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We investigate the rich nonlinear dynamics during the end of hilltop inflation by numerically solving the
coupled Klein-Gordon-Friedmann equations in an expanding universe. In particular, we search for
coherent, nonperturbative configurations that may emerge due to the combination of nontrivial couplings
between the fields and resonant effects from the cosmological expansion. We couple a massless field to the
inflaton to investigate its effect on the existence and stability of coherent configurations and the effective
equation of state at reheating. For parameters consistent with data from the Planck and WMAP satellites,
and for a wide range of couplings between the inflaton and the massless field, we identify a transition from
disorder to order characterized by emergent oscillonlike configurations. We verify that these configurations
can contribute a maximum of roughly 30% of the energy density in the universe. At late times their
contribution to the energy density drops to about 3%, but they remain long lived on cosmological time
scales, being stable throughout our simulations. Cosmological oscillon emergence is described using a new
measure of order in field theory known as relative configurational entropy.
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I. INTRODUCTION

Recent results from the Planck satellite have placed
severe constraints on viable models of inflation [1].
Quoting from Ref. [2]: “Constraints on inflationary models
are presented in Planck Collaboration XXII [1] and
overwhelmingly favor a single, weakly coupled, neutral
scalar field driving the accelerated expansion and generat-
ing curvature perturbations.” In addition, exponential
potentials, the simplest hybrid inflation models, and mono-
mial potential models with n ≥ 2 do not provide a good fit
to the data [1,3]. Models with nonminimal gravitational
coupling are less constrained, but we will focus here on
ordinary gravity. Combined data from the Planck satellite,
from the WMAP satellite [4], and from measurements of
the baryon acoustic oscillations (BAO) scale [5] favor
models with V 00 < 0, in particular hilltop models [6], such
as the original new inflation scenario of Linde [7] and
Albrecht and Steinhardt [8] based on a Coleman-Weinberg
(CW) potential. If such models are considered near the
origin (ϕ≳ 0), they can be approximated as

VðϕÞ≃ Λ4

�
1 −

ϕp

μp

�
; (1)

where p is a positive integer. Here p ¼ 2 [9] is allowed
only as a large-field model, while p ¼ 3 lies outside the
95% confidence level (CL) for PlanckþWMAPþ BAO.
However, p ¼ 4, the model we are interested in, is allowed

within the joint 95% CL for a number of e-folds
N� ¼

R te
t� dtH ≳ 50. The * means that the number of

e-folds is computed when the mode k� ¼ a�H� ¼
0.002ð8 πGÞ1=2 (the pivot scale) crosses the Hubble radius
for the first time [10,11]. Models with higher values of p
are within the accepted range, but are less well-motivated
from high-energy physics. Taking these constraints
together, it is important to investigate the late-time dynam-
ics of CW new inflation style potentials, in particular in
regards to the possible emergence of nonperturbative
coherent structures during the preheating phase of inflation
[12–14]. This is when the inflaton performs near-linear
oscillations about the potential minimum, and the universe
begins to transition to a power-law expansion, during which
time entropy is generated profusely to produce the hot big
bang. We should note that there are other models consistent
with the combined data, such as natural inflation [15,16],
but in the late-time regime that we are considering they will
behave similarly to CW models.
Given the nonlinear nature of the reheating dynamics, it

is natural to investigate whether extended coherent struc-
tures may be formed as the oscillating inflaton gives up its
energy to different modes and, potentially, to other fields.
Clearly, such processes will play a decisive role in the
reheating process and the transition to a power-law expan-
sion. Indeed, much recent work has been devoted to
answering this question in a variety of inflationary models.
If we focus only on real scalar field models, the dominant
coherent configurations are oscillons [17–19]: long-lived,
time-dependent localized configurations which have been
shown to exist in many models of interest in cosmology and
high-energy physics, from Abelian Higgs models [20,21] to
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the Standard Model (for particular parameter values)
[22–24]. Within inflation, inflaton “hot spots” were
reported in Ref. [25], while “condensate lumps” were
found for a class of supersymmetric models in Ref. [26].
The potential role of oscillons in cosmology has been
investigated in 1D simulations [27–30], while 3D simu-
lations have been carried out for a single real field in a
double-well potential [31], for hybrid inflation [32], and for
ϕ6 potentials [33], where the emergence of flat-top oscil-
lons [30] was reported. Formation of oscillons after
inflation for realistic inflationary potentials was investi-
gated in [34], which prompted one of the questions we
address here: whether couplings to other fields destabilize
oscillons over time scales shorter than those associated with
quantum mechanical decays [35]. As will be shown here,
they do not, at least for the class of models we investigated.
If oscillons are sufficiently long lived, that is, if their
lifetime is at least of order of H−1, and if they contribute
significantly to the energy density, they can have important
cosmological consequences: for example, delaying ther-
malization and thus lowering the thermalization temper-
ature [36]; changing the effective potential and seeding
spontaneous symmetry breaking [37]; and, if they decay,
producing entropy, and possibly generating gravitational
waves [38].
This paper is organized as follows. In the next section we

introduce the model and describe the details of the
numerical simulations. In Sec. III we describe our results,
using two measures to account for the emergence of
oscillons: their fractional contribution to the energy density,
and, for the first time in cosmology, the more precise
relative configurational entropy [39,40]. As we shall see,
oscillons emerge for a wide range of model parameters
consistent with the PlanckþWMAPþ BAO data and
contribute a nontrivial fraction of the energy density.
Furthermore, we show that they remain stable over cos-
mological time scales. We conclude in Sec. IV with a
summary of our results.

II. COLEMAN-WEINBERG INFLATION

We consider a model of slow-roll inflation with a
Coleman-Weinberg potential for the real scalar inflaton
field ϕ, which is also coupled quadratically to a massless
real scalar χ. The Lagrangian in comoving coordinates is

L ¼ 1

2

Z
aðtÞ3

�
ð∂μϕÞð∂μϕÞ þ ð∂μχÞð∂μχÞ

−
λ

4

�
ϕ4 log

ϕ2

ν2
þ 1

2
ν4 −

1

2
ϕ4

�
− h2ϕ2χ2

�
d3x; (2)

where h is the coupling to the light field χ, which will allow
for decay of the inflaton at reheating, and aðtÞ is the
expansion factor from the usual Robertson-Walker metric
[41]. The coupling λ can be thought of as coming from

self-interactions of the field ϕ and/or from summing over
one-loop corrections from gauge bosons and/or fermions.
(In the original model new inflation model, those bosons
were thought to come from a SUð5Þ GUT [7,8].) From the
Lagrangian density, we obtain the equations of motion for
the two fields as

ϕ̈þ 3H _ϕ −
∇2ϕ

aðtÞ2 ¼ −
1

2
λϕ3 log

�
ϕ2

ν2

�
− h2χ2ϕ (3)

χ̈ þ 3H _χ −
∇2χ

aðtÞ2 ¼ −h2ϕ2χ; (4)

where we have written the Hubble parameter as H ¼ _aðtÞ
aðtÞ.

The evolution of the scale factor aðtÞ is given by the
Friedmann equation

H2 ¼ 1

3m2
pl

�
1

2
_ϕ2 þ 1

2
_χ2 þ 1

2

ð∇ϕÞ2
a2

þ 1

2

ð∇χÞ2
a2

þ λ

8

�
ϕ4 log

ϕ2

ν2
þ 1

2
ν4 −

1

2
ϕ4

�
þ 1

2
h2ϕ2χ2

�
; (5)

where mpl ≡ ð8 πGÞ−1=2 is the reduced Planck mass. The
inflaton will slow roll until it reaches its inflection point.
During slow roll, the expansion is well-approximated by a
pure de Sitter metric. After the inflection point, ϕ will
perform large-amplitude oscillations about the minimum
at ν. These oscillations, due to the self-coupling of ϕ, will
be responsible for generating oscillons through parametric
amplification. This mechanism has been discussed in detail
in Refs. [31], [32], and [33]. After very long times, the
oscillations damp away, leaving the field ϕ at its vacuum
expectation value ν, where it has a mass mϕ ¼ ν

ffiffiffi
λ

p
and

gives mass mχ ¼ hν to the χ particle. For oscillons to form,
ν cannot be too close to the Planck mass, because in that
case the characteristic oscillon size is comparable to the
Hubble length and the expansion of the universe prevents
their formation [31]. In our simulations we take
mpl ¼ 100ν, and so ν≃ 2.43 × 1016 GeV.
In order to produce density fluctuations compatible with

those observed in the cosmic microwave background, we
choose a very small self-coupling, λ ¼ 1.5 × 10−13. We
begin our simulations when the slow-roll process starting
from ϕ ≈ 0 has reached ϕinf=2, halfway to the inflection
point at ϕinf ¼ νe−1=3 ≃ 1.74 × 1016 GeV that signals the
end of inflation. To set the initial conditions for our
simulation, we add zero-point fluctuations to this classical
value of ϕ and also include zero-point fluctuations in the χ
field. Our initial state is thus given solely by zero-point
fluctuations about a classical value: there are no coherent
field configurations present. In this sense we call it a
disordered state.
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The simulation space consists of a cube with comoving
size L and volume V ¼ L3 discretized on a regular lattice
with spacing Δxi ¼ Δrði ¼ 1; 2; 3Þ. We simulate the initial
conditions for each field as quantum perturbations around
their homogeneous values ϕ ¼ ϕinf=2 ¼ νe−1=3=2 and
χ ¼ 0. We use periodic boundary conditions. To set up
the initial conditions, we label both free fields’ normal
modes by k ¼ ð2πni=LÞ, where n ¼ ðnx; ny; nzÞ and the ni
are integers ni ¼ −N=2þ 1…N=2. Here N ¼ L=Δr is the
number of lattice points per side. Each free mode is
described by a harmonic oscillator with frequency
ω2
k ¼ ð2 sinðkΔr=2Þ=ΔrÞ2 þm2

eff , where k ¼ jkj and
meff is the effective mass of each field given above. The
initial conditions for the fields are then given by [32]

ϕðr; t ¼ 0Þ ¼ ϕinf

2
þ 1ffiffiffiffi

V
p

X
k

ffiffiffiffiffiffiffiffi
1

2ωk

s
½αkeik·r þ α�ke

−ik·r�;

_ϕðr; t ¼ 0Þ ¼ 1ffiffiffiffi
V

p
X
k

1

i

ffiffiffiffiffiffi
ωk

2

r
½αkeik·r − α�ke

−ik·r�; (6)

χðr; t ¼ 0Þ ¼ 1ffiffiffiffi
V

p
X
k

ffiffiffiffiffiffiffiffi
1

2ωk

s
½αkeik·r þ α�ke

−ik·r�;

_χðr; t ¼ 0Þ ¼ 1ffiffiffiffi
V

p
X
k

1

i

ffiffiffiffiffiffi
ωk

2

r
½αkeik·r − α�ke

−ik·r�; (7)

where αk is a random complex variable with phase
distributed uniformly on ½0; 2πÞ and magnitude drawn
from a Gaussian distribution such that hjαkj2i ¼ 1=2.
The evolution of the expansion rate in dimensionless

units is given by solving Eqs. (3) and (4) together with the
volume-averaged Friedmann equation

H2 ¼ 1

3

hρi
m2

pl

; (8)

where hρi is the volume-averaged energy density. At each
time step, we solve the coupled equations for ϕ and χ, and
for the scale factor aðtÞ, using H ¼ _aðtÞ=aðtÞ and
aðt ¼ 0Þ ¼ 1. We discretize the equations with initial
spacing δ ¼ 1=ð32mϕÞ and size 16=mϕ, yielding a box
with 5123 lattice points. We keep the same lattice in
comoving coordinates, and solve the field theory equations
of motion in the presence of the expanding scale factor
aðtÞ. When seeding the initial lattice, we only excite
modes up to wave number k ¼ 1=ð2δÞ to avoid limitations
of the numerical calculation near the Nyquist frequency.
We performed very long runs, out to scale factors
aðtendÞ ≈ 10, which corresponds to total time tend≈
15; 000=mϕ. With a slower expansion rate, these runs
are considerably longer than those in our previous analysis
of oscillon formation in hybrid inflation [32]. Longer runs,
while clearly more CPU-intensive, allow us to investigate

more fully the long-time behavior of oscillons, in particular
their longevity. Indeed, we found that in models that allow
for the formation of oscillons, their long-term contribution
amounts to approximately 3% of the total energy density
and remains stable at late times.

III. EMERGENT STRUCTURES
DURING PREHEATING

A. Equation of state

We first plot the spatially averaged values of the ϕ and χ
fields in Fig. 1 for different values of the coupling h. The
vertical dashed line (red online) marks the time after which
oscillations of the inflaton can no longer climb above the
inflection point. (That is, from then on ϕ > ϕinf .) The initial
oscillations of the ϕ field as it reaches its vev induce
oscillations of the χ field through parametric resonance.
During this process, localized oscillations in the ϕ field
emerge, which then form into oscillons, as we will see
below. In Fig. 2 we show the evolution of the spatially
averaged fields when their mutual coupling is zero (h ¼ 0).
We can see that when h ≠ 0 the initial energy of the inflaton
is rapidly transferred to the χ field and that nonlinear effects
for the χ field become more pronounced as h increases. In
contrast, the behavior of the inflaton is quite similar for all
cases when h ≠ 0. This is reflected in the production of
oscillons, as we will see below. When h ¼ 0 there is no
energy transfer between the two fields and the χ field
remains essentially at its initial value, except for quantum
fluctuations. We note the sharp change in the behavior of
the inflaton in this case: as it drops beyond its inflection
point, the amplitude of oscillations is rapidly suppressed.
Contrasting with the case when h ≠ 0, we see that the
coupling with the χ field sustains larger-amplitude oscil-
lations of the inflaton for longer times, generating a richer
nonlinear dynamics.
Next we track the equation of state by computing the

ratio w ¼ hpi=hρi, where hpi is the volume-averaged
pressure and hρi is the volume-averaged energy density.
(We can also use these quantities as a check of the
numerical simulation, since d

dt ðVhρiÞ ¼ hpi dVdt .) We exam-
ine the change in the average equation of state as inflation
nears its end, where w increases from the vacuum-
dominated value w ¼ −1 to positive values as reheating
produces radiation, to finally approach the matter-
dominated value w ¼ 0, as the inflaton performs small
oscillations about the minimum at ϕ ¼ ν. In the latter phase,
both oscillons and perturbative waves behave as pressure-
less dust. Results are shown in Fig. 3 for different values of
the coupling h, from weak (h ¼ ffiffiffi

λ
p

=100, left) to strong
(h ¼ ffiffiffi

λ
p

, right). In Fig. 4 we plot the equation of state for
h ¼ 0, that is, with no coupling between the two fields.
As above, in Figs. 3 and 4 the vertical dashed line (red

online) marks the time when oscillations of the inflaton can
no longer climb above the inflection point. First we note
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that when the two fields are coupled (h ≠ 0), the overall
behavior of the equation of state is quite insensitive to the
coupling strength h. This is consistent with the results of
Fig. 1, where no noticeable difference was seen for the

evolution of ϕ for different values of h. We also note that,
in all cases, there is a sharp change in the equation of
state as the pressure becomes positive definite. (There
are a few oscillations back to negative pressure, but these
are small amplitude and would disappear upon time
averaging.)
There is, however, a clear difference between the coupled

and uncoupled cases. While for h ¼ 0 the transition to
positive-definite pressure happens at the time when ϕ drops
beyond the inflection point, ϕ ≥ ϕinf (cf. Fig. 4), for h ≠ 0
the discontinuity happens before ϕ > ϕinf (cf. Fig. 3).
Again, this is consistent with the general behavior shown in
Fig. 1, where the coupling between the two fields sustains
transient nonlinear oscillations of the inflaton beyond the
inflection point.
As we will see next, the sharp change in behavior of the

equation of state marks the beginning of oscillon formation
for all values of h we investigated. It is at this point that the
attractive interaction potential gives rise to oscillations at
frequencies below the particle threshold ω ¼ mϕ, the key
condition for oscillon formation. Also, the peak oscillon
formation happens just before and around where ϕ≲ ϕinf .
This is the maximum of the relative configurational entropy
(RCE), which reliably detects the presence of spatially
extended objects in the simulation volume. Before we can
show our results for oscillons, we briefly review the RCE.
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FIG. 1 (color online). Volume-averaged values of ϕ and χ as functions of the expansion factor aðtÞ, in units of mϕ. Results are shown
for λ ¼ 1.5 × 10−13, mpl ¼ 100ν, and h ¼ ffiffiffi

λ
p

=100 (left), h ¼ ffiffiffi
λ

p
=10 (center), and h ¼ ffiffiffi

λ
p

(right). The top row shows the entire run,
while the bottom row zooms in on the initial period when oscillons are forming. The vertical dashed line indicates the time when
oscillations of the inflaton can no longer reach the inflection point.
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FIG. 2 (color online). Volume-averaged values of ϕ and χ as
functions of the expansion factor aðtÞ, in units of mϕ, for the
decoupled case. Results are shown for λ ¼ 1.5 × 10−13,
mpl ¼ 100ν, and h ¼ 0. The vertical dashed line indicates the
time when oscillations of the inflaton can no longer reach the
inflection point.
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B. Relative configurational entropy

We use two measures to quantify the formation of
oscillons. First, as a heuristic estimate, we calculate the
fraction of the system’s total energy that is located in
regions where the energy density is more than six times the
average energy density of the system. This quantity is
initially negligible, and would remain constant under linear
de Sitter expansion. Second, we use the RCE for the energy
density [40], which provides an efficient quantitative
measure for the presence of coherent classical field con-
figurations in general nonlinear models [39]. (We have
verified that both measures remain trivial for a particle
rolling down an ordinary ϕ4 potential without spontaneous
symmetry breaking, in which case no oscillons form.) As
proposed in Ref. [40], the RCE is the field-theory equiv-
alent of the Kullback-Leibler divergence of information
theory, used there to discriminate between an arbitrary bit
string and a fixed baseline or reference string [42], giving a
probabilistic measure of the expected number of extra bits

required to code samples of the desired string in terms of
the baseline. In other words, the Kullback-Leibler diver-
gence offers a “distance” in information complexity
between the two strings. (It is not a true metric, however,
since it is not symmetric in its arguments.) In field theory,
the RCE will give a distance in Fourier field configuration
space between the measured fields and the baseline. In
particular, following [40], we define the RCE in terms of a
modal fraction fðk; tÞ computed from the energy density
ρðx; tÞ,

fðk; tÞ ¼ jρðk; tÞj2R jρðk; tÞj2d3k ; (9)

where ρðk; tÞ is the spatial Fourier transform of the energy
density. For the baseline gðkÞ, we use the modal fraction
computed from our initial conditions—a system of quan-
tum oscillators—in which each mode carries an average
energy ω=2. We then write the RCE as

SfðtÞ ¼
Z

d3kfðk; tÞ ln fðk; tÞ
gðkÞ : (10)

The RCE provides a measure for the departure of our
system from featureless quantum initial conditions. As
shown in Ref. [40], the RCE is extremely accurate when
used to identify coherent configurations in nonlinear field
models, showing a linear scaling with the number density
of objects present. In Ref. [40], finite temperature sponta-
neous symmetry breaking in a simple double-well model
was investigated, and the baseline was thus a purely thermal
spectrum. Here, we use the RCE to identify the presence of
coherent objects in an expanding cosmological back-
ground. The more pronounced the departure between the
signal fðk; tÞ and the baseline gðkÞ, the larger the RCE. As
described in Ref. [40], a larger RCE is equivalent to a
higher density of coherent field configurations in the
system.
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FIG. 3 (color online). Equation of state w ¼ hpi=hρi as a function of the expansion factor aðtÞ, averaged in time over one oscillation
period of the inflaton field. The calculation is shown for λ ¼ 1.5 × 10−13,mpl ¼ 100ν, and h ¼ ffiffiffi

λ
p

=100 (left), h ¼ ffiffiffi
λ

p
=10 (center), and

h ¼ ffiffiffi
λ

p
(right). The vertical dashed line denotes the time when oscillations of the inflaton drop below the inflection point.
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FIG. 4 (color online). Equation of state w ¼ hpi=hρi as a
function of the expansion factor aðtÞ, averaged in time over one
oscillation period of the inflaton field, for the decoupled case. The
calculation is shown for λ ¼ 1.5 × 10−13,mpl ¼ 100ν, and h ¼ 0.
Note the sharp change in the equation of state at the time when
ϕ ≥ ϕinf , denoted by the dashed vertical line.
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C. Oscillon formation

In Fig. 5 we show the results from our two measures for
the emergence of oscillons: one based on an excess of
energy density over the average density of the system, and
the other based on the RCE. Results are shown for h ≠ 0 as

functions of the scale factor aðtÞ. For contrast, in Fig. 6 we
show the same quantities for h ¼ 0, where oscillons are
also present. We see that oscillons initially contribute some
30% of the energy density in all cases, falling down to
about 3% for late times when h ≠ 0 and to about 6%
for h ¼ 0.
The oscillons we see consist of localized oscillations of

the ϕ field. As an illustration, Fig. 7 shows a 2D slice of the
energy density at the end of each simulation, with oscillons
clearly distinguished from the much smaller energy density
associated with perturbative waves.
Differences between the three plots in Fig. 5 are

noticeable only for times aðtÞ≳ 2.2, as expected from
the bottom row of Fig. 1. As in other preheating particle-
production studies [32,33,43], oscillons form as nonlinear
effects fed by parametric resonance due to oscillations of
the inflaton become dominant. In our case, this is marked
by a sharp change in the behavior of the inflaton, already
apparent in Fig. 1: notice a drop in oscillation amplitude for
all three cases around aðtÞ ∼ 1.12. To see this more clearly,
in Fig. 8 we show the evolution of the inflaton and the
oscillon count for early times for both h ≠ 0 and h ¼ 0.
The evolution is the same for all values of h until about
aðtÞ ∼ 1.12, which is when the effects from the χ field
become relevant (that is, when its amplitude raises suffi-
ciently above zero to influence the dynamics of the
inflaton), in particular by keeping the oscillation amplitude
of the inflaton larger for a longer period of time.

2 4 6 8 10
0

0.1

0.2

0.3

0.4

fr
ac

tio
n 

at
 6

x 
av

er
ag

e 
en

er
gy

 d
en

si
ty

a(t)
2 4 6 8 10

0

2

4

6

8

10

12

14

16

18

R
C

E

2 4 6 8 10
0

0.1

0.2

0.3

0.4

fr
ac

tio
n 

at
 6

x 
av

er
ag

e 
en

er
gy

 d
en

si
ty

a(t)
2 4 6 8 10

0

2

4

6

8

10

12

14

16

18

R
C

E

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

fr
ac

tio
n 

at
 6

x 
av

er
ag

e 
en

er
gy

 d
en

si
ty

a(t)
2 4 6 8 10 12

0

2

4

6

8

10

12

14

16

18

R
C

E

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

fr
ac

tio
n 

at
 6

x 
av

er
ag

e 
en

er
gy

 d
en

si
ty

a(t)
1 1.5 2 2.5 3

0

2

4

6

8

10

12

14

16

18

R
C

E

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

fr
ac

tio
n 

at
 6

x 
av

er
ag

e 
en

er
gy

 d
en

si
ty

a(t)
1 1.5 2 2.5 3

0

2

4

6

8

10

12

14

16

18

R
C

E

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

fr
ac

tio
n 

at
 6

x 
av

er
ag

e 
en

er
gy

 d
en

si
ty

a(t)
1 1.5 2 2.5 3

0

2

4

6

8

10

12

14

16

18

R
C

E

FIG. 5 (color online). Oscillon formation as a function of the expansion factor aðtÞ, as measured by the fraction of the system’s total
energy located in regions where the energy density is more than six times the average energy density (dashed line) and by the relative
configurational entropy (continuous line). Both have been averaged in time over approximately one oscillation period of the inflaton
field. The calculation is shown for λ ¼ 1.5 × 10−13, mpl ¼ 100ν, and h ¼ ffiffiffi

λ
p

=100 (left), h ¼ ffiffiffi
λ

p
=10 (center), and h ¼ ffiffiffi

λ
p

(right). The
vertical line denotes the time when ϕ > ϕinf . The bottom row shows the details of the evolution for shorter times.
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FIG. 6 (color online). Oscillon formation as a function of the
expansion factor aðtÞ, as measured by the fraction of the system’s
total energy located in regions where the energy density is more
than six times the average energy density (dashed line) and by the
relative configurational entropy (continuous line), for the de-
coupled case. Both have been averaged in time over approx-
imately one oscillation period of the inflaton field. The
calculation is shown for λ ¼ 1.5 × 10−13, mpl ¼ 100ν, and
h ¼ 0. The vertical line denotes the time when ϕ > ϕinf .
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The change in the dynamics of the inflaton is clearly
reflected in the equation of state, as can be seen in Fig. 3
and, in detail, in Fig. 9. For h ≠ 0, this transition happens
when ϕ undergoes a drop in oscillation amplitude, but still
before it drops beyond its inflection point at the vertical
dashed line. This change in the equation of state marks the
onset of oscillon formation. For h ¼ 0, the drop in
oscillation amplitude of the inflaton coincides with its
drop below the inflection point. There is a sharp transition
at this point in the number of oscillons formed. This clear
correlation between the change in the behavior of the
inflaton, the sign change in the equation of state, and the
onset of oscillon formation justifies our characterization of
oscillon formation as a transition to order during
preheating.
The fraction of energy we measure in oscillons shows

long-term oscillations as the configurations undergo
“breathing” over long times [22]. While this slow expan-
sion and contraction does not change the actual oscillon
energy, it can change our rough estimate using the fraction
of energy at locations with more than six times the average
energy density. (As described below, the RCE does not

suffer from this problem.) We expect these variations to
gradually die out, leaving on average about 3% of the total
energy of the universe in oscillons, a result that appears to
be independent of the coupling h to the light field.
The RCE shows analogous results, as can be seen

directly in Figs. 5 and 6. It has less variability, since it
does not involve the arbitrary cutoff at six times the average
energy density. Our results demonstrate that the RCE is a
reliable measure of the emergence of localized order in field
theories, even with an expanding background. Since the
value of the RCE correlates directly with the number of
localized coherent states (see Ref. [40]), it can be used as a
measure of complexity, that is, of the presence of ordered
structures emerging from a disordered background.
From both measures it is clear that oscillons form in

significant quantities during preheating, and a fraction of
them remain stable over cosmological time scales. Indeed,
we see no indication that they decay during our simula-
tions. As a result, oscillons can play an important role
during reheating, as the universe transitions to a power-law,
radiation-dominated, and then matter-dominated expan-
sion. At least for models where oscillons form—and they
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FIG. 8 (color online). Early time evolution of the volume-averaged inflaton (continuous line) and oscillon count (dashed line) for
h ¼ ffiffiffi

λ
p

=100 (left) and h ¼ 0 (right). (Results for other two cases with h ≠ 0 are essentially the same for these short times.) The vertical
line denotes the time after which ϕ > ϕinf . Oscillon formation starts when there is a marked drop in the oscillation amplitude of the
inflaton. Notice that for h ≠ 0 this happens before the inflaton falls beyond the inflection point [at aðtÞ ∼ 1.25], while for h ¼ 0 the two
events coincide.
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appear to be quite general—any analysis of reheating that
neglects their presence would clearly be incomplete.

IV. SUMMARY AND OUTLOOK

We investigated the preheating dynamics of a hilltop
model of inflation where the inflaton field is coupled
quadratically to a massless scalar field. Our goals were
threefold: first, to search for the emergence of localized
nonperturbative structures during preheating; second, to
investigate the effect of the massless field on the emergence
and stability (longevity) of these structures; third, to test the
use of the relative configurational entropy as a measure of the
emergence of ordered structures in a cosmological setting.
In order to achieve our goals we solved the coupled

Friedmann-Klein-Gordon equations in a expanding space-
time. Starting from quantum initial conditions with the
inflaton partway down its slow roll toward the potential
minimum, we used a parallel code to extend our runs for
very long cosmological times, of order 15; 000m−1

ϕ . We
chose couplings consistent with the combined Planckþ
WMAPþ BAO data.
We found that ordered structures in the form of oscillons

emerged for 0 ≤ h=
ffiffiffi
λ

p
≤ 1 and that these structures per-

sisted for the duration of our runs, contributing roughly 3%
of the total energy density. Most interestingly, we found
that the production of ordered structures has a clear
signature as a transition in the effective equation of state
and in the behavior of the volumed-averaged inflaton: for
all values of the coupling between the two fields, oscillons
start to form as the oscillation amplitude of the inflaton
undergoes a clear drop. The transition into oscillon nucle-
ation can be clearly identified in the equation of state,
which turns positive as the first structures appear. In the
absence of coupling between the two fields (h ¼ 0), the
change in the equation of state is quite abrupt, happening
when the inflaton rolls beyond its inflection point [see

Fig. 9 (right)]. When h ≠ 0, the nonlinear coupling
between the two fields sustains larger-amplitude oscilla-
tions for the inflaton, so that by the time it drops beyond the
inflection point, oscillon formation is well underway [see
Fig. 9 (left)]. We established that the relative configura-
tional entropy gives a clear reading of the emergence of
ordered structures, with the added bonus of being inde-
pendent of an arbitrary scale in the energy density.
Our results, taken together with other studies listed in the

references (see, e.g., Refs. [13,25,26,30–34]), indicate that
the emergence of ordered structures is a very general
feature of preheating for potentials that support them.
Their presence delays thermodynamic equipartition since
they “lock” long wavelength modes for a long time. The
fact that oscillons persist for cosmologically long time
scales shows that thermodynamic equilibrium is never quite
reached, or it is delayed for as long as such structures
remain present. Studies of reheating and the reheating
temperature of the Universe must consider this situation in
detail. Could there have been an epoch of strong entropy
generation due to the decay of such structures? More
generally, if we adopt the view that the big bang is really
the reheating of the Universe after inflation, it seems that
the Universe starts not only with an explosive production of
particles, but also with a vibrant population of time-
dependent oscillonlike structures.
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