
Helmholtz decomposition of the Lagrangian displacement

Kwan Chuen Chan*

Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève,
24 quai Ernest Ansermet, CH–1211 Genève 4, Switzerland
(Received 11 September 2013; published 8 April 2014)

Lagrangian displacement field Ψ is the central object in Lagrangian perturbation theory (LPT). LPT is
very successful at high redshifts, but it performs poorly at low redshifts due to severe shell crossing. To
understand and quantify the effects of shell crossing, we extractΨ from N-body simulation and decompose
it into scalar and vector parts. We find that at late time the power spectrum of the scalar part agrees with
1-loop results from LPT at large scales, while the power in small scales is much suppressed due to shell
crossing. At z ¼ 0, the power spectrum ofΨ is 10% lower than the 1-loop results at k ¼ 0.1 Mpc−1h. Shell
crossing also generates the vector contribution in Ψ, although its effect is subdominant in comparison with
the power suppression in the scalar part. At z ¼ 0, the vector part contributes 10% to the total power
spectrum of Ψ at k ¼ 1 Mpc−1h, while only 1% is expected from the vector contribution in LPT. We also
examine the standard LPT recipes and some of its variants. In one of the variants, we include a power
suppression factor in the displacement potential to take into account the power suppression in small scales
after shell crossing. However, these simple phenomenological approaches are found to yield limited
improvement compared to the standard LPT after the onset of shell crossing.
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I. INTRODUCTION

With the upcoming large-scale surveys, such as Euclid
and LSST, a huge number of mock catalogs have to be
generated to estimate the covariance matrix. Straight
N-body simulations are too numerically expensive to be
done in mass production, so many semianalytic approaches
such as PThalos [1,2] PINOCCHIO [3–5], and COLAR
[6], have been developed. These methods rely on
Lagrangian perturbation theory (LPT) to displace the
particles at large scales.
In LPT, the fundamental object is the Lagrangian

displacement field Ψ, which displaces the particles from
the initial position q to its final Eulerian position x

Ψðq; tÞ≡ xðq; tÞ − q: (1)

Ψ can be computed using LPT. The first order LPT is the
well-known Zel’dovich approximation (ZA) [7] and it has
been extended to higher orders [8–13]. The initial con-
ditions for N-body simulations are often generated using
ZA or second order LPT (2LPT) [14,15]. The validity of
LPT in computing the power spectrum has been improved
by resummation [16], and it can be easily extended to
include redshift space distortion and local Lagrangian
bias [17,18].
LPT is very successful at high redshifts but it yields

poor results at late times due to severe shell crossing. Shell
crossing occurs when particles from different Lagrangian
patches meet to form caustics and multiple streams pass

through the same Eulerian position. The standard pertur-
bation theory and LPT are based on the single stream
approximation [19]. Before shell crossing, the system can
be described by a velocity field. However, shell crossing
generates the velocity dispersion tensor in small scales,
which also sources the vorticity [20]. In LPT, the velocity
field is also specified by the position x, so it is not valid
after shell crossing. Indeed the Eulerian density obtained
from LPT becomes singular after shell crossing [21]. After
shell crossing, the particles keep on escaping from each
other, resulting in low power in small scales. For example,
the ZA dark matter density power spectrum is even lower
than the linear one at z ¼ 0. There are many attempts to
extend the validity of LPT after shell crossing [22–24]. One
of the concrete models that takes shell crossing into account
is the adhesion model [25], in which a viscous term is
added to the ZA model to stick the particles together after
shell crossing, and the equation is transformed to Burgers’
equation [21,25–27]. Note that the solution to the Burgers’
equation is a velocity field. In practice, to get the position of
the particles, one still needs to integrate the velocity field
numerically [28]. Even in the limit of zero viscosity, the
geometrical construction is not so straightforward [25,26].
There are few studies on Ψ directly, if any. In this paper,

we shall extract Ψ from N-body simulation directly, and
this will enable us to probe Ψ even after shell crossing. To
studyΨ directly is interesting becauseΨ is the fundamental
object in LPT and there are few analytical tools available
to study Ψ after shell crossing. The goal of this paper is to
better understand the physics of shell crossing on Ψ by
examining Ψ obtained from simulation. This may poten-
tially lead to bettermodeling of LPTat late time.Wewill also*KwanChuen.Chan@unige.ch
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examine some modifications of LPT. In particular, we
attempt to incorporate the power suppression in small scales
due to shell crossing with an effective potential. It turns out
that, as shell crossing is a highly nonlinear process, this
phenomenological approach is of limited success. In LPT,Ψ
is often taken to be potential. Another question that wewant
to address in this paper iswhether the potential assumption is
still valid at low redshifts. In particular, wewill quantify how
important the vector part of Ψ is at late time, when LPT is
known to break down.We shall decompose the numericalΨ
into scalar and vector parts. Very often in the studies related
to LPT, when compared with simulation, only the density
power spectrum is considered. This is justifiable as the
density field is the final observable. However, as Ψ plays a
central role inLPT,webelieve that studying it in its own right
is worthwhile.
The paper is organized as follows. We will describe the

decomposition method in Sec. II A. LPT is reviewed, and
the loop corrections to power spectrum of Ψ are written
down in Sec. II B. The numerical results for the decom-
position of Ψ are presented in Sec. III. We will show the
scalar and vector power spectrum ofΨ in details in Sec. III
A. In Sec. III B, we examine LPT and a couple of variants
of LPT using density power spectrum. In particular, we
include a suppression factor in the displacement potential to
modify LPT. We explore the scatter plot of∇ ·Ψ in Sec. III
C. We conclude in Sec. IV. The general structure of the
power spectrum of Ψ is written down in Appendix A. In
Appendix B, we test the decomposition algorithm with
some test cases.

II. HELMHOLTZ DECOMPOSITION OF Ψ
AND ITS POWER SPECTRA

A. Helmholtz decomposition of Ψ

Any smooth vector field Ψ can be decomposed into the
form1

Ψ ¼ ∇Φþ∇ ×A; (2)

where Φ is the scalar potential andA is the vector potential.
We stress that the derivatives are with respect to the
Lagrangian coordinates. This kind of decomposition has
been widely used in physics, for example, in the decom-
position of the electric field in electromagnetism [29], and

the cosmological perturbation theory [30]. Recently, it has
been applied to redshift space distortion as different compo-
nents correspond to different physical origins [31,32]. The
scalar and vector potentials can be solved through the
Poisson equations

∇2Φ ¼ ∇ ·Ψ; (3)

∇2A ¼ −∇ ×Ψ: (4)

In Fourier space, the helicity basis is convenient for the
decomposing ofΨ into scalar and vector parts. The helicity
basis vectors are defined as

k̂0 ¼ k̂; (5)

k̂þ ¼ 1ffiffiffi
2

p ðk̂θ þ ik̂ϕÞ; (6)

k̂− ¼ 1ffiffiffi
2

p ðk̂θ − ik̂ϕÞ; (7)

where k̂, k̂θ and k̂ϕ are the basis vectors in spherical
coordinates. Then the scalar part is given by the helicity-0
mode, k̂0 component, and the vector part is decomposed
into the helicity-� modes, the k̂þ and k̂− components. We
shall make use of this basis in measuring the power
spectrum. We use the terminology, scalar and vector
decompositions and longitudinal and transverse parts,
potential and curl parts, and helicity-0 and helicity-�
interchangeably in this paper.
We stress that in standard LPT, the displacement field is

almost fully potential. At late time LPT is known to break
down due to severe shell crossing. Thus the generation of
the vector part in Ψ can help understand shell crossing and
shred light on the break down of LPT at late time.

B. Ψ from Lagrangian perturbation theory

We review LPT in this section. To facilitate the com-
parison with numerical power spectrum of Ψ, we shall
write down the loop corrections to the power spectrum ofΨ
from LPT. We will also describe the recipes to generate
LPT catalogs numerically. We emphasize that the review
of LPT here serves as a check and comparison with the
numerical results shown later on; in this paper, we are more
interested in exploring the effects that are not captured by
the LPT discussed here.

1. Power spectrum of Ψ from LPT

In Appendix A, we show the general structure of the
power spectrum of the scalar and vector components. Here
we will write down the 1-loop power spectrum of Ψ
from LPT.

1The uniqueness of the decomposition generally depends on
the boundary conditions. If it is not unique, the difference is due
to a harmonic part which is both divergenceless and curl-free, or it
can be written in terms of a potential, which is harmonic. In
electromagnetism, if we require that the field vanishes at infinity,
then because harmonic function cannot have local extremum, it
must vanish. Here, we impose the periodic boundary condition in
simulation, the only smooth function that satisfies the periodic
boundary condition without local extremum in each dimension is
a constant function. If we further require the field to have zero
mean, then it must vanish everywhere.
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This displacement field Ψ can be expanded in terms of
the linear dark matter density contrast in LPT. Up to third
order, it is given by

Ψ ¼ Ψð1Þ þΨð2Þ þΨð3aÞ þΨð3bÞ þΨð3cÞ; (8)

where

ΨðnÞðk; tÞ ¼ iDnðtÞ
Z

d3p1…d3pnδDðk − p1…nÞ

×LðnÞðp1;…;pnÞδ0ðp1Þ…δ0ðpnÞ; (9)

where D is the linear growth factor and p1…n denotes
p1 þ � � � þ pn, δ0 is the initial linear dark matter density
contrast, and δD is the Dirac delta function. The Lagrangian
displacement kernels are given by [9,10,12,16]

Lð1Þðp1Þ ¼
p1

p2
1

; (10)

Lð2Þðp1;p2Þ ¼
3

14

p12

p2
12

�
1 −

ðp1 · p2Þ2
p2
1p

2
2

�
; (11)

Lð3aÞ
a ðp1;p2;p3Þ ¼ −

1

18

p123

p2
123

�
1 − 3

ðp1 · p2Þ2
p2
1p

2
2

þ 2
ðp1 · p2Þðp2 · p3Þðp3 · p1Þ

p2
1p

2
2p

2
3

�
; (12)

Lð3bÞ
a ðp1;p2;p3Þ ¼

5

42

p123

p2
123

�
1 −

ðp1 · p2Þ2
p2
1p

2
2

�

×

�
1 −

�
p12 · p3

p12p3

�
2
�
; (13)

Lð3cÞ
a ðp1;p2;p3Þ ¼

1

14

p1 ·p23

p2
1p

2
23p

2
123

�
1−

ðp2 ·p3Þ2
p2
2p

2
3

�

× ½p1ðp123 ·p23Þ−p23ðp123 ·p1Þ�: (14)

The kernels Lð3Þ
a are asymmetric with respect to the

arguments, and we will symmetrize them as

Lð3Þðp1;p2;p3Þ ¼
1

3
½Lð3Þ

a ðp1;p2;p3Þ þ 2cyc:�: (15)

The first order kernel Eq. (10) corresponds to the 1LPT,
i.e., the ZA [7], and Eq. (11) is the 2LPT. Except Lð3cÞ, all
the other kernels are proportional to p1;…n, where n is the
order, and so they are potential. Note that in LPT, it is still a
potential flow in Eulerian space, and the appearance
of the curl part kernel Lð3cÞ is due to the coordinate
transformation from the Lagrangian space to the
Eulerian space [9].

The power spectrum of Ψ is defined as

hΨiðk1ÞΨjðk2Þi ¼ Pijðk1ÞδDðk12Þ: (16)

Using the expansion of Ψ, Eq. (8), we can compute the
power spectrum. Up to 1-loop, they are given by

P11
ij ðkÞ ¼ D2Lð1Þ

i ðkÞLð1Þ
j ðkÞP0ðkÞ; (17)

P22
ij ðkÞ ¼ 2D4

Z
d3qLð2Þ

i ðq;k − qÞ

×Lð2Þ
j ðq;k − qÞP0ðqÞP0ðjk − qjÞ; (18)

P13
ij ðkÞ ¼ 6D4P0ðkÞLð1Þ

i ðkÞ
Z

d3qLð3Þ
j ðk;−q;qÞP0ðqÞ;

(19)

where P0 is the initial power spectrum. The integral in
Eq. (19) can be further simplified. For the longitudinal part,
we have

Z
d3qLð3LÞ

j ðk;−q;qÞP0ðqÞ

¼ 5π

3024

k
k5

Z
dq

P0ðqÞ
q3

�
−12k7qþ 44k5q3 þ 44k3q5

− 12kq7 þ 3ðk2 − q2Þ4 ln ðkþ qÞ2
ðk − qÞ2

�
: (20)

For the transverse part, the integral is given by

Z
d3qP0ðqÞ

k · q
21k2q2jkþ qj2

�
1 −

ðq · kÞ2
q2k2

�
k × ðq × kÞ;

(21)

which vanishes upon integration. In fact, this follows from
the argument given in Appendix A that the cross power
spectrum between the scalar and vector part vanishes.
Therefore, the lowest order vector contribution to the
power spectrum of Ψ arises from the auto power spectrum
of Ψ3c, and it is a 2-loop contribution. The lowest order
vector contribution reads

P33v
ij ðkÞ ¼ 6D6

Z
d3q1

Z
d3q2P0ðq1ÞP0ðq2ÞP0ðjk − q12jÞ

×L3c
i ðq1;q2;k − q12ÞL3c

j ðq1;q2;k − q12Þ:
(22)

In Fig. 1, we show the 1-loop power spectrum of Ψ,
normalized by the tree level ZA power spectrum. As Ψ is a
vector, there are numerous ways to present its power
spectrum. Here we show
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PðkÞ ¼
X
i

PiiðkÞ; (23)

because it is rotationally invariant and coordinate-
independent.

At high redshift the loop correction terms are negligible,
they however become important at low redshifts. In
particular we note that the contribution of P13, which
arises from 3LPT, is much more significant than P22, which
appears in 2LPT. At z ¼ 0, P13 is of 10% of the ZA power
spectrum at k ¼ 0.1 Mpc−1h, while P22 is only 1% at this
scale. As we will see later on, including P13, the agreement
with the numerical Ψ is much improved at the weakly
nonlinear regime, although it quickly causes more rapid
deviation from the numerical results due to the onset of
shell crossing in the weakly nonlinear regime.
We plot the vector power spectrum P33v and P11 for

comparison in Fig. 2. Although the two-loop contribution
grows much faster than the ZA power spectrum. At z ¼ 0,
P33v is only 1% of the magnitude of the ZA power spectrum
at k ¼ 1 Mpc−1h. Thus the vector contribution from LPT to
the power spectrum ofΨ is small. However, we shall see in
Sec. III that at late time a much larger amount of the curl
part is generated in small scales due to shell crossing. This
nonperturbative effect is not captured by LPT.

2. Generating Lagrangian displacement
in simulations

We will also generate the dark matter density field using
LPT. Here we briefly review the procedures to generate the
displacement field using LPT [11,14,33]. Up to second
order, the displacement field in LPT is potential. In third
order, it acquires a curl part. However, we see in the
previous section that it does not contribute to the power
spectrum ofΨ at the 1-loop order. Thus we shall neglect the

FIG. 2 (color online). In the upper panel, the lowest order vector
contribution to the power spectrum of Ψ, P33v (solid) and the ZA
power spectrum (dashed) are plotted. In the lower panel, the ratio
P33v=P11 is shown. Two redshifts are shown: z ¼ 0 (blue) and
z ¼ 1 (red).

FIG. 1 (color online). The 1-loop corrections to the power spectrum ofΨ at different scale factors a ¼ 0.01, 0.33, 0.5, and 1 (from left
to right). The 2LPT power spectrum (solid, blue) include P22, while the 3LPT power spectrum (solid, green) further includes P13.
Numerical power spectrum of Ψ that generated by 1LPT (dashed, red), 2LPT (dashed, cyan) and 3LPT (dashed, violet) are also shown.
They are normalized with respect to the ZA power spectrum P11.
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curl part, and the 3LPT displacement can be written in
terms of the displacement potentials as

Ψ3LPT ¼ ∇ðD1ϕ
ð1Þ þD2ϕ

ð2Þ þD3aϕ
ð3aÞ þD3bϕ

ð3bÞÞ:
(24)

The LPT growth factors can be written in terms of the linear
growth factor D as

D1 ¼ −D; (25)

D2 ¼ −
3

7
D2; (26)

D3a ¼ −
1

3
D3; (27)

D3b ¼ −
10

21
D3: (28)

The displacement potentials are obtained by solving the
following Poisson equations:

∇2ϕð1Þ ¼ δ0; (29)

∇2ϕð2Þ ¼ −
1

2
G2ðϕð1Þ;ϕð1ÞÞ; (30)

∇2ϕð3aÞ ¼ detð∇ijϕ
ð1ÞÞ; (31)

∇2ϕð3bÞ ¼ −
1

2
G2ðϕð1Þ;ϕð2ÞÞ; (32)

where G2ðϕðaÞ;ϕðbÞÞ denotes

G2ðϕðaÞ;ϕðbÞÞ≡X
i;j

ð∇ijϕ
ðaÞ∇ijϕ

ðbÞÞ −∇2ϕðaÞ∇2ϕðbÞ:

(33)

In Fig. 1, we also show the power spectrum of Ψ
obtained using the displacement field generated using
1LPT, 2LPT, and 3LPT, and they agree with the ZA and
the loop corrections pretty well.
We would like to comment that in the power spectrum

from 3LPT catalogs, in addition to the 1-loop contributions,
there is also the 2-loop scalar contribution P33s. The good
agreement between the 1-loop calculations and the results
from 3LPT catalogs imply that the effects of P33s are
negligible. This is in stark contrast to the standard pertur-
bation theory, in which the individual contributions of the
higher order loop terms give even more sizeable contribu-
tion than the lower order ones, although the total contri-
butions are small due to large cancellations among the
individual terms.

III. NUMERICAL RESULTS

In N-body simulation, since we know both the initial
position q and the final position x of the particles, we can
easily extract Ψ using Eq. (1). After getting Ψ, we can
obtain the scalar and vector potentials by solving Eqs. (3)
and (4), respectively. To compute the source ∇ ·Ψ and
∇ ×Ψ, we can either compute them using finite difference
(FD) method in real space or using spectral derivative by
means of fast Fourier transform (FFT) in Fourier space. In
Appendix B, we test the FD and FFT methods with some
test cases, and we find that the FFT method performs better
than the FD. Thus we shall use FFT method throughout
this paper. With the scalar and vector potentials, we can
obtain the scalar and vector parts of Ψ. Again we take the
derivatives with the FFT method. Another way to obtain the
vector part of the field is simply to subtract the scalar part
from the input field. We shall use both methods as cross-
checks, and abbreviate the one obtained from vector
potential as Vector and the one obtained by subtracting
the scalar part from the input field as Input—Scalar. We
shall see that both methods yield very similar results.
In the literature there have been measurements of scalar

and vector part of the velocity field [20,32,34,35]. A major
difficulty in velocity measurement is that it is sampled by
discrete point particles. If the velocity field is obtained by
interpolating the velocity of the particles to a grid, one
would get a mass-weighted field rather than a volume-
weighted one, i.e., one obtains momentum instead of
velocity. In the void region, the velocity is not necessarily
small although there are few particles available for inter-
polation. Various methods have been developed to cope
with this problem, such as the Delaunay tessellation
method [20,34,35]. However, for the measurement of Ψ,
since it is defined at all grid points, we do not have this
sparse sampling problem.
As mentioned in Sec. II A, using the basis vectors

Eqs. (5)–(7), the fields are decomposed into the scalar
(helicity-0 component) and the vector (helicity-þ and
helicity-− components) automatically. We will also use
this method as a crosscheck.
Before presenting the numerical results, we shall first

outline the details of the simulation used in this paper. In
the simulation, there are 10243 particles. Two box sizes are
used, 1500 Mpch−1 and 250 Mpch−1. One realization for
the 1500 Mpch−1 box and three realizations for the
250 Mpch−1 one. The cosmology is a flat ΛCDM model,
with theWMAP 7 cosmology parameters adopted [36], i.e.,
Ωm ¼ 0.272, ΩΛ ¼ 0.728, Ωb ¼ 0.0455, and σ8 ¼ 0.81.
Thus for the large box, each particle carries a mass of
2.37 × 1011M⊙h−1 and 1.10 × 109M⊙h−1 for the small
box. The large box enables us to probe the large scale
mode. On the other hand, as shell crossing is a small scale
phenomenon, the small box simulation with better mass
and spatial resolution will enable us to capture its effect
more accurately. The initial condition is Gaussian with
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spectral index being 0.967. The transfer function is output
fromCAMB [37] at redshift 99. The initial particle displace-
ments are implemented using 2LPT [15]. The simulation is
done using Gadget2 [38]. See [39] for more details.

A. Numerical helicity power spectrum of Ψ

We show in Fig. 3 the sections of the vector fields
projected to the x − y plane for the original Ψ, its scalar
component, the vector components obtained by solving the
Poisson equation (Vector) and by subtracting the scalar
components from the original field (Input—Scalar). We
also show the Eulerian positions of the particles. First, the
original input field is almost visually identical to its
scalar component at all redshifts shown. The vector
component is much smaller, and do not have large-scale
coherent component. We note that the vector component
fluctuates in signs at small scales, this qualitatively agrees
with [20,40]. The vector components obtained in two
different methods result in almost identical field pattern.
In Appendix B, we also find that these methods give very
similar reconstruction results. By comparing the Eulerian
positions of the particles with the plot of the vector part of
Ψ, it is clear that the vector parts are generated in the high
density region where caustics form.

We now turn to the power spectrum to study the
decomposition more quantitatively. In Fig. 4, we compare
power spectrum of Ψ of the original field, the power
spectrum of its scalar part, and also the 2LPT and 3LPT
loop power spectrum. At z ¼ 99, the initial conditions are
set by 2LPT, which is completely potential, and indeed, the
vector component is consistent with zero.
At large scales, the results from the two boxes agree,

however, at low redshifts, the small box yields higher
power than the large one in small scales. At k ∼ 1 Mpch−1,
the smaller box results gives more than 10% higher power
than the large one. The smaller box with better mass and
spatial resolution, it measures the effects of shell crossing
more accurately. Thus we shall trust the small box results in
the large k regime. We add an arrow to indicate the scale
below which the large box results agree with the small
box ones, and hence it is reliable. This scale is about
0.3 Mpc−1h. For the smaller box, the increase in power in
small scales is due to aliasing. We also add an arrow as a
rough guide to indicate the scale, above which aliasing
could be significant.
The input field and its scalar component have the same

power spectrum at large scales and deviation between them
occurs only for large k at low redshift. At redshift 0, we find

FIG. 3 (color online). Sections of the vector fields. The fields are obtained from the 250 Mpch−1 box simulation. In each section, we
show the projection of Ψ onto the x − y plane. The foot of the arrow locates at the initial position q. The size of each section is 200 by
200 ðMpch−1Þ2. The columns correspond to the original Ψmeasured from numerical simulation, the scalar component ofΨ, the vector
component obtained by solving for the vector potential, the vector field obtained by subtracting the scalar part from the original field,
and the Eulerian position of the particles (from left to right). Different rows are for z ¼ 2, 1, and 0, respectively (from top to bottom). The
displacement fields are to the scale for Input and Scalar, but blown up by a factor of 5 for Vector and Input—Scalar.
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that the original field have higher power by 10% at
k ∼ 1 Mpc−1h than the scalar component. Thus the scalar
component is still the dominant contribution at large scales
even after shell crossing. It is interesting to note that
although the overall magnitude of the power spectrum of
the original field and its scalar mode differs at this scale for
the two box sizes, the ratio between the original field and its
scalar mode agrees quite well.
At low redshifts, 3LPT gives higher power than both ZA

and 2LPT and it agrees with the numerical power spectrum
better at the weakly nonlinear regime. However, 3LPT
keeps on shooting up, while the numerical power spectrum
turns over due to shell crossing. In Fig. 4, we first see a
bump and then a sharp drop in power indicates that the
scale that the nonlinear higher order corrections becomes
important is larger than the shell crossing scale. We also
note that the turnover scale decreases with time. At z ¼ 0,
the scale is around 0.1 Mpc−1h. As the shell crossing scale
increases, the effects of higher order LPT corrections only
cause more rapid deviation from numerical results in the
weakly nonlinear regime.
As we mentioned earlier, we can check the accuracy of

the decomposition by further breaking down the field in
the helicity basis. For the scalar part, there should be no
helicity-� components, and the amount of the residual
suggests the accuracy of the algorithm. In Fig. 5, we plot
the components of the numerical scalar part in the helicity
basis. The results are indeed dominated by the helicity-0
part. However, there is a small amount of helicity-þ, but its

value is six orders of magnitude smaller than the signal. We
do not show the helicity-− part because it is identical to the
helicity-þ one as expected from symmetry. Also note that
the helicity-þ residuals from the two boxes do not overlap,
suggesting this may arise from numerical artifacts.
We now go on to look at the vector part of Ψ more

carefully. As it is a small quantity, we first try to identify
possible spurious numerical artifacts. As for the case of the
scalar component of Ψ, we will further break it down into
the helicity components as a sanity check. In Fig. 6, we
display the various components of the vector components
of Ψ. At z ¼ 99, the initial conditions are set by 2LPT, so
there should be no vector components of Ψ only. Thus the
powers we see are errors. We note that there is some constant
residual vector power spectrum. For the 1500 Mpch−1 box,
its magnitude is about 10−11 ðMpch−1Þ5, while for the
250 Mpch−1 box, its magnitude is much smaller, about
10−15 ðMpch−1Þ5. Recall that for the scalar components ofΨ
in Fig. 5, the results are much less sensitive to the box sizes.
For the vector part the smaller boxes yield much more
accurate results than the smaller one.
As redshift decreases, the helicity-þ part develops a

bump at small scales for k ∼ 0.5 Mpc−1h. For this bump,
the results from both boxes agree with each other. However,
the results from the large box suggests that the power
spectrum goes up as k decreases for k < 0.02 Mpc−1h. This
part of the spectrum is in fact time independent. Because we
expect that the vector power spectrum is generated by shell
crossing at small scales, this feature must not be physical.

FIG. 4 (color online). The power spectrum of Ψ from simulation, its scalar part, the 2LPT (solid, violet) and 3LPT (solid, yellow)
results. The power spectrum Ψ from simulation (Inp) from two box sizes are shown, 1500 (dashed, blue) and 250 Mpch−1 (dashed,
green). The scalar component (S) of Ψ from the 1500 Mpch−1 (dotted-dashed, red) and 250 Mpch−1 (dotted-dashed, cyan) boxes are
also shown. The 250 Mpch−1 box is averaged over three realizations, but the error bar is not shown for clarity. The subplots from left to
right are for a ¼ 0.01, 0.33, 0.5, and 1. At low redshifts, around k ∼ 1 Mpc−1h, the 250 Mpch−1 box, which has better resolution, yields
about 10% higher power than the larger box. For each set of simulations, an arrow is added to suggest the scale above which there could
be numerical artifacts.
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Furthermore, at z ¼ 2, we note that the helicity-þ compo-
nent from the smaller box differs from the larger box one
and keeps on decreasing as k decreases. The vector
components sensitively depend on the mass resolution,
i.e., the mass of the particle in the simulation. The smaller
box has much better mass resolution than the larger one.

When themass resolution is poor, the vector components are
spuriously enhanced. Similar results are also found in the
context of vorticity [20]. Therefore we will not consider the
first trough at large scales from the large box any further.
The two different methods of obtaining the vector

components yield very similar results, except for the large

FIG. 5 (color online). The numerical scalar components of Ψ are further broken down into helicity components, the helicity-0
component (solid line, S0) and helicity-þ component (dashed line, Sþ). Results from two boxes are shown: 1500 Mpch−1 (blue) and
250 Mpch−1 (red). For the scalar components, there should be no helicity-þ parts, and the amount of helicity-þ components present
suggests the accuracy of the numerical algorithm. The error, i.e., the helicity-þ component is six orders of magnitude smaller than the
signal. Note that the helicity-− components are not shown as they are identical to the helicity-þ ones.

FIG. 6 (color online). The vector components of Ψ obtained from vector potential (V, blue and green) and subtracting the scalar
components from the input field (ImS, red and yellow) are further decomposed into helicity components as a sanity check. The signal is
the helicity-þ part (dashed), while the amount of helicity-0 (solid) component suggests the accuracy of the algorithm. The smaller box
(250 Mpch−1) yields more accurate results than the large one (1500 Mpch−1) due to much better mass resolution.
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box at the largest scales. Also the error of the decom-
position, i.e., the helicity-0 components are generally small,
about six orders of magnitude smaller than the signal.
However, the error increases rapidly for the large box for
k≲ 0.02 Mpc−1h. All these suggest that the results from
the large box at the largest scales are not reliable.
We display the helicity-þ power spectrum of Ψ for

various redshifts in Fig. 7. We show results from both the
1500 and 250 Mpch−1 boxes. However, as we discussed
above, there are potential spurious artifacts in the vector
power spectrum at the largest scales in the large box
simulation. For the sake of clarity, we have removed the
data points at the largest scales in the 1500 Mpch−1 box.
Those removed data points show an increasing trend as k
decreases, and they collapse to the same line at the large
scales. In the intermediate scales, k ∼ 0.06–0.4 Mpc−1h,
where both boxes have good resolution, they agree with
each other. Around k ∼ 2 Mpc−1h, the large box gives
higher power than the small box, and this is due to aliasing
in the power spectrum of the large box simulation.
The helicity-þ contribution from LPT, P33v=2, is shown

in the upper panel in Fig. 7 for comparison. At z ¼ 2, the
signal detected is more than an order of magnitude greater
than the LPT contribution for k > 0.4 Mpc−1h, while at

large scales, the signal is closer to the LPT results. This is
consistent with the picture that a significant amount of
vector contribution is generated in shell crossing at small
scales. As redshift decreases, the power at large scales
grows more rapidly than the LPT results. At z ¼ 0, the
vector contribution from LPT is an order of magnitude
smaller than the signal detected for k≲ 1 Mpc−1h.
We measure the scaling of the part of the vector power

spectrum before the turnover as a function of time. As the
large box suffers numerical issues at large scales, we only
fit to the small box results, up to k ¼ 0.1 Mpch−1. We find
that the large scale vector power spectrum can be fitted by a
power law Dn, where the best fit is n ¼ 9.5, with 1σ error
bar [9.2, 10.0]. In the lower panel of Fig. 7, we also show
the vector power spectrum obtained by scaling the one from
the 250 Mpch−1 box at z ¼ 0 using the best fit n. It is clear
that the turnover moves to larger scale as redshift decreases.
In [20], the vorticity power spectrum of the velocity field

is measured (Fig. 3 in [20]). Vorticity in the velocity field is
also generated by shell crossing. To compare the vector
power spectrum of Ψ with the vorticity power spectrum in
[20], it is useful to clarify the relation and difference
between them first. The vorticity w is defined as

w ¼ ∇x × u
fH

; (34)

where f ¼ d lnD=d ln a, H ¼ d ln a=dτ and u is the
comoving velocity dx=dτ. Note that the derivative is with
respect to the Eulerian coordinate x. The quantity that is
analogous to w is ∇ ×Ψ. The power spectrum of ∇ ×Ψ is
given by

X
i¼j

h∇ ×Ψðk1Þi∇ ×Ψðk2Þji ¼ k21
X
i¼j

hΨiðk1ÞΨjðk2Þi:

(35)

Thus we should multiply by the vector power spectrum
of Ψ by k2 when comparing with the vorticity power
spectrum. One key difference between Ψ and velocity is
thatΨ is always defined at the Lagrangian position q, while
velocity is defined at the Eulerian position x. Another key
difference is that the velocity field is the derivative of Ψ at
one instant of time, while Ψ gives the cumulative effects
over time.
In [20], it was found that when the mass of particle is

large, the vorticity is artificially enhanced. Convergence in
the vorticity power spectrum is achieved when the mass of
particles is less than 109M⊙h−1 or so. This is similar to our
finding that in the large box the vector power spectrum
suffers numerical artifacts at large scales, while the small
box with particles mass being 1.1 × 109M⊙h−1 seems to be
free of numerical artifacts. Thus mass resolution plays an
important role in the measurement of vorticity.

FIG. 7 (color online). The helicity-þ power spectrum ofΨ. The
set of curves are for z ¼ 2 (blue), 1.5 (red), 1 (green), 0.5 (cyan)
and 0 (yellow), respectively (from bottom to top). The solid
curves are from 1500 Mpch−1 box and the dashed ones are
from 250 Mpch−1 one. In the upper panel, we show the power
spectrum from the vector contribution in LPT P33v=2 (dotted-
dashed). In the lower panel, the dotted-dashed curves are obtained
by scaling the measurement from the 250 Mpch−1 box at z ¼ 0
by the factor D9.5. Those data points at the large scales from the
1500 Mpch−1 simulation with potential spurious artifacts have
been removed for clarity.
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At z ¼ 0, we find that the vector power spectrum of Ψ
turns over at k ∼ 0.2 Mpc−1h in Fig. 7. After multiplying
by the factor of k2, the turnover occurs at k ∼ 0.3 Mpc−1h,
while the vorticity power spectrum turns over at
k ∼ 1 Mpc−1h. Another difference from [20] is that the
growth of the vorticity power spectrum at the largest scales
was found to scale as D7.
In this section, we have measured the scalar and the

vector components of Ψ. We find that the scalar power
spectrum of Ψ is suppressed due to shell crossing. Shell
crossing also generated vector part of the power spetrum.
However, the generated vector part is still much subdomi-
nat compared to the scalar one. Thus the scalar assumption
is still valid even after the onset of shell crossing.

B. Modifications of LPT

In this subsection, and partly in the next one, we shall
examine two modifications of LPT. In the first approach,
we shall incorporate the information that shell crossing
causes power suppression in the power spectrum of Ψ by
modifying the displacement potential. Another approach
is to combine LPT with the spherical collapse model [23].
We shall test how good these phenomenological models
perform by checking the density power spectrum at the end
of this section. We will see that these approaches yield
limited improvements after the onset of shell crossing.
Since we know the power spectrum of Ψ after shell

crossing, we may use this extra information to improve the
LPT that used to construct halo catalogs. To do so we will
fit the numerical power spectrum by multiplying a sup-
pression factor to the LPT PðkÞ. The functional form we
use is

PLPTs ¼
1

1þ αkn
PLPT; (36)

where PLPT is LPT power spectrum, and α and n are free
parameters. We call it LPTs and s denotes suppression.
We propose to modify ΨLPT to

ΨLPTsðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ αkn
p ΨLPT: (37)

In practice, we generate the LPTs catalogs by multiplying
the factor 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αkn

p
to the LPT potential. This sup-

pression factor serves to suppress the power in small
scales. To some extent, the idea is similar to the truncated
ZA [22], in which the ZA displacement field is computed
using the power spectrum with power beyond the non-
linear scale removed.
The functional form Eq. (36) does not fit the numerical

power spectrum ofΨ in the whole range well. Our goal is to
fit the large scale part as well as possible, for example up to
k ∼ 0.5 Mpc−1h, and we often find that the resultant fitting
power spectrum underestimates the power in the high k

regime. We have tried a few simple functional forms, they
show qualitative similar behaviors as Eq. (36). Worse still,
it turns out that even Eq. (36) provides a good fit to the
numerical power spectrum, for example within 5% up to
k ¼ 0.5 Mpc−1h. When the fitting formula is fed into
Eq. (37) to generate the catalog numerically, we find that
the power spectrum of Ψ from the resulting catalog gives
much bigger deviation than the fitting formula Eq. (36).
This is not surprising given that shell crossing is a highly
nonlinear process.
We carry out the fitting using the 2LPT and 3LPT power

spectrum. We fit to the numerical results from the
250 Mpch−1 box. For 2LPT, we find that for the redshifts
available the data can be fitted by

n ¼ 1.8; ln αðzÞ ¼ 1.3þ 4.6 lnDðzÞ; (38)

where DðzÞ is the linear growth factor, and it is normalized
such that it reduces to the scale factor in the matter-
dominated era. The fitting power spectrum agrees with the
numerical one within 10% up to k ¼ 1 Mpc−1h. The fit is
not very good because the 2LPT power spectrum deviates
from the numerical one at quite large scale. For the 3LPT
power spectrum we find that across different redshifts, the
numerical power spectrum can be fitted by

n ¼ 1.5; ln αðzÞ ¼ 2.1þ 3.5 lnDðzÞ: (39)

We use the best fit Eqs. (38) and (39) to generate the
LPTs catalogs. The power spectrum of the displacement
field from the LPTs catalog is shown in Fig. 8. The
suppression factor indeed brings the LPT power spectrum
much closer to the simulation results. However, we note
that the best fit Eqs. (38) and (39) fits the simulation results
better than those shown in Fig. 8. The deviation gets bigger
as the redshift decreases.
The fitting formulas Eqs. (38) and (39) are obtained for

the standard cosmology parameters. The dependence on
the cosmological parameters have not been checked,
although the dependence may be expected to be weak as
it is parametrized in terms of the linear growth factor. Also,
it may be useful to stress that these formulas are obtained
for ΛCDM model only, it should be established again for
other cosmological models. However, for our purpose here,
we shall use these effective potentials to generate the mock
catalogs and see how much we can improve relative to the
standard LPT. We shall use the density power spectrum as
the diagnostic.
The second model that we shall examine in detail is a

hybrid of LPT and the spherical collapse model [23].
Recently, there are some suggestions to improve LPT by
reducing the shell crossing using spherical collapse
approximation. References [41,42] derived a simple evo-
lution equation of Lagrangian volume based on spherical
collapse approximation and [43] found that it agrees
well with simulations. But the spherical approximation

KWAN CHUEN CHAN PHYSICAL REVIEW D 89, 083515 (2014)

083515-10



underestimates the power at large scales. Reference [23]
then proposed to combine the LPT displacement with the
spherical collapse displacement by splitting the displace-
ment vector into large scale and small scale ones. The
two regimes are separated by a filtering scale. When the
displacement is smaller than the filtering scale, the dis-
placement field is generated by LPT, while it is given by the
spherical collapse displacement for the part that exceeds the
filtering scales. The authors called it augmented LPT
(ALPT). Mathematically, it reads [23]

ΨðkÞ ¼ Wðk; rsÞΨLPTðkÞ þ ½1 −Wðk; rsÞ�ΨSCðkÞ: (40)

In [23], W is chosen to be a Gaussian window

Wðk; rsÞ ¼ e−ðkrsÞ2=2; (41)

and rs ¼ 3 Mpch−1 is found to give the best result. The
Lagrangian displacement field ΨLPT is given by 2LPT and
ΨSC is obtained from

∇ ·Ψsc ¼ 3

��
1 −

2

3
D∇2ϕð1Þ

�
1=2

− 1

�
; (42)

and if 1 − 2
3
D∇2ϕð1Þ is less than zero, the square root is set

to zero.
We now proceed to compare the density power spectrum

obtained using various recipes with that from simulation.
The LPT catalogs are produced and the particles are

interpolated to the grid by the Cloud-in-Cell algorithm
to compute the power spectrum. In Fig. 9, we compare the
density power spectrum obtained from various approaches
against the simulation results. Note that the random seed
used in the simulation is different from the one in the LPT
catalogs, and that is why their power is quite different at
large scales.
At high redshift, z ¼ 2, higher order LPT performs better

than the lower order one. 3LPT tracks the N-body results
well and the power of 3LPT is within 1% from the N-body
onewithin k ¼ 0.4 Mpc−1h shown. LPTs does not give any
better results than the standard LPT. 3LPTs in fact yields
slightly lower power than 3LPT, 2LPTs gives almost the
same results as 2LPT. The performance of ALPT is similar
to 3LPT, although it gives slightly higher power than
N-body results for k > 0.5 Mpc−1h.
As redshift decreases, the differences between LPT

results and simulation widen. At the intermediate redshift,
z ¼ 1, higher order LPT still outperforms the lower order
one. 3LPT is still the best in the mildly nonlinear regime,
the power is only 4% lower than the N-body results up to
k ∼ 0.25 Mpc−1h. As at z ¼ 2, 3LPTs yields slightly lower
power than 3LPT, and 2LPTs performs very similar to
2LPT. We also note that all the LPT recipes cluster around a
small strip for k > 0.6 Mpc−1h. ALPTyields slightly lower
power than 3LPT in the intermediate regime as it is based
on 2LPT, however, it gives higher power than 3LPT
for k > 0.5 Mpc−1h.

FIG. 8 (color online). The power spectrum of the Ψ obtained from simulation of 1500 (green, solid) and 250 Mpch−1 (blue, solid),
2LPT (red, dashed), 3LPT (cyan, dashed) and 2LPTs catalog (violet, solid) and 3LPTs catalog (yellow, solid). We also plot the power
spectrum of Ψ from ALPT (black, solid) obtained from the prescription Eq. (40). All are normalized with respect to the ZA power
spectrum.
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At z ¼ 0 almost all the LPT recipe results fall below the
linear theory one. At the mildly nonlinear regime, for
standard LPT, the higher the order of perturbation, the
lower the power is. ZA gives higher power than 2LPT and
3LPT for k > 0.3 Mpc−1h. In the weakly nonlinear regime
k ∼ 0.1 Mpc−1h, LPTs yields slightly higher power than
LPT. For k > 0.3 Mpc−1h. ALPT results in the highest
power among all the LPT recipes for k > 0.1 Mpc−1h.
Finally, we note that the scales that the LPT results

deviate substantially from the simulation results in the
density power spectrum is quite similar to that in the power
spectrum of Ψ. For example, 5% deviation of the 3LPT
results from the numerical one occur roughly around 0.3 (at
z ¼ 1) and 0.1 Mpc−1h (at z ¼ 0) in both cases.
As far as the density power spectrum in the mildly

nonlinear regime is concerned, various LPT recipes still fall
short of the simulation results. Two of its variants examined
here do not give any significant improvement for the power
spectrum in the mildly nonlinear where standard LPT is
known to break down due to severe shell crossing. In
particular for the two variants of LPT considered here,
information fromN-body simulation has been used already.
In LPTs, the effective potential is derived from the fitting
formulas Eqs. (38) and (39), while in ALPT, the primarily
motivation is that the scatter plot of ∇ ·Ψ (see also the next
subsection) from spherical collapse model agrees with
simulations well [43]. While the information is taken from
some statistics in which some averaging is taken, given
shell crossing is a highly nonlinear process, it may not be
surprising that this effective approach would fail for some
other statistics, such as the density power spectrum. This
suggests that detailed modeling of the small scale physics is
required in order to improve the standard LPT.

C. Scatter plot of ∇ · Ψ

As we see previously the vector part of the displacement
field is small, in this section we will focus on ∇ ·Ψ, which
captures all the information if Ψ is potential. For both Ψfin

and Ψini, the divergence is taken with respect to the
Lagrangian coordinate q. In this section, we shall explore
the information that can be obtained from the scatter plot
between Ψfin and Ψini.
We shall first examine various LPT recipes using the

scatter plot of ∇ ·Ψ. In Fig. 10, we plot ∇ ·Ψini at the
initial time against ∇ ·Ψfin at the final time, as in [43]. We
have multiplied∇ ·Ψ by the linear growth factorD to bring
them to z ¼ 0.
We compare the scatter plot for ∇ ·Ψ obtained from

simulation against those from the LPT recipes. For ∇ ·Ψ
from simulation, as redshift decreases, the scatter increases.
The relation between ∇ ·Ψini and ∇ ·Ψfin is linear in ZA.
For higher order LPT, such as 2LPTand 3LPT, they depend
on other derivatives of the deformation tensor as well, not
just its trace, and so there are scatters in the relation. There
is less scatter in all the LPT recipes than in the simulation.
The mean relation is roughly quadratic for 2LPT and cubic
for 3LPT [43]. At low redshifts, these behaviors in the
positive and negative ends of ∇ ·Ψini deviate from the
simulation markedly. In LPTs, thanks to the suppression
factor, the deviations from the simulation results in the ends
are reduced, and so the agreement with simulations are
improved. We also show the scatter obtained from ALPT.
The scatter in ALPT follows the mean of the simulations
closely. We also note that the scatter in ALPT is much
reduced as in the spherical approximation only the trace of
the deformation tensor appears. The spherical collapse

FIG. 9 (color online). The density power spectrum from simulations (dotted-starred, black) and various LPT recipes: ZA (solid, blue),
2LPT (solid, red), 3LPT (solid, green), 2LPTs (dashed, cyan), 3LPTs (dashed, yellow) and ALPT (dotted-dashed, violet). The subplots
are for z ¼ 2, 1, and 0, respectively (from left to right). All are normalized with respect to the linear density power spectrum.
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model tracks the mean of the scatter plot well was in the
original motivation for ALPT [23,43].
Reference [43] reported that there are some differences

between the scatter plot constructed using the FFT and FD
methods. In [43], the derivatives were done using the FD
method, and found that there is an accumulation of points
around ∇ ·Ψfin ¼ −3, where Ψfin is a physical displace-
ment field without the linear extrapolation factor [43] also
pointed out, when spectral derivatives are used, there is no
saturation around −3. Given the better precision in
reconstruction for the FFT method described in
Appendix B, we use the spectral derivatives here.
In the rest of the section, we shall explore the informa-

tion about the various kinds of objects in the scatter plot. In
LPT, the Eulerian density is obtained from the mass
conservation equation as

1þ δðxÞ ¼ 1

J
; (43)

where J is the Jacobian determinant

J ¼ det

�∂x
∂q

�
: (44)

In ZA, J is given by

J ¼ ð1 −Dλ1Þð1 −Dλ2Þð1 −Dλ3Þ; (45)

where λi is the eigenvalue of the deformation tensor
∇ijϕ

ð1Þ, and they are ordered such that λ1 ≥ λ2 ≥ λ3. By
examining the eigenvalues of the deformation tensor, one
can classify the collapsed structures. The vanishing of the
factor in J implies that the axis associated with that
eigenvalue has collapsed. We assume that all the cosmic
structures can be classified into knots (3 collapsed axes),
filaments (2 collapsed axes), sheets (1 collapsed axis), and
voids (no collapsed axis). We can set some cuts on the
eigenvalues of ∇ ·Ψini to select some objects, and explore
how they distribute in the scatter plot.
It is important to point out that this kind of classification

is based on the analysis at one scale only. As pointed out in

FIG. 10 (color online). The scatter plot between the initial ∇ ·Ψini and the final ∇ ·Ψfin. The simulation results are shown as yellow
circles. The three columns correspond to z ¼ 2, 1, and 0, respectively (from left to right). On top of the simulation results, we show the
corresponding scatter obtained from ZA, 2LPT, 3LPT, 2LPTs, 3LPTs, and ALPT (green dots, from top to bottom). Both ∇ ·Ψini and∇ ·Ψfin have been multiplied by the appropriate linear growth factor D to bring them to z ¼ 0.
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[44] for the case of collapsed objects, this analysis suffers
from the cloud-in-cloud problem in the Press-Schechter
argument. That is, the identified local structure may be
hosted within the structure of another kind. Thus objects
identified here may not agree with those from the more
sophisticated identification algorithms (see for example
[45,46] and references therein). Indeed, to get the right
abundance of collapsed objects, a large factor is required
[44]. With this caveat in mind, we shall use this simple
classification here.
In Table I, we show the classification of the collapsed

structure using the eigenvalues of J. This is based on the
analysis of the field at the scale of the grid ∼1.5 Mpch−1.
For example, the condition that λ1 ≥ t ¼ 1=Dmeans that at
least 1 axis has not collapsed. These kinds of objects
include filaments, sheets, and voids. The probability dis-
tribution of the ordered λi for a Gaussian field has been
calculated [44,47]. By integrating the probability distribu-
tion (Eqs. 13, 14, and 15 in [44]) from the threshold t to
infinity we get the fractions in Table I. In Eqs. 13, 14, and
15 in [44], there is a free parameter σ, the rms variance of
the density. Using the σ obtained by computing the variance
of ∇2ϕð1Þ at the grid, we find that the fraction computed
agrees with the direct measurements very well, within
0.5%. We note that more than 99% of the Lagrangian
volume belongs to the group containing sheets, filaments,
and voids. That is the Lagrangian volume that collapse to
form halos are less than 1%. As redshift decreases, the
fraction of cosmic voids decreases, while that of the sheets
and filaments increases. From Table I, we deduce that at
z ¼ 0, 0.8% of the Lagrangian volume forms knots, 15%
forms sheets, 51% forms filaments, and 33% forms voids.
This is in line with visual expectation in the large scale
structure that the cosmic web is dominated by filaments
and voids.
In Fig. 11, we show the scatter plot ofΨ for voids on top

of the full simulation results. The voids mostly distributed
around the positive side ∇ ·Ψini. As the redshift decreases,
the fraction decreases and they move toward the more
positive end of ∇ ·Ψini. Since voids are the region that has
not yet collapsed, one may think that they undergo less
shell crossing than some arbitrary region. This idea is borne
out in Fig. 11. The scatter in the full simulation decreases as

∇ ·Ψini increases, and the void region corresponds to the
positive end of ∇ ·Ψini.
In Fig. 12, we show a similar plot for knots and

filaments. These collapsed structures mainly distribute
around the negative end of ∇ ·Ψini. As redshift decreases,
the region expands from the negative ∇ ·Ψini end to the
positive side. These collapsed objects are virialized and
have undergone more shell crossing. They show less
dependence on the initial ∇ ·Ψini, as manifested with
larger scatter.

IV. CONCLUSIONS

Lagrangian displacement field Ψ is the central object in
LPT. LPT is very successful at high redshifts, but it performs
poorly at low redshifts due to severe shell crossing. After
shell crossing, the standard LPT breaks down.
In order to gain insight into Ψ when shell crossing is

not negligible, we measure Ψ from N-body simulation
directly in this paper. As Ψ is potential in LPT to a very
good approximation, and shell crossing can generate

FIG. 11 (color online). The scatter plot of voids (red) on top of
the simulation results (blue). The cyan line corresponds to the
1LPT result.

TABLE I. Fractions of the Lagrangian volume that form various
large scale structures. Classification of collapsed objects based on
the eigenvalues, λi, of the deformation tensor. t is the threshold
1=D.

Sheets, filaments
and voids

Filaments
and voids Voids

λ1 ≥ t λ1 ≥ λ2 ≥ t λ1 ≥ λ2 ≥ λ3 ≥ t

z ¼ 2 0.9999 0.990 0.79
z ¼ 1 0.9986 0.946 0.56
z ¼ 0 0.9917 0.842 0.33

FIG. 12 (color online). The scatter plot of knots and filaments
(red) on top of the simulation results (blue). The cyan line
corresponds to the 1LPT result.
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non-negligible amount of vorticity, we decompose Ψ into
scalar and vector parts. We use the power spectrum of Ψ to
quantify the effect of shell crossing. We find that at large
scales, the numerical results agree well with 1-loop LPT
calculations. However, shell crossing becomes important
at low redshifts, and the agreement deteriorates quickly.
At z ¼ 1, the 1-loop power spectrum of Ψ is about 10%
higher than the results from numerical Ψ at around
k ∼ 0.3 Mpc−1h, and it occurs at k ∼ 0.1 Mpc−1h at
z ¼ 0. This is consistent with the more well-known results
that the LPT density power spectrum at low redshifts yields
much lower power than the N-body results due to serious
shell crossing.
We also detect the generation of the vector mode due to

shell crossing, although its magnitude is still much smaller
than the scalar mode in the mildly nonlinear regime. Our
results show that the potential approximation is still good
even when shell crossing is non-negligible in the mildly
nonlinear regime. Note that there is vector contribution in
third order LPT. The leading contribution from the vector
part of LPT to the power spectrum of Ψ is of 2-loop order.
We find that this 2-loop contribution is much smaller than
the signal we detected. For example, at z ¼ 1, the vector
power spectrum of Ψ contributes to 10% of the total
power spectrum at k ∼ 2.5 Mpc−1h, and this happens at
k ∼ 1 Mpc−1h at z ¼ 0. The LPT contribution at these
scales are about an order of magnitude smaller than the
signal detected. Also the scaling of the large scale vector
power spectrum is found to scale as D9.5, while the LPT
vector contribution is expected to scale as D6.
We examined the standard LPT recipes and two of

its variants. In one of the variants, we incorporate the
information of the power spectrum of Ψ to improve the
generation of catalogs with LPT. We include a power
suppression factor to the displacement potential, and the
functional form of the suppression factor is obtained by
fitting to the numerical power spectrum of Ψ. The sup-
pression factor can reduce the deviation from simulations
in the void and overdense regions as can be seen from
the scatter plot between ∇ ·Ψini and ∇ ·Ψfin. We used the
density power spectrum, which is one of the most important
physical observables, to gauge the performance of LPT and
its variants. However, various LPT recipes still yield power
much lower than simulations at redshift close to 0. The LPT
variants yield limited success compared to the standard
ones after the onset of shell crossing, even though some
information from N-body simulation has been incorporated
in the variant of LPT. This is not very surprising given that
shell crossing is a highly nonlinear process. The informa-
tion is obtained by taking the average for some statistics, it
is not guaranteed that other statistics, such as the density
power spectrum, will be right. Our exercises indeed suggest
that this is not the case. To improve the standard LPT, this
points to the need for more detailed modeling beyond the
simple phenomenological approach.
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APPENDIX A: GENERAL STRUCTURE
OF THE POWER SPECTRA OF Ψ

In this section, we show the general structure of the
power spectrum of Ψ expressed in terms of its scalar and
vector components.
In Fourier space, the Helmholtz decomposition of Ψ

reads

ΨðkÞ ¼ ΨSðkÞ þΨVðkÞ; (A1)

with the scalar and vector parts given by

ΨSðkÞ ¼ ikΦðkÞ; (A2)

ΨVðkÞ ¼ ik ×AðkÞ: (A3)

The power spectrum between the scalar parts is

hΨSiðk1ÞΨSjðk2Þi ¼ k1ik1jPΦðk1ÞδDðk12Þ; (A4)

where PΦ is the power spectrum of Φ.
The power spectrum between the scalar part and the

vector parts is given by

hΨShðk1ÞΨViðk2Þi ¼ −k1hϵijkk2jhΦðk1ÞAkðk2Þi: (A5)

For a statistically isotropic and homogeneous field, the
power spectrum can be written in the form

hΦðk1ÞAlðk2Þi ¼ PΦAðk1Þk1lδDðk12Þ: (A6)

Using Eq. (A6) we see immediately that the cross power
Eq. (A5) vanishes.
The power spectrum between the vector parts is given by

hΨViðk1ÞΨVlðk2Þi ¼ −ϵijkϵlmnk1jk2mhAkðk1ÞAnðk2Þi:
(A7)

Again for a statistically isotropic and homogeneous field,
we have

hAjðk1ÞAkðk2Þi ¼ ðP1AAðk1Þδjk
þ P2AAðk1Þk̂1jk̂2kÞδDðk12Þ: (A8)

The condition that A is transverse further requires
P1AA ¼ P2AA. Thus we have
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FIG. 13 (color online). Sections of the scalar part and vector part of the potentials (Eqs. (B1) and (B2) (first column) and its
corresponding fields (second column). For vector field, the x-component is shown.

FIG. 14 (color online). Same as Fig. 13, but reconstructed using the FFT method.
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hΨViðk1ÞΨVlðk2Þi
¼ ðk21δil − k1ik1lÞP1AAðk1ÞδDðk12Þ: (A9)

Thus the power spectrum of Ψ can be expressed as

X
i¼j

hΨiðk1ÞΨjðk2Þi ¼ k21ðPΦðk1Þ þ 2P1AAðk1ÞÞδDðk12Þ:

(A10)

APPENDIX B: TESTING THE HELMHOLTZ
DECOMPOSITION ALGORITHM

To test the performance of the decomposition algorithm
and the code, we shall consider a couple of examples. The
first test is purely longitudinal, and it is given by the
potentials

ΦðrÞ ¼ ae−r
0=ρ; (B1)

AðrÞ ¼ 0; (B2)

where r0 ¼ jr − r0j, and a, r0, and ρ are some free param-
eters. From Eqs. (B1) and (B2), we get the vector field

VðrÞ ¼ −
r0

ρr0
Φ: (B3)

In Fig. 13, we show the input potentials and the correspond-
ing fields derived from the potentials. In this plot we have
used a box of size 1500 Mpch−1 and a grid of size 1203. The
parameters a ¼ 1, ρ ¼ 150 Mpch−1 are used, and r0 is set
to the center of the box. The section is output at constant
z-coordinate surfacewith z ¼ 500 Mpch−1. For vector field,
we show the x-component of the field.

FIG. 15 (color online). The vector field reconstructed by
subtracting the scalar field from the input field. The result is very
similar to theonederived fromthevectorpotential shown inFig. 14.

FIG. 16 (color online). Same as Fig. 13, but reconstructed using the FD method. The error is larger than that in Fig. 14 by a factor of 2
or so.
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In Fig. 14, we show the potentials and the field
reconstructed using the FFT method. In the FFT method,
we compute the divergence and curl of Ψ in Fourier space
by the spectral derivatives. We note that the error, that is the
vector part of the field, is of three orders of magnitude
smaller than the input scalar signal.
As we argued previously, in the case of the periodic

boundary condition and the field having zero spatial mean,
the Helmholtz decomposition is unique. Equation (B3)

indeed has zero spatial mean. Thus, besides reconstructing
the vector field by solving the Poisson Eq. (4), we can
obtain the vector part by simply subtracting the scalar part
from the input field. We show the reconstruction of the
vector field in this way in Fig. 15. The result is very similar
to that shown in Fig. 14.
We also do a similar analysis using the finite difference

(FD) method. In the FD method, we compute the diver-
gence and curl of Ψ in real space. We apply the symmetric
finite differencing method to the nearest neighboring
points. We stress that it is important to use a symmetric
scheme. In a symmetric finite differencing scheme, the
separation between the two points where the difference is
made, is two times that of the grid scale. One may think that
using an asymmetric scheme, the separation is just one unit
of the grid scale, and so a better resolution is achieved. In
fact, [43] used a real space estimator because the author
claimed that the real space estimator has twice the reso-
lution of the Fourier space one. We have checked that using
this naive asymmetric scheme, the error is larger than the
symmetric one by two orders of magnitude. This in fact is
consistent with the Nyquist theorem, which states that the
highest mode that can be resolved with a grid of size ngrid is
kFngrid=2, with kF being the fundamental mode. The
highest resolution in real space for a grid of size ngrid is
the same as that in Fourier space.
In Fig. 16, we show the results obtained using the FD

method. We note that the vector contamination from the FD
method is about twice larger than the FFT method. There
are also larger fluctuations in the vector contamination in
the FD method.

FIG. 17 (color online). The vector field reconstructed by
subtracting the scalar field, which is obtained using the FD
method, from the input field. In comparison with the FFT method
shown in Fig. 15, the error is larger by more than an order of
magnitude.

FIG. 18 (color online). Sections of the scalar part and vector part of the potentials (Eqs. (B4) and (B5) (first column) and its
corresponding fields (second column). For the vector field, only the x-component is shown.
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In Fig. 17, we show the vector part obtained by
subtracting the scalar part reconstructed using the FD
method. Comparing with Fig. 15, we note that the error
of the FD method is larger than the FFT method by an order
of magnitude. The error is especially large at the boundary,
probably because the field does not fall off enough at the
boundary, so that imposing periodic boundary condition
results in large error.

The second example we consider is purely transverse,
i.e., it is given by

ΦðrÞ ¼ 0 (B4)

AðrÞ ¼ ae−r
0=ρ

0
B@

sin r0
σ

cos r
0
σ

1

1
CA: (B5)

FIG. 19 (color online). Same as Fig. 18, but reconstructed using the FFT method.

FIG. 20 (color online). Same as Fig. 18, but reconstructed using the FD method.
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The corresponding vector field is given by

VðrÞ ¼ ae−r
0=ρ

0
BBBBB@

− ry 0

ρr0 þ rz 0
ρr0 cos

r0
σ þ rz 0

σr0 sin
r0
σ

rx 0
ρr0 −

rz 0
ρr0 sin

r0
σ þ rz 0

σr0 cos
r0
σ�

− ry 0

σr0 −
rx 0
ρr0

�
cos r

0
σ þ

�
− rx 0

σr0 þ
ry 0

ρr0

�
sin r0

σ

1
CCCCCA
: (B6)

In Fig. 18 we show the sections of the scalar and vector
potentials and the corresponding fields. In this plot the
parameters are the same as in the previous test case. In
addition, σ ¼ 37.5 Mpch−1.
In Fig. 19, we have shown the potentials and fields

reconstructed using the FFT method. The error of the
reconstruction, the scalar part of the field, is about 3 orders
of magnitude smaller than the vector part of the field,
similar to the previous test case.
Finally, in Fig. 20, we show the corresponding results

reconstructed using the FD method. Again, the error of

the FD method is about twice that of the FFT method.
Similar to the scalar case, the error, i.e., the scalar
contamination, is more smooth in the case of FFT
method.
To conclude, the signal in the reconstruction is at least

three orders of magnitude higher than the error contami-
nation. Also we find that the FFT method is more accurate
than the FD method by a factor of 2. The vector field
obtained by solving the vector potential is very similar to
the one obtained by subtracting the scalar component from
the input field.
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