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We study the reduced phase space quantization of a closed Friedmann universe, where matter content is
constituted by two (noninteracting) fluids, namely dust (or cold dark matter) and radiation. It is shown that,
for this particular model, specific boundary conditions can be related to the algebra of Dirac observables.
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I. INTRODUCTION

The Wheeler–De Witt (WDW) equation is an important
element in quantum cosmology, as it determines a wave
function for the universe [1]. It is constructed using the
Arnowitt-Deser-Misner (ADM) decomposition of the
spacetime manifold in the Hamiltonian formalism of
general relativity [2]. However, the WDW quantum geo-
metrodynamics has many technical and conceptual chal-
lenges [3]: the problem of time [6], the problem of
observables, factor ordering issues [4], the global structure
of spacetime manifold, and the problem of boundary
conditions (for more details, see [1], [3], and [5]).
On the other hand, the problem of observables is closely

related to the problem of time [1,6]. Let us be more
concrete. According to Dirac [7], the observables of a
theory are those quantities which have vanishing Poisson
brackets at the classical level and satisfy adequate quantum
commutators at the quantum regime, in the presence of
constraints. Regarding general relativity (GR), it must
be pointed that this theory is invariant under the group
of diffeomorphism of hyperbolic spacetime manifold.
Therefore, the Hamiltonian formalism of GR contains
first-class constraints, namely, the Hamiltonian and
momentum constraints. This leads to the conclusion that
all GR Dirac observables should be time independent.
On the other hand, the issue of boundary conditions for

the wave function of the Universe has been one of the most
active areas of quantum cosmology [1,3,5]. Two leading
lines for the WDW quantization are the no-boundary
proposal [8] and the tunneling proposal [9]. Two other
proposals have been used, defining—through mathematical
expressions—explicit procedures to deal with the presence
of classical singularities. More precisely, the wave function
should vanish at the classical singularity ψð0Þ ¼ 0 (De Witt
boundary condition) [10], or its derivative with respect to
the scale factor vanishes at the classical singularity ψ 0ð0Þ ¼
0 [11]. All of these boundary conditions are chosen ad hoc,

with some particular physical intuition in mind [1,5,12], but
they are not part of the dynamical law. However, according
to De Witt, “the constraints are everything” [10];
i.e., nothing else but the constraints should be needed.
The following pertinent question may emerge in the

context of the previous paragraph: Can a relation between
the constraints (that are present and whose algebra char-
acterize GR) and the allowed boundary conditions be
established? If there is such a relation, then boundary
conditions could be related to the set of possible Dirac
observables. Our aim is to show that in the closed
homogeneous and isotropic universe filled with cold dark
matter (dust) and radiation, there is a hidden symmetry,
which, by means of a Dirac observable, allows boundary
conditions to be present as part of a dynamical law. This
paper is organized as follows: Our model is presented in
Sec. II. Its quantization and arguments towards the claim
indicated in the abstract are provided in Sec. III, which is
composed of three subsections. We are aware that the
setting herein is rather restrictive, and we will elaborate
more about our choices in Sec. IV.

II. THE MODEL

One of the simplest models in quantum cosmology is the
homogeneous and isotropic Friedmann-Lemaître-Robertson-
Walker (FLRW) minisuperspace. The line element of FLRW
geometry for the closed universe is defined by

ds2 ¼ −N2ðηÞdη2 þ a2ðηÞdΩ2
ð3Þ; (1)

where dΩ2
ð3Þ is the standard line element on the unit three-

sphere. The action functional corresponding to the line
element (1) for a gravitational sector described by GR plus
a matter content (in the form of a perfect fluid with barotropic
equation of state ρ ¼ γp) is [19]
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where M2
Pl ¼ 1

8πG is the reduced Planck’s mass in natural
units, M ¼ I × S3 is the spacetime manifold, ∂M ¼ S3,
K is the trace of the extrinsic curvature of the spacetime
boundary and overdot denotes differentiation with respect
to η. To obtain the correct dynamical equations from a
variation of an action such as (2), it is necessary to require
the current vector of the fluid to be covariantly conserved [19].
Consequently, for a universe filled by noninteracting dust
(cold dark matter) and radiation, which we will take herein as
the matter content of our model, we have

ρ≔ρm þ ργ ¼ ρ0m
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þ ρ0γ
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where ρm and ργ denote the energy densities of dust and
radiation fluids, respectively [13]. Hence the corresponding
Lagrangian will be
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M is the total mass of the dust content of the universe andN γ

could be related to the total entropy of radiation: Radiation,
the energy density ργ, the number density nγ, the entropy
density sγ and scale factor are related to the temperature

via ργ ¼ π2

30
T4, nγ ¼ 2ζð3Þ

π2
T3, sγ ¼ 4ργ

3T and a ∝ 1
T [20].

Consequently we obtain N γ ¼ ð5×35
210π4

Þ13S4
3
γ , where Sγ is the

total entropy of radiation. If we redefine the lapse function
N and scale factor a as
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the Lagrangian (4) will be
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To construct the Hamiltonian of the model, note that the
momenta conjugate to x and the primary constraint are
given by
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Hence, in terms of the conjugate momenta, the Hamiltonian
corresponding to (7) is

H ¼ − ~N
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Because of the existence of constraint (9), the Lagrangian of
the system is singular and the total Hamiltonian can be
constructed by adding toH the primary constraints multiplied
by arbitrary functions of time, λ,
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The requirement that the primary constraint should hold
during the evolution of the system means that

_Π ~N ¼ fΠ ~N;HTg ≈ 0; (12)

which leads to the secondary (Hamiltonian) constraint
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In addition, the constraint (13) requires a gauge-fixing
condition, where a possibility is ~N ¼ constant. If we choose
the gauge of ~N ¼ 1=ω, and that for the canonical variables
satisfying the Poisson algebra fx;Πxg ¼ 1, we find the
Hamilton equations of motion

�
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(14)

Using the Hamiltonian constraint (13), we can easily find the
well-known solution of a closed universe
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where aMax is the maximum radius of the universe and it is
assumed that the initial singularity occurs at η ¼ 0.

III. QUANTIZATION AND DIRAC OBSERVABLES

A. Standard quantization

The standard quantization of this simple system is accom-
plished straightforwardly in the coordinate representation
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x̂ ¼ x and Π̂x ¼ −i∂x. Then the Hamiltonian constraint (13)
becomes the WDW equation for the wave function of the
universe,

−
1

2MPl

d2ψ
dx2

þ 1

2
MPlω

2x2ψðxÞ ¼ EψðxÞ: (16)

Note that the classical solution (15) has a singularity at
x ¼ x0. In this context, for the WDW quantization of our
model, we will assume wave functions defined on the
ðx0;∞Þ domain such that boundary conditions will lead to
a self-adjoint Hamiltonian. This therefore suggests that
we should use wave functions that satisfy one of the
following boundary conditions: Either the De Witt boun-
dary condition

ψðxÞjx¼x0 ¼ 0 (17)

to avoid the singularity at x ¼ x0, or

�
dψ
dx

þ αψ

�
jx¼x0 ¼ 0; (18)

where α is a arbitrary constant. As pointed out by Tipler [21],
if condition (18) were chosen then the constant α would be
a new fundamental constant of theory. To avoid this new
fundamental constant, we set it to be zero,

dψ
dx

����
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¼ 0: (19)

Using boundary conditions (17) or (19), we obtain normal-
ized oscillator states with eigenvalues En ¼ ωðnþ 1=2Þ,
where n is an even or odd integer corresponding to boundary
conditions (17) and (19), respectively. Hence, using defi-
nition (8), we obtain
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(20)

As we know, the existence of a normalized eigenfunction is
directly related to the existence of the maximum classical
radius of a closed universe [10]. Moreover, expression (20)
suggests that the mass of dust (dark matter) and the entropy
of radiation are intertwined through a quantization rule.

B. Reduced phase space and observables

As is well known, GR is invariant under the group of
diffeomorphisms of the spacetime manifold M. The main
consequences of such a diffeomorphism invariance are that
the Hamiltonian can be expressed as a sum of constraints
and that any observable must commute with these con-
straints. An observable is a function on the constraint

surface such that it is invariant under the gauge trans-
formations generated by all of the first-class constraints. By
a “first-class constraint" we mean a phase space function
with the property of weakly vanishing Poisson brackets
with all constraints. As an example, the momentum and
Hamiltonian constraints are always first class, see (9) and
(13). The Hamiltonian and momentum constraints in GR
are generators of the corresponding gauge transformations,
and so a function on the phase space is an observable if it
has weakly vanishing Poisson brackets with the first-class
constraints. To find gauge-invariant observables, we can
proceed as follows. The unconstrained phase space Γ of the
model is R2, with global canonical coordinates ðx;ΠxÞ and
Poisson structure fx;Πxg ¼ 1. Let us define on Γ the
complex-valued functions
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(21)

The set S ¼ fC;C�; 1g is closed under the Poisson bracket
fC;C�g ¼ −i, and every sufficiently differentiable func-
tion on Γ can be expressed in terms of S. Therefore, the
Hamiltonian can be viewed as

H ¼ − ~NðωC�C − EÞ: (22)

The classical dynamics of these variables in the ~N ¼ 1=ω
gauge is C ¼

ffiffiffi
E
ω

q
expðiηÞ. Moreover, consider on Γ the

functions
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2
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(23)

which have a closed algebra

� fJ0; J�g ¼ ∓iJ�;

fJþ; J−g ¼ 2iJ0:
(24)

Since the phase space is two dimensional, there will be at
most two independent constraints. The Hamiltonian con-
straint implies

J0 ¼
E
2ω

: (25)

Furthermore, we have

J2≔J20 −
1

2
ðJþJ− þ J−JþÞ ¼ jðj − 1Þ; (26)

where j ¼ f1=4; 3=4g denote the Bargmann indices for the
simple harmonic oscillator. Recall that an observable is a

DIRAC OBSERVABLES AND BOUNDARY PROPOSALS IN … PHYSICAL REVIEW D 89, 083504 (2014)

083504-3



function on Γ whose Poisson brackets with the first-class
constraints vanish when the first-class constraints hold [22].
Note that

fJ2; J0g ¼ 0; (27)

which consequently implies that the Bargmann index is
a gauge-invariant observable: J2 has strongly vanishing
Poisson brackets with the Hamiltonian, and its value is
a constant of motion.

C. Hidden symmetry and boundary conditions

The boundary conditions for the evolution of subsystems
of the universe are obtained from observations outside of
the subsystem; they are related to the rest of the universe.
On the other hand, in quantum cosmology, their specifi-
cations cannot be passed off to the rest of the universe. “The
cosmological boundary condition must be one of the
fundamental laws of physics” [23]; or, as we investigate
herein, it can be related—at least in some specific, albeit
restrictive, circumstances—to the constraint algebra of the
cosmological model. In this subsection, we will obtain
boundary conditions using the hidden dynamical sym-
metries of the model. To do this, we focus our attention
on the Dirac observables of the cosmological model.
Let us start by introducing the set of operators

Ŝ ¼ fC;C†; 1g, which will have the commutator algebra

½C;C†� ¼ 1; ½C; 1� ¼ ½C†; 1� ¼ 0: (28)

Hence, the set Ŝ and its commutator algebra are the
quantum counterpart of the set S. The action of operators
fC;C†g on the states of the physical Hilbert space are
given by

�
Cjn >¼ ffiffiffi

n
p jn − 1i;

C†jn >¼ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnþ 1i: (29)

The Poisson bracket algebra of the classical J’s can
subsequently be promoted into a commutator algebra
version by setting

8>><
>>:

J0≔ 1
4
ðC†Cþ CC†Þ;

Jþ≔ 1
2
C†2;

J−≔ 1
2
C2;

(30)

so that the corresponding commutators are

½Jþ; J−� ¼ −2J0; ½J0; J�� ¼ �J�: (31)

Note that the above relations are recognized as the
commutators of the Lie algebra of suð1; 1Þ. The positive
discrete series representations of this Lie algebra are
labeled by a positive real number j > 0 (the Bargmann

index). The actions of the above generators on a set of basis
eigenvectors jj; mi are given by
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where m can be any non-negative integer. The correspond-
ing Casimir operator can be calculated as

�
J2≔J0ðJ0 þ 1Þ − J−Jþ;

J2jj; mi ¼ jðj − 1Þjj; mi; (33)

with the following properties:

½J2; J�� ¼ 0; ½J2; J0� ¼ 0: (34)

Thus, a representation of suð1; 1Þ is determined by the
number j and the eigenstates of J2 and J0, constituting
a basis for the irreducible representations of suð1; 1Þ and
which can be labeled by jj; mi. In addition, the Hamiltonian
can be presented as

H ¼ −E þ ω

�
C†Cþ 1

2

�
¼ −E þ 2ωJ0; (35)

which leads us to point out that the Casimir operator
commutes with the Hamiltonian,

½J2; H� ¼ 0: (36)

As J2 and J0 commute with the Hamiltonian, they leave the
physical Hilbert space VH invariant and, consequently,
we choose fJ0; J2; 1g as physical operators of the model.
Using definition (30), the Casimir operator of suð1; 1Þ
reduces identically to J2 ¼ jðj − 1Þ ¼ −3=16. Hence, the
Bargmann index j ¼ f1

4
; 3
4
g is a gauge-invariant observable

of the quantum cosmological model. As a consequence,
from (13), (32), and (35) we obtain

Em;j ¼ 2ωðjþmÞ: (37)

Hence, the states of the Hilbert space, by means of the
Hamiltonian constraint VH¼0, can be classified in terms of
the Bargmann index, allowing us to establish two invariant
subspaces,
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with VH¼0 ¼ VH¼0;j¼1
4
⊕VH¼0;j¼3

4
. Therefore, the gauge

invariance of the Bargmann index implies a partition of
the Hilbert space into two disjointed invariant subspaces,
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which are equivalent to the result of imposing boundary
conditions (17) and (18), respectively.

IV. CONCLUSION AND DISCUSSION

We investigated how the selection of boundary proposals
in quantum cosmology can be related to the Dirac observ-
ables. In this paper, we have extracted Dirac observables
of a closed Friedmann universe, where the matter content
is constituted by noninteracting radiation and dark matter
(dust) perfect fluids. The reduced phase space quantization
of this simple cosmological model was discussed. It was
shown that the hidden symmetry of model suð1; 1Þ admits
a Dirac observable related to the boundary proposals
admissible for the model.
Notwithstanding the interest that the above paragraph

may raise, the following should be added:
(1) Our simple model is very specific, either in geom-

etry or matter content choice. Awider analysis, with
less restrictive cosmologies (but still bearing some
symmetries) and/or other matter fields, should fol-
low. The presence of fluid matter [as in (2)] was
broadly used in, e.g., [24] so that exact solutions of
the (simplified) WDW equation could be obtained
[cf. Eq. (20)]. Using instead, e.g., a scalar field
would be more generic and more realistic from the
point of view of matter interaction with the gravi-
tational field in a high energy regime, where
quantum effects can be expected. Our proposal is
that the presence of a hidden symmetry (as herein
denoted within the algebra of observables) is para-
mount to support the claim in the abstract: that from
the algebra of constraints, (some) reasonable boun-
dary conditions can be suitably extracted. We
suggest this could be verified within models where
symmetries (like string dualities [25–28]), acting
directly and intertwining geometrical elements
and matter field, are implicity present. We are
addressing this in a forthcoming paper, considering
scalar-tensor theories in a string setting [27–29].

(ii) The arguments herein rely on the fact that the model
has a singularity, as mentioned at the end of Sec. II.

This implies a concrete to a domain of existence for
the wave function, ψ , and subsequently, requiring
the Hamiltonian to be unequivocally self-adjoint.
This allows the boundary conditions pointed out in
III A, and then the reasoning indicated in III C, from
the algebra of constraints. Nevertheless, other boun-
dary conditions can be put forward (e.g., [8] or [9]),
with well-known results, which have been widely
investigated in the literature, including consistency
and potential observational features [1,5,8,9]. It
would be interesting to find some algebraic support
for them, along the lines discussed in Sec. III, but the
statements defining the boundary conditions in [8,9]
are more of a topological nature for the minisuper-
spaces involved; hence, it is not obvious if this can
be achieved. Moreover, singularities of a differential
nature can be present in a given cosmology (e.g., late
time [30] or pre-big-bang [25,26]) and a discussion
involving them, conditions on ψ , and admissible
boundary conditions by means of the algebra of
constraints is worthy, particularly if within the
context of hidden symmetries.

(3) Finally, it can be of interest to point to the (partial)
similarities of Eqs. (21)–(23) or Eqs. (30)–(35)
regarding J0, the definition of C, C† with respect
to the same elements present in supersymmetric
quantum mechanics [27,28,31–33]. In fact, J0 in
(30) suggests an anticommutation relation, whereas
from (21) we can infer (part of) a N ¼ 2 supercharge
structure in the same manner as in [27,28,31–34].
These assertions need to be carefully explored, but
we think that a possible relation between the
degeneracy from (37) and the relation among boun-
dary conditions, self-adjoint Hamiltonians, and
classical singularities, regarding the integrability
of a WDW equation, is worth exploring further by
means of broader cosmologies.
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