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Recent observations have led to the establishment of the concordance ΛCDM model for cosmology. A
number of experiments are being planned to shed light on dark energy, dark matter, inflation and gravity,
which are the key components of the model. To optimize and compare the reach of these surveys, several
figures of merit have been proposed. They are based on either the forecasted precision on the ΛCDMmodel
and its expansion or on the expected ability to distinguish two models. We propose here another figure of
merit that quantifies the capacity of future surveys to rule out the ΛCDM model. It is based on a measure
of the difference in volume of observable space that the future surveys will constrain with and without
imposing the model. This model breaking figure of merit is easy to compute and can lead to different survey
optimizations than other metrics. We illustrate its impact using a simple combination of supernovae
and baryon acoustic oscillation mock observations and compare the respective merit of these probes to
challenge ΛCDM. We discuss how this approach would impact the design of future cosmological
experiments.
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I. INTRODUCTION

Recent progress in cosmological observations have led
to the establishment of the ΛCDM model as the standard
model for cosmology. This simple model is able to fit a
wide array of observations with about six parameters [1–3].
In spite of its success, several key ingredients of the model
are not fully understood and have been introduced to fit the
data rather than being derived from fundamental theory.
These include dark matter [4], which (if attributed to
particles) exists outside the standard model of particle
physics and dark energy [5,6]. The other ingredients of the
model are associated with inflation, which conditions the
initial state of the Universe, and Einstein gravity, which has
not been tested on cosmological scales.
Alternatives to the ΛCDM model are numerous and

growing. However since the data is currently consistent
with the ΛCDM model, progress in the field will likely be
driven by the acquisition of new data that can be used to
further challenge the model. In so doing, we hope to find
evidence that will lead to a deeper understanding of
physical processes and point us towards more fundamental
alternative models. Significant amounts of current efforts
in cosmology are thus focused on the design of future
experiments that can optimally increase our cosmological
knowledge. However, since there exists a wide array of
equally compelling alternative models, finding a suitable
metric with which to compare and optimize future experi-
ments is challenging.

At present, the dominant metric for gauging the quality
of planned experiments is the dark energy task force
(DETF) figure of merit (FoM) [7]. This metric consists
of expanding the simplest ΛCDM model so that the dark
energy component is modeled as having an equation of
state w, which is given by the ratio of pressure to density of
dark energy. This equation is assumed to evolve linearly
with scale factor a, wðaÞ ¼ w0 þ ð1 − aÞwa [8,9]. The
DETF FoM can then be derived from the determinant of
the covariance matrix of the two dark energy parameters
w0 and wa, which can be calculated using Fisher matrix
methods [10]. Since the linear expansion of the equation
of state is only one of many possible extensions beyond
ΛCDM, relying solely on this optimization may lead to
biases in experiment design.
An alternative approach, which was proposed by the

follow-up committee known as the DETF FoM Working
Group [11], is to consider a more general expression for the
equation of state. This approach relies on principle com-
ponent analysis (PCA) methods to find the fundamental
modes that a given experiment can measure. In their report,
the DETF FoM Working Group suggests a prescription
where the equation of state is divided into 36 redshift bins
out to z ∼ 10. One difficulty, however, is that Fisher matrix
calculations can be unstable. The final results, therefore,
can depend on the user’s choice of initial basis set, which
once again may not be well motivated and can lead to
unintended selection biases [12]. The DETF FoMWorking
Group also advocates to use alternative theoretical expan-
sions that can be used to model possible deviations of
gravity from Einstein’s theory [13,14].
Numerous alternative metrics have been proposed in

the literature. As well as further PCA based techniques
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[15–18], other methods have been proposed that include
in the determinant calculations parameters of ΛCDM
beyond those of the equation of state. These include the
integrated parameter space optimization (IPSO) [19–21],
and model selection methods based on forecasting the
Bayes factor [22–26]. The latter approach relies on com-
paring two models and calculating the Bayes factor
[B01 ≡ pðdjM0Þ=pðdjM1Þ], which quantifies the odds of
which model (M0 or M1) is preferred by the data (d). This
method still requires a choice of an alternative model to
which the null model can be compared.
The end result can vary, depending on the FoM used.

This is ultimately due to the fact that the FoMs are being
used to ask subtly different questions. In an era where the
total amount of data is growing, it is conceivable and fully
expected that different FoMs will lead to similar optimi-
zation. However, as experiments begin to fill the entire
available cosmic volume, the trade-offs are likely to
become more subtle. Hence, care should be given to focus
precisely on the questions that we want to address.
In this paper, we explore the motivational question:

Which experiment is most likely to find data that will falsify
ΛCDM? Given the success of ΛCDM so far, the detection
of any deviation from this model would be a major
discovery. These deviations may not necessarily emerge
as a deviation from w ¼ −1. As a result, to answer the
motivational question above we formulate a new figure of
merit, building on earlier work [27], which can be readily
calculated using Gaussian approximations. In its purest
form this figure of merit can be calculated using only
(i) current data, (ii) the predictions from the simple ΛCDM
model that we wish to challenge and (iii) the expected
covariance matrix of the data for a future experiment. As
part of our work, we also show how robust theoretical
priors, such as light propagation on a metric, can also be
included in the calculation, if so desired. While the DETF
FOM and the Bayes ratio approach are, respectively, related
to model fitting and model selection, our approach is
related to the problem of model testing.
This paper is organized as follows. In Sec. II, we derive

our new FoM and show the Gaussian approximation
version of the calculation. In Sec. III, we investigate a
simple cosmological toy-model example to illustrate our
method. In this section we also compare our calculations to
an FoM derived from the determinant of the Fisher matrix
of the standard ΛCDM parameters. Finally, in Sec. IV we
offer a discussion to summarize our findings.

II. FORMALISM

The basic principle of our approach is to make compar-
isons between the likely outcomes of future experiments in
data space. In its purest form, this is a comparison between
pðDfjDcÞ and pðDfjDc;ΘÞ, where the former is the
probability of future data Df, given only current data Dc
and the latter is the probability of future data given current

data and the constraint that the standard model (with para-
metersΘ) being studied (in our case standard ΛCDM) must
hold. In this empirical case, we can calculate the probability
of future data by integrating over all possible values of the
data (see derivation in the Appendix) such that

pðDfjDcÞ ¼
Z

pðDfjTÞpðTjDcÞdT; (1)

where we have introduced the concept of “true” value T
that corresponds to the value we obtain as the errors tend to
zero. For the case where we assume a standard model holds,
we can calculate the probability of future data by integrat-
ing over all possible values of the model parameters, Θ,

pðDfjDc;ΘÞ ¼
Z

pðDfjΘÞpðΘjDcÞdΘ: (2)

In both cases, we can calculate the probabilities of the
underlying variables given today’s data. For instance, in the
case of the model parameters,

pðΘjDcÞ ¼
pðDcjΘÞpðΘÞ

pðDcÞ
: (3)

Given two density distributions [for instance Eqs. (1) and
(2)] we will need to be able to quantitatively compare them.
For this, the concept of information entropy, which quan-
tifies the level of uncertainty, is useful. A robust measure
for this purpose is the relative entropy, also known as the
Kullback-Leibler (KL) divergence [28], between the two
distributions. In this case, this can be calculated as

KL½p; q� ¼
Z

ln

�
pðxÞ
qðxÞ

�
pðxÞdx; (4)

where pðxÞ and qðxÞ are the two probability distributions
to be compared. This measure quantifies the difference of
information in the two cases and provides a measure of the
difference between the two distributions.
Using this measure our proposed figure of merit measure

for model breaking is simply

Φ ¼ KL½pðDfjDc;ΘÞ; pðDfjDcÞ�: (5)

A. The Gaussian case

The analysis outlined above is general and can be used to
study probability distribution functions of arbitrary shape.
However, due to the their simplicity, probability distribu-
tion functions (PDFs) that are multivariate Gaussians are
very attractive cases to study. In this case, the probabilities
would be given by

pðxÞ ¼ 1

ð2πÞk=2jCj1=2 exp
�
−
1

2
ðx − μÞTC−1ðx − μÞ

�
;

(6)
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where k is the number of dimensions, μ is the mean (i.e.
peak) of the PDF and C is the covariance matrix.
The relative entropy between two multivariate Gaussian

distributions, e.g. pðxÞ and qðxÞ, with the covariance
matrices Cp and Cq is given by [29]

KL ¼ 1

2
ln jCpC−1

q j

þ 1

2
trC−1

p ððμq − μpÞðμq − μpÞT þ Cq −CpÞ: (7)

For the simplest case, where the two distributions have the
same mean, this reduces to

KL ¼ 1

2
ln jCpC−1

q j þ 1

2
trC−1

p ðCq −CpÞ: (8)

B. Calculating the covariance matrix

Given the covariance matrix for current data, Cc, we can
compute the covariance matrix, Cm, of the parameters
of the model that need to be adhered to. This can be done
by calculating the Fisher matrix, C−1

m , through a matrix
rotation, as

C−1
m ¼ YC−1

c YT; (9)

where Y is the Jacobian matrix of derivatives such that
Yij ¼ ∂Di=∂Θj. In principle, it is also possible to have
constraints on the Θ parameters for external data that will
not change in the future. To make the predictions for future
error bars, we can then project back to the covariance in the
observables, Cx, based on existing errors

Cx ¼ YTCmY: (10)

Finally, to calculate the full covariance matrix for future
data, C1, of pðDfjDc;MÞ, we need to account for the error
bars associated with the future experiment, given by the
matrixCf. The full matrix corresponding to the operation in
Eq. (2) is then

C1 ¼ Cx þ Cf: (11)

For the case of the purely empirical predictions, where
there is no model and data vector entries are independent of
each other, the Jacobian matrices Y become the identity
matrix I, which greatly simplifies the equations above. For
instance, in the case where no external data set is used, the
covariance matrix of pðDfjDc;MÞ becomes

C0 ¼ Cc þ Cf: (12)

In this case the model breaking figure of merit defined in
Eq. (5) and using (8) reduces to

Φ ¼ 1

2
ln jC1C−1

0 j þ 1

2
trC−1

1 ðC0 − C1Þ: (13)

In the case where we also want to consider shifts in mean
values one would use an analogous expression with extra
terms coming from Eq. (7).
The two cases above are the extreme examples: (i) one

where all the data points are correlated with all other data
point when projected through a model and (ii) the case
where all the data points are independent from each other.
It is possible to construct an intermediate case that we call a
minimal model that defines a weak correlation between
subsets of the data. For example, in the cosmological
setting we could introduce a correlation between data taken
at the same redshift, while making the data from two
different redshifts fully independent. In this case, the
Jacobian would be constructed using the derivatives with
respect to the data, i.e Yij ¼ ∂Di=∂Dj and C0 would be
modified accordingly for the model breaking figure of
merit in Eq. (13).

III. COSMOLOGICAL EXAMPLE

To demonstrate our approach, we briefly explore a
simple cosmological example. For this we will focus on
geometrical tests, namely supernovae flux decrements and
tangential and radial measurements of the baryon acoustic
oscillation (BAO) scales.

A. Background cosmology

Within the standard ΛCDM concordance model, the
geometry measure can be derived from the line of sight
comoving distance, χ,

χðaÞ ¼ c
Z

da
a2HðaÞ ; (14)

where c is the speed of light, a is the scale factor and HðaÞ
is the Hubble function. The Hubble function can be easily
calculated in the ΛCDM and in the late time Universe by
the Friedmann equation,

H2ðaÞ ¼ H2
0

�
Ωm

a3
þ Ωk

a2
þΩΛ

�
; (15)

where Ωm is the matter over density, ΩΛ is the dark energy
density and Ωk is the curvature. The curvature term can
be defined through the relation Ωm þ ΩΛ þΩk ¼ 1.
With this, it is clear that we can describe the geometry
measures through three free parameters: h, Ωm and ΩΛ,
where we use the standard approach of recasting the
Hubble constant,H0, as the dimensionless quantity through
h ¼ H0=100 Kms−1Mpc−1.
Observed distance measures are typically determined

through the angular diameter distance (DA) and the
luminosity distance (DL), which can be related to each
other through the scale factor
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DA ¼ a2DL ¼ arðχÞ; (16)

where rðχÞ is the comoving angular diameter distance.
The supernovae technique measures the distance modulus
(ΔDM) as a function of redshift [5], where the distance
modulus is determined from the flux ratio between the
absolute and apparent fluxes of SNe. This can then be
linked to the radial comoving distance through the lumi-
nosity distance DL,

ΔDM ¼ 5 log

�
DL

10 pc

�
: (17)

We also find it useful to define a new quantity,

RDM ¼
�

DL

10 pc

�
; (18)

which contains the same information in a form closer to
flux ratios rather than magnitude differences.
Baryon acoustic oscillation (BAO) studies rely on

using galaxy surveys to measure the same acoustic
peaks that are seen in the CMB, thereby using the
scale set by these peaks as a standard ruler. The mea-
surements can be made perpendicular to the line of
sight (rpÞ and along the line of sight (rpa), which can
be linked to the observed angular scale Δθ and redshift
extent Δz [21],

Δθ ¼ ars
DA

; (19)

and

Δz ¼ Hrs
c

; (20)

where rs is the sound horizon [1] that, for simplicity, we
set to 140 Mpc in this study. In this framework, the obser-
vable quantities are O ¼ fRDMðaÞ; ΔθðaÞ and ΔzðaÞg
and the model parameters are Θ ¼ fh;Ωm;ΩΛg. With
this in place, calculating pðDfjDc;ΘÞ is straightforward
once the covariance matrices for current and future mea-
surements, Cc and Cf, have been specified using Eqs. (9)
and (12). The different levels of theoretical assumption
can be viewed as having the hierarchy illustrated in Fig. 1.
Most figures of merit build from extensions of the ΛCDM
model (i.e. from the inside out), while our approach
consists of the comparison of no or little theoretical
assumptions with the ΛCDM model (i.e. outside in).
It is possible to calculate a meaningful model breaking
FoM using only (i) the simplest ΛCDMmodel being tested,
(ii) current data and (iii) prediction of future error bars
(corresponding to the outermost ring). This calculation
would not include any priors on the classes of alternative
theories. However, such priors can be added explicitly, as
illustrated in Fig. 1.

B. Application

To demonstrate the approach outlined here, we construct
a simple illustrative example. For this example we assume
that three observables, RDM, Δθ and Δz, have each been
measured at ten points in the redshift range z ¼ ½0.1; 2.1�.
These, therefore, would be a simplified example of what
we would measure from a combination of SNe and
BAO experiments. We set the current relative errors on
the measurements coming for SNe (RDM) to be 5% and the
errors on the BAO measurements (Δθ and Δz) to be 10%.
These errors are assumed to be independent and not coming
from systematics. Figure 2 shows this configuration. The
dotted curves in the figure show the predictions from a
ΛCDM model with h ¼ 0.7, Ωm ¼ 0.3 and ΩΛ ¼ 0.7.
For our first example, we calculate figures of merit for

future experiments where the errors are reduced by a given
factor. Specifically, we consider four cases. The first is
where all the measurements are improved by this factor and
three other cases where only one of the probes has been
improved. Next, we have decided to calculate the results for
our figure of merit calculation, where we assume that there
is an integral relation between the Hubble function and
the distances [given by Eq. (14)] and that there is a relation
between angular diameter and luminosity distances [as
given by Eq. (16)]. However, we place no constraints on the
functional form ofH. This is illustrated by the third layer of
Fig. 1. For simplicity in this illustrative example, we have

No Model

Quintessence

wCDM

CDM

FIG. 1 (color online). Illustration of a hierarchy of model
spaces. The center shows the most restricted point representing
the ΛCDM model. Building out from the center, we show
increasingly more flexible models, starting with the w0 − wa
expansion of the equation of state and then more generic
quintessence models. The outer ring of the figure shows the
constraints coming purely from the data, i.e. no model. Most
figures of merit build out from the center. Our model challenging
approach builds from the outside inwards by comparing the
central ΛCDM point with the outer minimal theory layers.
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assumed that the comoving angular diameter distance is
equal to χ regardless of curvature. This calculation, there-
fore, effectively compares the allowed freedom of future
data depending on whether or not the relation shown in
Eq. (15) is imposed.
Since the comoving distance and the Hubble function are

linked through an integral relationship, it is convenient to
remap the data points onto a finer redshift grid so that the
mapping from H to χ can be approximated by a matrix
product involving a left triangular matrix. This mapping
onto a finer grid can be done once the relationship between
the fine and coarse grid are defined. For example, the coarse
grid are averages over the finer grid, since this can be used
to define the appropriate Jacobian for the mapping. For
simplicity, we have assumed here that errors scale by theffiffiffiffi
N

p
, where N is the number of fine points to one coarse

data point.
The upper panel of Fig. 3 shows Φ as a function of the

power of future surveys. As a comparison, the lower panel
of the figure shows a calculation using the standard Fisher
matrix methods, with the y axis showing the determinant
of the 3 × 3 Fisher matrix of the future experiment relative
to the Fisher matrix from the current data. This is close to
IPSO optimization. Both optimization methods show the
broad expected trend that higher precision measurements
are better, but the details of the optimization are distinctly
different. In the Fisher matrix optimization, we see that

constraints from RDM and Δz are comparable (with a small
preference for RDM) and the constraints from Δθ are
weaker. For the case where all the probes are improved,
we see significant gains over the individual probe improve-
ments. The optimization using our model breaking FoM
with Φ (upper panel) strongly favors the Δz measurements.
In fact, even in the case where the precision of all the probes
is increased, this causes a negligible improvement in the
figure of merit.
In practice, the data (both current and future) have

finite resolutions in redshift. Our model breaking frame-
work is thus sensitive to the space of functions that is (i)
consistent with today’s data and (ii) will cause a notable
change in future data. As a result the framework will not
be sensitive to variations on scales smaller than these
two scales. However, additional smoothing constraints can
be imposed—for instance, coming from a suite of well-
motivated theories. We would put such constraints in the
same category as imposing physics in the model classes
figure (Fig. 1). In this case, these extra constraints should be
added explicitly and justified clearly.
In our next analysis, we investigate the redshift sensi-

tivity of the probes. Figure 4 shows the results when only
the errors at one of the specific redshift (zb) shown in Fig. 3
are improved by a factor of 10, i.e. σcðzbÞ=σfðzbÞ ¼ 10.
The Fisher matrix based optimization shows complex
behavior, with the distance measure probes favoring
improvements at lower redshifts while the measure based

FIG. 2 (color online). Simple example with three observables,
each measured in four redshift bins. The blue curve shows the
baseline ΛCDM model used in this paper; the points show our
toy-model example with 10% errors on all the observables.

FIG. 3 (color online). The upper panel shows Φ, normalized by
number of data points, between predictions using ΛCDM and
those where the form of HðzÞ is not specified. The lower panel
shows the determinant of the 3 × 3 Fisher matrix of the ΛCDM
ðh;Ωm;ΩΛÞ. The results are shown as a function of increased
precision of future experiments. The black curves show results
when the measurements of all three probes are improved; the
red curves show the results when only the Δz experiment is
improved; the blue-dashed curves correspond to only improving
the luminosity distance experiment ðRDMÞ; and the green-dotted
curves are for improvements in the angular diameter distance
measurement (Δθ).
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onHðzÞ tends to favor higher redshifts. We also see that the
relative importance of the different probes also depends
strongly on the redshift range that is being targeted. On
the other hand, the optimization based on KL divergence
shows relatively simple trends. The ranking of the probes
and their strengths is the same as that seen in Fig. 3, and
there is almost no redshift preference. This implies that, for
our simple model where the current relative errors are fixed
as a function of redshift, improved measurements at all
redshifts are equally favored. This can be important, since
the cost of improving the errors at a given epoch is typically
not independent of the redshift being targeted.

IV. DISCUSSION

We have developed a new formalism for calculating the
discovery potential of future experiments. This new figure
of merit offers a simple and robust alternative to metrics
such as the DETF FoM, which focuses on the determinant
of the covariance matrix on the dark energy equation of
state parameters w0 and wa as calculated using Fisher
matrix methods. One of the difficulties with the DETF FoM
is that a decomposition into w0 and wa is not derived from
fundamental theory and in fact there has been considerable
effort to expand this figure of merit to include more generic
wðaÞ and to rely on principal component analysis methods
to capture the most significant modes. Other approaches
have been to consider expansions of other ad hoc param-
eters. However, the problem is that since these expansions
of the model are not driven by fundamental theory, it
becomes difficult to make informed choices about experi-
ment design if different metrics point to different optimal
configurations. In addition, the discovery of deviation from
ΛCDM in any of the sector of the model, and not only in
wðaÞ, would be of profound importance.

The formalism that we present here allows us to calculate
a figure of merit for future experiment configurations based
on three ingredients: (1) existing data, (2) the standardmodel
to be tested (without extra parameters) and (3) the predic-
tions of the errors for the future experiment. This method
then effectively sets out to compare the model, which in
cosmology isΛCDM, against a nomodel case, which shows
all of the allowed data space even in the absence of the
model. We have shown that this is a well posed statistical
problem and the KL divergence (relative entropy) between
the two allowed PDFs in data space allows us to maximize
the possibility that a future experiment will measure data
that cannot be fit by the standard model. Furthermore, we
have shown how physical constraints can be incorporated
by including the relationships between the data points that
these physical effects introduce.
One of the advantages of the Fisher approach to experi-

ment optimization is that calculations are relatively fast and
can be done through matrix manipulations of the experi-
ment covariance matrices. We have shown in this work
that we are able to make similar simplifications for the
calculation of the KL divergence, which makes them also
straightforward to calculate. This is a significant improve-
ment over our earlier work [27], which relied on costly
integrals using Monte Carlo methods.
Using our new method, we investigate a simple illus-

trative example of optimizing measurements of the SNe
flux decrement and the radial and tangential BAO scale.
These would be typical measurements for SNe and galaxy
survey experiments. We demonstrate that the optimization
of these experiments can depend on the choice of metric. In
particular, the choice of metrics becomes important when
comparing experiments with comparable information con-
tent. In 2006, the DEFT divided cosmology experiments
into a number of stages. Stage II corresponded to on-going
surveys at the time. Stage III were the next generation
experiments (which are now being exited), and stage IV
represented longer-term projects that are still in the plan-
ning and preparatory stages. We believe that in the design
of stage III surveys, the choice of metric was not a critical
step. This is because widely different designs were being
considered with large ranges in information content. At this
point, it is possible for all reasonable metrics to lead to the
same optimization. For instance, fixing all other properties,
such as depth, increasing the area of survey is always better
regardless of the FoM. However, as we transition from
stage III to stage IV, we are reaching fundamental limits,
since, for instance, we begin to map out large fractions of
the available cosmic volume. In this phase, the optimiza-
tions will become more subtle as the choice of optimization
metric becomes increasingly important.

APPENDIX: DERIVATION OF pðDFjDCÞ
Let us consider the independent measurement DC and

DF of a set of observables with a current and future data set,

FIG. 4 (color online). Results for the Fisher matrix and our KL
divergence basedmodel breaking FoMwhen the errors at only one
of the ten redshift points shown inFig. 2 are reduced. They axis and
color scheme match those of Fig. 3. σcðzbÞ=σfðzbÞ ¼ 10.
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respectively. Let Θ be a set of parameters of a model which
makes predictions about the observables. The probability
distribution of these variables is fully described by their
joint probability distribution function pðΘ; DC;DFÞ. Our
aim is to derive Eq. (2), i.e. the conditional probability
pðDFjDCÞ in terms of pðΘjDCÞ and pðDFjΘÞ which are
assumed to be given.
From the definition of conditional and joint probabilities,

we get

pðDFjDCÞ ¼
pðDF;DCÞ
pðDCÞ

¼
Z

dy
pðΘ; DC;DFÞ

pðDCÞ
(A1)

and

pðΘ; DC;DFÞ ¼ pðDC;DFjΘÞpðΘÞ: (A2)

Using the latter in the former equation gives

pðDFjDCÞ ¼
Z

dΘ
pðDC;DFjΘÞpðΘÞ

pðDCÞ
: (A3)

Since the current and future measurements are assumed
to be independent, given a model Θ, pðDC;DFjΘÞ ¼
pðDCjΘÞpðDFjΘÞ. Thus,

pðDFjDCÞ ¼
Z

dΘ
pðDCjΘÞpðDFjΘÞpðΘÞ

pðDCÞ
: (A4)

Since pðDCjΘÞpðΘÞ ¼ pðΘjDCÞpðDCÞ, this becomes

pðDFjDCÞ ¼
Z

dΘpðΘjDCÞpðDFjΘÞ (A5)

in accordance with Eq. (2). Following a similar argument,
Eq. (1) can be derived by considering the true value, T, that
would be measured as the errors tend to zero instead of
model parameters.
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