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An interesting idea is that the universe could be spontaneously created from nothing, but no rigorous
proof has been given. In this paper, we present such a proof based on the analytic solutions of the Wheeler-
DeWitt equation (WDWE). Explicit solutions of the WDWE for the special operator ordering factor
p ¼ −2 (or 4) show that, once a small true vacuum bubble is created by quantum fluctuations of the
metastable false vacuum, it can expand exponentially no matter whether the bubble is closed, flat, or open.
The exponential expansion will end when the bubble becomes large and thus the early universe appears.
With the de Broglie–Bohm quantum trajectory theory, we show explicitly that it is the quantum potential
that plays the role of the cosmological constant and provides the power for the exponential expansion of the
true vacuum bubble. So it is clear that the birth of the early universe completely depends on the quantum
nature of the theory.
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I. INTRODUCTION

With the Lambda–cold dark matter (ΛCDM) model and
all available observations (cosmic microwave background,
abundance of light elements), it has been widely accepted
that the universe was created in a big bang. However, there
are still some puzzles, such as problems of the flatness, the
horizon, the monopole, and the singularity [1]. Quantum
mechanics has been applied to cosmology to study the
formation of the universe and its early evolution. In
particular, inflation theories, which suggest that the uni-
verse experienced an exponential expansion period, were
proposed to solve puzzles of the early universe [2–4]. In
quantum cosmology theory, the universe is described by a
wave function rather than the classical spacetime. The wave
function of the universe should satisfy the Wheeler-DeWitt
equation (WDWE) [5]. With the development of quantum
cosmology theory, it has been suggested that the universe
can be created spontaneously from nothing, where “noth-
ing”means there is neither matter nor space or time [6], and
the problem of singularity can be avoided naturally.
Although the picture of the universe created sponta-

neously from nothing has emerged for a long time, a
rigorous mathematical foundation for such a picture is still
missing. According to Heisenberg’s uncertainty principle, a
small empty space, also called a small true vacuum bubble,
can be created probabilistically by quantum fluctuations
of the metastable false vacuum. But if the small bubble
cannot expand rapidly, it will disappear soon due to
quantum fluctuations. In this case, the early universe would
disappear before it grows up. On the other side, if the small

bubble expands rapidly to a large enough size, the universe
can then be created irreversibly.
In this paper, we obtain analytic solutions of the WDWE

of the true vacuum bubble. With the de Broglie–Bohm
quantum trajectory theory, we prove that once a small true
vacuum bubble is created, it has the chance to expand
exponentially when it is very small, i.e., a ≪ 1. The
exponential expansion will end when the true vacuum
bubble becomes very large, i.e., a ≫ 1. It is the quantum
potential of the small true vacuum bubble that plays the
role of the cosmological constant and provides the power
for its exponential expansion. This explicitly shows that
the universe can be created spontaneously by virtue of a
quantum mechanism.

II. WDWE FOR THE SIMPLEST
MINISUPERSPACE MODEL

Heisenberg’s uncertainty principle indicates that a small
true vacuum bubble can be created probabilistically in a
metastable false vacuum. The small bubble has 1 degree of
freedom, the bubble radius. We can assume that the bubble
is nearly spherical, isotropic and homogeneous, since it is a
small true vacuum bubble. As we will show below, the
small bubble will expand exponentially after its birth and
all asymmetries will be erased by the inflation.
Since the small true vacuum bubble is nearly spherical, it

can be described by a minisuperspace model [7–9] with one
single parameter of the scalar factor a. The action of the
minisuperspace can be written as

S ¼ 1

16πG

Z
R

ffiffiffiffiffiffi−gp
d4x: (1)*Corresponding author.
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Since the bubble is homogeneous and isotropic, the metric
in the minisuperspace model is given by

ds2 ¼ σ2½N2ðtÞdt2 − a2ðtÞdΩ2
3�: (2)

Here, NðtÞ is an arbitrary lapse function, dΩ2
3 is the metric

on a unit three-sphere, and σ2 ¼ 2G=3π is a normalizing
factor chosen for later convenience. Substituting Eq. (2)
into Eq. (1), we obtain the Lagrangian

L ¼ N
2
a

�
k − _a2

N2

�
; (3)

where the dot denotes the derivative with respect to the
time, t, and the momentum

pa ¼ −a _a=N:

The Lagrangian (3) can be expressed in the canonical form,

L ¼ pa _a − NH;

where

H ¼ − 1

2

�
p2
a

a
þ ka

�
:

In quantum cosmology theory, the evolution of the
universe is completely determined by its quantum state
that should satisfy the WDWE. With HΨ ¼ 0 and
p2
a ¼ −a−p ∂

∂a ðap ∂
∂aÞ, we get the WDWE [6,10]�

1

ap
∂
∂a a

p ∂
∂a − ka2

�
ψðaÞ ¼ 0: (4)

Here, k ¼ 1, 0, −1 are for spatially closed, flat, and open
bubbles, respectively. The factor p represents the uncer-
tainty in the choice of operator ordering. For simplicity,
we have set ℏ ¼ c ¼ G ¼ 1.

III. QUANTUM TRAJECTORY FROM WDWE

The complex function ψðaÞ can be rewritten as

ψðaÞ ¼ RðaÞ expðiSðaÞÞ; (5)

where R and S are real functions [11,12]. Inserting ψðaÞ
into Eq. (4) and separating the equation into real and
imaginary parts, we get two equations [11,12]:

S00 þ 2
R0S0

R
þ p

a
S0 ¼ 0; (6)

ðS0Þ2 þ V þQ ¼ 0: (7)

Here VðaÞ ¼ ka2 is the classical potential of the minisuper-
space, the prime denotes derivatives with respect to a, and
QðaÞ is the quantum potential,

QðaÞ ¼ −
�
R00

R
þ p

a
R0

R

�
: (8)

In the minisuperspace model, the current is [13]

ja ¼ i
2
apðψ�∂aψ − ψ∂aψ

�Þ ¼ −apR2S0:

From Eq. (6), we derive the following equations step by
step:

p
a
RS0 þ 1

R
ðR2S0Þ0 ¼ 0;

dðR2S0Þ
R2S0

þ p
da
a

¼ 0;

apR2S0 ¼ const:

Then we have ∂aja ¼ 0. This implies that Eq. (6) is the
continuity equation.
It should be pointed out that Eq. (7) is similar to the

classical Hamilton-Jacobi equation, supplemented by an
extra term called quantum potential QðaÞ. R and S in
Eq. (7) can be obtained conveniently from ψðaÞ by solving
Eq. (4) with relations,

ψðaÞ ¼ U þ iW ¼ RðaÞ expðiSðaÞÞ; (9)

R2 ¼ U2 þW2; S ¼ tan−1ðW=UÞ: (10)

Generally speaking, the wave function of the bubble
should be complex. Specifically, if the wave function of
the universe is pure real or pure imaginary (W ¼ 0 or
U ¼ 0), we have S0 ¼ 0. That means the quantum potential
Q will counteract the ordinary potential V at all times.
Thus, the vacuum bubble would evolve at a constant speed,
and the small bubble cannot grow up rapidly. In the
following, we consider the general case for the vacuum
bubble, i.e., both U and W are nonzero functions.
By analogy with cases of nonrelativistic particle

physics and quantum field theory in flat space-time,
quantum trajectories can be obtained from the guidance
relation [7,14],

∂L
∂ _a ¼ −a _a ¼ ∂S

∂a ; (11)

_a ¼ − 1

a
∂S
∂a : (12)

Equation (12) is a first order differential equation, so the
three-metric for all values of the parameter t can be
obtained by integration.
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IV. INFLATION OF THE TRUE
VACUUM BUBBLE (p ≠ 1)

In the following, we solve the WDWE of the bubble with
k ¼ 1, −1, 0, respectively. When the ordering factor takes a
special value p ¼ −2 (or 4 for equivalence), exponential
expansion of the small true vacuum bubble induced by
quantum potential can be obtained no matter whether the
bubble is closed, open, or flat.

A. The closed bubble

In this case, the analytic solution of Eq. (4) is

ψðaÞ ¼ að1−pÞ=2
�
ic1Iν

�
a2

2

�
− c2Kν

�
a2

2

��
; (13)

where Iν’s are modified Bessel functions of the first kind,
Kν’s are the modified Bessel function of the second
kind, the coefficients c1 and c2 are arbitrary constants that
should be determined by the state of the bubble, and
ν ¼ j1 − pj=4. As discussed previously, the wave function
of the bubble should be complex. For simplicity, we set c1
and c2 as real numbers to find the inflation solution.
Using Eqs. (9) and (10), we can get

S ¼ tan−1
2
4− c1

c2

Iν
�
a2
2

�
Kν

�
a2
2

�
3
5;

and

R ¼ að1−pÞ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c1Iν

�
a2

2

��
2

þ
�
c2Kν

�
a2

2

��
2

s
:

Here, we omit the sign “�” in front of R, since it does not
affect the value of QðaÞ in Eq. (8). For small arguments
0 < x ≪

ffiffiffiffiffiffiffiffiffiffiffi
νþ 1

p
, Bessel functions take the following

asymptotic forms:

IνðxÞ ∼
1

Γðνþ 1Þ
�
x
2

�
ν

and

KνðxÞ ∼
ΓðνÞ
2

�
2

x

�
ν

; ν ≠ 0:

where ΓðzÞ is the Gamma function. It is easy to get

Sða ≪ 1Þ ≈ − 2c1
c2ΓðνÞΓðνþ1Þ

�
a2

4

�
2ν

; ν ≠ 0:

Using the guidance relation (12), we can get the general
Bohmian trajectories for any small scale factor

aðtÞ ¼
8<
:

h
ð3−4νÞλðνÞ

3
ðtþ t0Þ

i 1
3−4ν ν ≠ 0; 3

4

eλð3=4Þðtþt0Þ; ν ¼ 3
4
;

where λðνÞ ¼ 6c1=ð42νc2ΓðνÞΓðνþ 1ÞÞ. For the case of
ν ¼ 0 (i.e., p ¼ 1), we will discuss it later.
It is clear that only the ordering factor takes the value

p ¼ −2 (or p ¼ 4 for equivalence), i.e., ν ¼ 3=4, has the
scale factor aðtÞ an exponential behavior. λð3=4Þ > 0
corresponds to an expansionary bubble, and λð3=4Þ < 0
implies a contractive bubble that does not satisfy the
evolution of the early universe. Therefore, with the con-
dition λð3=4Þ > 0, we draw the conclusion that, for a closed
true vacuum bubble, it can expand exponentially, and then
the early universe appears irreversibly.
The quantum mechanism of spontaneous creation of the

early universe can be seen from the quantum potential of
the bubble. For the case of p ¼ −2 (or 4), the quantum
potential of the small true vacuum bubble is

Qða → 0Þ ¼ −a2 − λð3=4Þ2a4: (14)

We find that the first term in quantum potential Qða → 0Þ
exactly cancels the classical potential VðaÞ ¼ a2. The
effect of the second term −λð3=4Þ2a4 is quite similar to
that of the scalar field potential in [15] or the cosmological
constant in [16] for inflation. For the small true vacuum
bubble, we have H ≡ _a=a and Λ ¼ 3H2. Then we can get
the effective “cosmological constant” Λ for the vacuum
bubble as Λ ≈ 3λð3=4Þ2. In this way, we can see that the
quantum potential of the small true vacuum bubble plays
the role of the cosmological constant and provides the
power for the exponential expansion. It is the quantum
mechanism (i.e., the quantum potential) that dominates the
exponential expansion of the vacuum bubble.

B. The open bubble

For this case, the analytic solution of Eq. (4) is found
to be

ψðaÞ ¼ að1−pÞ=2
�
ic1Jν

�
a2

2

�
þ c2Yν

�
a2

2

��
; (15)

where Jν’s are Bessel functions of the first kind, and Yν’s
are Bessel function of the second kind and ν ¼ j1 − pj=4.
Likewise, we get

S ¼ tan−1
2
4c1
c2

Jν
�
a2
2

�
Yν

�
a2
2

�
3
5;

and
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R ¼ að1−pÞ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c1Jν

�
a2

2

��
2

þ
�
c2Yν

�
a2

2

��
2

s
:

For small arguments 0 < x ≪
ffiffiffiffiffiffiffiffiffiffiffi
νþ 1

p
, Bessel functions

take the following asymptotic forms: JνðxÞ ∼ ðx=2Þν=
Γðνþ 1Þ, and YνðxÞ ∼ −ΓðνÞ2ν−1=xν for (ν ≠ 0). Then
we find

Sða ≪ 1Þ ≈ − πc1
c2ΓðνÞΓðνþ1Þ

�
a2

4

�
2ν

; v ≠ 0:

and

aðtÞ ¼
8<
:

h
ð3−4νÞλ̄ðνÞ

3
ðtþ t0Þ

i 1
3−4ν; ν ≠ 0; 3

4

eλ̄ð3=4Þðtþt0Þ; ν ¼ 3
4
;

where λ̄ðνÞ ¼ 3πc1=ð42νc2ΓðνÞΓðνþ 1ÞÞ.
It is interesting that the scale factor for the open bubble

(k ¼ −1) is quite similar to that of the closed one (k ¼ 1).
For the special case of p ¼ −2 (or 4), the scale factor aðtÞ
has an exponential behavior like before. In this case, the
quantum potential for the open bubble can be obtained as

Qða → 0Þ ¼ a2 − λ̄ð3=4Þ2a4: (16)

Comparing with the case of the closed bubble, we find that
the terms a2 in quantum potential Qða → 0Þ and classical
potential VðaÞ change sign simultaneously, so they can still
cancel each other exactly. Thus, it is the term −λ̄ð3=4Þ2a4
in quantum potential Qða → 0Þ that causes the exponential
expansion of the vacuum bubble. Likewise, we can get the
effective cosmological constant for the small true vacuum
bubble, Λ ≈ 3λ̄ð3=4Þ2.

C. The flat bubble

The analytic solution of Eq. (4) is

ψðaÞ ¼ ic1
a1−p
1 − p

− c2; (17)

where p ≠ 1, and hence

S ¼ tan−1
�
− c1
c2

a1−p
1 − p

�
; p ≠ 1;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22 þ

�
c1

a1−p
1 − p

�
2

s
; p ≠ 1:

Using the guidance relation (12), we can get the general
form of the Bohmian trajectories as

aðtÞ ¼
8<
:

h
c1
c2
ð3 − j1 − pjÞðtþ t0Þ

i 1
3−j1−pj; j1 − pj ≠ 0; 3;

ec1ðtþt0Þ=c2 ; j1 − pj ¼ 3.

Likewise, only conditions p ¼ −2 (or 4) and c1=c2 > 0
are satisfied, will the small true vacuum bubble expand
exponentially. For the case of exponential expansion, the
quantum potential for the vacuum bubble can be obtained
as Qða → 0Þ ¼ −ðc1=c2Þ2a4, while the classical potential
is VðaÞ ¼ 0. This definitely indicates that quantum poten-
tial QðaÞ is the origin of exponential expansion for the
small true vacuum bubble. Similarly, we can get the
effective cosmological constant for the small true vacuum
bubble as Λ ≈ 3ðc1=c2Þ2.

V. THE BOHMIAN TRAJECTORIES FOR p ¼ 1

Solutions of Eq. (4) for the p ¼ 1 case are still Eq. (13)
and Eq. (15) for the closed and open bubbles, respectively.
For the flat bubble, the solution of Eq. (4) for p ¼ 1 is

ψðaÞ ¼ ic1 − c2 ln a:

It is clear that the quantum potential QðaÞ of the bubble
approaches infinity when the bubble is very small a → 0,
no matter whether the small bubble is closed, open or flat.
The requirement of a finite value ofQða → 0Þ will result in
aðtÞ ¼ constant for k ¼ 0, �1.

VI. THE BEHAVIOR OF LARGE
VACUUM BUBBLES

Let us look at behaviors of our solutions for large
vacuum bubbles [19]. For the closed bubble, we get
Sða ≫ 1Þ ¼ −tan−1ðc1ea2=c2Þ, and hence _a ¼ 2c1e−a

2

=
c2 → 0. The quantum potential of the bubble is
Qða ≫ 1Þ ∼ −a2. It is obvious that there is no classical
limit for the closed bubble. For the open bubble, we have
Sða≫1Þ∼−tan−1½c1 tanða2=2þπ=4−νπ=2Þ=c2�. When
jc1=c2j ¼ 1, we can get its classical limit _a2 ¼ 1 as
Qða ≫ 1Þ → 0. For the case of the flat bubble, we get
_a ¼ c1a−j1−pj−2=c2. When the bubble becomes large
enough, it can reach the classical limit, _a2 → 0 with
Qða ≫ 1Þ → 0. When the vacuum bubble becomes very
large, it will stop expanding for k ¼ 0, 1, or it will expand
with a constant velocity for k ¼ −1. In one word, it turns
out that the vacuum bubble will stop accelerating when it
becomes very large, no matter whether it is closed, flat,
or open.

VII. THE OPERATOR ORDERING FACTOR

Generally speaking, the factor p in Eq. (4) represents the
uncertainty of the operator ordering. Different p gives a
different rule of quantization for the classical system. From
Eqs. (6) and (8), we get a general form of the quantum
potential,
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QðaÞ ¼ −
�−p2 þ 2p

4a2
þ 3ðS00Þ2

4ðS0Þ2 − S000

2S0

�
: (18)

It is clear that the effect of the ordering factor p is important
only to small bubbles, and different pwill result in different
quantum potential. In other words, for small bubbles (i.e.,
a ≪ 1), the first term is significant to QðaÞ, while for large
bubbles (i.e., a ≫ 1), it is negligible. So, the factor p
represents quantum effects of the system described by the
WDWE in Eq. (4).
It is interesting that only when the ordering factor p takes

value −2 (or 4) can one get the exponential expansion for
the small true vacuum bubble, no matter whether the bubble
is closed, flat, or open. It is generally believed that the
operator ordering factor p can be restricted by the quantum
to classical transition of the system [17]. Maybe a more
elegant treatment of the quantum to classical transition
is needed to restrict the interesting values of p, since the
classical limit is independent of p in the present treatment.
A hint from loop quantum gravity (LQG) theory is that
when one wants to remove the ambiguities from LQG, the
ordering factor should take the value p ¼ −2 [18].

VIII. DISCUSSION AND CONCLUSION

In summary, we have presented a mathematical proof
that the universe can be created spontaneously from
nothing. When a small true vacuum bubble is created by

quantum fluctuations of the metastable false vacuum, it can
expand exponentially if the ordering factor takes the value
p ¼ −2 (or 4). In this way, the early universe appears
irreversibly. We have shown that it is the quantum potential
that provides the power for the exponential expansion of the
bubble. Thus, we can conclude that the birth of the early
universe is completely determined by quantum mechanism.
One may ask the question when and how space, time and

matter appear in the early universe from nothing. With the
exponential expansion of the bubble, it is doubtless that
space and time will emerge. Due to Heisenberg’s uncer-
tainty principle, there should be virtual particle pairs
created by quantum fluctuations. Generally speaking, a
virtual particle pair will annihilate soon after its birth. But,
two virtual particles from a pair can be separated immedi-
ately before annihilation due to the exponential expansion
of the bubble. Therefore, there would be a large amount of
real particles created as vacuum bubble expands exponen-
tially. A rigorous mathematical calculation for the rate of
particle creation with the exponential expansion of the
bubble will be studied in our future work.
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