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We consider an alternative approach for the computation of the stochastic gravitational wave background
generated by small loops produced throughout the cosmological evolution of cosmic string networks and
use it to derive an analytical approximation to the corresponding power spectrum. We show that this
approximation produces an excellent fit to more elaborate results obtained using the velocity-dependent
one-scale model to describe cosmic string network dynamics, over a wide frequency range, in the small-
loop regime.
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I. INTRODUCTION

Cosmic string networks may be produced as a conse-
quence of symmetry-breaking phase transitions [1], being a
crucial prediction of many grand-unified scenarios. These
networks may survive throughout the cosmological history,
potentially leaving behind a variety of observational
signatures (see, e.g., [2–7] and the references therein).
One such signature is the stochastic gravitational wave
(GW) background (SGWB) generated by string loops
created as a result of string interactions. These loops radiate
their energy in GWs, and their emissions generate a
characteristic SGWB [8–11].
The SGWB power spectrum generated by cosmic string

networks may be probed using diverse astrophysical
experiments: GW detectors [12–16], pulsar timing experi-
ments [17–19], small-scale fluctuations and B-mode polari-
zation of cosmic microwave background [20–22], and big-
bang nucleosynthesis [23]. There is thus the prospect either
for the detection of specific cosmic string signatures in the
SGWB or for the tightening of current constraints on string
tension. It is, therefore, important to accurately characterize
the SGWB spectrum and to understand its dependence on
the large-scale properties of string networks and on the size
and emission spectrum of the loops. There are, in the
literature, several computations of the SGWB spectrum
[24–37] based on different assumptions about string net-
work dynamics. In this paper, we present an alternative
method to compute the SGWB generated by a realistic
cosmic string network, and we use it to derive an analytical
approximation to the SGWB power spectrum over a wide
frequency range in the small-loop regime.

II. COSMIC STRING NETWORK EVOLUTION

The velocity-dependent one-scale (VOS) model [38,39]
describes the time evolution of the characteristic length
scale of the network, L, and of its root-mean-square (RMS)
velocity, v̄, thus allowing for a quantitative characterization
of string network dynamics. If one assumes that the cosmic
string network is statistically homogeneous on sufficiently
large scales, one may define its characteristic length scale
as L≡ ðμ=ρÞ1=2, where μ is the cosmic string tension and
ρ is the average energy density of long strings. In the limit
of infinitely thin cosmic strings, the following evolution
equations for L and v̄ can be obtained by averaging the
microscopic Nambu-Goto equations of motion [38,39] (see
also [40,41] for a more general derivation of the VOS
equations):
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where H ¼ _a=a is the Hubble parameter, a is the cosmo-
logical scale factor, and dots represent derivatives with
respect to physical time. We have also introduced the
damping length scale, l−1

d ¼ 2H þ l−1
f , that accounts for

the damping caused by the Hubble expansion and also for
the effect of frictional forces caused by interactions with
other fields (encoded in the frictional length scale, lf).
We assume for the remainder of this paper that lf ¼ ∞.
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is an adimensional curvature parameter that encodes the
effects caused by the small-scale structure on long strings
(see [39]).
Cosmic string intersections often result in the formation

of loops that detach from the long string network. The
energy lost into loops by this network can be written as [42]

dρ
dt

����
loops

¼ ~c v̄
ρ

L
; (4)

where ~c is a phenomenological parameter that characterizes
the efficiency of the loop-chopping mechanism. Numerical
simulations indicate that ~c ¼ 0.23� 0.04 is a good fit both
in the matter and radiation eras [39].
These loops start decaying radiatively once they detach

from the cosmic string network, and thus, they have a finite
lifespan. Consequently, the network loses energy at the rate
given by Eq. (4). This effect is included in the VOS
equations by adding the following term to the right-hand
side of Eq. (1)

dL
dt

����
loops

¼ 1

2
~c v̄ : (5)

Eqs. (1), (2), and (5) are the basis of the VOS model, and
they describe the large-scale evolution of cosmic string
networks. Interestingly, the linear scaling regime [43–47]
arises naturally in this model. Indeed, a regime of the form

L
t
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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is an attractor solution of the VOS equations, in the case of
a decelerating power-law expansion of the universe, with
a ∝ tβ and 0 < β < 1 (for a detailed discussion of the scaling
solutions of cosmic string and other p-brane networks, see
[40,41,48]). Note, however, that such solutions are only
possible deep into thematter and radiation epochs.During the
radiation-matter transition, the network enters a long-lasting
transitional period during which it is not in a linear scaling
regime [37,48].Note also that thematter eramight not be long
enough for the network to reestablish scale-invariant evolu-
tion before the onset of dark energy. During a phase of
accelerated expansion, the network is conformally stretched
[40] withL ∝ a and v̄ → 0. Cosmic string networks are then
diluted away rapidly by the accelerated expansion of the
universe once it becomes dark-energy dominated.

III. SGWB IN THE SMALL-LOOP REGIME

The creation of loops is expected to occur copiously
throughout the evolution of cosmic string networks. Once a
loop detaches from the long string network, it oscillates
relativistically and decays in the form of GWs. There are, at
any given time, several cosmic string loops emitting GWs

in different directions. The superimposition of these emis-
sions generates a SGWB, with a characteristic shape,
spanning a wide range of frequencies [8–11]. Cosmic
string loops emit GWs in a discrete set of frequencies
femj ¼ 2j=l determined by their physical length l at the time
of emission (femj is the frequency of the jth harmonic
mode). We shall start by assuming that the loops emit all of
their energy in a single harmonic mode j. Although this is
not a realistic assumption considering that higher order
modes have indeed a significant impact on the spectrum
[33,36,37], we recover the full result in the end of this
section.
It is often assumed that string loops are created with

a size that is a fixed fraction of the characteristic length of
the network at the time of birth (tb)

lb ¼ αLðtbÞ; (7)

where α is a constant parameter. Loops lose energy at
a constant rate, dE=dt ¼ ΓGμ2, and thus, their length
decreases as GWs are emitted:

lðtÞ ¼ αLðtbÞ − ΓGμðt − tbÞ; (8)

for tb < t < td, where td is the time of death of the loop,
Γ ∼ 65 [8,49] is a parameter characterizing the efficiency of
GW emission, and G is the gravitational constant.
Several studies [31,50–54] suggest that cosmic string

loops are created with a typical length scale that is smaller
than the gravitational backreaction scale, ΓGμ (referred to
as small loops). This question, however, is not settled:
while some studies indicate that loop size may be closer to
the Hubble radius (with α ∼ 10−1–10−3) [55–58], others
suggest microscopic loops, with a typical length similar to
string thickness [59–61]. There is also work that favors
considerable loop production at significantly different
scales [62,63]. In this paper, we focus on the small-loop
regime (α ≪ ΓGμ).
In the small-loop regime, loops live less than a Hubble

time, tH ¼ H−1. It is therefore reasonable to assume that
their energy is radiated in GWs immediately after for-
mation. This energy, however, is not radiated in a single
frequency: as the loop size decreases, the GW frequency
must increase. In this case, though, this occurs effectively
instantaneously in the cosmological time scale. Thus, if the
size of the loop at the moment of creation is lðtÞ, it radiates
GWs with frequencies

f > fmin ¼
2j
lðtÞ

aðtÞ
a0

; (9)

at the present time. (We use the subscript “0” to refer to
the value of the parameter at the present time.)
The amplitude of the SGWB is often quantified by the

energy density in GWs, ρGW, per logarithmic frequency
interval in units of critical density [ρc ¼ ð8πGÞ=ð3H2

0Þ]:
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ΩGW ¼ 1

ρc

dρGW
d log f

: (10)

The distribution of the power radiated by small loops over
the different frequencies is described by the following
probability distribution function:

pðfÞ ¼ pðlÞ
���� dldf

����Θðf − fminÞ ¼
fmin

f2
Θðf − fminÞ; (11)

where Θðf − fminÞ ¼ 1, for f ≥ fmin, and vanishes for all
other f. In deriving Eq. (11), we used dl=df ¼ −2j=f2 and
the fact that pðlÞ ¼ dE=dl is constant. Hence,

dρGW
dtdf

����
loops

¼ dρ
dt

����
loops

�
aðtÞ
a0

�
4 fmin

f2
Θðf − fminÞ; (12)

where dρ=dtjloops is given by Eq. (4) and the term
dependent on aðtÞ accounts for the dilution of ρGW caused
by the background expansion. The SGWB spectrum may
then be computed as follows:

Ωj
gwðfÞ ¼ 16jπG

3H2
0a

5
0

Z
t0

tmin

dρ
dt

����
loops

a5ðtÞ
αfLðtÞ dt; (13)

where tmin is the time of creation of the loops that
have fmin ¼ f.
Gravitational backreaction damps modes with higher

frequencies more efficiently than it does low-frequency
modes [26,64]. The power emitted in each modes is

dEj

dt
¼ Gμ2

Γ
E
j−q; (14)

where E ¼ Pns
m m−q and q is a parameter that depends on

the shape of the loops. It has been shown that q ≈ 2 for
loops with kinks and q ≈ 4=3 for cuspy loops [65]. Here we
have also introduced a cutoff, ns, to the summation in E.
Previous work [36,37] has shown that it is sufficient to
consider modes up to ns ¼ 103ð105Þ for loops with kinks
(cusps): the spectrum remains unchanged by the inclusion
of higher order modes. The full SGWB spectrum may then
be obtained by performing a weighed summation of the
spectra associated with the different harmonic modes:

ΩGWðfÞ ¼
Xns
j

j−q

E
Ωj

GWðfÞ: (15)

Note that this method to compute the SGWB power
spectrum is only valid in the small-loop regime. However,
in this regime, it produces identical results to standard
methods with the advantage of requiring significantly less
computation time. We refer the reader to [37] (see also
[35,36]) for a more general analysis.

IV. ANALYTIC APPROXIMATION TO THE
SGWB SPECTRUM

In this section, we compute an analytical approxima-
tion to the SGWB spectrum in the small-loop regime.
First, we assume that the string network exhibits scale-
invariant evolution throughout the cosmological history.
This assumption, despite not being very realistic, is very
common in computations of the SGWB spectrum, and
the effects on its shape have been discussed in [37]. Let
v̄r (v̄m) and ξr (ξm) be the scaling constants that
characterize v̄ and L during the radiation (matter) era.
We assume that the transition between these values occurs
in a steplike manner at the time of radiation-matter
equality, teq. We also assume that the universe contains
radiation, matter, and a cosmological constant (Λ) and
that the evolution of the scale factor is determined by the
dominant component of the energy density. Under this
assumption, we have that

afitðtÞ ¼

8>><
>>:

aeq−ðt=teqÞ1=2; for t < teq

aeqþðt=teqÞ2=3; for teq < t < tΛ
a0 exp½H0ðt − t0Þ�; for tΛ < t

; (16)

where tΛ is the instant of time when the energy densities
of matter and Λ are equal. Note that Eq. (16) must be
discontinuous at teq and tΛ in order to adjust to the
realistic evolution of the scale factor deep in the radiation,
matter, and Λ eras. We have used the value of the scale
factor in an instant deep in the radiation era [aðtrÞ ¼ ar]
and another in the matter era [aðtmÞ ¼ am] to determine
the constantsaeq−¼arðteq=trÞ1=2 andaeqþ ¼ amðteq=tmÞ2=3.
In Fig. 1, the resulting fitting function and the complete
evolution of aðtÞ are plotted alongside.
We then obtain the following analytical approximation to

the SGWB spectrum:

FIG. 1 (color online). Time evolution of the scale factor (dashed
line) and of the corresponding fitting function, afitðtÞ (solid line).
Here, we took h ¼ 0.673, Ω0

Λ ¼ 0.685, Ω0
m ¼ 0.315, and zeq ¼

3391, consistently with the Planck data combined with the Wilkinson
microwave anisotropy probe polarization 9-year data [66]. We also
took a0 ¼ 1 and chose a logarithmic scale for both axes.
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where we have defined the constants K ¼ ð16jπGμh2 ~cÞ=
ð3H2

0αÞ and aΛ− ¼ aeqþðtΛ=teqÞ2=3. Note that our simplify-
ing assumptions—the abrupt change in aðtÞ, v̄, and L at
teq—give rise to an additional unphysical term that we
neglected in the derivation of Eq. (17). Note also that the
contribution of the loops created after tΛ was not included
in this expression. Nevertheless, once the universe
becomes dark-energy dominated, the network starts being
conformally stretched. The amount of energy that is lost
due to loop production in this regime decreases steeply
[see Eq. (4)].
The constant high-frequency portion of the SGWB is

created by small loops that decay during the radiation era—
whose radiation is thus highly redshifted—and its amplitude
is determined by the first term in Eq. (17). As one moves
toward smaller frequencies, the SGWB then starts receiving
contributions from loops created during the matter era,
which causes the spectral density to increase almost linearly.
However, the spectrumdevelops a peak in the low-frequency
range, and as f increases, it slopes approximately linearly
toward the radiation era amplitude. This peak is located at
f ¼ 4jaΛ−=ðαξmtΛa0Þ, and its existence is caused by the
suppression of GWemission at tΛ. Using Eq. (17), one finds
that the relative amplitude of the peak of the spectrum when
compared to the flat portion is

Ωpeak

Ωrad
¼ 3

8

v̄r
v̄m

�
ξr
ξm

�
3
�
teq
tΛ

�
2
�
aΛ−
aeq−

�
4

: (18)

The shape of the SGWB spectrum is highly dependent
on α and Gμ (see, e.g., [35–37]). Changing these param-
eters affects the way the energy density of loops is radiated
as a function of time. Still, if loops radiate their energy
rapidly after formation, as is the case when ΓGμ > α, the
rescaled spectrum is essentially the same for all α and Gμ.
Changing α, however, shifts the frequency of the emitted
radiation, and the amplitude of the spectrum increases
linearly with Gμ. Figure 2 shows the SGWB spectrum
generated by a cosmic string network obtained using the
VOSmodel, in units ofGμ, as a function of αf=j, alongside
the analytical approximation given in Eq. (17). This plot
shows that our approximation successfully predicts the
amplitude of the flat part of the spectrum and the location
and amplitude of the peak of the spectrum. Our approxi-
mation slightly underestimates the amplitude of the power
spectrum in the midfrequency range corresponding to the
radiation-matter transition and the onset of matter domi-
nation. This is a consequence of the assumption of scale-
invariant network evolution: it has been shown in [37] that

this assumption causes an underestimation of the number of
loops produced during most of the matter era, leading to a
slightly narrower peak. Remarkably, despite the simplify-
ing assumptions necessary to make the problem tractable
analytically, our approximation provides an excellent fit to
the SGWB spectrum generated by small loops.

V. CONCLUSIONS

We have proposed an alternative method to compute the
SGWB power spectrum generated by cosmic strings in the
small-loop regime. This method does not require under-
lying simplifications regarding cosmic string network
evolution—avoiding the common assumption of scale
invariance—thus allowing for an efficient computation of
the spectrum generated by string networks undergoing a
realistic cosmological evolution. Our method is very
useful in the small-loop regime where it is much more
efficient than standard methods. This is an important
advantage since multiple computations of the spectrum
covering a multiparameter space are often necessary
to confront different cosmic string scenarios with the
observational data.
Moreover, we used this method to derive an analytical

approximation to the SGWB spectrum, which was shown
to provide an excellent fit to more elaborate results obtained
using the VOS model, in the small-loop regime, over a
wide frequency range. This analytical approximation
constitutes a useful tool for a first estimation of the
SGWB power spectrum generated by cosmic string net-
works, thus allowing for simple estimates of the associated
observational constraints in the small-loop regime.
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