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Fluctuations of the 21 cm brightness temperature before the formation of the first stars hold the promise
of becoming a high-precision cosmological probe in the future. The growth of overdensities is very well
described by perturbation theory at that epoch, and the signal can in principle be predicted to arbitrary
accuracy for given cosmological parameters. Recently, Tseliakhovich and Hirata pointed out a previously
neglected and important physical effect, due to the fact that baryons and cold dark matter (CDM) have
supersonic relative velocities after recombination. This relative velocity suppresses the growth of matter
fluctuations on scales k ∼ 10–103 Mpc−1. In addition, the amplitude of the small-scale power spectrum is
modulated on the large scales over which the relative velocity varies, corresponding to k ∼ 0.005–1 Mpc−1.
In this paper, the effect of the relative velocity on 21 cm brightness temperature fluctuations from redshifts
z ≥ 30 is computed. We show that the 21 cm power spectrum is affected on most scales. On small scales,
the signal is typically suppressed several tens of percent, except for extremely small scales
(k≳ 2000 Mpc−1) for which the fluctuations are boosted by resonant excitation of acoustic waves. On
large scales, 21 cm fluctuations are enhanced due to the nonlinear dependence of the brightness temperature
on the underlying gas density and temperature. The enhancement of the 21 cm power spectrum is of a few
percent at k ∼ 0.1 Mpc−1 and up to tens of percent at k ≲ 0.005 Mpc−1, for standard ΛCDM cosmology. In
principle this effect allows one to probe the small-scale matter power spectrum not only through a
measurement of small angular scales but also through its effect on large angular scales.
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I. INTRODUCTION

One of the exciting frontiers of cosmology in the post-
WMAP1 and Planck2 era is the observation of the high-
redshift 21 cm spin-flip transition of neutral hydrogen.
Observations of the sub-mK fluctuations of the brightness
temperature in this line are challenging but can potentially
provide unprecedented information about the early universe
[1–3]. They are the only direct probe of the large-scale
structure during the cosmic “dark ages,” which follow the
last scattering of cosmic microwave background (CMB)
photons and precede the formation of the first luminous
objects3 [4]. The 21 cm intensity fluctuations contain in
principle much more information than CMB anisotropies:
first, they can be used to probe a fully three-dimensional
volume rather than a thin shell near the last scattering
surface [5], and second, they are limited only by the
baryonic Jeans scale, kJ ∼ 300 Mpc−1, whereas CMB
fluctuations are damped for scales smaller than the
Silk diffusion scale, kSilk ∼ 0.15 Mpc−1. In addition,

overdensities remain small during the dark ages and their
growth is very well described by perturbation theory.
Linear perturbation theory is sufficient to describe redshifts
z≳ 50, whereas nonlinear corrections can become impor-
tant at later times [6]; however, contrary to the present-day
density field which reaches order unity fluctuations on
scales k≳ kNL ∼ 0.1 Mpc−1, for z≳ 30 nonlinear correc-
tions remain perturbative on all scales of interest and the
dark-ages 21 cm power spectrum can in principle be
computed accurately with analytic methods.
Loeb and Zaldarriaga [4] were the first to computate the

angular power spectrum of 21 cm fluctuations from the
dark ages, and show its potential as a cosmological probe.
Their computation did not account for the fluctuations of
the local velocity gradient or of the gas temperature, shown
to be important in Ref. [7]. Since then Lewis and Challinor
[6] (hereafter LC07) have provided the most detailed
calculation, including relativistic and velocity corrections,
as well as approximate nonlinear corrections. If 21 cm
observations are to fulfill their promise of an unprecedented
high-precision cosmological probe, one must be able to
predict the signal to very high accuracy. The goal of the
present paper is to account for an important physical
effect previously overlooked and recently unveiled by
Tseliakhovich and Hirata [8] (hereafter TH10): the fact
that the baryons and the cold dark matter (CDM) have
supersonic relative velocities after primordial recombina-
tion. In this paper we will show that this physical effect
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epoch before the formation of the first stars, at z ≳ 30.
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modifies the theoretical 21 cm power spectrum on all
scales.
The relative velocity effect is present in standard ΛCDM

cosmology with Gaussian adiabatic initial conditions but
was previously overlooked because it is nonperturbative,
even at redshift z ∼ 1000. The basic idea is as follows. Prior
to recombination (or more accurately, kinematic decou-
pling), the tightly coupled photon-baryon fluid resists
gravitational growth due to its high pressure, resulting in
acoustic oscillations. Meanwhile, the CDM is oblivious to
photons, and its perturbations grow under their own
gravitational pull. At recombination, CDM and baryons
have therefore very different density and velocity fields; in
particular, their relative velocity is of order 30 km=s at
recombination, a factor of ∼5 times larger than the
postrecombination baryonic sound speed.
TH10 pointed out two consequences of these supersonic

motions. First, the growth of the structure is hampered on
scales smaller than the characteristic advection scale over a
Hubble time, and the matter density fluctuations are sup-
pressed by ∼15% around k ∼ 200 Mpc−1. Second, the
small-scale power is modulated on the large scales over
which the relative velocity field varies, corresponding
to k ∼ 0.005–1 Mpc−1.
As we shall demonstrate in this paper, the relative

velocity affects the 21 cm fluctuations in three different
ways. First, on small scales, k ∼ 200 Mpc−1, the perturba-
tions are suppressed by several tens of percent; this is
because the 21 cm brightness temperature depends on the
baryonic density and temperature fluctuations, which is
more dramatically affected by the relative velocity than
the CDM [9]. Second, on extremely small scales
(k≳ 2000 Mpc−1), we actually find an enhancement of
baryonic density and temperature fluctuations, hence of
21 cm fluctuations. This comes from the quasiresonant
excitation of baryon acoustic oscillations as the baryonic
fluid is advected across CDM density perturbations, an
effect which was not pointed out previously. Third, and
most important, we also find enhanced 21 cm fluctuations
on large scales, k ∼ 0.005–1 Mpc−1. This effect is less
intuitive but can be summarized as follows. The relation
between the 21 cm intensity and the underlying baryonic
fluctuations δ is fundamentally nonlinear, and we may
formally write δT21 ≈ αδþ βδ2, where α and β are of
comparable magnitude. When considering large-scale fluc-
tuations of the brightness temperature, we therefore have
δT21jl ≈ αδl þ βðδ2Þl. In the absence of relative velocities,
the second term would be negligible for Gaussian initial
conditions and as long as perturbations are in the linear
regime. However, relative velocities lead to a large-scale,
order unity modulation of the amplitude of small-scale
fluctuations δs, and as a consequence, ðδ2Þl ∼ hδ2si. The
small-scale fluctuations are much larger than the large-scale
ones, δl ≪ δs ≪ 1; for z≲ 100, we even have δ2s ∼ δl, and
the quadratic term usually neglected in 21 cm fluctuations

is actually comparable to the linear term, leading to an order
unity enhancement of the large-scale 21 cm power spec-
trum. The effect on the angular power spectrum is not so
dramatic, since power on large angular scales is dominated
by the rapidly rising small-scale power spectrum due to
standard terms. We find that the angular power spectrum is
enhanced by a few percent at z ¼ 30 for l≲ 1000. We
emphasize that the large-scale enhancement is formally a
nonlinear effect, even if the perturbations remain small. The
change to the large-scale power spectrum of 21 cm
fluctuations is indeed of order ðδ2s=δlÞ2 ∼ 1, even though
hδ2i ≪ 1. The latter condition allows us to neglect “stan-
dard” nonlinear terms which are not affected by the relative
velocity.
Our results are summarized in Fig. 1, where we show the

standard theoretical 21 cm angular power spectrum at
redshift 30 and the corrections resulting from including
the relative velocity effect.
We note that several previous works have already

computed the consequences of the relative velocity on
the 21 cm signal in the pre-reionization era, after the first
stars have formed, at redshifts z≲ 30 [10–14]. At that
epoch the relevant physical ingredients are very different
than during the dark ages. On the one hand, the 21 cm spin
temperature is determined by the strength of the ambient
stellar ultraviolet radiation field through resonant scattering
of Lyman-α photons (the Wouthuysen-Field effect
[15–17]). On the other hand, the gas temperature, which
sets the color temperature in the Lyman-α line, and hence
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FIG. 1. The 21 cm angular power spectrum at redshift 30 for a
window function of width Δν ¼ 1 MHz without relative velocity
corrections (obtained using CAMB sources41). The bottom panel
shows the relative correction when accounting for the relative
velocity effect: solid lines represent an enhancement and dashed
lines a suppression.
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the spin temperature, is determined by the rate of x-ray
heating. Because the physics involved is complex, model-
ing the 21 cm emission from z≲ 30 requires numerical
simulations and is model dependent, and observing this
signal is more likely to inform us about the details of the
formation of the first luminous sources than about funda-
mental physics. Our work is therefore complementary to
these studies, extending the physical analysis of relative
velocities to higher redshifts. The 21 cm signal from the
dark ages is even more challenging to observe due to
ionospheric opacity and other complications [18], but it can
be modeled exactly, with relatively simple tools, and can
potentially be a very clean probe of the very early universe.
This paper is organized as follows. In Sec. II we compute

the evolution of small-scale fluctuations accounting for the
relative velocity of baryons and CDM. We closely follow
previous works [8,9] while consistently accounting for
fluctuations of the free-electron fraction as in LC07.
Section III describes the computation of large-scale fluc-
tuations of quantities which depend nonlinearly on the
underlying density field. Finally, we apply our results to the
21 cm power spectrum from the dark ages in Sec. IV. We
conclude in Sec. V. Appendix A details our method for
computing autocorrelation functions of quadratic quan-
tities, and Appendix B gives some analytic results for the
angular power spectrum. All our numerical results are
obtained assuming a minimal flat ΛCDM cosmology with
parameters derived from Planck observations [19]
Tcmb;0¼2.726K, H0¼67.8 kms−1Mpc−1, Ωb ¼ 0.0456,
Ωc ¼ 0.227, YHe ¼ 0.24, Neff ¼ 3.046, τreion ¼ 0.089,
As ¼ 2.196 × 10−9, ns ¼ 0.96, and kpivot ¼ 0.05 Mpc−1.

II. EFFECT OF THE RELATIVE VELOCITY ON
SMALL-SCALE FLUCTUATIONS

A. Statistical properties of the relative velocity field

In this section we briefly summarize the statistical
properties of the relative velocity field and the characteristic
scales associated with the problem (see also TH10).
While the cold dark matter density perturbations grow

unimpeded under the influence of their own gravity,
baryonic matter is kinematically coupled to the photon
gas by Thomson scattering until the abundance of free
electrons is low enough. Using the fitting formulas of
Ref. [20] with the current best-fit cosmological parameters,
the redshift of kinematic decoupling is zdec ≈ 1117. Later
on, baryons and CDM evolve as pressureless fluids
on all scales greater than the baryonic Jeans scale
kJ ∼ 300 Mpc−1. However, they have notably different
initial conditions at zdec, in particular, for their peculiar
velocities. In the absence of vorticity perturbations, the
Fourier transform of the gauge-invariant relative velocity
field takes the form

vbcðkÞ ≡ vbðkÞ − vcðkÞ ¼ k̂VðkÞ; (1)

where from the continuity equations for baryons and CDM
we have

VðkÞ ≡ −
1

ikð1þ zÞ
d
dt

ðδbðkÞ − δcðkÞÞ: (2)

We define the relative velocity power spectrum PvbcðkÞ
such that

hVðkÞVðk0Þ�i ¼ ð2πÞ3δDðk0 − kÞPvbcðkÞ; (3)

where δD is the Dirac delta function. The variance of the
relative velocity along any fixed axis is denoted by σ21d. It is
one-third of the variance of the magnitude of the three-
dimensional relative velocity vector, which we denote by
σ23d. They are given by

σ21d ≡
1

3
σ23d ≡

1

3

Z
d3k
ð2πÞ3 PvbcðkÞ: (4)

From symmetry considerations, the autocorrelation func-
tion of the relative velocity takes the form

hvibcð0ÞvjbcðxÞi
σ21d

¼ c∥ðxÞx̂ix̂j þ c⊥ðxÞðδij − x̂ix̂jÞ; (5)

where the dimensionless coefficients c∥ and c⊥ give the
correlation of the velocity components parallel and
perpendicular to the separation vector, respectively. They
are given by [21]

c∥ðxÞ ¼
1

σ23d

Z
d3k
ð2πÞ3 PvbcðkÞðj0ðkxÞ − 2j2ðkxÞÞ; (6)

c⊥ðxÞ ¼
1

σ23d

Z
d3k
ð2πÞ3 PvbcðkÞðj0ðkxÞ þ j2ðkxÞÞ; (7)

where ji is the ith spherical Bessel functions of the first
kind. We have extracted the baryon and CDM power
spectra and their derivatives at zi ¼ 1010 from CAMB

[22], and computed PvbcðkÞ. We obtain σ1d ≈ 17 km=s
and σ3d ≈ 29 km=s at zi. We show the power per loga-
rithmic interval Δ2

vbcðkÞ ≡ k3=ð2π2ÞPvbcðkÞ and the corre-
lation coefficients of the relative velocity field in Fig. 2.
After kinematic decoupling, the relative velocity decreases
proportionally to 1=a on all scales larger than the baryonic
Jeans scale since dark matter and baryons are subjected to
the same acceleration on these scales [8].
The correlation coefficients c∥ðxÞ; c⊥ðxÞ are greater than

95% for x≲ 3 Mpc and x≲ 6 Mpc, respectively, which
means that the relative velocity is very nearly homogeneous
on scales of a few Mpc. This defines a coherence scale for
the relative velocity, xcoh ≈ 3 Mpc, corresponding to a4http://camb.info/sources/

NEW LIGHT ON 21 CM INTENSITY FLUCTUATIONS … PHYSICAL REVIEW D 89, 083506 (2014)

083506-3



wave number kcoh ¼ ðxcohÞ−1 ≈ 0.3 Mpc−1, which can also
be inferred directly by considering the power spec-
trum PvbcðkÞ.
On the other hand, starting from kinematic decoupling at

time tdec, the relative velocity displaces baryons with
respect to CDM perturbations by a characteristic comoving
distance

xvbc ¼
Z

t

tdec

σ1dðt0Þ
dt0

aðt0Þ ≈
2σ1dðadecÞa1=2dec

H0Ω
1=2
m

≈ 30 kpc; (8)

where in the second equality we have taken the limit
t ≫ tdec, assumed a matter dominated universe, and used a
characteristic velocity σ1d (instead of σ3d) as only the
component of the relative velocity along the wave vector is
relevant. Baryonic fluctuations with wave numbers k≳
2πx−1vbc ≈ 200 Mpc−1 are therefore advected across several
peaks and troughs of the gravitational potential, sourced
mostly by the CDM overdensity. The net acceleration
partially cancels out, which slows down the growth of
baryonic perturbations, and, in turn, that of the CDM. The
effect is most pronounced for k≳ 200 Mpc−1, but it is still
important at slightly larger scales, and we define kvbc ≡
30 Mpc−1 as the typical scale at which the suppression is of
the order of a percent (as we shall confirm a posteriori).
Throughout this paper, unless otherwise stated, we shall

use “small scales” (and use the subscript s in relation to
them) to refer to scales with a wave number
ks ≳ kvbc ≈ 30 Mpc−1, and use “large scales” (subscript
l) for those with a wave number kl ≲ kcoh ≈ 0.3 Mpc−1.

B. Basic equations

1. Moving background perturbation theory

As first pointed out in TH10 and brought to mind in the
previous section, the scales at which the relative velocity
affect the growth of structure are about 2 orders of magnitude
smaller than the coherence scale of the relative velocity field.

This makes it possible to use moving-background perturba-
tion theory, i.e. compute the evolution of small-scale
fluctuations given a local background value of the relative
velocity. This approximation is equivalent to the eikonal
approximation recently introduced in the context of cosmo-
logical perturbations [23,24]. As a result, the small-scale
fluctuations δðks; vbcðxÞÞ are functions of the small-scale
wave vector ks and of the local relative velocity vbcðxÞ. Let
the reader not be confused by this mixture of Fourier-space
and real-space dependence: it is justified because the relative
velocity field only fluctuates significantly on large scales
kl ≲ kcoh ≪ kvbc ≲ ks. Moving-background perturbation
theory allows us to account nonperturbatively for a funda-
mentally nonlinear term that is active as early as z ≈ 1000.
Other nonlinearities become important in the evolution of the
small-scale fluctuations at lower redshifts. In this paper, we
shall not concern ourselves with the latter, which can in
principle be treated with standard perturbation theory meth-
ods. One should keep in mind that they do become important
for the computation of 21 cm fluctuations from z≲ 50 [6],
and should eventually be consistently included for a high-
precision computation of the 21 cm signal.
Following TH10, we place ourselves in the local baryon

rest frame (defined such that the baryon velocity averaged
over a few Mpc patches vanishes). We consider the
evolution of small-scale modes with ks ≳ 30 Mpc−1 and
can therefore neglect relativistic corrections since the scales
of interest are much smaller than the horizon scale
khor ¼ aH ≈ 0.001

�
1þz
101

�
1=2 Mpc−1. The relative velocity

is locally uniform and decreases proportionally to the
inverse of the scale factor, vbc ∝ 1=a.

2. Fluid equations

The linear evolution of small-scale perturbations in
Fourier space is given by the usual fluid equations in an
expanding universe, with an additional advection term,

_δc − ia−1ðvbc · kÞδc þ θc ¼ 0; (9)

0 100 200 300 400
10 6

10 5

10 4

0.001

0.01

0.1

1

x Mpc

c
x

,c
x

0.001 0.0050.010 0.0500.100 0.5001.000
0

100

200

300

400

500

600

700

Mpc 1

2
v b

c
in

km
s

2

FIG. 2 (color online). Statistical properties of the relative velocity field. Left: power per logarithmic k-interval Δ2
vbcðkÞ ≡

k3PvbcðkÞ=ð2π2Þ at redshift z ¼ 1010. Right: absolute value of the dimensionless autocorrelation coefficients for the relative velocity
as a function of separation x (solid lines for c > 0 and dashed lines for c < 0).
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_θc − ia−1ðvbc · kÞθc þ 2Hθc −
k2

a2
ϕ ¼ 0; (10)

_δb þ θb ¼ 0; (11)

_θb þ 2Hθb −
k2

a2
ϕ −

c̄2s
a2

k2ðδb þ δTgas
Þ ¼ 0; (12)

k2

a2
ϕ ¼ −

3

2

H2
0

a3
ðΩ0

bδb þ Ω0
cδcÞ; (13)

where the subscripts b and c refer to baryons and CDM,
respectively, θ is the velocity divergence with respect to the
proper space,5 overdots denote differentiation with respect
to the proper time, and ϕ is the Newtonian gravitational
potential. In Eq. (12) c̄s is the average baryon isothermal
sound speed, given by

c̄2s ≡
T̄gas

μmH
: (14)

Here μ is the mean molecular weight given by

μ ≡
1þ mHe

mH
xHe

1þ xHe þ xeðzÞ
; (15)

where xHe ≡ nHe=nH is the constant ratio of helium to
hydrogen by number and xeðzÞ ≡ ne=nH is the free electron
fraction. For a helium mass fraction YHe ¼ 0.24, and for an
essentially neutral plasma, μ ≈ 1.22.
Following Refs. [9,26], we have included matter temper-

ature fluctuations δTgas
≡ δTgas=Tgas in the baryon momen-

tum equation (12). We do not include fluctuations of the
mean molecular weight due to fluctuations of the free
electron fraction as the latter is very small at the redshifts of
interest, with xe ≈ 5% at z ¼ 1000 and falling below 0.1%
for z < 600.

3. Temperature fluctuations

To complete the system we need an evolution equation
for δTgas

. Because some mistakes exist in the literature we
rederive this equation here, following Ref. [27]. We start by
writing down the first law of thermodynamics in a small
volume V containing a fixed number of hydrogen nuclei
(i.e. a fixed total number of protons and neutral hydrogen
atoms), so that nHV is constant,

d
dt

�
3

2
ntotVTgas

�
þ ntotTgas

dV
dt

¼ _Q; (16)

where ntot ≡ nHI þ np þ ne þ nHe ¼ nHð1þ xHe þ xeÞ is
the total number density of all free particles (neutral
hydrogen, free protons, free electrons, and helium),
nH ≡ nHI þ np, and _Q is the rate of energy injection in
the volume V. In the absence of any nonstandard heating
sources such as dark matter annihilation or decay, two
sources contribute to _Q: photoionization/recombination
and heating by CMB photons scattering off free electrons
which then rapidly redistribute their energy to the rest of the
gas through Coulomb scattering.
Let us first consider recombinations and photoioniza-

tions. We denote by d_xe=dEe the differential net photo-
ionization rate (i.e. the rate of photoionizations minus the
rate of recombinations) per total abundance of hydrogen,
and per interval of energy of the electron, whether it is the
initial, recombining electron or the final free electron after
photoionization. The source term due to recombinations
and photoionizations can be written as

_Qrec ¼
Z

dEeEe
d_xe
dEe

nHV; (17)

where we used the fact that nHV is constant. Without loss of
generality we may rewrite this quantity as

_Qrec ¼
3

2
Tgas _xenHV þ Δ _Qrec; (18)

Δ _Qrec ≡
Z

dEe

�
Ee −

3

2
Tgas

�
d_xe
dEe

nHV: (19)

The first term in Eq. (18) contains the bulk of _Qrec, and
corresponds to the rate of energy injection if every net
recombination event removed on average exactly 3

2
Tgas of

kinetic energy from the gas. This is nearly exact since
almost all of the kinetic energy of recombining electrons
goes into the emitted photon (with a very small fraction
going into the recoil of the formed nucleus), and the term
Δ _Qrec accounts for small corrections to this relation. This
term is completely negligible in comparison to Compton
heating and adiabatic cooling (in fact, even the much bigger
term _Qrec which was not properly included in Refs. [28,29]
is negligible). Neglecting the small correction term Δ _Qrec,
after simplification we get the evolution equation for the
gas temperature

_Tgas −
2

3

_nH
nH

Tgas ¼
2

3
_qC; (20)

where _qC is the Compton heating rate per particle:

_qC ¼ 4σTarT4
cmb

ð1þ xHe þ xeÞme
xeðTcmb − TgasÞ

≡
3

2
ΓC

xe
x̄e

ðTcmb − TgasÞ: (21)

5Here we use the notation of Ref. [8], which differs from the
more commonly used definition of θ given in Ref. [25] by a factor
of a.
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Here σT is the Thomson cross section, ar is the radiation
constant, me is the electron mass, and we have defined
the rate

ΓC ≡
8σTarT4

cmb

3ð1þ xHe þ xeÞme
x̄e; (22)

which we shall assume to be homogeneous as it only
depends on the local free electron fraction through the term
1þ xHe þ xe ≈ 1þ xHe. The homogeneous part of Eq. (20)
gives the evolution of the average matter temperature,

_̄Tgas þ 2HT̄gas ¼ ΓCðTcmb − T̄gasÞ: (23)

We now turn to the perturbations. Assuming the helium to
hydrogen ratio is uniform, and up to very small corrections
of order xe × ðme=mpÞ, we have δnH=nH ¼ δb. Since we
are considering scales deep inside the horizon, photon
temperature perturbations are negligible compared to any
other perturbations, and we set Tcmb ¼ T̄cmb. The non-
perturbative evolution equation for the gas temperature
fluctuation therefore reads

_δTgas
−
2

3
_δb
1þ δTgas

1þ δb

¼ ΓC

�
T̄cmb − T̄gas

T̄gas
δxe −

�
T̄cmb

T̄gas
þ δxe

�
δTgas

�
; (24)

which corresponds to Eq. (16) of Ref. [30] if
δxe ≡ δxe=x̄e ¼ 0. To first order, the evolution equation
for the temperature perturbations is therefore

_δTgas
−
2

3
_δb ¼ ΓC

�
T̄cmb − T̄gas

T̄gas
δxe −

T̄cmb

T̄gas
δTgas

�
: (25)

References [9,26] did not account for the fluctuations of the
free-electron fraction. This is justified at high redshifts at
which the matter temperature is very close to the radiation
temperature and the prefactor of δxe in Eq. (25) is small; it is
also justified at z ≪ 200 when ΓC ≪ H and the gas simply
cools adiabatically. However, at intermediate stages this
term cannot be neglected, at least formally. Besides our
neglect of photon temperature perturbations and relativistic
corrections (of order ∼a2H2=k2δm ≪ δm in the deep sub-
horizon regime), our Eq. (25) is identical to Eq. (B12) of
LC07 and does not include spurious molecular weight
terms as in Ref. [29], where the term _Qrec was not
accounted for.
To account for other potential heating sources such as

dark matter annihilation [31,32], one would simply have to
add the corresponding heating rate to the right-hand side of
Eq. (20), and perturb the equation consistently [33].

4. Free-electron fraction fluctuations

To close our system of equations we require an evolution
equation for the fluctuations in the ionization fraction of the
gas. Because the prefactor of δxe in Eq. (25) is less than 1%
for z≳ 500 [34], we only need to have an accurate equation
at late times and we do not need to worry about details of
the radiative transfer in the Lyman-α line, which affect the
recombination history near the peak of the CMB visibility
function (see for example Refs. [35,36] and references
therein). We compute the background recombination his-
tory exactly with HYREC

6 [34] but when computing the
perturbations, we simply adopt an effective three-level
atom model [37,38], for which the recombination rate is
given by

_xe ¼ −CðABnHx2e − 4ð1 − xeÞBBe−E21=TcmbÞ; (26)

where E21 ¼ 10.2 eV is the energy of the Lyman-α
transition, ABðTcmb; TgasÞ is the effective case-B recombi-
nation coefficient, BBðTcmbÞ is the corresponding effective
photoionization rate, and C is the Peebles C-coefficient
[37], which gives the ratio of the net rate of downward
transitions from the first excited states to their total effective
lifetime,

C ≡
3RLyα þ Λ2s;1s

3RLyα þ Λ2s;1s þ 4BB
; (27)

RLyα ≡
8πðH þ 1

3
θbÞ

3λ3Lyαð1 − xeÞnH
: (28)

Equation (26) is identical in spirit to that of Peebles [37]
and of Ref. [28], with, however, two technical differences.
First, following LC07 and Ref. [29], we have replaced the
Hubble rate in the Lyman-α escape rate (28) with the local
expansion rate, which is enhanced by one-third of the
baryon peculiar velocity divergence. This simple replace-
ment relies on the implicit assumption that the recombi-
nation process is local, in the sense that the Lyman-α
radiation field is determined by the density and temperature
within a distance much smaller than the wavelength of the
scales considered. Checking this assumption quantitatively
is nontrivial; however, at the low redshifts of interest the net
recombination rate is independent of the details of the
Lyman-α radiative transfer (C → 1 for z≲ 900), and the
detailed value of the perturbed C factor is not critical.
Second, instead of using the case-B recombination

coefficient αBðTgasÞ of Ref. [39] or a fudged version of
it as in Ref. [28], we use the effective recombination
coefficient ABðTgas; TcmbÞ, which accounts exactly for
stimulated recombinations to, ionizations from, and tran-
sitions between the highly excited states of hydrogen

6http://www.sns.ias.edu/~yacine/hyrec/hyrec.html.
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during the cascading process [40]. These coefficients are
related through αB ¼ ABðTcmb ¼ 0Þ. The temperature
dependence of αB (even rescaled by a fudge factor) differs
from the correct one given by AB at the level
of ∼10%–20%.
For z < 1010 the free-electron fraction is already much

larger than its value in Saha equilibrium, and the second
term in Eq. (26) is less than 10−4 times the first term. We
therefore have, to an excellent accuracy,

_xe ≈ −CABnHx2e: (29)

This allows us to get simple expressions for the evolution of
δxe , to first order,

_δxe ¼
_̄xe
x̄e

�
δxe þ δb þ

∂ lnAB

∂ lnTgas
δTgas

þ ∂ lnC
∂ lnRLyα

�
θb
3H

− δb

��
; (30)

where we have used the fact that C depends on the baryon
density and velocity divergence θb through the Lyman-α
escape probability, and we have neglected fluctuations of
the free electron fraction in the Lyman-α escape rate since
xe ≪ 1 at the times of interest.
Here again, one can easily include additional ionization

sources, for example resulting from dark matter annihila-
tion [31–33].

5. Initial conditions

The initial conditions for δb; θb; δc, and θc are extracted
from CAMB at zini ¼ 1010. The initial condition for δTgas

is
obtained from noticing that at zini, H=ΓC ≈ 3 × 10−5 ≪ 1,
and Tgas ≈ Tcmb to an excellent accuracy. Up to corrections

of order _δb=ΓC ≪ δb and δTcmb
, we therefore have

δTgas
ðzinitÞ ¼ 0.

In principle one should start computing the evolution of
ionization fraction perturbations from an earlier time in
order to get the proper initial conditions at zini ¼ 1010.
However, since the perturbations of δxe only affect the
21 cm signal at late times through their coupling to δTgas

,
and since the entire system is driven by δc ≫ δxe ∼ δb
initially, the value of δxeðziniÞ is quickly forgotten and has
virtually no effect on the observables of interest here.7 We
may therefore safely set δxeðzinitÞ ¼ 0.

C. Results: Evolution of small-scale fluctuations

We have numerically solved the coupled differential
equations (9)–(13), (25), and (30) for δb; δc; δTgas

, and δxe ,
as a function of k and vbcðzdecÞ · k̂, starting at zini ¼ 1010
with initial conditions described above, down to z ¼ 20.
The evolution of the background free-electron fraction and
matter temperature is computed with the recombination
code HYREC.
We show the evolution of the baryon density fluctuations

δb for two modes in Fig. 3. For a scale k ¼ 200 Mpc−1 of
the order of the advection scale but somewhat larger than
the Jeans scale (kJeans ≈ 300 Mpc−1), the relative velocity
destroys the phase coherence between baryons and dark
matter by advecting their perturbations across more than a
wavelength in a Hubble time. The result is to suppress the
growth of structure, as illustrated in the left panel of Fig. 3.
On the other hand, for scales much smaller than the Jeans
scale, we find that a typical value of the relative velocity
actually leads to a resonant amplification of baryon density
and temperature fluctuations (see the evolution of the mode
k ¼ 2700 Mpc−1 in Fig. 3). This can be understood as
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FIG. 3. Evolution of δbðk; zÞ for two small-scale modes with k ¼ 200 Mpc−1 and k ¼ 2700 Mpc−1 [specifically, what is plotted is
ð1þ zÞTδbðk; zÞ½Asðk=kpivotÞns−1�1=2, where Tδbðk; zÞ is the transfer function]. The values of the relative velocity are vbc · k̂ ¼ 0 (dotted
lines) and vbc · k̂ ¼ 17 km=s (solid lines), the latter corresponding to the rms relative velocity along a given axis. Thick lines represent
the absolute value of δb and thin lines show its real part (the two quantities are equal for vbc · k̂ ¼ 0). For k ¼ 200 Mpc−1 the relative
velocity leads to a suppression of fluctuations, whereas for k ¼ 2700 Mpc−1 the streaming of baryons relative to the dark matter leads to
a resonant amplification of baryonic acoustic oscillations.

7It is, however, important to compute δxe accurately if one is
interested in the effect of perturbations on CMB anisotropies.
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follows. On sub-Jeans scales, baryonic fluctuations are
suppressed due to their pressure support, and δb ≪ δc. One
can solve explicitly for the evolution of the growing mode
of CDM perturbation in the limit δb ¼ 0 and obtain, during
matter domination,

δc ∝ exp

�
ik ·

Z
t vbc
a

dt

�
aα; (31)

α ≡ 1 −
5

4

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

24

25
fb

r �
≈ 1 −

3

5
fb; (32)

fb ≡
Ωb

Ωc þ Ωc
; (33)

where the approximate value of the growth rate in Eq. (32)
is valid in the limit fb ≪ 1. With our fiducial cosmology
fb ≈ 0.17 and α ≈ 0.90. Baryonic perturbations undergo
acoustic oscillations forced by the gravitational attraction
from the dark matter and damped by the Hubble expansion,

δ̈b þ 2H _δb þ
c̄2s
a2

k2
�
1þ δTgas

δb

�
δb ¼

3

2
H2ð1 − fbÞδc:

(34)

Figure 4 shows that the characteristic relative velocity along
a given axis is very close to the adiabatic sound speed for
z≲ 200. For typical relative velocities, the forcing term in
Eq. (34) therefore oscillates with a frequency close to that
of acoustic oscillations, which leads to a resonant ampli-
fication of acoustic waves.
Figure 5 shows the evolution of the ratio jδTgas

=δbj for
k ¼ 200 Mpc−1 and k ¼ 2700 Mpc−1. We see that the
relative velocity leads to a faster convergence to the
adiabatic regime δTgas

→ 2
3
δb, with a very pronounced effect

for scales much smaller than the Jeans scale. This can be
understood by considering Eq. (25), neglecting fluctuations
of the free electron fraction for simplicity. In this equation,
the term 2

3
_δb can be seen as a forcing term; physically, it

arises from the work done by the compression and
expansion of the baryonic fluid. The term linear in δTgas

is a friction term, which translates the tendency for the gas
temperature to equilibrate with the (nearly) homogeneous
CMB temperature through Thomson scattering. In the
deep sub-Jeans regime the baryonic overdensity oscillates
in time like its own forcing term (31), so that
_δb ∼ ðk · vbc=aÞδb, which increases with the wave number.
For very small scales, this term can be much larger than the
friction term, in which case the gas temperature fluctuation
rapidly equilibrates to 2=3 of the baryon density
fluctuations.
In Fig. 6 we show the small-scale power spectra of the

baryon density and temperature fluctuations at z ¼ 50, both
in the standard case (setting vbc ¼ 0), and averaged over the
Gaussian distribution of the relative velocity vector. The
latter is most efficiently computed by averaging over the
one-dimensional distribution of vbc · k̂. We have checked
that our result for the total matter power spectrum agrees
with that of TH10. We have also checked that our results
are in good agreement with those of CAMB when setting
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FIG. 4. The rms value of the relative velocity along a given
axis (solid line) compared to the adiabatic sound speed
c̄ads ¼ ffiffiffiffiffiffiffiffi

5=3
p

c̄isos (dashed line), as a function of redshift.
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FIG. 5. Evolution of the ratio jδTgas
=δbj as a function of redshift, for k ¼ 200 Mpc−1 and k ¼ 2700 Mpc−1, as a function of the local

relative velocity. In both cases the relative velocity speeds up the convergence toward the adiabatic limit δTgas
¼ 2

3
δb (indicated with a

dotted line). The effect is much more pronounced for very small scales.
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vbc ¼ 0. The main effect of the relative velocity is
to suppress power by several tens of percent on scales
k ∼ 100–300 Mpc−1 and enhance it on very small scales for
which baryon acoustic oscillations get resonantly forced.
The transition from suppression to enhancement occurs at
larger scales for the temperature fluctuations, due to the
faster convergence to the adiabatic regime described above.

III. MODULATION OF NONLINEAR QUANTITIES
ON LARGE SCALES

A. Motivation

The 21 cm brightness temperature is a nonlinear function
of the baryon density and temperature (see Sec. IV for
details). In addition, as can be seen from Eq. (20), the gas
temperature itself depends nonlinearly on the gas density.
The goal of this section is to show how the large-scale
fluctuations of the relative velocity between baryons and
CDM leads to a large-scale modulation of nonlinear
quantities, which can be comparable to the large-scale
fluctuations of linear perturbations.
Let us consider a quantity XðρbÞ that depends non-

linearly on the local baryon density ρbðxÞ ≡ ρ̄bð1þ δðxÞÞ.
The following argument can be immediately generalized to
a dependence on multiple perturbations, such as density,
temperature, or ionization fraction. Since during the dark
ages δ ≪ 1 on all scales, we may write X as a Taylor
expansion,

XðρbðxÞÞ ¼ χ0 þ χ1δðxÞ þ χ2δðxÞ2 þOðXδ3Þ; (35)

where the coefficients χ0; χ1; χ2 are functions of redshift
only and are in general of comparable magnitude. We now

decompose the density fluctuation in a long-wavelength
part and a short-wavelength part,

δðxÞ ¼ δlðxÞ þ δsðxÞ: (36)

Both δl and δs are small quantities; however, there exists a
hierarchy between them,

δl ≪ δs ≪ 1: (37)

In fact, for z ≲ 100, taking ks ∼ 100 Mpc−1 and
kl ∼ 0.01 Mpc−1, the hierarchy between long- and short-
wavelength fluctuations is such that

δ2s ∼ δl: (38)

We therefore ought to write a two-parameter Taylor
expansion of X. To first order in δl and second order in
δs, we have

XðρÞ ¼ χ0 þ χ1ðδl þ δsÞ þ χ2δ
2
s þOðXδsδlÞ: (39)

If we consider the small-scale fluctuations of X, we see that,
to lowest order,

Xs ¼ χ1δs þOðXδ2sÞ; (40)

i.e. at small scales we only need to account for the linear
term, up to corrections of relative order δs. However, when
computing the long-wavelength fluctuations of X, the
quadratic term does become important and can be com-
parable to the linear term, provided it is significantly
modulated on large scales:

Xl ¼ χ1δl þ χ2ðδ2sÞl þOðXδ3s ; Xδ2l Þ: (41)
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FIG. 7 (color online). Characteristic change in the small-scale
baryon power ΔðΔ2

bðkÞÞ ≡ jhΔ2
bðkÞi − Δ2

bðk; vbc ¼ 0Þj (black,
lower two curves) and characteristic baryon overdensity ΔbðkÞ ≡
½k3PbðkÞ=ð2π2Þ�1=2 (blue, upper two curves), as a function of
wave number, and at redshifts 100 and 50. The dotted lines
illustrate that the long-wavelength modulation of the small-scale
quadratic fluctuations is of the same order as the long-wavelength
fluctuations of the linear overdensity: ðδ2sÞl ¼ Δδ2s ∼ δl.
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FIG. 6 (color online). Power per logarithmic k interval for
baryon density and temperature fluctuations at z ¼ 50, neglecting
the relative velocities (dashed lines), and averaging over their
probability distribution (solid lines). Accounting for relative
velocities leads to a suppression of power around k ∼
200 Mpc−1 and an enhancement at smaller scales due to resonant
excitation of acoustic waves. The enhancement is more pro-
nounced for temperature fluctuations, which are driven toward
the adiabatic regime δTgas

→ 2
3
δb earlier on when relative veloc-

ities are present.
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In the absence of relative velocities, δ2s does vary stochas-
tically, but mostly on small scales. On the other hand,
fluctuations of the relative velocity over large scales lead to
order unity fluctuations of the small-scale power spectrum,
and therefore ðδ2sÞl ∼ δ2s ∼ δl. This is illustrated in Fig. 7.
To compute the long-wavelength fluctuation of δ2s , we

may first smooth it over an intermediate scale of a few
tenths of Mpc, such that the smoothing scale satisfies

kcoh ≪ ksmooth ≪ kvbc : (42)

The first inequality ensures that the long-wavelength
fluctuations of the field are unaffected by smoothing:
denoting the smoothed field by ~δ2s, we have ðδ2sÞl ≈ ð ~δ2sÞl,
up to corrections of order ðkl=ksmoothÞ2 with a Gaussian
smoothing kernel. The second inequality allows us to
replace the spatial averaging involved in the smoothing
by a statistical averaging,

~δ2s ≈ δ2sðvbcÞ ≡
Z

d3ks
ð2πÞ3 Pδðks; vbcÞ: (43)

Finally, the fluctuating part is obtained by subtracting the
average over the Gaussian distribution of relative velocities,

ðδ2sÞlðvbcÞ ¼ Δδ2s ≡ δ2sðvbcÞ − hδ2si: (44)

As an illustration, we show the fluctuation of the variance
δ2sðvbcÞ as a function of the relative velocity and at several
redshifts in Fig. 8.

B. Correlation functions and power spectra

In this section we give a more detailed and quantitative
description of the method to compute statistical properties
of nonlinear quantities, accounting for the relative

velocity effect. A summary of this section can be found
in paragraph III B 5.

1. Probability distribution for the overdensity

We first need to determine the joint probability distri-
bution for the overdensity pair ðδ0; δxÞ at two points
with separation x. We start by describing the constrained
distribution Pðδ0; δxjv0; vxÞ: the probability of the pair
ðδ0; δxÞ given fixed values of the relative velocities
v0 ≡ vbcð0Þ and vx ≡ vbcðxÞ. From there the full distribution
Pðδ0; δxÞ is obtained by convolving with the six-
dimensional joint Gaussian probability distribution for
ðv0; vxÞ, which we denote by Pðv0; vxÞ, i.e.

Pðδ0; δxÞ ¼
Z

d3v0d3vxPðv0; vxÞPðδ0; δxjv0; vxÞ: (45)

Throughout this section an overline X̄ denotes the averag-
ing with respect to the distribution of overdensities at fixed
values of the relative velocities and brackets h:i denote
the subsequent averaging over the distribution of relative
velocities.
We decompose the density field into its small-scale

contribution δs, which only contains modes with k ≥ kvbc
and its long-wavelength contribution δl ≡ δ − δs (here δl
includes not only large-scale modes but all modes
with k ≤ kvbc ).
The distribution of the small-scale modes Ps is a two-

dimensional Gaussian with vanishing means and variances
δ20sðv0Þ; δ2xsðvxÞ obtained from

δ2sðvbcÞ ≡
Z
k≥kvbc

d3k
ð2πÞ3 Pδðk; vbcÞ: (46)

Since δs has support only on k ≥ kvbc , the covariance δ0sδxs
rapidly vanishes for x≳ few k−1vbc ≪ xcoh. It is therefore only
significant for separations well within the coherence scale
of the relative velocity, for which v0 ¼ vx. It can be
computed at all separations by Fourier transforming either
Pðk; v0Þ or Pðk; vxÞ,

δ0sδxsðx; v0Þ ¼
Z
k≥kvbc

d3k
ð2πÞ3 e

ik·xPδðk; v0Þ: (47)

It will be useful in what follows to understand the
symmetries of this function. First, consideration of
the system (9)–(13) shows that the transfer function of
the overdensity is a function of k and k̂ · vbc only, and so
will be the power spectrum. Moreover, the complex
conjugate δ�ðk; k̂ · vbcÞ ¼ δðk;−k̂ · vbcÞ, which implies that
the power spectrum depends on k and the absolute value
jk · vbcj, i.e. is symmetric in vbc. This implies that the
correlation function δ0sδxs is a function of x; vbc and jx ·
vbcj only, and is also an even function of vbc.

0 20 40 60 80

20

10

0

10

FIG. 8. Variation of the variance of the small-scale baryon
overdensity as a function of the magnitude of the local relative
velocity, at z ¼ 30, 60, and 120.We have multiplied δ2b by ð1þ zÞ2
in order to factor out the approximately linear growth of over-
densities with the scale factor duringmatter domination (in practice
the growth rate is slightly faster than linear with the scale factor as
baryons fall in the preexisting dark matter potential wells).
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The large-scale pieces ðδ0l; δxlÞ have a priori nonzero
correlations with the relative velocity field. Specifically,
symmetry considerations show that the nonvanishing cor-
relations are hδ0lvx;jji ¼ −hδxlv0;jji, where vijj ≡ vi · x̂ is the
projection of the relative velocity along the separation
vector. For given values of the relative velocity, the
distribution Pl is therefore a constrained Gaussian, with
means

δ0 ¼
hδ0vxjji

ð1 − c2jjÞσ21d
ðvxjj − cjjv0jjÞ; (48)

δx ¼
hδxv0jji

ð1 − c2jjÞσ21d
ðv0jj − cjjvxjjÞ; (49)

where we have dropped the subscripts “l” since these
expressions are also valid for the total overdensity. The
covariance matrix has elements

δ20l − ðδ0Þ2 ¼ hδ2l i −
hδ0vxjji2

ð1 − c2jjÞσ21d
; (50)

δ2xl − ðδxÞ2 ¼ hδ2l i −
hδxv0jji2

ð1 − c2jjÞσ21d
; (51)

δ0lδxl − δ0 × δx ¼hδ0lδxli þ cjj
hδ0vxjjihδxv0jji
ð1 − c2jjÞσ21d

; (52)

where the right-hand sides are independent of the relative
velocities ðv0; vxÞ.
For a given pair of relative velocities ðv0; vxÞ, the small-

scale parts ðδ0s; δ0xÞ and the large-scale parts ðδ0l; δxlÞ are
independent pairs of variables, so that we may rewrite the
probability distribution for ðδ0; δxÞ given ðv0; vxÞ as

Pðδ0; δxjv0; vxÞ ¼
Z

dδ0sdδxsPsðδ0s; δxsjv0; vxÞ

× Plðδ0 − δ0s; δx − δxsjv0; vxÞ: (53)

As a consequence, at fixed relative velocities, the sums
δ0 ¼ δ0s þ δ0l, δx ¼ δxs þ δxl also have a two-dimensional
Gaussian distribution, whose first and second order
moments are just the sums of those of Ps and Pl.
The independence of small-scale and large-scale modes

is only valid at fixed relative velocities and no longer holds
after convolution with the probability distribution of
relative velocities to obtain the full probability distribution
of ðδ0; δxÞ through Eq. (45).
When computing the cosmic average hF̄i of a function

Fðδ0; δxÞ, we must evaluate the integral

hFðδ0; δxÞi ≡
Z

dδ0dδxPðδ0; δxÞFðδ0; δxÞ: (54)

After a change of variables we arrive at

hFðδ0; δxÞi ¼ hFðδ0s þ δ0l; δxs þ δxlÞi; (55)

where the first averaging, denoted by an overline, is to be
performed over the independent distributions of ðδ0s; δxsÞ
and ðδ0l; δxlÞ at fixed relative velocities and is followed by
averaging over the distribution of velocities, denoted by
brackets. With this probability distribution at hand, we may
compute various correlation functions. This will allow us to
compute the autocorrelation function and power spectrum
of 21 cm fluctuations in the next section.

2. Autocorrelation of the density field

Let us start by computing the autocorrelation of the
density field,

ξδðxÞ ≡ hδ0δxi ¼ hðδ0s þ δ0lÞðδxs þ δxlÞi
¼ hδ0sδxsi þ hδ0lδxli; (56)

where we have used the independence of small-scale and
large-scale modes at a fixed relative velocity. The second
average is just hδ0lδxli, obtained from Fourier transforming
Pðk < kvbcÞ, which is independent of the relative velocity.
The average of the small-scale correlation function is
obtained from averaging Eq. (47) over the distribution of
v0, which amounts to taking the Fourier transform of the
velocity-averaged small-scale power spectrum. We there-
fore arrive at

ξδðxÞ ¼
Z

d3k
ð2πÞ3 e

ik·xhPδðk; v0Þi: (57)

By taking the Fourier transform, we see that the full-sky
power spectrum is simply obtained by averaging the local
power spectrum over the distribution of relative velocities,
as one may expect intuitively.

3. Autocorrelation of the density field squared

We now compute the autocorrelation function of δ2,

ξδ2ðxÞ ≡ hδ20δ2xi − hδ2i2: (58)

Using Wick’s theorem for the Gaussian variables ðδ0; δxÞ at
fixed relative velocities (and accounting for the nonzero
means), we arrive at

ξδ2ðxÞ ¼ 2hðδ0δxÞ2 − ðδ0 × δxÞ2i
þ hðδ20 − hδ2iÞðδ2x − hδ2iÞi: (59)

The first term in Eq. (59) would be present even if
neglecting the effect of relative velocities, i.e. setting their
distribution Pðv0; vxÞ to the product of Dirac functions
δDðv0ÞδDðvxÞ. In terms of our heuristic derivation in the
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previous section, this term is of the order of ðδ2l Þ2. The
effect of relative velocities is to replace it by its average
over their distribution, which may change it by order unity.
However, it remains of the order of ðξδÞ2 ≪ ξδ on all scales,
and we shall neglect it in this analysis (see Sec. IV D for
further discussion). In contrast, the second term in Eq. (59)
would vanish if the small-scale power spectrum were
independent of the relative velocity. One could compute
this term including contributions from both δs and δl;
however, in practice, δs ≫ δl, and it is dominated by the
fluctuations of the small-scale variance,

ξδ2ðxÞ ≈ hðδ2sðv0Þ − hδ2siÞðδ2sðvxÞ − hδ2siÞi; (60)

which is precisely the autocorrelation of ðδ2sÞl that we
derived with a simple argument leading to Eq. (44). Since
the relative velocities at 0 and x quickly become uncorre-
lated for x≳ xcoh, this term rapidly vanishes for separations
larger than xcoh, and as a consequence its Fourier transform
(the power spectrum of δ2) will have support mostly on
large scales kl ≤ kcoh, where it may be comparable to the
power spectrum of the linear field.

4. Cross correlation of linear and quadratic terms

We now consider the cross-correlation function

ξδ;δ2ðxÞ ≡ hδ0δ2xi: (61)

Using properties of Gaussian random fields at fixed relative
velocities, we get

ξδ;δ2ðxÞ ¼ hδ0 × δ2x þ 2δxðδ0δx − δ0 × δxÞi: (62)

Now δ2x ¼ δ2xsðvxÞ þ δ2xlðv20jj; v2xjjÞ is an even function of the
relative velocities, whereas δ0 has a linear dependence on
ðv0jj; vxjjÞ. The first term in ξδδ2 therefore vanishes after
averaging over relative velocities. A similar argument
shows that δxðδ0lδxl − δ0l × δxlÞ averages to zero when
integrating over relative velocities. We are therefore only
left with 2hδx × δ0sδxsi. From the discussion following
Eq. (47), the correlation function of small-scale over-
densities is also an even function of the relative velocity.
This term therefore also cancels out upon averaging. In
conclusion, we have shown that the linear overdensity is
not correlated with the quadratic overdensity, even when
accounting for fluctuations in relative velocities,

hδ0δ2xi ¼ 0: (63)

Note that this argument applies equally if the fluctuations at
the two points are those of different fields [for example,
δTgas

ð0Þ and δ2bðxÞ].

5. Summary of this section

To summarize, by modulating the small-scale power
spectrum, the relative velocity leads to large-scale fluctua-
tions of quadratic quantities, (i) uncorrelated with the
fluctuations of linear quantities, and (ii) with an autocor-
relation function given by [up to corrections of relative
order δ2 ≪ 1 and ðδl=δsÞ2 ≪ 1]

ξðvbcÞ
δ2

ðxÞ ¼ hδ2sðv0Þδ2sðvxÞi − hδ2si2: (64)

In this equation, δ2sðvbcÞ is the variance of the small-scale
fluctuation δs given a local value of the relative velocity, and
the averaging h:i is to be carried over the six-dimensional
Gaussian probability distribution for ðv0; vxÞ. In Appendix A
we describe the numerical method and analytic approxima-
tions we use to compute this average.
This result could be obtained with a simpler heuristic

argument, as we discussed in Sec. III A; however, here we
have given a detailed derivation which can be generalized
to higher-order statistics if needed.

C. Enhanced large-scale gas temperature fluctuations

Whereas the relative velocity has no dynamical effect on
the growth of large-scale overdensities (the nonlinear
terms in the full fluid equations are full divergences that
integrate to zero), it does lead to additional large-scale
modulations of the gas temperature and ionization fraction.
This can be understood simply from considering the
limiting case of adiabatic cooling: in this case Tgas ∝ n2=3b ¼
n̄2=3b ð1þ 2

3
δb − 1

9
δ2b � � �Þ, and we see that the temperature will

get additional large-scale fluctuations from the modulations
of the small-scale power. The cooling is, however, non-
adiabatic, and we need to explicitly solve for the coupled
evolution of the gas temperature and ionization fraction to
second order. We write them in the form

Tgas ¼ T̄gasð1þ δITgas
þ δIITgas

Þ; (65)

xe ¼ x̄eð1þ δIxe þ δIIxeÞ; (66)

where we have already written the relevant equations for
the first-order perturbations in Secs. II B 3 and II B 4.
We perturb Eq. (20) to second order and obtain the

following equation for δIITgas
:

_δIITgas ¼
2

3
_δbðδITgas

− δbÞ

þ ΓC

�
Tcmb − T̄gas

T̄gas
δIIxe − δIxeδ

I
Tgas

−
Tcmb

T̄gas
δIITgas

�
: (67)

This equation has to be solved simultaneously with the
second-order perturbation to the free-electron fraction,
whose evolution is obtained from perturbing Eq. (29)
to second order. We define δII_xe as the part of δ_xe= _̄xe
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quadratic in the perturbations. The evolution equation for
δIIxe is given by

_δIIxe ¼
_̄xe
x̄e

�
δIIxe þ

d logAB

d logTgas
δIITgas

þ δII_xe

�
: (68)

We see that we have a coupled linear system for ðδIITgas
; δIIxeÞ

sourced by terms quadratic in the small-scale fluctuations.
Note that the full evolution equation for the large-scale gas
temperature and ionization fluctuations also contains
gauge-dependent metric perturbations [6,29]. In principle
there are also quadratic terms containing such metric terms.
However, only terms quadratic in small-scale perturbations
are relevant, and metric terms are suppressed by
OðH2=k2sÞ ≪ 1. We use existing codes to compute the
standard linear large-scale temperature and ionization
fluctuations that properly account for relativistic correc-
tions. Our correction is uncorrelated and additive.
We average Eqs. (67) and (68) over a few Mpc patch.

They then become equations for the large-scale fluctuations
δIITgas

ðvbc; zÞ and δIIxeðvbc; zÞ, sourced by the (co)variance of
the quadratic terms, obtained from our small-scale solution
described in Sec. II. For example, the source term of
Eq. (67) is

_δIITgas
ðsourceÞ ¼ 2

3
θbδb −

2

3
θbδ

I
Tgas

− ΓCδ
I
xeδ

I
Tgas

; (69)

which we compute as a function of relative velocity and
redshift by integrating the small-scale (cross-)power spectra
over wave numbers, for instance,

θbδb ¼
Z

d3ks
ð2πÞ3 Pδbθbðks; vbcÞ: (70)

After subtracting the average of the sources over relative
velocities, we then solve the coupled system for δIITgas

ðvbc; zÞ
and δIIxeðvbc; zÞ with zero initial conditions at zini ¼ 1010,

since at that time the relative velocity has not yet imprinted
large-scale modulations of the small-scale fluctuations. We
can then compute the autocorrelation function of δIITgas

as
described in Appendix A and the resulting power spectrum.
We show the latter in Fig. 9, along with the standard
large-scale temperature fluctuation obtained with CAMB.
We see that the quadratic correction contributes a ∼10%
enhancement of gas temperature fluctuations at z ¼ 30 at
scales k≲ 0.01 Mpc−1.

IV. THE 21 CM BRIGHTNESS TEMPERATURE
FLUCTUATIONS DURING THE DARK AGES

A. Basic equations

The subject of 21 cm absorption and its fluctuations
during the dark ages has been treated extensively by
multiple authors [4,6,7]. We are only concerned with
computing (i) corrections to the small-scale power spec-
trum and (ii) the enhancement of large-scale power due to
terms quadratic in small-scale fluctuations, which we
showed to be uncorrelated with linear terms. We therefore
need not concern ourselves with relativistic corrections on
large scales, treated in detail in LC07. For completeness,
and to make all dependencies clear, we briefly summarize
the relevant equations below.

1. Spin temperature

Following standard conventions, we define the spin tem-
perature Ts from the ratio of abundances of neutral hydrogen
in the triplet state n1 and in the singlet state n0 as follows:

n1
n0

≡ 3 exp

�
−
E10

Ts

�
≈ 3

�
1 −

E10

Ts

�
; (71)

where E10 ≈ 0.068 K is the energy difference between the
two states (corresponding to a transition frequency of 21 cm),
and for the second equalitywe assumed thatTs ≫ E10, which
is indeedvalid at all times. The spin temperature is determined
from a balance between collisional transitions, which tend to
set Ts → Tgas, and radiative transitions mediated by CMB
photons, which tend to set Ts → Tcmb.
The rates of upward and downward collisional transi-

tions are denoted by C01 and C10, respectively, and satisfy
the detailed balance relation

C01 ¼ 3 exp
�
−
E10

Tgas

�
C10 ≈ 3

�
1 −

E10

Tgas

�
C10; (72)

where again we used the fact that Tgas ≫ E10. During the
dark ages the Universe is almost fully neutral and collisions
with neutral hydrogen atoms largely dominate the colli-
sional transition rate (see Fig. 1 of LC07). The coefficient
C10 takes the form

C10 ¼ nHκHH10 ðTgasÞ; (73)
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FIG. 9 (color online). Fluctuations of the gas temperature per
logarithmic k interval, at z ¼ 30 and 120. The two upper lines
show the standard result extracted from CAMB, and the two lower
lines show the enhancement resulting from the modulation of
small-scale fluctuations by the relative velocity.
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where the temperature dependence is accurately
approximated by the simple fit κHH10 ðTgasÞ ≈ 3.1×
10−11T0.357

gas expð−32=TgasÞ cm3 s−1, with Tgas given in
kelvins [41].
We denote by R10 and R01 the rates of radiative

transitions mediated by CMB photons. The absorption
rate R01 is related to the rate of spontaneous and stimulated
decays R10 through the detailed balance relation

R01 ¼ 3 exp

�
−

E10

Tcmb

�
R10 ≈ 3

�
1 −

E10

Tcmb

�
R10: (74)

The latter is given by

R10 ¼ A10

�
1þ 1

eE10=Tcmb − 1

�
≈ A10

Tcmb

E10

; (75)

where A10 ≈ 2.85 × 10−15 s−1 is the spontaneous decay
rate. At all times during the dark ages the total transition
rate R10 þ C10 surpasses the Hubble rate by several orders
of magnitude. The populations of the hyperfine states can
therefore be obtained to high accuracy by making the
steady-state approximation

n1ðC10 þ R10Þ ¼ n0ðC01 þ R01Þ; (76)

which, using the expressions for the transition rates given
above and in the limit E10 ≪ Tgas; Tcmb, leads to the
following equation for the spin temperature:

Ts ¼ Tcmb þ ðTgas − TcmbÞ
C10

C10 þ A10
Tgas

E10

: (77)

2. Brightness temperature

Following the convention in the field, we define the
brightness temperature Tb as the temperature characterizing
the difference between the radiation field processed by the
21 cm transition and the background CMB radiation field.
Since E10 ≪ T we are in the Rayleigh-Jeans tail of the
spectrum. In the optically thin limit, and up to corrections
of the order of its peculiar velocity with respect to the CMB
[6], the brightness temperature observed in the gas rest
frame is T local

b ¼ τðTs − TcmbÞ, where τ is the Sobolev
optical depth, discussed below. The photon phase-space
density (or Iν=ν3 up to multiplicative constants, where Iν is
the specific intensity), is a frame-invariant quantity, con-
served in the absence of emission and absorption. This
ensures that the ratio Tb=ν is frame independent and
conserved along the photon trajectory. At redshift zero
the observed brightness temperature is therefore

Tb ¼ ð1þ zÞ−1τðTs − TcmbÞ; (78)

where again we have neglected corrections of the order of
the peculiar velocity of the gas, as well as the effect of

gravitational potentials along the photon trajectory. The
Sobolev optical depth is given by

τ ¼ 3E10

32πTs
xHInHλ310

A10

H þ ∂∥v∥
; (79)

where λ10 ¼ 21 cm, xHI is the fraction of neutral hydrogen,
and ∂∥v∥ is the line-of-sight gradient (in proper space) of
the component of the peculiar velocity along the line of
sight. This equation can easily be generalized to arbitrary
optical depth by making the replacement τ → ð1 − e−τÞ;
however, the optical depth is at most a few percent during
the dark ages, and we have chosen to keep the lowest-order
approximation in order to have more tractable expressions
later on.
In the above derivation we have assumed that the line is

infinitely narrow. In reality, the line has a finite width due to
thermal motions of the atoms (an additional subtlety being
that the spin temperature is in fact a velocity-dependent
function [42]). This leads to an averaging of fluctuations
with radial wave number kjj larger than kth≡
ð1þ zÞ−1H ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mH=Tgas
p

, which is of the order of the
Jeans scale, and is approximately 300, 400, and
500 Mpc−1 at z ¼ 100, 50, and 30, respectively. In prac-
tice, observations are made with a finite window function,
orders of magnitude broader than the thermal linewidth,
and the resulting averaging along the line of sight should
dominate any finite linewidth effects.
In closing this review section, we point out that the term

∂ jjvjj in the denominator of the optical depth (79) is often
referred to as a “redshift-distortion” term. This is a
misnomer: although this term is similar to an actual
redshift-space distortion term (see Sec. IV B 2), it is very
different in nature. Redshift-space distortions are an obser-
vational effect, they come from the inability of an observer
to disentangle the intrinsic cosmological redshift of a
source (in a given gauge) from the additional redshifting
due to its peculiar velocity along the line of sight. In
contrast, the term ∂ jjvjj in the optical depth represents a
perturbation of the Hubble expansion rate at the absorber’s
location and does not require any observer (besides the fact
that the observer determines the line of sight). It translates
the fact that a photon can resonantly interact with fewer
atoms the larger their velocity gradient is along the
direction of propagation. See also Ref. [43].

B. Fluctuations

1. Expansion in density and temperature fluctuations

The brightness temperature is a function of the local
hydrogen density and gas temperature, and its fluctuations
can therefore be expanded in terms of their perturbations.
We neglect fluctuations in Tcmb and xe and only consider
density and temperature fluctuations,
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nHðz; xÞ ¼ n̄HðzÞð1þ δHðz; xÞÞ; (80)

Tgasðz; xÞ ¼ T̄gasðzÞð1þ δTgas
ðz; xÞÞ; (81)

where we recall that δH ¼ δb up to negligible corrections.
We also define the dimensionless small quantity

δv ≡
∂∥v∥
H

≡
1þ z
H

∇∥v∥; (82)

where ∇ is the comoving gradient. The brightness temper-
ature depends locally on δv only through Tb ∝ ð1þ δvÞ−1,
which will simplify the expression for perturbations.
Combining Eqs. (77) to (79), we expand the brightness

temperature to second order in the density and temperature
fluctuations.

Tb ¼ T̄bð1 − δv þ δ2vÞ þ ðT HδH þ T TδTgas
Þð1 − δvÞ

þ T HHδ
2
H þ T HTδHδTgas

þ T TTδ
2
H þOðδ3Þ; (83)

where the mean brightness temperature is defined by
setting all perturbations to zero, and all the coefficients
T ij in the expansion are functions of redshift only.
We have computed the relevant coefficients numerically

(see e.g. Ref. [30] for some explicit analytic expressions)
and show them in Fig. 10. Their qualitative behavior can
easily be understood as follows.

(i) For z≳ 100, collisions efficiently couple the spin
temperature to the gas temperature, Ts ≈ Tgas. With-
out the velocity gradient term, we therefore have

Tb ∝ nH

�
1 −

Tcmb

Tgas

�
: (84)

The dependence on the hydrogen density is linear, so
that T HH → 0 and T H → T̄b. The mean brightness
temperature is proportional to Tgas − Tcmb, which
becomes closer to zero at high redshift due to efficient

Compton heating of the gas by CMB photons. The
dependence on Tgas in the denominator implies that
T HT ≈ T T ≈ −T TT , and these functions are not sup-
pressed as T̄b as they do not have a factor of
ðTgas − TcmbÞ: they instead increase at high redshift
proportionally to the optical depth τ ∝ ð1þ zÞ3=2.

(ii) For z≲ 50 collisions become very inefficient and
Ts ≈ Tcmb, with a small difference proportional to
the collision coefficient: Ts − Tcmb ∝ nHκ10ðTgasÞ.
This implies that the dependence of the brightness
temperature on nH is approximately quadratic so that
T H ≈ 2T̄b ≈ 2T HH. As time progresses the optical
depth gets smaller and all coefficients are rapidly
damped.

2. Redshift-space distortions

In what follows we shall assume that the observer’s
peculiar velocity with respect to the CMB can be accurately
determined from independent observations and subtracted.
Let us consider a parcel of absorbing material at redshift

z, i.e. at comoving radial position

rðzÞ ¼
Z

z

0

dz0

Hðz0Þ : (85)

If the parcel is moving along our line of sight with respect
to its local comoving frame with a peculiar velocity v∥
(where v∥ > 0 if the gas is moving away from us), then the
observed wavelength of the redshifted 21 cm line is, to first
order in vjj,

λobs ¼ λ10ð1þ v∥Þð1þ zÞ: (86)

Therefore the observed redshift, which is the only meas-
urable quantity, is given by

1þ zobs ≡
λobs
λ10

¼ ð1þ zÞð1þ v∥Þ: (87)

From this measured redshift, one would infer a radial
comoving distance rðzobsÞ, which is related to the actual
position rðzÞ by

rðzÞ ≈ rðzobsÞ −
1þ zobs
HðzobsÞ

v∥: (88)

The brightness temperature observed at a given wavelength
λobs arises from absorption at rðzÞ: Tobs

b ¼ TbðrðzÞÞ. Using
Eq. (88), and to linear order in vjj, this is related to rðzobsÞ
through

Tobs
b ¼

�
Tb −

1þ z
H

v∥∇∥ðδTbÞ
�
robs

; (89)
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FIG. 10 (color online). Coefficients of the density and temper-
ature fluctuations in the expansion of the brightness temperature
(83), as a function of redshift.
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where the gradient is with respect to comoving distance
along the line of sight (at fixed redshift8), and only acts on
the perturbation δTb. This equation and the resulting Fourier
transform are equivalent to Eqs. (51) and (56) of Ref. [43],
in the optically thin limit, and to lowest order in vjj.
The perturbation to the observed brightness temperature

is therefore

δTobs
b ¼ δTbð1þ δvÞ −

1þ z
H

∇∥ðv∥δTbÞ; (90)

where we have simply used the definition (82) of δv and
rewritten ∇∥ðv∥δTbÞ ¼ ð∇∥v∥ÞδTb þ v∥∇∥δTb.
The last term in Eq. (90) is the total derivative of a

quadratic term and does not fluctuate on large scales. Indeed,
when approximating the spatial average by a statistical
average, we have, for any two scalar quantities δ1; δ2,

h∇ðδ1δ2Þi ¼ hδ1∇δ2 þ ð∇δ1Þδ2i

¼
Z

d3k
ð2πÞ3 hδ

�
1ikδ2 þ ðikδ1Þ�δ2i ¼ 0: (91)

Using Eq. (83) we therefore have, to second order in all
fluctuations,

δTobs
b ¼ T HδH þ T TδTgas

− T̄bδv

þ T HHΔðδ2HÞ þ T TTΔðδ2Tgas
Þ þ T HTΔðδHδTgas

Þ;

where ΔðδiδjÞ is the fluctuation of the quadratic term δiδj
about its mean value.9 We see that quadratic terms involving
δv very conveniently cancel out but emphasize that this is
only valid in the optically thin limit; there are additional
corrections of order τ that do contain such terms and that we
are neglecting for simplicity.
Following LC07, we define the “monopole source” as

δs ≡
T HδH þ T Tδ

I
Tgas

T̄b
: (92)

We also define δTII
b as the total contribution of quadratic

terms (and remind the reader that δTgas
¼ δITgas

þ δIITgas

effectively contains quadratic terms itself),

δTII
b ≡ T HHΔðδ2HÞ þ T TTΔðδ2Tgas

Þ
þ T HTΔðδHδTgas

Þ þ T Tδ
II
Tgas

: (93)

Finally, we bear in mind that our expression does not
account for relativistic corrections on large scales, of order
∼T̄bϕ; T̄bv, which we denote by δTrel

b .
Our final expression for the observed brightness temper-

ature is therefore

δTobs
b ¼ T̄bðδs − δvÞ þ δTII

b þ δTrel
b : (94)

C. Angular power spectrum

We define P0ðkÞ as the power spectrum of the terms
independent of the direction of the line of sight, i.e.
T̄bδs þ δTII

b þ δTrel
b . In Fourier space, δv ¼ ðn̂ · k̂Þ2θb=H,

and we define PvðkÞ as the power spectrum of θb=H.
Finally, we define P0vðkÞ as the cross-power spectrum of
the two.
The angular power spectrum of 21 cm brightness

temperature fluctuations from observed redshift z ≡ zobs ≡
ν21=νobs − 1 is then given by [6,7]

ClðzÞ ¼ e−2τreion
�
4π

Z
d3k
ð2πÞ3 P0ðk; zÞαlðk; zÞ2

þ 8π

Z
d3k
ð2πÞ3 P0vðk; zÞαlðk; zÞβlðk; zÞ

þ 4π

Z
d3k
ð2πÞ3 Pvðk; zÞβlðk; zÞ2

�
; (95)

where

αlðk; zÞ ≡
Z

dr0jlðkr0ÞWzðr0Þ; (96)

βlðk; zÞ ≡
Z

dr0jl″ðkr0ÞWzðr0Þ; (97)

and Wzðr0Þ is a window function centered at the radial
comoving distance rðzÞ accounting for the finite spectral
resolution Δν. The term e−2τreion accounts for Thomson
scattering of photons out of the line of sight by free
electrons after reionization. In Eq. (95) we have neglected
the variation of the various power spectra across the redshift
interval Δz corresponding to the width of the window
function. Since the power spectra vary on a redshift scale
Δz ∼ z, this amounts to neglecting terms of order ðΔν=νÞ2
provided

R
r0Wzðr0Þdr0 ¼ rðzÞ.

For z ≫ 1 and for our fiducial cosmology,
rðzÞ ≈ rð∞Þ ¼ 14.9 Gpc. During matter domination, the
change in comoving separation corresponding to a fre-
quency width Δν=ν ¼ Δz=ð1þ zÞ is therefore

Δr
r

≈
cΔz

rð∞ÞH0Ω
1=2
m ð1þ zÞ3=2

≈
0.57ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p Δν
ν

(98)

≈ 4 × 10−4
Δν

0.1 MHz

ffiffiffiffiffiffiffiffiffiffiffi
1þ z
101

r
; (99)

8Note that throughout we have neglected terms of relative
order aH=k, such as, for instance, the term vjjð1þ zÞ∂Tb=∂z.
We also do not account for metric perturbations along the
photon trajectory, which are pure large-scale terms.

9The mean of the quadratic terms should be formally included
in T̄b, even though we do not add these terms in practice as they
are completely negligible.
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where ν ¼ 1420 MHz=ð1þ zÞ is the observed frequency
of the 21 cm transition at redshift z. We may use the Limber
approximation for l ≫ ðΔr=rÞ−1, that is for

l ≫ 2500
0.1 MHz

Δν

ffiffiffiffiffiffiffiffiffiffiffi
101

1þ z

r
: (100)

In this regime, the velocity terms are suppressed (see
Appendix B), and the Limber approximation gives [6]

l2Cl

2π
≈
πrðzÞ
l

k3P0ðkÞ
2π2

����
k¼l=r

Z
dr0Wzðr0Þ2: (101)

For scales l≲ r=Δr, we compute the angular power
spectrum numerically. We first generate the spherical
Bessel function up to l ¼ 104 with sufficient resolution
in both l and k using a modified version of CMBFAST [44].
We then use a trapezoidal integration scheme to integrate
the stored Bessel functions over a Gaussian window
function with varying width as prescribed in Eq. (96).
We checked for convergence and determined that 200 steps
in r are sufficient. In addition we have checked our code for
consistency with analytical expressions for a top-hat
window function. We also found good agreement with
the monopole spectrum generated with CAMB sources.

1. Corrections to the small-scale angular power spectrum

We first consider the small-scale angular power spec-
trum, l≳ 105 corresponding to k greater than a fewMpc−1.
At these scales we only need to consider the terms linear in
the baryon density and temperature fluctuations [see
Eq. (40) and associated discussion]. For definiteness, we
shall assume a window function Δν ¼ 0.1 MHz and use
the Limber approximation, in which the velocity term δv
cancels. The only relevant term is therefore the “monopole”
term, which must be averaged over relative velocities.

We show the resulting small-scale power spectrum in
Fig. 11 and compare it to the case without relative
velocities. We see that the relative velocities lead to power
being suppressed by as much as ∼50% at the “knee”
corresponding to the Jeans scale, l ≈ 5 × 106. Fluctuations
can be enhanced for l≳ 2 × 107, due to the resonant
excitation of acoustic waves which we described in
Sec. II C.
Even though the relative velocity affects the small-scale

angular power spectrum at order unity, observations of the
highly redshifted 21 cm radiation with an angular reso-
lution Δθ ≲ 10−5 sr would be extremely challenging, if not
merely impossible. We now turn to the still challenging but
more accessible large angular scales.

2. Corrections to the large-scale angular power spectrum

On large angular scales all terms in Eq. (94) are relevant.
All terms but the quadratic term were already computed by
LC07, and we use the code CAMB sources to compute them.
As we showed earlier, the quadratic terms are uncorrelated
with linear terms, and we therefore only need to compute
the power spectrum of δTII

b and add it to the LC07 result.
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FIG. 11 (color online). Small-scale angular power spectrum of
21 cm brightness temperature fluctuations at redshifts 120 and 50,
neglecting the effect of relative velocities (dashed lines), and
averaging over relative velocities (sold lines). The relative change
is more than 50% at l ≈ 5 × 106.
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FIG. 12 (color online). Characteristic amplitude of the quad-
ratic part of 21 cm brightness temperature fluctuations,
δTII

b ðvbc ¼ 30 km=sÞ − δTII
b ð0 km=s), as a function of redshift.

The colored lines show the contributions of the different terms,
and the black solid line is the sum of them.
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FIG. 13. Variance of the additional large-scale fluctuation of the
21 cm brightness temperature.
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Figure 12 illustrates the redshift dependence of the
different terms contributing to δTII

b . We see that they are
all of comparable amplitude and happen to nearly cancel
out at z≳ 60. Figure 13 shows the variance of the total
additional large-scale contribution δTII

b as a function of
redshift. Because of the near cancellation of the different
terms at z≳ 60, the fluctuations of the quadratic term peak
around z ≈ 30, at a lower redshift than the fluctuations of
the overall 21 cm signal.
Figure 14 shows the power spectrum of δTII

b compared to
the large-scale monopole fluctuations. We see that at z ¼
30 the quadratic terms have fluctuations greater than ∼10%
of those of the monopole term for k≲ 0.01 Mpc−1.
Figure 15 is our main result: it shows the large-scale

angular power spectrum Cl of the quadratic terms, com-
pared with the standard Cl. Because the monopole fluc-
tuation is a rapidly increasing function of k, its large-scale
angular fluctuations are actually dominated by small-scale
power [6]. As a consequence, the correction to the angular
power spectrum is smaller than one would expect from
comparing the Fourier-space fluctuations. We still find that

quadratic terms enhance the large-scale power spectrum by
a few percent at z ¼ 30 and for l up to a few hundred. The
relative increase is larger when using a larger window
function (see right panel of Fig. 15); however, in that case
the absolute power is also decreased. We note that with the
standard cosmological scenario considered, the correction
to the large-scale power spectrum is maximal around
z ≈ 30, due to the near cancellation of various terms at
higher redshifts. One should keep in mind that at these
redshifts the radiation from the first stars may already have
a significant impact on the 21 cm signal, depending on the
model considered [14].
Finally, we point out that we have only considered a

standard cosmology here, and simply extrapolated the
small-scale power spectrum from its known shape at much
larger scales. Any unusual feature in the small-scale power
spectrum (due, for example, to a running of the spectral
index, or to warm dark matter [4]) would also have some
effect on large angular scales through the relative velocity
effect. This effect therefore potentially allows one to
measure small-scale physics through observations of large
angular scales, an aspect which we shall explore in
future works.

D. Comment on other nonlinear terms

In this paper we are considering quadratic terms only
insofar as they are significantly modulated on large scales
by the relative velocity. We are neglecting the term 2hδ0δxi2
in the autocorrelation function of δ2, as well as terms of
similar order that would result from the correlation of linear
terms with cubic terms, hδ0δ3xi ¼ 3hδ2ihδ0δxi. This neglect
is formally justified, since our correction to the simple
linear analysis at large scales is of relative order
ðδ2s=δlÞ2 ∼ 1, whereas other nonlinear terms are formally
corrections of order δ2 ≪ 1. In practice, however, our large-
scale correction is numerically of the order of tens of
percent, and is the largest at z ∼ 30. By then the variance of
the density fluctuation is already several percent, and the
neglected nonlinear terms could therefore be of comparable
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FIG. 14 (color online). Variance of fluctuations per logarithmic
k interval for the quadratic correction (solid lines) and the
standard monopole term (dashed lines) at z ¼ 30 (top) and
z ¼ 120 (bottom). The correction is of order tens of percent at
large scales and low redshift.
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FIG. 15 (color online). Left: Computed large-scale power spectrum (LC07, including relativistic corrections) and its correction due to
the relative velocity between baryons and cold dark matter at redshift 30 and through 3 different windows Δν ¼ 0.01, 0.1, and 1 MHz
(top to bottom). Right: The relative contribution of the correction at redshift 30. Applying a bigger window transfers more power from
large scales, leading to a larger relative contribution.
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magnitude as the one we have accounted for, even though
they are formally of a different order. To our knowledge, the
effect of higher-order terms in the brightness temperature
expansion has not been investigated yet (beside Ref. [45],
where the nonlinear velocity gradient terms are considered;
see also Ref. [43]). Including the other nonlinear terms
consistently would also require accounting for the non-
linear growth of overdensities. This would significantly
complicate the analysis, and we defer it to a future work.

V. CONCLUSIONS

We have revisited the theoretical prediction for the 21 cm
intensity fluctuations during the dark ages, accounting for
the relative velocity between baryons and CDM recently
discussed by Tseliakhovich and Hirata [8]. We have
focused on isolating the consequences of this effect and
for the sake of simplicity have made several assumptions
regarding other effects which can be important at the few-
percent level. Some of these effects are treated elsewhere in
the literature, and we list them here for completeness. First,
we have computed the signal to lowest order in the small
optical depth and neglected fluctuations of the residual free
electron fraction, which lead to a few percent correction [6].
This can be straightforwardly accounted for in our com-
putation, and we have not done so simply for the sake of
conciseness. Second, we have neglected the thermal broad-
ening of the 21 cm line and have assumed it can be
described by a single, velocity-independent spin temper-
ature, effects which can be important at the percent-level
[42]. Finally, we have used linear perturbation theory to
follow the growth of density perturbations and neglected
nonlinear corrections which affect the small-scale power
spectrum at the several percent level at z≲ 50. Computing
these corrections accurately is technically challenging and
has only been done approximately so far [6]. We have also
neglected higher-order terms in the expansion of the
brightness temperature, which could lead to corrections
at the several percent level at low redshift. To our knowl-
edge, these corrections have not yet been explored. Last but
not least, we have neglected the impact that early-formed
stars may have on the signal at z ≈ 30.
Our findings are as follows. The relative velocity

between baryons and CDM leads to a suppression of
baryonic density and temperature fluctuations on scales
k≳ 30 Mpc−1 by several tens of percent, which result in a
similar suppression of the 21 cm fluctuations on angular
scales l ≳ 5 × 105. Less intuitively, we find an enhance-
ment of the 21 cm fluctuations in two scale regimes. First,
on scales much smaller than the Jeans scale, we find that the
streaming of cold dark matter perturbations relative to
baryonic ones leads to a resonant amplification of acoustic
waves. This translates to an enhancement of the 21 cm
power spectrum for angular scales l≳ 5 × 107. Most
importantly (and as anticipated by TH10), the large-scale
fluctuations of the relative velocity field are imprinted on

the 21 cm signal, at scales k ∼ 0.005–1 Mpc−1, correspond-
ing to angular scales l≲ 104. This enhancement is due to
the combination of two facts. On the one hand, the 21 cm
brightness temperature depends nonlinearly on the under-
lying baryonic fluctuations. On the other hand, the large-
scale modulation by the relative velocity of the square of
small-scale perturbations is comparable to the linear large-
scale fluctuations at z≲ 100.
One of the prime appeals of 21 cm fluctuations from the

dark ages is to access the small-scale power spectrum at
k≳ fewMpc−1, currently unaccessible to other probes
[4,46]. If observed directly, these Fourier modes corre-
spond to multipoles l of several tens of thousands at least,
i.e. an angular resolution better than 10−4 rad. Reaching
this resolution at the highly redshifted frequency of the
21 cm transition would be highly challenging, requiring
very large baselines. Our results show that detection
prospects are in fact more optimistic (though still chal-
lenging): the relative velocity imprints the characteristic
amplitude of the small-scale density power spectrum
(around k ∼ 100 Mpc−1) on large angular fluctuations of
the 21 cm signal, around l≲ 1000. Note that the relative
velocity perturbations have support on scales which are
well measured by current cosmological probes, and can
therefore be computed exactly. Any deviation from the
standard cosmological model on small scales, such as warm
dark matter or a running of the primordial power spectrum,
would therefore not only affect the small angular scales of
21 cm fluctuations, but also the regime l≲ 1000. The
relative velocity should also significantly change the effect
that dark matter annihilations would have on the 21 cm
signal fluctuations [47]. We plan to investigate these issues
in future work.
Another extension to the work presented here is to

include effects of primordial non-Gaussianity; similar to
the relative velocity, non-Gaussianities modulate the small-
scale power spectrum on large scales in the squeezed limit.
It is interesting to know how these effects compare, both as
a function of scale as well as amplitude, and whether the
relative velocity may hamper or help the detection of
primordial non-Gaussianities with 21 cm fluctuations.
Finally, the analytical results presented here also encour-

age one to look for semianalytical modeling of the low
redshift universe. So far, this has predominantly been a
numerical effort, but it is not unlikely that some of the
physics at late times can be modeled analytically. We shall
tackle this problem in future work.
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APPENDIX A: AUTOCORRELATION OF
FUNCTIONS OF THE RELATIVE VELOCITY

In Sec. IV we had to compute the autocorrelation
function of the form hFðv0ÞFðvxÞi of terms quadratic in
small-scale fluctuations which depend on the magnitude of
the local relative velocity (for which we have dropped the
subscript bc). In this appendix we describe our numerical

method and derive analytical approximations for the two
limiting cases of weak and strong correlation.
This autocorrelation takes the following integral form:

hFðv0ÞFðvxÞi ≡
Z

d3u0d3uxPðu0; uxÞ

× Fðσ1du0ÞFðσ1duxÞ; (A1)

where Pðu0; uxÞ is the six-dimensional joint Gaussian
probability distribution for the normalized relative veloc-
ities u0 ≡ v0=σ1d; ux ≡ vx=σ1d, at two points separated by
comoving distance x,

Pðu0; uxÞ ¼
1

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2jj

q
ð1 − c2⊥Þ

exp

�
−
1

2

u2
0jj þ u2xjj − 2cjju0jjuxjj

1 − c2jj
−
1

2

u20⊥ þ u2x⊥ − 2c⊥u0⊥ · ux⊥
1 − c2⊥

�
; (A2)

where ujj ¼ u · x̂, u⊥ ¼ u − ujjx̂, and the dimensionless
correlation coefficients cjjðxÞ; c⊥ðxÞ were defined
in Eq. (5).

1. General case

When the correlation coefficients are neither small nor
very close to unity, we have to compute the integral (A1)
numerically. Using spherical polar coordinates with x̂ as the
polar axis, one of the angular integrals is trivial, and the

other can be performed analytically, so that the remaining
integral is only four dimensional, and takes the form [21]

hFðv0ÞFðvxÞi ¼
ZZ

∞

0

du0duxFðσ1du0ÞFðσ1duxÞPðu0; uxÞ;
(A3)

where the joint probability distribution for the normalized
magnitudes is given by

Pðu0; uxÞ ≡
u20u

2
x

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2jj

q
ð1 − c2⊥Þ

ZZ
1

−1
dμ0dμx exp

�
−
1

2

u2
0jj þ u2xjj − 2cjju0jjuxjj

1 − c2jj
−
1

2

u20⊥ þ u2x⊥
1 − c2⊥

�
I0

�
c⊥u0⊥ux⊥
1 − c2⊥

�
; (A4)

where u0jj ≡ u0μ0; u0⊥ ≡ u0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ20

p
and similarly for

uxjj; ux⊥, and I0 is the zeroth order modified Bessel
function of the first kind.
To speed up computations, we first precompute the

redshift-independent distribution Pðu0; uxÞ as a function
of u0; ux and the magnitude x of the separation vector. We
can then quickly compute the remaining two-dimensional
integral for any given specific function F, in particular for
the same physical quantity at different redshifts.

2. Small separation, strong correlation limit

When x → 0, c∥; c⊥ → 1 and the joint probability
distribution Pðu0; uxÞ becomes sharply peaked around
ux ¼ u0, which makes direct numerical integration diffi-
cult. In this section we derive an asymptotic expression
valid in this regime. We start by rewriting

Pðu0; uxÞ ¼ Pðu0Þ
Y
i

Pðuixjui0Þ; (A5)

where Pðu0Þ is an isotropic three-dimensional Gaussian
distribution with unit variance per axis and Pðuixjui0Þ is a
one-dimensional Gaussian distribution with mean ciui0 and
variance 1 − c2i , with c1 ¼ cjj and c2 ¼ c3 ¼ c⊥. We now
Taylor expand ~FðuxÞ ≡ Fðσ1duxÞ around u0. To get a
correct expression at order Oð1 − ciÞ we need to carry
the expansion to second order in Δi ≡ uix − ui0. Dropping
the tilde on F, we have

FðuxÞ ≈ Fðu0Þ þ
X
i

Δi∂iF þ 1

2

X
ij

ΔiΔj∂i∂jF þOðΔ3Þ:

(A6)

We integrate this expression over the constrained distribu-
tion of uix and obtain, to order 1 − ci,

hΔii ¼ −ð1 − ciÞui0; (A7)

hΔiΔji ¼ δijð1 − c2i Þ þ ð1 − ciÞð1 − cjÞui0uj0
≈ 2δijð1 − ciÞ: (A8)
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We therefore obtain

hFðu0ÞFðuxÞi
≈ hFðu0Þ2i þ

X
i

ð1 − ciÞ½hF∂2
i Fi − hui0F∂iFi�

þOð1 − ciÞ2; (A9)

where the argument u0 is implicit everywhere. We now
recall that the Gaussian probability distribution Pðu0Þ
satisfies the differential equation ∂iP ¼ −ui0P, which,
after integration by parts, leads to the identity hui0Gi ¼h∂iGi for any function G. This allows us to simplify
Eq. (A9),

hFðu0ÞFðuxÞi ≈ hF2i −
X
i

ð1 − ciÞhð∂iFÞ2i þOð1 − ciÞ2:

(A10)

From the isotropy of F and P we have hð∂iFÞ2i ¼
1
3
hð∇FÞ2i ¼ 1

3
hðF0Þ2i. We therefore arrive at the following

expression, valid in the small-separation limit:

hFðu0ÞFðuxÞi ≈ hF2i − ð1 − c̄ÞhðF0Þ2i; (A11)

where c̄ ≡ 1
3
cjj þ 2

3
c⊥ is the spherically averaged correla-

tion coefficient.
It is in principle straightforward to carry on this

expansion to higher order in (1 − ci). However, the result-
ing coefficients depend on higher-order derivatives of F,
which is itself a numerically evaluated function, and whose
numerical higher-order derivatives are less and less accu-
rate. We have therefore chosen to stop at the first order
given here. In practice we use this expansion for
x ≤ 3 Mpc, for which 1 − c̄ ≤ 0.03, and switch to numeri-
cal integration beyond that value.

3. Large separation, weak correlation limit

In the other limiting regime, x → ∞, ci → 0, the auto-
correlation of the mean-subtracted function F becomes
vanishingly small.Direct numerical integration cannot prop-
erly capture the near vanishing of the integral, and here also
we may use a series expansion. We expand the probability
distribution Pðu0; uxÞ to second order in ci ≪ 1:

Pðu0; uxÞ ¼
exp ½− 1

2

P
i
u2
0iþu2xi
1−c2i

�
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2jj

q
ð1 − c2⊥Þ

�
1þ

X
i

ciu0iuxi
1 − c2i

þ 1

2

X
ij

cicju0iuxiu0juxj þOðc3i Þ
�
: (A12)

Since the function F only depends on the magnitude of u, it
is an even function of the ui. Therefore upon integration
against Fðu0ÞFðuxÞ, only the term c2i u

2
0iu

2
xi survives, and to

lowest order we get

hFðu0ÞFðuxÞi ≈
1

2

X
i

c2i hu2i FðuÞi2 ¼
1

18
hu2FðuÞi2

X
i

c2i ;

(A13)

where the radial averaging is to be carried with an isotropic
Gaussian distribution, and we recall that hFi ¼ 0. In
practice, we use this approximation for

P
ic

2
i ≤ 10−4.

As an example, we show the autocorrelation function of
δ2b and the resulting power spectrum obtained by Fourier
transforming it in Fig. 16, where we compare it to the power
spectrum of the linear overdensity. We see that the power
spectrum of δ2b can be comparable to that of δb on very large
scales (k≲ 0.01 Mpc−1) and at low redshifts. For z ¼ 30,
the ratio of power spectra is greater than 10 percent for
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FIG. 16 (color online). Left: Autocorrelation function of the fluctuations of δ2b due to the modulation of small-scale power by the
relative velocity of baryons and CDM. Right: Variance of fluctuations of the baryon overdensity (thin black lines) and of its square (thick
blue lines) per logarithmic k interval, at z ¼ 60 and 30. The large-scale power spectrum of δb is computed with CAMB in the synchronous
gauge. We only show scales inside the horizon for which the overdensity is not strongly dependent on the chosen gauge.
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k≲ 0.1 Mpc−1. Even at z ¼ 120, the ratio is still of order a
percent or more on scales k≲ 0.01 Mpc−1.

APPENDIX B: ANALYTIC EXPRESSIONS
FOR THE ANGULAR POWER SPECTRUM

FOR Δ2ðkÞ ∝ k

In this section we give analytic expressions for the angular
power spectrum, valid for all l ≫ 1 and all widths of
observational window function Δ ≡ Δr=r ≪ 1, if the

underlying three-dimensional power spectra grow as
Δ2ðkÞ ∝ k. The suppression factor e−2τreion is implicit
everywhere.
The angular power spectrum at redshift z takes the form

ClðzÞ ≡ C0
l þ C0v

l þ Cv
l, where the three components are

given in Eq. (95). In this section we shall derive analytic
expressions in the case where Δ2

0ðkÞ ≡ k3P0ðkÞ=ð2π2Þ ∝ k,
and similarly for Δ2

0v and Δ2
v.

With this assumption on the scale dependence, the first
term is

C0
l ¼ 4πΔ2

0ðl=rzÞ
rz
l

Z
dr1dr2Wzðr1ÞWzðr2Þ

1

r1

Z
dxjlðxÞjlððr2=r1ÞxÞ: (B1)

This integral involves the function

FlðRÞ ≡
Z

dxjlðxÞjlðRxÞ: (B2)

Using the differential equation satisfied by the spherical Bessel functions, we obtain the following differential equation for
FlðRÞ:

R2Fl
00 þ 2RFl

0 − lðlþ 1ÞFl ¼ −R2

Z
dxx2jlðxÞjlðRxÞ ¼ −

π

2
δðR − 1Þ; (B3)

where in the second equality we have used the orthogonality relation for the spherical Bessel functions. The homogeneous
solutions of this equation are FlðRÞ ∝ Rl and FlðRÞ ∝ R−ðlþ1Þ. Integrating the differential equation with the initial
condition Flð0Þ ¼ 0, requiring continuity of Fl at R ¼ 1 and the jump condition for its derivative
Fl

0ð1þÞ − Fl
0ð1−Þ ¼ −π=2, we arrive at

FlðRÞ ¼
( πRl

2ð2lþ1Þ if R ≤ 1

πR−ðlþ1Þ
2ð2lþ1Þ if R ≥ 1

≈
π

4l
e−ljR−1j if jR − 1j ≪ 1 and l ≫ 1; (B4)

where the limit is valid for either sign of R − 1. We rewrite
Eq. (B1) with r1 ¼ rzð1þ ϵ1Þ and r2 ¼ rzð1þ ϵ2Þ. For a
top-hat window function the outer integral becomes, to
lowest order in ϵ1; ϵ2,

C0
l ≈

π2

l2
Δ2

0ðl=rzÞ
1

Δ2

ZZ
Δ=2

−Δ=2
dϵ1dϵ2e−ljϵ2−ϵ1j

¼ π2

l2
Δ2

0ðl=rzÞ
2ðlΔ − 1þ e−lΔÞ

ðlΔÞ2 : (B5)

We therefore obtain the following general expression and
asymptotic limits:

l2

2π
C0
l ≈

π

2
Δ2

0ðl=rzÞ
2ðlΔ − 1þ e−lΔÞ

ðlΔÞ2

≈
	 π

2
Δ2

0ðl=rzÞ if lΔ ≪ 1;
π
lΔΔ

2
0ðl=rzÞ if lΔ ≫ 1:

(B6)

Next we consider the cross term. We need to compute the
function

GlðRÞ ≡
Z

dxjlðxÞjl00ðRxÞ ¼
d2

dR2

Z
dx
x2

jlðxÞjlðRxÞ

≡
d2

dR2
HlðRÞ; (B7)

where the second equality is valid for R ≠ 1 and the last one
defines the function Hl. Using again the differential
equation satisfied by jl, we obtain the following equation
for HlðRÞ:

R2Hl
00 þ 2RHl

0 − lðlþ 1ÞHl ¼ −R2Fl; (B8)

from which we get the following equation for Gl ¼ Hl
00:
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R2Gl
00 þ 6RGl

0 þ ð6 − lðlþ 1ÞÞGl ¼ −
d2

dR2
ðR2FlÞ:

(B9)

One can obtain an explicit solution given the boundary
conditions Glð0Þ ¼ Glð∞Þ ¼ 0 and requiring that Gl is

continuous at R ¼ 1. In the limit jR − 1j ≪ 1, l ≫ 1 of
interest, we obtain

GlðRÞ ≈ −
π

8l
e−ljR−1jð1 − ljR − 1jÞ; (B10)

and as a consequence,

C0v
l ≈ −

π2

l2
Δ2

0vðl=rzÞ
1

Δ2

ZZ
Δ=2

−Δ=2
dϵ1dϵ2e−ljϵ2−ϵ1jð1 − ljϵ2 − ϵ1jÞ ¼ −

π2

l2
Δ2

0vðl=rzÞ
2ð1 − e−lΔð1þ lΔÞÞ

ðlΔÞ2 : (B11)

We therefore arrive at the following general expression and corresponding asymptotic regimes for the cross term:

l2

2π
C0v
l ≈ −

π

2
Δ2

0vðl=rzÞ
2ð1 − e−lΔð1þ lΔÞÞ

ðlΔÞ2 ≈
	− π

2
Δ2

0vðl=rzÞ if lΔ ≪ 1;

− π
ðlΔÞ2 Δ

2
0vðl=rzÞ if lΔ ≫ 1:

(B12)

We compute the power spectrum of the velocity term with similar techniques and arrive at

l2

2π
Cv
l ≈

π

8
Δ2

vðl=rzÞ
1 − e−lΔð1þ lΔ − l2Δ2Þ

ðΔlÞ2 ≈
	 3π

16
Δ2

vðl=rzÞ if lΔ ≪ 1;
π

8ðlΔÞ2 Δ
2
vðl=rzÞ if lΔ ≫ 1:

(B13)

To conclude, we find, for power spectra scaling as Δ2ðkÞ ∝ k (i.e. for equal power per linear k interval), that, in the narrow
window regime, we get

l2

2π
Cl ≈

π

2
Δ2

0ðlrzÞ −
π

2
Δ2

0vðlrzÞ þ
3π

16
Δ2

vðlrzÞ; for lΔ ≪ 1; (B14)

which agrees with Eq. (41) of LC07. In the large-window function regime, the terms involving velocities along the line of
sight are suppressed by 1=ðlΔr=rÞ2, whereas the “monopole” term is only suppressed by 1=ðlΔr=rÞ and therefore
dominates the angular power spectrum,

l2

2π
Cl ≈

π

lΔ
Δ2

0ðl=rzÞ; for lΔ ≫ 1; (B15)

in agreement with Eq. (43) of LC07. This appendix moreover provides explicit forms for the transition regime valid for
Δ2ðkÞ ∝ k.
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