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Using separate universe simulations, we accurately quantify super-sample covariance (SSC), the typically
dominant sampling error for matter power spectrum estimators in a finite volume, which arises from the
presence of super survey modes. By quantifying the power spectrum response to a background mode, this
approach automatically captures the separate effects of beat coupling in the quasilinear regime, halo sample
variance in the nonlinear regime and a new dilation effect which changes scales in the power spectrum
coherently across the survey volume, including the baryon acoustic oscillation scale. It models these effects at
typically the few percent level or better with a handful of small volume simulations for any survey geometry
compared with directly using many thousands of survey volumes in a suite of large-volume simulations. The
stochasticity of the response is sufficiently small that in the quasilinear regime, SSC can be alternately
included by fitting the mean density in the volumewith these fixed templates in parameter estimation. We also
test the halo model prescription and find agreement typically at better than the 10% level for the response.
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I. INTRODUCTION

The statistical properties of large scale structure provide
a wealth of cosmological information on fundamental
physics, including cosmic acceleration, neutrino masses
and inflation. The simplest statistic is the two-point
correlation function or power spectrum of the matter
density field which underlies observables such as weak
lensing and galaxy clustering. Its covariance matrix encap-
sulates the precision with which it can be measured and
contains contributions from both measurement noise and
covariances caused by the incomplete sampling of the
fluctuations due to a finite-volume survey [1–3].
Super-sample covariance (SSC) is the sampling error

caused by coupling to modes that are larger than the survey
scale [4]. It has been shown to be the largest non-Gaussian
contribution to power spectrum errors for a wide range of
conditions from the quasilinear regime, where it is known
as beat coupling (BC), to the deeply nonlinear regime,
where it is known as halo sample variance (HSV) [4–15].
Accurate quantification of SSC is therefore crucial for

upcoming surveys. In Ref. [15], it was shown that all
previously known aspects of SSC could be characterized by
a single quantity: the response of the power spectrum to a
change in the background density. Indeed by following this
prescription we here uncover a hitherto uncharacterized
dilation effect in the quasilinear regime and discuss its
origin in the matter trispectrum.
This power spectrum response can itself be accurately

calibrated with so-called separate universe (SU) simula-
tions, where the long-wavelength perturbation is absorbed

into a change in cosmological parameters [16–18]. It needs
only to be calibrated once for a given cosmological model
since the small scale response is the same regardless of the
survey geometry. In this paper, we perform this calibration
and test the accuracy with which it describes the SSC effect
directly with survey-windowed simulations [10,11,19].
The outline of this paper is as follows. In Sec. II, we

review the origin of SSC, its description as the power
spectrum response to a background mode, and uncover a
new dilation effect which changes scales in the power
spectrum coherently within the survey using the halo
model. We detail the separate universe calibration of the
response in Sec. III which automatically captures all
effects. In Sec. IV, we test this calibration against direct
super-survey sized simulations of the SSC effect. We
discuss these results in Sec. V.

II. SUPER-SAMPLE COVARIANCE

Here we briefly review the theory for SSC that was
developed in Ref. [15]. In Sec. II A we discuss its relation-
ship to squeezed trispectra and the separate universe
consistency ansatz. We examine in Sec. II C the halo
model for SSC and introduce a dilation effect, the modu-
lation of a short distance scale in a long-wavelength mode,
that is new to this work.

A. Power spectrum covariance

In a finite survey volume, we effectively measure the
underlying density fluctuation field δðxÞ through a survey
window function WðxÞ which is 1 in the measured region
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and 0 in the unmeasured region. The power spectrum,
defined through

h~δðkÞ~δðk0Þi ¼ ð2πÞ3δ3Dðkþ k0ÞPðkÞ; (1)

can be estimated as

P̂ðkiÞ≡ 1

VW

Z
jkj∈ki

d3k
Vki

~δWðkÞ~δWð−kÞ: (2)

Here tildes represent the Fourier transform of a real space
field, the integral is over a shell in k space of width Δk,
volume Vki ≈ 4πk2iΔk for Δk=ki ≪ 1, and the effective
survey volume is defined as

VW ≡
Z

d3xWðxÞ: (3)

The ensemble average of its estimator is a convolution of
the underlying power spectrum with the window

hP̂ðkiÞi ¼
1

VW

Z
jkj∈ki

d3k
Vki

Z
d3q
ð2πÞ3 j

~WðqÞj2Pðk − qÞ: (4)

The survey window has support for q≲ 1=L where L ¼
V1=3
W is the typical size of the survey. Thus for k ∼ 1=L this

estimator is biased low compared to the true power
spectrum due to transfer of power into the fluctuation in
the spatially averaged density of the survey volume [10].
For k ≫ 1=L this bias becomes progressively smaller since
the underlying power spectrum is expected to be smooth
across Δk ∼ 1=L. In Sec. IVA, we verify these properties
with power spectra estimation in simulations.
Due to the convolution, the window also increases the

covariance of power spectrum estimators separated by
Δk ∼ 1=L and decreases their variance. On the other hand,
we are interested in the covariance of the power spectrum
estimator which is induced across scales Δk ≫ 1=L
dynamically via mode coupling in the density evolution.
In this wide bin limit, the covariance becomes

Cij ≡ hP̂ðkiÞP̂ðkjÞi − hP̂ðkiÞihP̂ðkjÞi

≈ CG
ij þ

1

VW
T̄Wðki; kjÞ: (5)

Here the disconnected or Gaussian piece is

CG
ij ≡ 1

VW

ð2πÞ3
Vki

2PðkiÞ2δKij; (6)

with δKij ¼ 1 if ki ¼ kj to within the bin width, otherwise
δKij ¼ 0. The second term, proportional to T̄Wðki; kjÞ, is the
non-Gaussian contribution arising from the connected
4-point function or trispectrum

h~δðk1Þ~δðk2Þ~δðk3Þ~δðk4Þic
¼ ð2πÞ3δ3Dðk1234ÞTðk1;k2;k3;k4Þ; (7)

convolved with the survey window function:

T̄Wðki; kjÞ ¼
1

VW

Z
jkj∈ki

d3k
Vki

Z
jkj0∈kj

d3k0

Vkj

×
Z �Y4

a¼1

d3qa

ð2πÞ3
~WðqaÞ

�
ð2πÞ3δ3Dðq1234Þ

× Tðkþ q1;−kþ q2;k0 þ q3;−k0 þ q4Þ:
(8)

Here and below the notation q1…n ¼ q1 þ � � � þ qn. The
convolution with the window function means that different
4-point configurations separated by less than the Fourier
width of the window function contribute to the covariance.
We call this aspect of the covariance the SSC effect.

B. Trispectrum consistency

The trispectrum consistency condition introduced in
Ref. [15] asserts that the SSC term in the trispectrum must
be consistent with the response of the power spectrum to
change in the background density by a factor of (1þ δb):

T̄ðk;−kþ q12;k0;−k0 − q12Þ

≈ Tðk;−k;k0;−k0Þ þ ∂PðkÞ
∂δb

∂Pðk0Þ
∂δb PLðq12Þ; (9)

where we have assumed k, k0 ≫ q12. The overbar here
refers to an angle average over the direction of q12. Here PL
is the linear power spectrum and is designated as such to
remind the reader that for this relation to be applicable δb
must be a mode in the linear regime, i.e. the survey scale
must be much larger than the nonlinear scale. With this
consistency prescription, the power spectrum covariance is
given by

Cij ¼ CG
ij þ CT0

ij þ σ2b
∂PðkiÞ
∂δb

∂PðkjÞ
∂δb ; (10)

where we have introduced the variance of the background
density field δb in the survey window, defined as

σ2b ≡ 1

V2
W

Z
d3q
ð2πÞ3 j

~WðqÞj2PLðqÞ: (11)

Here

CT0
ij ≡ 1

VW

Z
jkj∈ki

d3k
Vki

Z
jk0j∈kj

d3k0

Vkj

Tðk;−k;k0;−k0Þ

(12)
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is the non-Gaussian covariance term induced by non-
linearity that is not mediated by a long-wavelength mode
[2]. The linear variance σb can be easily computed for any
survey geometry, either by evaluating Eq. (11) directly, or
using Gaussian realizations of the linear density field.
Note that we define density fluctuations relative to the

global mean density rather than the mean within the survey
window [11]

PWðkÞ ¼ PðkÞ=ð1þ δbÞ2: (13)

PðkÞ is appropriate for statistics such as weak lensing,
where only the matter density is involved and its back-
ground value is fixed by cosmological parameters, whereas
PWðkÞ characterizes statistics such as galaxy clustering
where the mean density of tracers is determined from the
survey itself. For the covariance of PWðkÞ, one would
simply rescale the response as

∂PðkÞ
∂δb →

∂PWðkÞ
∂δb ≈

∂PðkÞ
∂δb − 2PðkÞ: (14)

We numerically calibrate the response of both PðkÞ and
PWðkÞ in this way with separate universe simulations in
Sec. III.

C. Halo model

For comparison to simulations and a physical under-
standing of results, it is useful to have a semianalytic model
for SSC and the response of the power spectrum to a
background mode. We review the halo model construction
of the trispectrum here and identify a new effect that was
missing in previous treatments [4,15].
In the halo model [20–23], the power spectrum itself is

described as

PðkÞ ¼ P1hðkÞ þ P2hðkÞ; (15)

where the first term involves two points correlated by being
in the same halo

P1hðkÞ ¼ I02ðk; kÞ (16)

and the second term, two points in separate halos that are
themselves correlated by the linear power spectrum

P2hðkÞ ¼ ½I11ðkÞ�2PLðkÞ: (17)

We use the general notation [24]

Iβμðk1;…; kμÞ≡
Z

dM
dn
dM

�
M
ρ̄m

�
μ

bβ
Yμ
i¼1

~uMðkiÞ; (18)

where M is the halo mass, dn=dM is the halo
mass function, ρ̄m is the background matter density,

b0 ¼ 1, b1 ¼ bðMÞ is the linear halo bias, and ~uMðkÞ is
the Fourier transform of the halo density profile normalized
so that ~uMð0Þ ¼ 1.
Specifically for calculational purposes we employ a

Navarro-Frenk-White halo profile [25] with the concen-
tration-mass relation [26],

cðMÞ ¼ 7.43ð1þ zÞ−0.71
�
M
M�

�−0.081
: (19)

Here the nonlinear halo mass scale today M� ¼ 3.91 ×
1012M⊙=h for our fiducial cosmological model (see
Table I). For the halo mass function and the halo bias,
we employ the fitting formula in Ref. [27]. Note bðMÞ≳ 1
when M > M� and this translates into a physical scale
through the concentration-mass relation.
The halo model describes the matter trispectrum in a

similar fashion but with contributions involving one to four
halos:

T ¼ T1h þ ðT22
2h þ T13

2hÞ þ T3h þ T4h; (20)

where Tnh denote the n-halo terms whereas the superscripts
on T2h denote the number of points in each of the 2 halos.
These are given by [15,24]

T1h ¼ I04ðk1; k2; k3; k4Þ;
T22
2h ¼ PLðk12ÞI12ðk1; k2ÞI12ðk3; k4Þ þ 2 perm:;

T13
2h ¼ PLðk1ÞI11ðk1ÞI13ðk2; k3; k4Þ þ 3 perm:;

T3h ¼ BPTðk1;k2;k34ÞI11ðk1ÞI11ðk2ÞI12ðk3; k4Þ þ 5 perm:;

T4h ¼ TPTðk1;k2;k3;k4ÞI11ðk1ÞI11ðk2ÞI11ðk3ÞI11ðk4Þ; (21)

where we have omitted the ki arguments of T for brevity.
BPT and TPT are the bispectrum and trispectrum predicted
from the perturbation theory [28]. Note that the 1-halo term
is strongly weighted to the highest masses or rarest halos in
the mass function where the ingredients of the halo model
are the least well calibrated.
For squeezed configurations with k, k0 ≫ q12, we can

express the change in the trispectrum due to the long-
wavelength q12 mode to leading order in q12=k as

δT ≡ Tðk;−kþ q12;k0;−k0 − q12Þ − Tðk;−k;k0;−k0Þ
(22)

TABLE I. Flat ΛCDM model parameters used throughout.

Ωm 0.286
Ωb 0.047
h 0.7
ns 0.96
σ8 0.82
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with

δT1h ≈ 0;

δT22
2h ≈ PLðq12ÞI12ðk; kÞI12ðk0; k0Þ;

δT13
2h ≈ 0;

δT3h ≈ 2PLðq12ÞI12ðk0; k0ÞF ðk;q12Þ
þ 2PLðq12ÞI12ðk; kÞF ðk0;−q12Þ;

δT4h ≈ 4PLðq12ÞF ðk;q12ÞF ðk0;−q12Þ; (23)

where

F ðk;qÞ≡ ½PLðkÞF2ðq;−kÞ þ PLðjk − qjÞF2ðq;k − qÞ�
× I11ðkÞI11ðjk − qjÞ; (24)

with the mode-coupling kernel F2 is defined as

F2ðk;qÞ≡ 5

7
þ 1

2

�
1

k2
þ 1

q2

�
ðk · qÞ þ 2

7

ðk · qÞ2
k2q2

: (25)

This expression differs from Eq. (32) of Ref. [15] in that
we have made approximations such as k − q12 ≈ k only in
terms that do not involve F . The latter must be handled
with care since the mode-coupling factor F2 has a pole
when one of its arguments goes to zero. Thus we need to
consistently expand this expression in q12=k (or q12=k0).
The result of integrating over the direction of k is

Z
1

−1
dμk
2

F ðk;qÞ ≈ 1

2

�
68

21
− 1

3

d ln k3P2h

d ln k

�
P2h: (26)

It is now straightforward to see that with the association

∂PðkÞ
∂δb ≈

�
68

21
− 1

3

d ln k3P2hðkÞ
d ln k

�
P2hðkÞ þ I12ðk; kÞ; (27)

the terms involving PLðkÞ take the SSC form. The 68=21
piece is called the BC effect that the growth of a short
wavelength perturbation is enhanced in a large scale
overdensity, the I12 term is the HSVeffect that halo number
densities are also enhanced in such a region, and the
derivative term is new to this work which we call the linear
dilation (LD) effect. The dilation effect occurs because the
long-wavelength mode changes the local expansion factor
and hence the physical size of a mode that would have
comoving wavelength k in its absence (see Sec. III B).
In Fig. 1 we show this halo model decomposition of the

response. Note that in the linear regime the LD term cancels
part of the BC contribution and lowers the overall effect.
The LD term also responds to the baryon acoustic oscil-
lations (BAO) and represents the fact that dilation changes
the scale of any features in the power spectrum. In the
presence of SSC, the BAO scale will vary fractionally by

∼σb from volume to volume or bias results from a single
volume by that amount (see also [29,30] for the residual
impact after averaging over volumes).
In fact dilation affects the 1-halo HSV term as well: in

the peak-background split, the number density of halos is
enhanced by two factors [31]. The first is that the threshold
for collapse is lowered in the presence of the long-wave-
length mode leading to bias in Lagrangian space. The
second is the change in physical scales, common to both the
halos and matter density, due to the collapse of the large
scale region that converts Lagrangian bias to Eulerian bias.
The latter is the dilation effect and hence it is automatically
included for halos by the fact that the Eulerian bias b is
consistent with the mass function

Z
dM

dn
dM

M
ρ̄m

bðMÞ ¼ 1; (28)

which enforces

∂I02
∂δb ¼ I12 (29)

so that the HSV term represents the total response to the
background mode.

k [h/Mpc]

Total

HSV
-LD

BC

  d
ln

P
(k

)/
dδ

b 
 

0.01

0.3

1

3

0.1 1

z=0
Halo Model 

FIG. 1 (color online). Power spectrum response to a long-
wavelength background mode in the halo model separated into
three contributions [see Eq. (27)]: BC (change in short wave-
length linear growth), HSV (change in the number density of
halos), and the LD (change in scale in the linear regime). The LD
term is negative and partially cancels the BC effect while also
changing the scale of the baryon acoustic oscillations. Dilation is
included in HSV since the mass function is compatible with the
Eulerian bias. Cosmological parameters are set here according to
Table I.
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III. SEPARATE UNIVERSE RESPONSE

In this section, we use the separate universe technique to
calibrate numerically the response of the power spectrum to
a background mode into the nonlinear regime. In Sec. III A,
we review the Newtonian simulation prescription following
Ref. [16] (see [17,18] for horizon scale generalizations and
[12,32,33] for related methods for restoring linear modes).
We describe two techniques for differencing of power
spectra to calibrate the background response in Sec. III B
and simulation details in Sec. III C. In Sec. III D we present
results for the power spectrum response in the separate
universe approach.

A. Separate universe parameters

In the separate universe technique, the mean density
fluctuation in the survey window δb is absorbed into the
background density ρ̄mW of a separate universe

ρ̄mð1þ δbÞ ¼ ρ̄mW (30)

so that the separate universe parameters obey

Ωmh2

a3
ð1þ δbÞ ¼

ΩmWh2W
a3W

; (31)

where H0 ¼ 100h km s−1Mpc−1. Our convention is to set
the scale factor of the separate universe aW to agree with the
global one at high redshift

lim
a→0

aWða; δbÞ ¼ a; (32)

since

lim
a→0

δbðaÞ ¼ 0: (33)

Thus the description and physical content of the separate
universe is the same at high redshift and so

ΩmWh2W ¼ Ωmh2: (34)

In fact this equality says that the background densities of
the two universes ρ̄m and ρ̄mW are always the same at the
same numerical value of a and aW . Conversely, by virtue of
Eq. (34), an equal time (or equal survey density) compari-
son as in Eq. (31) corresponds to different scale factors

aW ¼ a

ð1þ δbÞ1=3
≈ a

�
1 − δb

3

�
(35)

in the respective cosmologies. The separate universe also
has a different expansion rate since the peculiar velocities
implied by continuity from the linear density evolution are
reabsorbed into the background expansion. Using the
definition H ¼ _a=a and Eq. (35), we obtain

δH2 ¼ H2
W −H2 ≈ − 2

3
H _δb: (36)

In a cosmological constant, cold dark matter (ΛCDM
universe), the growth rate is given by

H _δb ¼
ΩmH2

0

2a2

�
5

D
− 3

a
− 2ΩK

Ωm

�
δb; (37)

where the linear growth function δb ¼ ðD=D0Þδb0 is
normalized to

lim
a→0

D ¼ a: (38)

We can then match this perturbation to the separate
universe Friedmann equation

H2
W ¼ H2

0W

�
ΩmW

a3W
þΩΛW þΩKW

a2W

�

≈H2 þH2
0W −H2

0

a2
þH2

0δb

�
Ωm

a3
þ 2

3

ΩK

a2

�
(39)

to define its Hubble constant

H0W ≡HW jaW¼1 ≠ HW ja¼1; (40)

where we have used Eqs. (34), (35),
P

iΩiW ¼ 1 and the
fact that the cosmological constant is a constant physical
density. Comparing this equation with Eq. (36), we obtain
the separate universe Hubble constant as [16]

δh
h
≡H0W −H0

H0

≈ − 5Ωm

6

δb
D
: (41)

Since δb=D ¼ δb0=D0, this relation holds independently of
the redshift at which δb and D are defined.
The other parameters then directly follow from this

relation and Eq. (34)

δΩm

Ωm
¼ δΩΛ

ΩΛ
≈ −2 δh

h
: (42)

Even if the global universe is flat, the separate universe
would have spatial curvature, since

ΩKW ¼ 1 −ΩmW −ΩΛW

¼ 1 − ðΩm þ ΩΛÞ
�
1þ 5Ωm

3

δb
D

�
; (43)

yielding a closed separate universe for δb > 0.
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B. Power spectrum derivatives

With the separate universe cosmological parameters set,
we can conduct simulations to calibrate the response of the
power spectrum by finite difference of models with δb ¼
�ϵ where ϵ ≪ 1. We discuss here a number of further
subtleties as to how this comparison is performed namely
the choice of what is held fixed when differencing.
First let us employ the convention in this section that k

values are quoted in comoving Mpc of their respective
cosmologies. N-body codes are typically written with k in
h Mpc−1 and so it is to be understood here that in those
units the box scale and modes carry an h=hW conversion
factor to fix scales in Mpc (see Sec. III C). To reduce
confusion, we work with Δ2

W ¼ k3WPWðkWÞ=2π2 which is
dimensionless and independent of units.
Although both k and kW are in comoving Mpc−1 in their

respective cosmologies, we compare the scales at different
scale factors given by Eq. (35). This means that the physical
scale of the separate universe kW corresponds to the global
k as

kWðk; δbÞ ¼
aW
a

k ≈
�
1 − δb

3

�
k: (44)

Furthermore the power spectrum with fluctuations refer-
enced to the global mean is related to that of the local power
spectrum by

Δ2ðkÞ ¼ ð1þ δbÞ2Δ2
WðkW; δbÞ (45)

corresponding to the rescaling in Eq. (13). Again using
dimensionless power spectra Δ2

W avoids the potential
confusion that the numerical value of the power spectrum
PW depends on the units with which it is measured so that
k3PWðkÞ≡ k3WPWðkWÞ. We now evaluate the power spec-
trum response to δb as

d lnP
dδb

¼ d lnΔ2

dδb
¼ 2þ d lnΔ2

WðkW; δbÞ
dδb

����
k
: (46)

Thus we seek to evaluate the change with δb in the separate
universe power spectrum at fixed k.
There are multiple ways in which we can evaluate this

change by finite differencing the power spectra of separate
universe simulations. In a simulation, the Gaussian random
initial conditions introduce stochasticity in the power
spectrum. To reduce this, we wish to difference modes
in the simulations with the same initial seeds.
In the separate universe construction, if we start the two

simulations with the same comoving box size then due to
Eq. (44) for the relationship between kW and k, we
difference modes at different kW . To fix this problem we
can set the comoving box size to have the same physical
scale at the epoch that we want the derivative. Then
choosing the same seeds in code coordinates guarantees

that we are differencing modes with the same Gaussian
random realization. We call this the total derivative
technique.
One drawback of this technique is that each evaluation

epoch requires a new set of separate universe simulations
even though fundamentally all epochs share the same
separate universe construction as noted below Eq. (41).
The alternative is to chain rule the derivative

d lnΔ2
WðkW; δbÞ
dδb

����
k

¼ ∂ lnΔ2
WðkW; δbÞ
∂δb

����
kW

þ ∂ lnΔ2
WðkW; δbÞ

∂ ln kW
∂ ln kW
∂δb

≈
∂ lnΔ2

WðkW; δbÞ
∂δb

����
kW

− 1

3

∂ lnΔ2
WðkW; δbÞ

∂ ln kW
≈
∂ lnΔ2

WðkW; δbÞ
∂δb

����
kW

− 1

3

d lnΔ2

d ln k
: (47)

Now the differences can be taken at fixed separate universe
comoving scales kW which means that the Gaussian
random realizations can also be taken to be exactly the
same at high redshift. Note also that in the linear regime this
split is the division between beat coupling and dilation. The
first term represents the enhancement of linear or nonlinear
growth while the second term represents the dilation of the
volume due to the different local expansion factor in the
separate universe. We thus call this the growth-dilation
derivative technique.
In the absence of realization-to-realization scatter in this

derivative, the growth-dilation method would require in
principle only two separate universe simulations to cali-
brate the response at all redshifts. However we shall see in
Sec. III D that higher order effects make the response to δb
depend somewhat on the realization of small scale power
itself, especially in the deeply nonlinear regime. To obtain
the mean response then we average over many realizations
of the subsurvey power. By adding the mean dilation term
rather than the dilation term of the same realization in
Eq. (47), we enhance the run-to-run scatter of the combi-
nation and require more simulations to determine the mean
than in the total derivative approach of Eq. (46). Which
method is to be preferred depends on how many redshifts
one wishes to calibrate the response.

C. Simulations

Here we give further details on the simulation pipeline.
Our baseline cosmology is the flat ΛCDM model with
parameters given in Table I. From this baseline, we set the
separate universe parameters according to Sec. III A
with δb ¼ �0.01.
We then determine the initial conditions for the separate

universe runs using CAMB [34,35]. Since the separate
universes are identical at high redshift with k in Mpc−1,
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we fix the initial power spectrum Δ2
R ¼ Asðk=k0Þns−1 with

k0 ¼ 0.05 Mpc−1 to be the same in each case. The initial
conditions generator 2LPTIC [36] takes the aW ¼ 1 power
spectrum normalization σ8W , the rms linear density in
8h−1W Mpc radius spheres, and functional form to generate
initial conditions at aWi ¼ 0.02 which are used by
L-Gadget2 [37] to produce the separate universe
simulations.
Both 2LPTIC and L-Gadget2 take the comoving scale of

the simulation box LW to be in units of h−1W Mpc. In the
total derivative method, where we set the physical scale of
the simulations to coincide at the final evaluation epoch
afW , we therefore set

afW
LW

hW
¼ af

L
h
; (48)

whereas for the growth-dilation method, where the comov-
ing scale in Mpc is the same, we set

LW

hW
¼ L

h
; (49)

independently of the final epoch af at which we want to
calibrate the background response. In both cases we choose

L ¼ 500½h−1 Mpc�: (50)

In box coordinates we generate the same initial ampli-
tudes and phases for two runs with δb ¼ �0.01. We run
L-Gadget2 with 2563 particles, 5123 (Tree)-PM grid and
analyze the power spectrum by FFT with cloud in cell
(CIC) assignment to a 19203 grid. We bin the power
spectrum estimates with 20 logarithmically spaced bins per
decade and show bins at the average k weighted by the
number of modes.
We then difference the binned Δ2 in box coordinates in

each method to form the required derivative. To test the
resolution dependence of results, we have employed higher
resolution simulations with 5123 particles and 10243

(Tree)-PM grid to verify that at k≲ 2h=Mpc our response
results have converged to several percent or better. Finally
we simulate 64 separate universe pairs for each method for
af ¼ 1 to test the stochasticity of the response.

D. Response calibration

We choose as our primary technique the total derivative
method in Eq. (46) averaged over 64 separate pairs as
described in the previous section and test results at z ¼ 0, 1
against the halo model predictions (see Fig. 2). Within the
domain of validity of the simulations, the halo model
captures the fractional response to the 6% level or better.
Note that halo model predictions depend at this level of
precision on the rarest halos which may not be well

represented in the simulations or well calibrated in the
halo model employed.
The halo model shows a slightly larger dilation term near

the BAO scale at z ¼ 0 since there is no explicit mode
coupling applied to the two halo term to smooth the
intrinsic features. Furthermore, for statistics such as galaxy
clustering that are based on the power spectrum referenced
to the survey mean PW the response is lowered by an
additive term −2 as in Eq. (14) and hence the maximal
difference is enhanced to 16% in that case. Nonetheless the
halo model serves to help physically interpret the response.
For example the global response is allowed to fall below 2
or local response below 0 at high k because this region is
dominated by halos whose bias is less than unity. The wave
number at which this occurs increases with redshift due to
the increasing rarity of halos of fixed mass.
Using the growth-dilation technique, we can also further

study the physical contributions to the response through
separate universe simulations. In Fig. 3, we show the
growth and dilation contributions separately with this
technique and demonstrate that the sum reproduces the
total response. Note that in the linear regime the dilation
contribution takes the same form as the halo model linear
dilation term shown in Fig. 1 whereas in the nonlinear
regime the dilation lowers the response from growth. Recall
that in the halo model, dilation is automatically included in
the halo sample variance term.
Finally in Fig. 4, we show the stochasticity of the

response with the 64 pairs of separate universe simulations
in each technique. Notice that the fractional scatter in each
technique is comparable in the nonlinear regime when
analyzing the direct power spectrum differences. However

z=0

z=1 (x1/2)

Halo Model

Separate Universe

k [h/Mpc]
0.01 0.1 1

 d
ln

P
(k

)/
dδ

b

1

3

FIG. 2 (color online). Separate universe (total derivative)
technique vs halo model for the background response at z ¼ 0
and z ¼ 1 (halved for clarity). The halo model captures the
qualitative features of the response. Note that the halo model
response differs from that in Fig. 1 since the power spectrum is
binned with the same prescription as the separate universe results.
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in the growth-dilation technique, the mean dilation term
cancels the power spectrum difference leading to a larger
fractional error on the total response. Thus more pairs are
required to obtain the total response to the same precision.

Conversely the total technique requires separate pairs for
each redshift.
In the absence of stochasticity, the SSC effect can be

removed by fitting δb as a supplementary parameter to the
usual cosmological parameters pcos in a power spectrum
model where

hP̂ðk;pcos; δbÞi ¼ Pðk;pcosÞ
�
1þ ∂ lnP

∂δb δb

�
; (51)

rather than including it as a covariance term [15]. While we
have demonstrated that stochasticity is in practice present,
it is sufficiently small that this model provides an excellent
approximation in the quasilinear regime and remains a
good approximation in the fully nonlinear regime. Note that
with the inclusion of the dilation term, this additional
parameter is no longer approximately degenerate with the
power spectrum amplitude.

IV. SSC SIMULATION TESTS

In this section we compare the direct quantification of the
SSC effect on the covariance of the power spectrum in
subvolumes of a large-volume simulation with the SSC
model of the power spectrum response to a background
mode. We begin in Sec. IVA with a discussion of the
simulation suites, power spectrum estimators, and bias
correction for windowing effects. We define power spec-
trum covariance estimators in Sec. IV B and present results
in Sec. IV C.

A. Power spectrum

We use a suite of 7 large-volume simulations originally
made for the Dark Energy Survey. Each corresponds to a
4h−1 Gpc box run with L-Gadget2, 20483 particles, 30723

(Tree)-PM grid and cosmological parameters of Table I. We
then CIC assign the particles to a ð8 × 1920Þ3 grid. We next
subdivide each large box into 83 ¼ 512 subvolumes of size
500h−1 Mpc each for a total of Ns ¼ 3584 subboxes. We
then extract the power spectrum of each of the subboxes by
FFT before deconvolving the CIC window and binning in k
to form P̂sub.
We choose a special binning scheme to minimize the

effects of convolution discussed in Sec. II A. These effects
appear for Δk½h=Mpc� ∼ ð2π=500Þ ¼ 0.0125. For
k½h=Mpc� < 0.1, we choose 5 approximately linearly
spaced bins and 10 logarithmically spaced bins per decade
above it.
Finally we define the set of Ns power spectra referenced

to the subbox mean as

P̂WðkÞ ¼
P̂subðkÞ
ð1þ δbÞ2

; (52)

Growth

Total
Growth-Dilation

-Dilation

k [h/Mpc]

 d
ln

P
(k

)/
dδ

b 

0.3

1

3

0.1 1

z=0
Separate Universe

FIG. 3 (color online). Separate universe total derivative and
growth-dilation techniques for the power spectrum response to a
background mode at z ¼ 0. The two methods produce indistin-
guishable total derivatives once the growth and dilation (negative)
pieces are combined. Note that in the linear regime, the dilation
contribution matches the LD term of the halo model in Fig. 1 but
differs in the nonlinear regime where it continues to cancel the
growth term.

 d
ln

P
(k

)/
dδ

b

2

3

4

k [h/Mpc]
0.01 0.1 1

Total

Growth

z=0
Separate Universe

FIG. 4 (color online). Stochasticity in the separate universe
background response for the finite difference of 64 pairs of
simulations (thin curves) in the total derivative vs growth only
finite differences. In the nonlinear region the fractional scatter
(thin curves) is similar but the addition of the mean dilation term
to form the total in the growth-dilation technique leads to larger
scatter. Means with standard errors and a highlighted single
realization (thick curves) are shown here to illustrate that non-
linear deviations from the mean are highly correlated across k.
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where δb is the average density fluctuation in the same box.
Note that at z ¼ 0, σb ¼ 0.0126 for these subboxes.
For comparison, we run a set Ns small box simulations

of size 500h−1 Mpc, 2563 particles, and 5123 (Tree)-PM
grid analyzed for P̂sm with CIC assignment to a 19203 grid.
These settings match the 1=8 scaling of the large box
dimensions except for the (Tree)-PM grid.
In Fig. 5 we show the fractional difference in the mean

power spectra. At the lowest k, we clearly see the effect of
convolution by the window described by Eq. (4). The
convolution describes a net loss of power by aliasing into
the k ¼ 0 mode. At higher k, there remains a small ∼1%
bias. We have verified that this is attributable to the
difference in scaling of the (Tree)-PM grid noted above
comparing small box simulations with the same seeds but
with 1=8 scaling of the large box. Both types of bias effects
are removed from the SSC considerations below by testing
quantities scaled to the hP̂i of the given set. More generally
we can remove these effects by rescaling power spectrum
results in the subboxes by the mean bias

P̂sub →
Psm

Psub P̂
sub; (53)

where we have defined

PX ¼ 1

Ns

XNs

a¼1

P̂X
a (54)

as the average over the Ns samples.

B. Power spectrum covariance

For the covariance of the small box power spectra, we
take the standard estimator

Ĉsm
ij ¼ Ns

Ns − 1

�PNs
a¼1 P̂

sm
a ðkiÞP̂sm

a ðkjÞ
Ns

− PsmðkiÞPsmðkjÞ
�
:

(55)

We then estimate the errors on the covariance through
bootstrap resampling of the Ns samples with replacement.
For the covariance of the subbox power spectra, we first

form s ¼ 1;…; Ns=Nl estimators from the Nl ¼ 7 fully
independent large boxes

Ĉs
ij ¼

Nl

Nl − 1

�PNl
a¼1 P̂

sub
sa ðkiÞP̂sub

sa ðkjÞ
Nl

−
PNl

a¼1 P̂
sub
sa ðkiÞ

PNl
b¼1 P̂

sub
sb ðkjÞ

N2
l

�
(56)

and then average the estimators

Ĉsub
ij ¼

PNs=Nl
s¼1 Ĉs

ij

Ns=Nl
: (57)

This construction assures that the end result is unbiased
even if the subboxes in a given large box are themselves
correlated, at the expense of slightly suboptimal errors. For
the error estimate, we bootstrap resample over the Ns=Nl
estimates. We likewise form the estimator ĈW

ij of the power
spectrum referenced to local means out of P̂W in the
same way.
The SSC ansatz is that

Csub
ij ¼ Csm

ij þ σ2bP
smðkiÞPsmðkjÞ

×
∂ lnPSUðkiÞ

∂δb
∂ lnPSUðkjÞ

∂δb ; (58)

for power spectra referenced to the global mean and

CW
ij ¼ Csm

ij þ σ2bP
smðkiÞPsmðkjÞ

×

�∂ lnPSUðkiÞ
∂δb − 2

��∂ lnPSUðkjÞ
∂δb − 2

�
: (59)

We therefore construct these SSC model covariances from
the small box estimates and the separate universe response,
denoted here with PSU. For the errors, we bootstrap
resample each ingredient in the SSC ansatz (58)–(59):
P̂sm from Ns small box samples, ∂ ln P̂SU=∂δb from 64
separate universe response samples, and δb fromNs subbox
samples, to combine them to get the error estimate on the
covariance. The dominant source of error on the mean

z=0
Subbox Bias

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12

0

k [h/Mpc]
0.1 1

P
su

b /P
sm

-1

FIG. 5. Bias between the subbox vs small box power spectrum
estimators. The subbox power spectrum is a convolution of the true
power spectrum with the survey window. At low k, its estimator
loses power to fluctuations in the local mean density in the survey.
At high k, the small box power spectrum has a 1% systematic
offset due to differences in the simulation (Tree)-PM grid. We
remove both effects by scaling out this bias with Eq. (53).
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covariance is actually the draws of δb itself rather than the
stochasticity of the background response.

C. Results

In Fig. 6, we show the enhancement to power spectrum
variances from non-Gaussian contributions Cii=CG

ii − 1 at
z ¼ 0. Here CG

ii is the Gaussian expectation of Eq. (6)
defined with the mean power spectra from the simulation
suites themselves. Note that in these ratio statistics, any bias
due to convolution by the window shown in Fig. 5 drops
out even before debiasing through Eq. (53).
In the nonlinear regime k≳ 0.1h=Mpc, the non-

Gaussian contributions greatly exceed the Gaussian expect-
ation. Moreover the subbox covariance also exceeds the
small box covariance, where super survey modes are
absent, by up to an order of magnitude indicating that
the SSC effect is dominant. This excess is modeled by the
SSC ansatz to within the few percent bootstrap errors.
We also show in Fig. 7, the same variance ratio but for

estimated power spectra referenced to the local mean P̂W
for the subboxes compared with the SSC model of Eq. (59).
For local mean results, the SSC effect is smaller and the
differences are correspondingly larger but the total variance
is still captured at the 10% level in a regime where it

exceeds the Gaussian variance by 103 (see Fig. 8). Note that
the bootstrap errors of all results are nearly fully correlated
in the nonlinear regime and so these difference may be
consistent with statistical fluctuations or differences in the
non-SSC term.
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FIG. 7 (color online). The same as in Fig. 6 but for power
spectra with respect to the local mean density within the survey or
subbox. Here the SSC effect adds a comparable variance to other
non-Gaussian effects and the total is modeled by the SU response
to better than 10% accuracy.
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FIG. 8 (color online). Accuracy of the power spectrum variance
model for the subbox covariance as the sum of small box and SSC
variance effects. For the global mean results of Fig. 6 the
agreement is better than a few percent whereas for the local
mean results of Fig. 6 it is better than 10%.
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FIG. 6 (color online). Power spectrum variance in excess over
the Gaussian expectation CG

ii at z ¼ 0. The SSC effect causes the
subboxes of the large-volume simulations to have up to an order
of magnitude higher variance than found in small periodic boxes
of the same volume. Adding the SSC SU response to a back-
ground mode to the small box variance models the effect to within
the bootstrap errors of the simulation suites. Note that bootstrap
errors between bins here and below are highly correlated.
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In Fig. 9, we show the correlation coefficients

rij ≡ Cijffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p (60)

for the global mean statistics, with bootstrap errors in Cij.
Once the SSC effect dominates the variances in the non-
linear regime, the correlation coefficients of the subbox
suite approach unity as expected for an effect that is
determined by a single template response. This behavior
is well modeled by the SSC ansatz and differs qualitatively
from the small box correlation coefficients. The local mean
correlation coefficients are equally well described by the
SSC ansatz though the total is less dominated by the SSC
effect.
In Fig. 10 we show the variance ratio Cii=CG

ii at z ¼ 1 to
highlight effects in the extended linear regime
k≲ 0.2 − 0.3h=Mpc. The agreement between the subbox
variance and the total SSCmodel is as good as at z ¼ 0 as is 0.1 0.3
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FIG. 10 (color online). Power spectrum variance in excess over
the Gaussian expectation CG

ii at z ¼ 1 highlighting the linear
regime. The separate universe total response to a background
mode again models the SSC effect to within the bootstrap errors.
Here we also show that neglecting the dilation term in the
response (“no dilation”) as in previous perturbative treatments in
the literature produces poor agreement even in the linear regime.
Agreement in the nonlinear regime and correlation coefficient is
as good as at z ¼ 0.
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FIG. 9 (color online). Power spectrum correlation coefficients
between bins at z ¼ 0. The SSC effect in the subboxes produces
nearly fully correlated power spectrum changes or errors and is
well modeled by the separate universe response including the
linear to highly nonlinear correlation.
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FIG. 11 (color online). Halo model for variance in excess over
the Gaussian expectation CG

ii at z ¼ 0. While the SSC contribu-
tion is well captured, the halo model overpredicts the variance of
the small box simulations by up to a factor of 3.
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the correlation coefficients (not shown). Here we also show
the SSC model where the dilation term has been removed.
Even in the linear regime, the two models are clearly
distinguished by the simulations. This verifies that the
linear dilation effect, omitted in previous studies, must be
included as part of the SSC model for accuracy in the
quasilinear regime (cf. [11]).
Finally in Fig. 11, we compare the full halo model

prescription for the variance ratio from Eq. (10) with the
simulations. In addition to the response function, whose
accuracy was already tested in Sec. III D, this includes a
model for the small box covariance CT0

ii . In the high-k,
1-halo regime, the halo model for the latter differs from the
simulations by up to a factor of 3. Note that very rare halos
contribute substantially to this term and that the ingredients
of the halo model have not been as thoroughly tested in this
regime. On the other hand, the halo model for the SSC
response term agrees nearly as well as the separate universe
response calibration in the difference between the small and
subbox results.

V. DISCUSSION

In this paper we have employed separate universe
simulations to characterize accurately all SSC effects from
super-survey modes on matter power spectra measured
from finite-volume surveys. This approach automatically
captures the separate effects of beat coupling in the
quasilinear regime, halo sample variance in the nonlinear
regime and a new dilation effect which changes scales in
the power spectrum coherently across the survey volume. It
accurately quantifies these effects with a handful of small
volume simulations once and for all, rather than the many
thousands of survey specific volumes required in the direct
quantification.
Agreement between the SSC model, where the effect is

described as the response of the power spectrum to a
change in the background density, and an extensive suite of
large-volume simulations is excellent with no statistically
significant deviations within the domain of validity of the
simulations k≲ 3h=Mpc for power spectra referenced to
the global mean. The SSC effect here provides the
dominant non-Gaussian errors for a wide range of survey
volumes and is encapsulated in a single response function
that correlates all modes in the spectrum. These results are
relevant for the analysis of weak lensing surveys where the
global mean is defined by cosmological parameters.
For power spectra referenced to the survey or local mean,

relevant for galaxy surveys where the mean density of
tracers is typically estimated from the survey itself, the SSC

effect is a comparable effect to other non-Gaussian errors.
Here our calibration is still in good agreement: better than
the 10% level even when the non-Gaussian variance is a
factor of 103 larger than the Gaussian variance.
We have also shown that the stochasticity of the response

from volume to volume is small. Hence to first approxi-
mation, these effects can be considered as an extra form of
signal rather than noise. The unknown density fluctuation
δb from super-survey modes can be considered as a
parameter that in the observed power spectrum which
can be fit for with the response template. We have
demonstrated that this should be an excellent approxima-
tion in the quasilinear regime where the effect of dilation
can bias precision measurements of BAO features in the
power spectrum.
Agreement with the halo model for the power spectrum

background response is also good implying that a halo
model description may allow for efficient extensions to
alternate cosmologies. In fact our separate universe analysis
can also be used to calibrate the elements of the halo model
and potentially improve agreement for other non-Gaussian
terms. A crucial element of the halo model is that halo bias
is consistent with the mass function in the peak-background
construction. Thus in principle halo bias can be calibrated
from the response of the halo mass function to a change in
the background density [38]. We intend to study such
applications of the separate universe simulations in a
future work.
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