðνÞ ≈ 1058t−1P c−1β−2ðνÞ. Both these values may in
principle be deep, deep into the Planck era. In particular,
we estimate that the energy density of matter was at that
time

ρ ≈ 10113ρPlβ
−4ðνÞ: (64)

Now, we may expect that the quantum phase does not start
prior to the Planck era, and so βðνÞ≲ 1033 m2. Well, this is
not strictly a constraint, because βðνÞ can be by any order of
magnitude larger provided that the Universe is, respec-
tively, bigger than its observable part. Obviously, the above
consideration relies on the simplest possible model of the
big bang singularity. Nevertheless, it indicates that the
Planck scale argument should be applied more carefully. As
shown, it is not applicable to the size or the energy density
of the universe alone. One may, however, wonder if in
another clock variable frame we would still obtain the
same estimation for the domain of validity of classical
dynamics—in other words, if inequality (62) would remain
the same upon a different choice of clock, let us say the size
of the universe. At the moment, we notice only that the
equality (62) is only weakly sensitive to the value of w
within its range.

C. Modified Friedmann equation

Putting the lower symbol of the Hamiltonian (55) back
to the constraint equation (10), we obtain the effective
Hamiltonian constraint. In order to get the modified or
semiclassical Friedmann equation, we need to divide the
constraint by lapse N ¼ q2w=ð1−wÞ and by volume V ¼ q

2
1−w.

We get6

αðwÞp2q−21þw
1−w þ

3ð1 − wÞ2a2PK1ðνÞ2
�
1þ ν K0ðνÞ

K1ðνÞ
�

64K0ðνÞK2ðνÞq 4
1−w

þ 6~k
KμðwÞðνÞKμðwÞþ1ðνÞ

K0ðνÞK1ðνÞ
q

−4
3ð1−wÞ ¼ pTq−2

1þw
1−w:

Now, we combine the definitions of ðq; pÞ and ð ~a; ~pÞ to
arrive at

�
_a
a

�
2

þ c2a2Pð1 − wÞ2 AðνÞ
V2

þ BðνÞ kc
2

a2
¼ 8πG

3c2
ρ;

where

AðνÞ ¼ K1ðνÞ2KðνÞ
32K0ðνÞK2ðνÞ

; BðνÞ ¼ KμðwÞðνÞKμðwÞþ1ðνÞ
K0ðνÞK1ðνÞ

:

As the result of quantization, we obtain two corrections to
the Friedmann equation. First, the repulsive potential,
which depends on the volume. We notice that as the
singularity is approached a → 0, the repulsive potential
grows faster (∼a−6) than the density of fluid (∼a−3ð1þwÞ),
and therefore at some point the contraction must come to a
halt. Second, the curvature becomes dressed by factor BðνÞ.
This effect could in principle be observed far away from the
quantum phase. However, we observe the intrinsic curva-
ture neither in the geometry nor in the dynamics of space.
Nevertheless, we note that BðνÞ ≈ 1 for large enough ν. The
function AðνÞ≃ ν

128
for large ν. Assuming ν is large enough

we obtain

�
_a
a

�
2

þ c2a2Pð1 − wÞ2 ν

128

1

V2
þ kc2

a2
¼ 8πG

3c2
ρ: (65)

The form of the repulsive potential featuring in Eq. (65)
does not depend on the state of fluid, which fills the
universe. Therefore, we may conclude that the origin of
singularity avoidance is quantum geometrical. Although
the potential’s coefficient weakly depends on the matter
content through ð1 − wÞ2, the dependence on w can be
absorbed in the definition of ν. The potential provides a
kind of hardness to the collapsing space that resists its
contraction. As the space contracts, the gravitational
interaction grows and increases the contraction rate even
more. Then, at some point, the potential turns on and makes
the contraction slow down, until the space comes to a
complete halt and rebounds. After the rebound the expan-
sion initially accelerates, and the potential turns off shortly
after. Afterwards, the dynamics becomes classical.

D. Constraint from cosmography

Szydlowski, Godlowski, and Stachowiak [28] have
studied cosmographical constraints for the additional
source term of the form Ωmodðzþ 1Þ6 in the ΛCDMmodel.
It corresponds to the geometrical correction in our modified
Friedmann equation. Interestingly, this kind of modifica-
tion appears outside our construction in the framework
of loop quantum cosmology, brane-world scenarios, and
others. The authors derived a constraint for the value of
Ωmod. The constraint comes from a diverse data set: SNe Ia
and radio galaxies sample, baryon oscillation peak (from
Sloan Digital Sky Survey), and the so-called cosmic
microwave background shift parameter. The result can
be translated into our model’s free parameter as

6The lapse and volume are functions of physical degrees of
freedom and as such are considered as quantum operators. Thus,
one might wish to use lower symbols of N and V instead of
classical counterparts to perform the division. However, we have
already obtained a semiclassical expression in (55), and we
should work with it by treating all the quantities, including N and
V, classically.
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c2a2Pð1 − wÞ2 ν

128H2
0V

2
0

≤ 0; 26 × 10−9

from which we get

a2Pð1 − wÞ2ν ¼ 2β2ðνÞ≲ 10131 m4:

This constraint is, as expected, milder than the one we got
from assuming that the correction comes into a play only
after the Universe has entered the Planck era. The authors
of [28] also estimate the constraint from the big bang
nucleosynthesis to be

a2Pð1 − wÞ2ν ¼ 2β2ðνÞ≲ 10120 m4;

which is still a much weaker constraint than the first one
that we have arrived at.

VII. CONCLUSION

The core result of this work is the occurrence of a
repulsive potential providing a mechanism for the singu-
larity resolution. The potential is quantum geometrical in
nature and prevents the space from reaching the singular
state. Eventually, the space-time rebounds. The potential is
a generic and unexpected feature of our quantization
scheme. The coupling constant of the potential depends
on the choice of fiducial vector, which is used to generate
coherent states. We fully parameterize this freedom with a
positive and otherwise arbitrary parameter ν.
The free parameter is, in our mind, a desired result. First

of all, ν may be used to fit our model into observational
constraints. We may also see the free parameter(s) as
“modeling” the more fundamental structure of quantum
gravity. On one hand, our theory is a merger of the
principles of quantum mechanics and the dynamics of
the gravitational field. On the other hand, unlike Weyl
quantization, it includes the many ways in which one may
do the merger. It encompasses the absence of observational
clues of phenomena involving quantized gravity as well as
the lack of knowledge of the fundamental principles on
which the full quantum gravity is perhaps to be achieved
one day. Our line of research may contribute to the
discovery of this structure.
Our approach is bottom up: we began with quantizing

homogenous and isotropic models. Next we will move to
more complex ones. The natural extension of this work will
be to allow for anisotropic evolution of space, which admits
a more complex singularity. We also plan to include
different choices of clock variable and complement reduced
phase-space quantization with the Dirac method.
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APPENDIX A: COMMENT ON AFFINE
QUANTIZATION OF GRAVITY

The idea of proceeding in quantum gravity in its
Arnowitt-Deser-Misner formulation with an “affine” quan-
tization instead of the Weyl-Heisenberg quantization was
already present in Klauder’s work [29] and also in [30].
More precisely, one starts from the classical “axþ b”

affine algebra with its two generators q (position) and
d ¼ pq (dilation), built from the usual phase-space canoni-
cal pair ðq; pÞ, fq; pg ¼ 1, and obeying fq; dg ¼ q. Then,
following the usual canonical quantization procedure,
q↦Q, p↦P, with ½Q;P� ¼ iℏI, one obtains the quantum
version of the dilation, d↦ 1

2
ðPQþQPÞ, and the resulting

affine commutation rule ½Q;D� ¼ iℏQ. At the difference
of the original Q and P, the affine operators Q and D are
reducible: there are three inequivalent irreducible self-
adjoint representations: Q > 0, Q < 0, and Q ¼ 0. The
quantization of classical observables follows through the
usual replacement fðq; dÞ↦ fðQ;DÞ followed by a sym-
metrization. Then, a specific family of affine coherent states
jp; qi (in Klauder’s notation) is built from the unitary action
of the affine group

jp; qi≔ eipQ=ℏe−i lnðqÞD=ℏj ~βi; (A1)

on a fiducial vector j ~βi chosen as an extremal weight vector
which is a solution of the first-order differential equation

ðQ − 1þ ði=~βÞDÞj~βi ¼ 0; (A2)

where ~β is a free parameter. Note that this equation is the
affine counterpart of the aj0i ¼ 0 satisfied by the Gaussian
fiducial vector in the case of standard coherent states.
Given a quantum operator A issued from this scheme,

like the Hamiltonian, its mean values or lower symbols
Aðp; qÞ ¼ hp; qjAjp; qi allow one to make the classical
and quantum theories coexist in a consistent way: the
classical limit of this enhanced affine quantization à la
Klauder is a canonical theory.
In Ref. [29], the authors build a toy model of gravity

where p > 0 represents the metric with signature con-
straints and q represents the Christoffel symbol. In the later
work, Klauder has chosen q > 0 for the metric and −p as
the Christoffel symbol.
In a recent paper [31], Fanuel and Zonetti follow

Klauder’s approach to affine quantization to deal with
highly symmetric cosmological models.
Klauder has also studied affine quantization of the entire

gravitational field. As one short and summarizing article,
look at Ref. [32] and references therein.
Like in our work, this “enhanced quantization” provides

a natural and nonambiguous regularization of some singu-
larities encountered in gravity. Actually, one can consider
the two approaches as complementary, the Klauder one
being still based on the usual canonical procedure, ours
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being based on integral quantization made possible by a
resolution of the identity obeyed by coherent states.
We should add at the credit of our approach that we leave
a huge freedom in the choice of coherent states. In any case,
we suspect that the two procedures are physically equiv-
alent (respective quantum observables could differ at higher
order in ℏ).

APPENDIX B: DEFINITION AND ESSENTIAL
PROPERTIES OF THE AFFINE GROUP

In this Appendix, we leave aside all physical dimensions.
Consider the affine transformation on the real line:

R ∋ t → ða; bÞ · t≔ atþ b;

where the pair dilation-translation parameters ða; bÞ
belongs to R�þ ×R.
The transformations ða; bÞ form a group with the

composition rule:

ða; bÞða0; b0Þ ¼ ðaa0; ab0 þ bÞ:
The neutral element is (1,0), and the inverse of ða; bÞ is
ða; bÞ−1 ¼ ð1=a;−b=aÞ. This group is called the affine
group of the real line and denoted by the symbol AffþðRÞ.
It has a left action and a right action on itself. The left-
invariant measure is

dadb
a2

;

whereas the right-invariant one is

dadb
a

:

In the main text, we use a slightly different realization of the
group; namely, we perform a transformation of coordinates
ða; bÞ → ðq; pÞ such that the measure is of the Lebesgue
form dqdp. One can easily check that this coordinate
transformation is

q ¼ 1=a; p ¼ b

for the left action and

q ¼ lnðaÞ; p ¼ b

for the right action. This coordinate transformation affects
the composition rule as well:

ðq; pÞðq0; p0Þ ¼
�
qq0;

p0

q
þ p

�
;

ðq; pÞðq0; p0Þ ¼ ðqþ q0; eqp0 þ pÞ;

for the left action and right action, respectively.

In the main text we consider only the left action. Also,
the choice of coordinates q and p is such that they can be
thought of as the configuration variable and its conjugated
momentum parametrizing the phase space of FLRW
cosmology, which is the half-plane Πþ ¼ fðq; pÞ ∈ R2∶
q > 0g. In particular, since ðq; pÞ ∈ Πþ are canonical
variables, the symplectic structure with respect to these
variables is of the diagonal form, and thus it follows that
the measure is Lebesgue. That is why we did the trans-
formation from the mathematically more natural ða; bÞ to
the physically meaningful ðq; pÞ.
We already saw how AffþðRÞ acts on R: in terms of the

new variables,

s → ðq; pÞ · s ¼ s
q
þ p:

Let us make explicit Hilbert spaces, on which the (left)
action of AffþðRÞ is unitarily represented. They are para-
metrized by α ∈ R7:

Hα ≔L2ðR�þ; dx=xαþ1Þ:

The fact that these Hilbert spaces are based on the positive
half line,R�þ, is suggested by the usual situation in quantum
mechanics (QM): the wave functions are maps from the
classical configuration (in our case, the space where q takes
values) to C. The requirement that such functions are
square integrable is also a standard QM requirement, while
the weight in the Lebesgue measure is introduced for more
generality. In the concrete study of physical operators, we
conveniently choose α ¼ −1, so that the measure becomes
the usual one.
The action of the operators Uαðq; pÞ on ψ ∈ Hα is

defined as

ðUαðq; pÞψÞðxÞ ¼ qα=2eipxψðx=qÞ:

It is easy to check that Uαðq; pÞ is unitary. Its irreducibility
has been shown in Ref. [16] (see also [17]).
In the main text, we use the action of Uαðq0; p0Þ on a

chosen ψ to produce the affine coherent state jq0; p0i,
peaked on a classical phase-space point ðq0; p0Þ. As a
function of x it is defined as

hxjq0; p0i ¼ ðUαðq0; p0ÞψÞðxÞ ¼ qα=20 eip0xψðx=q0Þ:

Because of the affine group composition rule, we see that
acting with Uαðq; pÞ on jq0; p0i produces the functions

7It has to be said that the quantum theories arising from two
Hilbert spaces of this family are unitarily equivalent, so one can
effectively choose α at will, as it cannot play any role on the
physics. In particular, in the main text the choice is α ¼ −1, as
this corresponds to the usual Schrödinger representation.
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hxjUαðq; pÞjq0; p0i ¼ hxjUαðq; pÞUαðq0; p0Þjψi
¼ hxjUαðqq0; p0=qþ pÞjψi
¼ hxjqq0; p0=qþ pi;

i.e.,

Uαðq; pÞjq0; p0i ¼ jqq0; p0=qþ pi ¼ ∶jq0; p0i:

This shows that the coherent state jq0; p0i transforms
covariantly under the action of unitary operator Uαðq; pÞ.
At this point, Schur’s lemma applies.

1. Schur’s lemma

Let G be a group with U its UIR on a vector space V.
If M is an operator on V such that UðgÞMUðgÞ† ¼ M
for all g ∈ G, then M is a multiple of the identity 1 on
V: M ¼ c · 1.
In our case, it is easy to check that the operatorR
dqdpjq; pihq; pj satisfies the hypotheses of the lemma.

Therefore, it follows thatZ
dqdpjq; pihq; pj ¼ c · 1:

Combining this operator identity with the projector jψihψ j
on a suitably selected unit vector jψi and taking the trace
allow one to compute the constant. It is finite because the
UIR is shown to be square integrable. This is nothing but
the statement of the main text that the CS family fjq; pig
resolves the identity with respect to the measure dqdp=c
and is the starting point for coherent state quantization and,
as well, for continuous wavelet analysis.

APPENDIX C: AFFINE QUANTIZATION FOR
COMPLEX FIDUCIAL VECTORS

In what follows, we extend definition (17) of wavelets to
complex fiducial vectors ψ0, which are rapidly decreasing
functions on R�þ. The quantization of classical functions
fðq; pÞ is again implemented through formula (20).
One finds

Ap2 ¼ P2 þ aP
2
LðPQ−1 þQ−1PÞ þ a2P

K
Q2

; (C1)

where we extend the definitions of K in (26) and cα in (18)
as follows:

K≔
Z

∞

0

xdx
c−1

jψ 0
0ðxÞj2; cα≔

Z
∞

0

jψ0ðxÞj2
dx
x2þα (C2)

and introduce another constant, which vanishes for real ψ0:

L≔ i
Z þ∞

0

ðψ 0
0ψ̄0 − ψ̄ 0

0ψ0Þ: (C3)

We note the extra term in the quantized Hamiltonian, which
is linear in P and thus may be associated with the expansion
of the universe. Unlike the repulsive potential, this extra
term is present only for complex fiducial vectors. Its role in
the singularity resolution will be a subject of a separate
investigation. In Appendix D, we find that it is present also
in the Weyl-Heisenberg CS quantization.

APPENDIX D: WEYL-HEISENBERG COHERENT
STATE QUANTIZATION

In what follows, we present in fair detail computation of
quantum operators for the half-plane observables via the
Weyl-Heisenberg CS. In agreement with the affine CS, we
find the repulsive potential of the quantum Hamiltonian to
be a general feature of the employed scheme. In addition,
we derive an extra term, which is proportional to expansion
and which occurs only for families of CSs with complex
fiducial vectors.
First, we map the half-plane, canonically parametrized by

pair ðq; pÞ ∈ R�þ ×R onto the plane with the following
canonical parametrization: ð ~q; ~pÞ≔ ðln q; qpÞ ∈ R2. In the
newvariables,wehaveq ¼ e ~q; p ¼ ~pe− ~q, andp2 ¼ ~p2e−2~q.
When we take into account the dimension of q and p, it
becomes physically more meaningful to use ~q≔ ln q

σ and
~p≔ qp

aP
, where σ has the dimension of q. Then we have

q ¼ σe~q; p ¼ ðaPσ Þ ~pe−~q, and p2 ¼ ðaPσ Þ2 ~p2e−2~q.
Any infinite-dimensional UIR of the Weyl-Heisenberg

group is characterized by a real number λ ≠ 0 and may be
given as

Uλð~q; ~pÞ≔ e−iλ ~p ~q =2eiλ ~pQe−iλ~qP (D1)

acting in L2ðR; dxÞ in the following way:

Uλð~q; ~pÞϕðxÞ ¼ eiλ ~pðx−~q=2Þϕðx − ~qÞ: (D2)

Hence ðQϕÞðxÞ ¼ xϕðxÞ and ðPϕÞðxÞ ¼ − i
λ
∂ϕ
∂x ðxÞ are the

generators of the representation, which satisfy the canoni-
cal commutation rule. We fix λ ¼ 1 and denote the
representation simply by Uð~q; ~pÞ. Given a normalized
vector ϕ0 ∈ L2ðR; dxÞ, a continuous family of unit vectors

j~q; ~pi ¼ Uð~q; ~pÞjϕ0i; hxj~q; ~pi ¼ ei ~pðx−~q=2Þϕ0ðx − ~qÞ
(D3)

resolves the unity. They are the Weyl-Heisenberg coherent
states in quantum mechanics and Gabor states in time-
frequency signal analysis [1]. They may be used to
implement the quantization of classical function fð~q; ~pÞ via

f↦Af ¼
Z
Π

d~qd ~p
2π

fð~q; ~pÞj~q; ~pih~q; ~pj: (D4)
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In order to compare quantum operators obtained, respec-
tively, from the W-H CS and from the affine CS,
we introduce the isometry T∶L2ðR; dxÞ∋ϕðxÞ↦ψðyÞ≔
ϕðln yÞffiffi

y
p ∈ L2ðR�þ; dyÞ. One easily checks that

Te−2xT† ¼ 1

y2
; T

∂
∂x T

† ¼ ffiffiffi
y

p ∂
∂y

ffiffiffi
y

p
: (D5)

Note that the self-adjoint −i∂=∂x acting in L2ðR; dxÞ is
transformed into the self-adjoint dilation acting in
L2ðR�þ; dxÞ.

1. The quantized kinetic term

In what follows, we compute Ap2 :

Ap2 ¼
�
aP
σ

�
2
Z
Π

d~qd ~p
2π

~p2e−2~qj~q; ~pih~q; ~pj

¼
�
aP
σ

�
2
Z
Π

d~qd ~p
2π

ei ~pðx−x0Þϕ0ðx − ~qÞϕ̄0ðx0 − ~qÞ ~p2e−2~q

¼ −
�
aP
σ

�
2
Z
Π

d~qd ~p
2π

ðei ~pðx−x0ÞÞ;xxϕ0ðx − ~qÞϕ̄0ðx0 − ~qÞe−2~q

¼ −
�
aP
σ

�
2 ∂2

∂x2
�Z

Rþ
d~qδðx − x0Þϕ0ðx − ~qÞϕ̄0ðx0 − ~qÞe−2~q

�

þ 2

�
aP
σ

�
2 ∂
∂x
�Z

Rþ
d~qδðx − x0Þϕ0ðx − ~qÞ;xϕ̄0ðx0 − ~qÞe−2~q

�

−
�
aP
σ

�
2
�Z

Rþ
d~qδðx − x0Þϕ0ðx − ~qÞ;xxϕ̄0ðx0 − ~qÞe−2~q

�

¼
�
aP
σ

�
2
�
− ∂2

∂x2 e
−2xδðx − x0Þaþ 2

∂
∂x e

−2xδðx − x0Þb − e−2xδðx − x0Þc
�
; (D6)

where

a ¼
Z þ∞

−∞
ϕ0ðxÞϕ̄0ðxÞe2x;

b ¼
Z þ∞

−∞
ϕ0
0ðxÞϕ̄0ðxÞe2x;

c ¼
Z þ∞

−∞
ϕ0
0ðxÞϕ̄0ðxÞe2x: (D7)

Hence,

TAp2T† ¼
�
aP
σ

�
2
�
−a ∂2

∂y2 δðy − y0Þ

þ 2ðaþ bÞ 1
y
∂
∂y δðy − y0Þ

þ
�
− 9

4
a − 3b − c

�
1

y2
δðy − y0Þ

�
: (D8)

To simplify notation we define ψ0≔Tϕ0 and introduce

In ≔
Z þ∞

0

ynjψ0j2;

Jn ≔
Z þ∞

0

ynjψ 0
0j2;

Kn ≔
Z þ∞

0

ynðψ 0
0ψ̄0 − ψ̄ 0

0ψ0Þ; (D9)

where the last quantity is purely imaginary. Now, the
coefficients (D7) read

a ¼ I2; b ¼ −I2 þ 1

2
K3 þ

�
1

2
y3jψ0ðyÞj2

�����∞
0

;

c ¼ 13

4
I2 − J4 − K3 −

�
y3jψ0ðyÞj2 − 1

2
y4ðjψ0ðyÞj2Þ0

− 1

2
y4ðψ 0

0ψ̄0 − ψ̄ 0
0ψ0Þ

�����∞
0

: (D10)

2. The quantized coordinates

We compute operators for the coordinates in the half-
plane q ¼ σe~q and p ¼ ðaPσ Þ ~pe−~q as follows:

Aq ¼ σ

Z
Π

d~qd ~p
2π

e~qj~q; ~pih~q; ~pj

¼ σ

Z
d~qd ~p
2π

ei ~pðx−x0Þϕ0ðx − ~qÞϕ̄0ðx0 − ~qÞe~q

¼ σδðx − x0ÞI−1ex; (D11)

and hence

TAqT† ¼ I−1σyδðy − y0Þ: (D12)

The above can be generalized to
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TAqαT† ¼ I−ασαyαδðy − y0Þ: (D13)

Also,

Ap ¼
�
aP
σ

�Z
Π

d~qd ~p
2π

~pe−~qj~q; ~pih~q; ~pj

¼
�
aP
σ

�Z
d~qd ~p
2π

ei ~pðx−x0Þϕ0ðx − ~qÞϕ̄0ðx0 − ~qÞ ~pe−~q

¼ −i
�
aP
σ

� ∂
∂x e

−xδðx − x0ÞI1

þ i
2

�
aP
σ

�
ð−I1 þ K2 þ y2jψ0ðyÞj2j∞0 Þe−xδðx − x0Þ;

and hence

TApT† ¼ −i
�
aP
σ

�
I1

∂
∂y δðy − y0Þ

þ i
2

�
aP
σ

�
ðK2 þ y2jψ0ðyÞj2j∞0 Þ

1

y
δðy − y0Þ:

(D14)

3. The quantized expansion rate

Similarly, one finds that

TAθT† ¼ 3

8
ð1 − wÞaPσ−1þw

1−w

�
− i
2
I 2
1−w

�
y−1þw

1−w
∂
∂yþ

∂
∂y y

−1þw
1−w

�

þ i
2
ðK3−w

1−w þ y
3−w
1−wjψ0ðyÞj2j∞0 Þy−

2
1−w

�
δðy − y0Þ:

(D15)

4. The specification of ψ0

In what follows we assume ψ0 to be a rapidly decreasing
function so that all the boundary terms vanish. Suppose that

ψ0 is complex and Kn ≠ 0. We now define Q≔ σx and
P≔ − i aPσ

∂
∂x. Then

Ap2 ¼ I2P2 þ iaP
2

K3ðPQ−1 þQ−1PÞ

þ a2P

�
− 10

4
I2 þ J4

�
1

Q2
(D16)

is apparently symmetric, but its extension to a self-adjoint
operator is a separate issue. The basic variables read

Aq ¼ I−1Q;

Ap ¼ I1Pþ iaP
2

K2

1

Q
; (D17)

and the expansion rate reads

Aθ ¼
3

16
ð1 − wÞI 2

1−wðQ−1þw
1−wPþ PQ−1þw

1−wÞ

þ 3iaP
16

ð1 − wÞK3−w
1−wQ

− 2
1−w: (D18)

For ψ0 real, the above formulas simplify further:

Ap2 ¼ I2P2 þ a2P

�
− 10

4
I2 þ J4

�
1

Q2
;

Aq ¼ I−1Q̂; Ap ¼ I1P̂: (D19)

It follows that in order to recover the canonical rule we need
I−1 ¼ I−11 . Note that the coefficient in front of the potential
satisfies

− 10

4
I2 þ J4 ≥ − 1

4
I2; (D20)

which ensures the positivity of Ap2 .
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