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I discuss fluctuations in the neutral hydrogen density of the z ≈ 2.3 intergalactic medium and show that
their relation to cosmic overdensity is strongly scale dependent. This behavior arises from a linearized
version of the well-known “proximity effect,” in which bright sources suppress atomic hydrogen density.
Using a novel, systematic and detailed linear-theory radiative-transfer calculation, I demonstrate how HI

density consequently anticorrelates with total matter density when averaged on scales exceeding the
Lyman-limit mean-free path. The radiative-transfer thumbprint is highly distinctive and should be
measurable in the Lyman-α forest. Effects extend to sufficiently small scales to generate significant
distortion of the correlation function shape around the baryon acoustic oscillation peak, although the peak
location shifts only by 1.2 percent for a mean source bias of bj ¼ 3. The distortion changes significantly
with bj and other astrophysical parameters; measuring it should provide a helpful observational constraint
on the nature of ionizing photon sources in the near future.
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I. INTRODUCTION

The Lyman-α forest [1] is the imprint of the intergalactic
medium (IGM)—specifically, neutral hydrogen—on the
spectra of distant quasars. At high redshift the rapidly
changing forest probes hydrogen reionization [2–4]; at
lower redshift, the forest has a steadier ionization state and
is used to trace overall matter density fluctuations [5–7].
Correlating Lyman-α fluctuations over small scales there-
fore places a strong constraint on modifications to the
standard cold dark matter picture of structure formation
[8–10]. More recently attention has turned to the large-scale
forest’s ability to constrain the baryon acoustic oscillation
peak, providing an independent distance measurement for
constraining dark energy [11–13]. In addition to probing
the power spectrum in these ways, the observed z < 5
forest constrains the thermal state of the intergalactic
medium [14,15], allowing various interesting processes
to be studied (such as helium reionization [16]).
When considering the forest after reionization, it is

standard practice [6,17,18] to model the IGM ionization
state in the presence of a uniform background of ultraviolet
(UV) photons. Direct constraints on the Lyman-α cloud
temperatures [19] dictate that collisional ionization is
unimportant except in systems that are dense enough to
be substantially self-shielded from the radiation.
However the assumption that the UV background is

uniform is known to be incorrect, since the constituent
photons are actually generated by galaxies and quasars.
One can distinguish two limits in which the approximation
fails. First, on small scales, quasars are rare; depending on

the fraction of photons they contribute (likely around 50%
for 2 < z < 3 [20,21]) they can add significant shot noise
on small scales. Further fluctuations are imprinted by
intrinsic variability in the IGM opacity [22]. This and
related astrophysical effects have been widely investigated
elsewhere [9,11,23–29] with the conclusion that, if prop-
erly accounted for, the added noise is not problematic for
observational cosmology at z < 5. Measurements at higher
redshift, during the epoch of reionization, will be affected
more strongly [25,27] as the UV undulation amplitude
increases.
In this paper I will consider the post-reionization IGM

and place more emphasis on a second failure of the
uniform-radiation assumption. This appears only when
source clustering is taken into account on scales around
the mean-free path of an ionizing photon. By definition,
regions separated by greater distances cannot efficiently
exchange UV radiation. Ionization equilibrium will there-
fore depend on the density of sources in the local region;
the bias of the forest on the largest scales will depend on the
clustering of UV sources [28,30–32].
This effect has received less attention to date, probably

because the relevant scale is seemingly extremely large (the
mean-free path is of order 500 Mpc in comoving units [33]
at z ¼ 2.4). In fact, once redshifting and volume dilution
are accounted for, the transition scale is somewhat smaller
(more like 350 Mpc comoving; see Sec.n II A). To fully
model such scales would require exceptionally large
radiative-transfer simulations, with box sizes exceeding a
gigaparsec to properly probe long-wavelength fluctuations.
To achieve this, previous work has employed a combi-

nation of large dark-matter-only boxes and smaller hydro-
dynamic simulations [30] or semianalytic prescriptions*a.pontzen@ucl.ac.uk
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[31]. In the former case the author reported a significant
drop in large-scale flux power out to scales of k−1 ∼
70h−1 Mpc relative to the homogeneous-radiation control
case. Even so, the result has not received widespread
attention. This is likely because extending such state-of-
the-art work consumes a great deal of computer time and,
furthermore, appropriate empirical constraints for such
large separations have seemed out of reach.
The observational situation has now been

changed radically by the BOSS (Baryonic Oscillation
Spectroscopic Survey) project [34]. The team have released
results demonstrating the viability of measuring the corre-
lation function of Lyman-alpha clouds on large scales
[7,12,35]. The major goal of BOSS is to measure the
baryonic acoustic oscillation (BAO) feature in the corre-
lation function at 100h−1Mpc comoving. This is not so far
off the reduced mean-free-path scale discussed above and
derived in Sec. II A. It is timely, therefore, to reconsider the
impact of large-scale fluctuations in the UV source density
on the Lyman-α forest.
The remainder of this paper proceeds systematically

from first principles to a detailed linear-theory calculation
of these effects. This should be highly complementary to
numerical studies, and motivate further work in the area.
I will ignore observational questions such as the trans-
formation from HI to flux power spectrum, redshift-space
distortions, redshift evolution and flux calibration biases—
since these require major computational machinery in
themselves [12,35]—and focus on the bias of the physical
intergalactic HI density at a single, fixed redshift. The
quantitative results will be presented for z ¼ 2.3, around
the mean redshift of observed Lyman-α clouds [35].
The approximations that allow this calculation to be

completed are (i) that the spatial variations in the UV
spectrum are less important for HI than the changes in
intensity (a “monochromatic approximation”); (ii) that the
hydrogen can be split into a diffuse intergalactic component
in photoionization equilibrium and a small population of
self-shielded, collisionally ionized clumps (i.e. the highest-
column-density Lyman-limit systems [36]); (iii) that non-
linear corrections (including quasar duty cycles) can be
ignored on sufficiently large scales [11,27,28], although
I will include shot noise from the rarity of sources; (iv) that
sources averaged on large scales radiate isotropically.
These seem reasonable to obtain a good estimate of the
effects but in future they should be checked against
numerical simulations and more complicated analytic treat-
ments that allow for departure from equilibrium [37].
Section II develops the inhomogeneous, monochromatic

radiative-transfer equations; Sec. III discusses the applica-
tion of these equations to the large-scale, linear behavior of
intergalactic HI. Section IV presents the main results,
showing how various parameters change the distinctive
imprint of radiative transfer on the intergalactic neutral
hydrogen. Further discussion is given in Sec. V, especially

in relation to observations of the Lyman-α forest. Two
subsidiary issues are considered in Appendices. In
Appendix A, I re-derive all equations using general
relativity, so including peculiar velocities and inhomo-
geneous gravitational redshifting and elucidating the gauge
dependence of the results (all of which considerations turn
out to impact only on scales larger than those of interest
here). Appendix B discusses the calibration of a particular
parameter (the intergalactic HI bias in the absence of
radiation transfer) from analytic arguments and numerical
simulations.
There are a few notational matters worth settling before

starting the calculation. It is helpful to be able to decom-
pose any quantity X into its spatial mean value X0 and
fractional perturbations δX defined by

δX ¼ X − X0

X0

: (1)

Later I will mainly deal with the Fourier transform ~δX of
these fractional variations; any quantity can be rewritten

δXðxÞ ¼
1

ð2πÞ3=2
Z

d3keik·x ~δXðkÞ; (2)

where k is the comoving wave vector. Finally, the power
spectrum PXðkÞ is defined by

h~δXðk0Þ� ~δXðkÞi ¼ PXðkÞδðk − k0Þ; (3)

where angle brackets denote an ensemble average and, by
an unfortunate quirk of conventional notation, the δ on the
right-hand side represents the Dirac delta function. It
follows from these definitions that the power spectrum
for any quantity has units of a comoving volume. The
expression above assumes statistical isotropy so that PX is a
function of k ¼ jkj alone.
Numerical results will be derived assuming a fiducial

Planck temperature-only [38] cosmology ðh;ΩM0;ΩΛ0Þ ¼
ð0.6711; 0.3175; 0.6825Þ, where ΩM0 and ΩΛ0 are the
present day matter and cosmological constant densities
relative to critical and h ¼ H0=ð100 km s−1 Mpc−1Þ is the
dimensionless Hubble parameter today. The main role of
these quantities will be to fix the Hubble expansion rate at
z ¼ 2.3; any uncertainties are easily small enough to be
ignored for the present study.

II. RADIATIVE TRANSFER

In this section, I will derive a monochromatic approxi-
mation to the radiative-transfer equation; this involves
systematically integrating over frequency dependence.
Because the scales of interest remain strongly subhorizon,
relativistic corrections will be subdominant and are
excluded. For the interested reader, they are reintroduced
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in Appendix Awhich shows explicitly that they constitute a
small correction.
To start, let fðx;n; νÞ denote the physical number

density of photons at comoving position x traveling in
direction n with frequency ν. In the absence of collisional
effects, the total number of photons is conserved. However
the Lagrangian phase volume that those photons occupy
changes over time: the spatial volume increases as a3 while
the frequency interval decreases as a, giving an overall
expansion rate1 of a2. Overall, this implies the following
Boltzmann equation:

∂f
∂t þ

c
a
ðn · ∇Þf þ ∂f

∂ν
dν
dt

þ 2Hf ¼ C½f�; (4)

where c is the speed of light, a is the universe scale factor
and H ¼ _a=a is the usual Hubble expansion rate. C½f�
contains the collisional terms (i.e. those that alter the
photon number) and will be expanded in a moment.
In order, the terms on the left-hand side denote the
Eulerian rate of change of photon density; the free-
streaming of photons; the redshifting of the photons;
and the volume dilution discussed above. The gradient
operator∇ is taken with respect to the comoving position x
throughout this work. The term ∂f=∂t will now be
set to zero, meaning I am approximating the radiation
and ionization to be in equilibrium as noted in
the Introduction. At the background level, this is a good
approximation at z ¼ 2.3—the evolution of the photoioni-
zation rate Γ0 is slow, d lnΓ0=d ln a ≈ −0.04 from the
tabulations of Ref. [21]—but the implications of time
dependence for perturbations should certainly be explored
further in future work.
To formulate the collisional term, consider first the

emission of radiation. There are two distinct relevant
aspects: first, galaxies and quasars generate energy from
stars and black holes; second, the intergalactic HI regen-
erates a fraction of photons it previously absorbed when the
electron and proton recombine. I will treat these two terms
separately in what follows.
Now consider absorption processes. A large effect will

come from the IGM, corresponding to the low-column-
density Lyman-α forest. The density of the neutral hydro-
gen nHIðxÞ in this phase will be a key quantity. However,
some portion (to be quantified later) of absorption comes
from small, dense clumps which are strongly self-shielded
against the UV radiation that is being modeled. At least
three characteristics distinguish the clumped phase: first,
the density of HI is determined by collisional ionization and
hence essentially unaffected by variations in the radiation.
Second, the majority of recombination radiation produced
is reabsorbed internally within a clump. Third, the amount

of radiation absorbed by such a population does not scale
with the mass of HI in the population, but rather with the
geometrical size and number density of the objects. For all
three reasons, this population requires separate treatment.
Following the above discussion, the emission and

absorption of photons can be expressed by

Cν½f� ¼ jνðxÞ þ nHIðxÞ
�
ΓðxÞ
4π

frecðν; TÞ − cσHIðνÞf
�

− cκclumpðx; νÞf; (5)

where
(i) jνðx;nÞ is the emissivity per unit physical volume

per frequency interval from sources other than the
IGM itself;

(ii) nHIðxÞ is the number of ground-state hydrogen
atoms per unit physical volume in the IGM (ex-
cluding the shielded clumps);

(iii) κclumpðx; νÞ is the opacity from collisionally ionized
clumps;

(iv) frecðν; TÞ is the IGM recombination spectrum,
which depends on the temperature T of the free
electrons;

(v) ΓðxÞ is the rate of ionization per HI atom (and
therefore also the recombination rate, assuming
photoionization equilibrium); and

(vi) σHIðνÞ is the cross section of a HI atom to ionization
by a frequency ν photon.

In principle jν is a function of angle n as well as of position
x but, in accordance with approximation (iv) above, the n
dependence is now to be dropped (meaning that sources
averaged over large scales radiate isotropically). I will also
assume throughout that only HI can absorb photons in the
frequency range of interest.
The cross section σHI is sharply peaked at the Lyman

limit (νLL ≈ 3 × 1015 Hz), which allows for a monochro-
matic approach. The key quantity will be an effective
number density of Lyman-limit photons, fLL, defined by

fLLðx;nÞ ¼
Z

fðx;n; νÞσHIðνÞdν: (6)

If desired, one can divide through by a fixed cross section
[e.g. σHIðνLLÞ] to “correct” the units of fLL, leading to
cosmetic differences. Either way, σHI defines a single
particular broadband filter that we choose to focus on;
the whole framework could be formulated in terms of
another band if desired. This particular choice of filter is
uniquely motivated because the ionization rate per HI

atom—a critical quantity of interest—is given exactly by
integrating fLL over all angles:

1Some works, e.g. Refs. [21,39], choose to use the energy
density per unit volume, which leads to an a3 volume factor and
accordingly a few cosmetic differences.
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ΓðxÞ ¼ c
ZZ

fLLðx;nÞd2n: (7)

To obtain the Boltzmann equation for fLL, multiply
Eq. (4) by σHI and integrate with respect to ν, giving

a−1ðn ·∇ÞfLLþ κtotfLL ¼ c−1
�
jþ σ̄HInHI

Γ
4π

βrðTÞ
�
; (8)

where κtot is an effective opacity, j is an effective source
emissivity and βrðTÞ is a dimensionless, temperature-
dependent fraction of recombination radiation which lies
in our Lyman-limit waveband. The formal definitions of
these terms arise directly from the frequency integration,
and will be given and discussed below in turn.

A. Absorption

First consider the effective opacity κtot which has been
composed from separate diffuse IGM opacity, clump
opacity, redshifting and volume-dilution contributions:

κtot ¼ σ̄HInHI þ κ̄clump þ αz
H
c
þ 3

H
c
: (9)

I havewritten the volume term as 3H=c to directly associate
it with comoving volume dilution; αz, a dimensionless
number to be defined below, will contain a compensating
term to return the 2H=c of the original formulation (4). The
quantities σ̄HI and αz are dependent on the spectrum, but
not on the normalization of the spectrum; the monochro-
matic approach therefore assumes them independent of
position. Their values can be estimated by using tabulated
mean UV background estimates [21] at z ¼ 2.3:

σ̄HI ¼
1

fLL

Z
σ2HIfdν ≈ 3.87 × 10−18 cm−2; (10)

αz ¼ −
1

fLL

Z
σHI

∂f
∂ ln ν dν − 1 ≈ 1.57: (11)

Meanwhile I have defined the monochromatic clump
opacity

κ̄clumpðxÞ ¼
Z

κclumpðx; νÞσHIðνÞdν: (12)

It will be convenient later to write the fraction of effective
opacity from the respective terms as

βHI ¼
σ̄HInHI
κtot

; βclump ¼
κ̄clump

κtot
;

βz ¼
αzH
cκtot

; βV ¼ 3H
cκtot

: (13)

By definition these obey βHI þ βclump þ βz þ βV ¼ 1.
We can estimate their values by referring to the observa-
tional constraints on Lyman-limit opacity; for instance
Ref. [33] quoted a mean-free path (MFP) of κ−1HI ≡
ðσ̄HInHI þ κ̄clumpÞ−1 ≈ 150 Mpc in physical units at
z ≈ 2.4. Their value takes into account the intergalactic
medium absorption alone (it excludes volume and red-
shifting effects, as well as circumgalactic absorption
immediately around the emitting object). Correcting to z ¼
2.3 using [33] λMFP ∝ ð1þ zÞ−4.5 and converting to comov-
ing units gives a helpful reference value:

a−1κ−1HI ≈ 570 Mpc comoving at z ¼ 2.3: (14)

There are uncertainties in the analysis of the observational
data [40] which could imply that the correct mean-free path
is somewhat longer than this value; results for different κHI
will be investigated at the end of the work.
With the Planck cosmology defined in the Introduction

one has Hðz ¼ 2.3Þ=c ≈ ð1280 MpcÞ−1 and therefore,
taking the reference value of κHI above,

βHI þ βclump ¼ 0.62; βz ¼ 0.13; βV ¼ 0.25: (15)

One immediate implication of these calculations is that,
compared against physical opacity, redshifting and volume
dilution are subdominant but important factors in lowering
the cosmological density of Lyman-limit photons. This
implies that the relevant scale at which scale-dependent
effects are centered is smaller than the quoted HI-only
mean-free path; we now have

a−1κ−1tot ≈ 350 Mpc comoving at z ¼ 2.3: (16)

This is closer to the range measurable by BOSS. In fact
when solving the equations in detail below, this character-
istic path length will turn out to be sufficiently short that
radiation transfer can have a significant impact on the forest
at the BAO scale.
Finally, one needs to decide how to assign opacity

between the intergalactic HI and clumps. Sadly there is
no way to do this unambiguously so I will further para-
metrize:

pclump ¼
βclump

βclump þ βHI
: (17)

Reference [33] details the fraction of opacity from systems
of differing column density, allowing an estimate of pclump.
For a parcel of gas to count as clumped, the definition made
above Eq. (5) requires it to be in collisional ionization
equilibrium. The boundary will therefore be somewhat
higher than the traditional Lyman-limit system threshold
because reaching the collisionally ionized state requires a
reduction in photoionization rate by a substantial fraction
throughout the cloud.
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The details depend strongly on the temperature, density
and geometry of the system itself; here I will make a very
rough order-of-magnitude estimate for a cutoff point. From
the radiative-transfer simulations in Ref. [41], I determined
that a typical Lyman-limit system has an electron density
around 10−2 cm−3 and a temperature T ≈ 2.4 × 104 K.
This gives a collisional ionization rate of approximately
[42] 1.2 × 10−13 s−1, compared to the photoionization rate
[21] of around 1.0 × 10−12 s−1. One therefore needs to
suppress the intergalactic flux by a factor of around 10 to
reach collisional ionization.
Then, making a simple uniform-density one-dimensional

(1D) model of a clump irradiated by the intergalactic flux,
the mean flux inside as a function of total column densityN
is given by Γ0ð1 − e−σ̄HINÞ=ðσ̄HINÞ. Note therefore that,
although the central photoionization rate falls exponentially
with N, the mean falls only approximately linearly with N.
Accordingly for the mean rate to drop to Γ0=10 requires
N ≈ 10σ̄−1HI ≈ ð2.6 × 1018Þ cm2. The cumulative effect of
column densities greater than these limits constitute only
around 10% of the IGM opacity (see Ref. [33], Fig. 10). For
that reason I will adopt pclump ¼ 0.10, showing the effect of
varying the value at the end of the paper.

B. Recombination emission

Now let us turn attention to the recombination radiation
term. This arises automatically from the integration
discussed above Eq. (8), with the definition

βrðTÞ ¼
1

σ̄HI

Z
∞

0

σHIðνÞfrecðν; TÞdν; (18)

which provides a dimensionless measure of the amount of
recombination radiation that ends up in the monochromatic
waveband under consideration. Over the frequencies of
interest, frec can be approximated as an offset Maxwell-
Boltzmann distribution corresponding to the electron tem-
perature T, scaled by the fraction of recombinations that
occur directly to the ground state:

frecðν; TÞ ≈ 2hf∞→1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðν − νLLÞ
πðkTÞ3

s
e−hðν−νLLÞ=kT; (19)

where f∞→1 ≈ 0.40 is the fraction of recombinations direct
to the ground state [43], h is Planck’s constant and k is
Boltzmann’s constant. At z ≈ 2.4 (close enough to our
fiducial redshift), a typical forest temperature is [16,19]
T ¼ 2.5 × 104 K; evaluating Eq. (18) then gives βr ¼ 0.39.
In principle, we could keep track of how variations in the
mean temperature correlate with variations in the mean
density; note, however, that when considering the averaged
effects on linear scales this may not be the same as the
equation of state measured for individual clouds [19].
Worse, large-scale spatial temperature correlations could

well be generated by unmodeled, nonequilibrium phenom-
ena such as helium reionization [16,44–46]. Luckily, the
final effect of these on the photoionization equilibrium will
be subdominant because βr changes quite slowly with
temperature (dβr=d lnT ¼ −0.15). The impact of thermal
fluctuations on the recombination spectral shape is thus
small compared to their effect on the recombination rate
(which scales approximately as T−0.7 in the intergalactic
regime). Even in the latter case, within our monochromatic
approximation the temperature variations do not depend
strongly on the local ionizing field strength [47].
Incorporating multiwavelength, time-dependent radiative
transfer could introduce qualitatively important corrections
to the temperature field and should be prioritized in future
work (see Sec. V).

C. Other sources

There is one remaining term in Eq. (8) that as yet has
not been discussed: jðxÞ. Recall that (8) is obtained
by integrating (4) over frequency; accordingly jðxÞ is
defined by

jðxÞ ¼
Z

jνðxÞσHIðνÞdν; (20)

and specifically excludes the recombination emission
which was treated separately above. Looking ahead in
the calculation, we will need to understand the statistical
properties of the jðxÞ field. It is widely believed that, at
z ≈ 2.3, quasars and galaxies both contribute significantly
to the UV emission [21]. For both populations, systematic
fluctuations δj are thought to be proportional to a constant
(the “bias,” bj) times the matter density fluctuations δρ [48]
when averaged over suitably large scales. However we will
also need to consider the shot noise: because quasars are
rare, even a uniform distribution would have a significant
Poisson fluctuation in density from place to place. In the
limit of large scales (and therefore large numbers), these
Poisson fluctuations can be modeled as an additive
Gaussian noise, giving the total large-scale emissivity
variations:

δjðxÞ ¼ bjδρðxÞ þ δSNðxÞ; (21)

where, in accordance with definition (1), δρðxÞ is the
fractional matter overdensity determined by the cosmology
and δSNðxÞ is the uncorrelated shot-noise Gaussian random
field. If multiple source populations contribute to the
emissivity, they add linearly from which it follows that

δjðxÞ ¼
X
i

j0;i
j0

ðbj;iδρðxÞ þ δSN;iðxÞÞ; (22)

where the sum extends over the different source categories i
and the total mean emissivity is j0 ¼

P
ij0;i. Comparing
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Eqs. (21) and (22) shows that the net large-scale effect is the
same as that of a single population with suitably averaged
parameters as I will discuss below.
Consider first the bias bj, which is established by

estimating the correlation strength of the emitting objects.
Quasars are found to be strongly biased (bq ≈ 4) with
respect to the matter density field [49,50]. Galaxies are
substantially less strongly correlated, and therefore less
biased; Ref. [51] quotes a correlation length of r0 ¼
4.3h−1Mpc for a sample of bright (23.5 < R < 25.5)
galaxies at z ≈ 2.2. This translates into a bias of bg ≈ 2.4
with the Planck cosmology described above, assuming the
underlying matter fluctuations to be normalized [38] to
σ8 ¼ 0.834 at z ¼ 0.
To add complication, these biases are measured for

bright objects; especially in the case of galaxies, a signifi-
cant fraction of photons are emitted from a large population
of individually under-luminous objects [52]. To understand
how the bias scales with luminosity one can assume it arises
from the underlying dark matter halo. In that case the bias
implies a halo mass [53]; for instance, with bg ¼ 2.4 we
obtain a characteristic mass2 ofM ¼ 4 × 1011M⊙. Suppose
we wish to consider galaxies a factor of 10 fainter than the
sample of Ref. [51]; then a number of arguments point to
the dark matter halos being approximately a factor of

ffiffiffiffiffi
10

p
less massive [41,55]. This can be translated back into a bias
of 1.9. Similarly, dropping another factor of 10 in lumi-
nosity yields halos with bias 1.5.
So the appropriate “source bias” is sensitive to details of

the underlying population generating the UV photons. For
a combination of different sources, Eq. (22) shows that the
net bias is exactly the average of the two individual biases,
weighted by the emissivity of the populations. As a default
value in this work, I will assume an average source bias of
bj ¼ 3, representing the average between highly biased
quasars and a range of galaxy luminosities. (Recall that the
value does not need to be further reduced for recombination
emission, since that is included elsewhere in the calcu-
lation.) Reflecting the uncertainty, I will also show results
for a range of bj from 1.5 to 4.0. A great attraction of future
measurements of the effects in this paper is that they should
in principle constrain bj and so shed light on the origin of
UV photons.
Now consider the shot-noise term δSN for a single

population. This represents random variations in the
density of sources. For a mean density of n̄, the number
of sources in a volume V is given by

NðVÞ ¼ n̄

�
V þ 1

ð2πÞ3=2
Z
V
d3x

Z
d3keik·x ~δSNðkÞ

�
:

(23)

Using this expression to demand that hN2i − hNi2 ¼ N for
any volume V (the Gaussian, large-N limit of Poisson
noise) dictates the power spectrum

PSNðkÞ ¼ n̄−1; (24)

independent of scale, where PSNðkÞ is defined by Eq. (3)
and correctly has units of comoving volume as explained
earlier. The shot noise is modeled as stationary; in fact
quasars likely have a finite duty cycle, causing the
realization of the shot noise to change over time. The
effect of this cannot be analyzed rigorously with the time-
stationary approach I have adopted, but it could plausibly
change the impact of noise on large scales. It should
therefore be investigated in future work.
Just as for the bias bj, choosing an appropriate value of n̄

is tricky. One can start by parametrizing the quasar
luminosity function ΦðLÞ using a double power-law fit
e.g [56,57]; following the consequences of Eq. (21) for a
series of infinitesimal bins in luminosity, assuming an
independent shot-noise realization for each bin, one is led
to an L2-weighted [27,32] effective quasar number density
defined by

n̄q ¼
ðR ΦðLÞLdLÞ2R

ΦðLÞL2dL
: (25)

Since the intrinsic luminosity function in the ionizing
radiation is unknown (being completely obscured by
Lyman-limit absorption) I assume that the ionizing radia-
tion of a given quasar scales linearly with its bolometric
luminosity. Evaluating Eq. (25) using estimates for the
bolometric population parameters [56] then gives n̄q
between 1.5 × 10−6 and 10−5 Mpc−3 comoving over the
parameter range quoted by Ref. [56].
As with bj, the δSN appearing in Eq. (21) can be seen

from Eq. (22) to be a photon-weighted average of the δSN
appropriate to the two populations. The density of galaxies
is so much higher that one can essentially ignore their shot-
noise contribution compared to that of the quasars. Tracing
this through, assuming again a 50% contribution from both
populations, one has to multiply n̄ by 4 to account for the
galaxy part of the emission (since δSN scales with n̄−1=2).
This yields the approximate upper limit n̄ ≈
4 × 10−5 Mpc−3 ≈ 10−4h3 Mpc−3, with a lower limit of
2 × 10−5h3Mpc−3. To be clear, the n̄ derived in this way is
not the density of any particular population—it is a
weighted average which accounts for the very different
densities of two populations.
These estimates neglect any effects of time variability

and anisotropy which will introduce qualitative corrections
and possibly lead to an increase in the effective n̄ by
pushing observed variation to smaller scales. I will there-
fore adopt the upper end of the naive uncertainty for the
present. Results will later be shown for a full range of

2These results have been calculated using the prescriptions of
Ref. [53] as implemented by Ref. [54].
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possible n̄. Many of the same physical considerations bear
on the value of both n̄ and bj, but I will consider them to be
separate parameters for the sake of clarity.
The total power spectrum for the sources PjðkÞ is just

PjðkÞ ¼ b2jPρðkÞ þ n̄−1; (26)

which follows because, by assumption, h~δρðkÞ~δSNðk0Þi¼0.
A similar expression was given by Ref. [32]. However,
despite appearing on an equal footing in Eq. (26), the shot
noise and correlated components behave differently in
terms of their effect on the HI [28], as we will see below.

III. LINEARIZATION

The preceding section concluded by discussing the
behavior of sources averaged on large scales in terms of
spatial perturbations δ defined by (1), leading to a number
of dimensionless physical parameters which are summa-
rized in Table I. The plan now is to rewrite the radiative-
transfer equations in terms of δ’s. Ignoring all terms of
order δ yields the homogeneous or “zero-order” approxi-
mation; the Boltzmann equation (8) becomes (integrating
over all angles without loss of information)

κtot;0ð1 − βHIβrÞΓ0 ¼ 4πj0; (27)

which expresses the equilibrium condition that the overall
rate of photon production is balanced by the effective
absorption from redshifting, dilution and ionization.
Expanding Eq. (8) to linear order and simplifying using

the background solution (27), one obtains an expression
for ~δfLL :

~δfLL ¼
ð1 − βHIβrÞ~δj þ βHIβr½~δnHI þ ~δΓ� − ~δκtot

iðaκtot;0Þ−1ðn · kÞ þ 1
; (28)

where I have suppressed functional k and n dependencies
for brevity. Excepting small gravitational effects
(Appendix A), the effective opacity fluctuations δκtot are
linked solely to variations in the diffuse and clumped
neutral hydrogen:

δκtot ¼ βHIδnHI þ βclumpδκ̄clump
: (29)

Integrating out the remaining angular dependence in
Eq. (28), noting that

R
d2n~δfLL ¼ 4π ~δΓ, one obtains an

implicit equation for ~δΓ:

~δΓðkÞ ¼ ½ð1 − βHIβrÞ~δj − βHIð1 − βrÞ~δnHI
− βclump

~δκ̄clump
þ βHIβr ~δΓ�SðkÞ;

SðkÞ ¼ aκtot;0
k

arctan
k

aκtot;0
; (30)

showing the characteristic scale dependence arising in the
radiation field (Fig. 1, upper panel). Performing an inverse
Fourier transform on the kernel SðkÞ returns the radial
function e−κtot;0r=r2 (Fig. 1, lower panel). The systematic
approach has therefore recovered something like the
heuristic equations of Refs. [27,32], where sources are
convolved with a similar kernel. However, those works do
not take into account the shortened effective mean-free path
from redshifting and volume-dilution contributions (they
use κHI where κtot;0 is more appropriate). Moreover the
appearance of ~δnHI (from inhomogeneous absorption) and
~δΓ (from recombination radiation) on the right-hand side of
Eq. (30) means that the convolution kernel is modified from
this simple form once absorption fluctuations, as well as
emission fluctuations, are included.
On large scales Sðk → 0Þ is ≈1, meaning fluctuations in

the effective source function are tracked by fluctuations
in the number density of ionizing photons. This agrees with
the intuitive picture outlined earlier, in which regions
separated by more than the mean-free path must arrive

FIG. 1. In the linear approximation, the radiative transfer
consists of convolving an effective source function (including
emission, absorption and reradiation terms) with a kernel S,
Eq. (30). The kernel is shown here in Fourier space (upper panel)
as a function of wave number divided by κtot;0. On large scales
(toward the left) SðkÞ is ≈1, meaning fluctuations in the effective
source function are tracked by fluctuations in the number density
of ionizing photons. On small scales (toward the right), SðkÞ
decays towards zero; fluctuations in the photon density are
suppressed and the uniform UV approximation will apply. The
lower panel shows the same kernel transformed into real space,
ℱ−1½S�; the horizontal axis is an inverse distance, so the two
panels read in the same direction.
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at independent ionization equilibria. On small scales
Sðk → ∞Þ decays towards zero; fluctuations in the photon
density are suppressed and the uniform UV approximation
is recovered. (On sufficiently small scales one will, how-
ever, have enhanced nonlinear shot noise; as discussed in
the Introduction I will consider only the linear regime in the
present work.)
We are now in a position to understand the mean

ionization state. Recalling that the effects of shielded
clumps have already been dealt with thee nHI field refers
specifically to the intergalactic HI alone—we can write

δnHI ¼ δnHI;u − δΓ; (31)

where δnHI;u describes the HI field in the case of a
completely uniform ionizing background; the given rela-
tionship is a consequence of linearizing the photoionization
equilibrium equation nHI ∝ 1=Γ. In the absence of any
radiative fluctuations, by definition δnHI ¼ δnHI;u.

Combining Eqs. (30) and (31) gives a solution for ~δnHI
in terms of ~δj, ~δnHI;u and ~δκ̄clump

:

~δnHI ¼
~δnHI;u− ½ð1−βHIβrÞ~δj−βclump

~δκ̄clump
þβHIβr ~δnHI;u�SðkÞ

1−βHISðkÞ
:

(32)

Now assume that ~δnHI;u (the HI density fluctuations in a

completely uniform UV field), ~δj (the source density

fluctuations) and ~δκ̄clump
(the self-shielded clump opacity

fluctuations) can be written as a bias (respectively bHI;u, bj
and bclump) times the fiducial cosmic density field, and
further define an effective source bias

bj;eff ¼ ð1 − βHIβrÞbj − βclumpbclump þ βHIβrbHI;u; (33)

which takes into account the recombination emission from
the IGM and absorption from the clumps.3 The intergalactic
HI density then follows immediately,

~δnHI ¼
½bHI;u − bj;effSðkÞ�~δρ − ½1 − βHIβr�SðkÞ~δSN

1 − βHISðkÞ
; (34)

using Eq. (21). The HI density perturbation ~δnHI can be split
into two terms, corresponding to the correlated and
shot-noise components respectively. The correlated part
obeys ~δnHI ¼ bHI ~δρ where

bHIðkÞ ¼
bHI;u − bj;effSðkÞ
1 − βHISðkÞ

; (35)

showing that the HI density traces the cosmological density
in a scale-dependent way. This is the main result of the
present work. Its implications will be discussed in the next
section.

IV. RESULTS

A. Bias and power spectrum

The preceding section used a systematic linearization of
first-principles radiative transfer to derive equations gov-
erning the IGM HI density on large scales. I will now
explore what this implies for the bias bHI (35) and total
power spectrum. As previously discussed, a number of
uncertain parameters enter the calculation, namely: the
IGM bias in the uniform-radiation limit, bHI;u; the effective

TABLE I. Dimensionless quantities used in this work, with a brief explanation and the default value calculated or
estimated at z ¼ 2.3.

Spectrum-dependent coefficients

αz Coefficient for background redshifting (11) 1.57
βr Fraction of HI recombinations to LL photons (18) 0.39

Estimated origin of effective opacity κtot;0, Eq. (13)
βHI Fraction from HI in photoionization equilibrium 0.56
βclump Fraction from collisional-equilibrium clumps 0.06
βz Fraction from redshifting 0.13
βV Fraction from dilution 0.25

Input biases relative to the linear overdensity field
bHI;u Bias of HI in homogeneous-radiation limit 1.5
bj Bias of photon source objects 3
bj;eff Effective bias of sources including recombination (33) 2.6

3I will assume that bclump ¼ bHI;u, since both unshielded and
clumped HI are included in the estimate made in Appendix B; it
could plausibly be the case that bclump in reality differs from bHI;u
if the distinction between phases is made carefully—but since
both bj and bclump only enter through bj;eff , any uncertainty in
bclump is degenerate with the uncertainty in bj which will be
explored later.
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source density n̄; the effective source bias bj; the fraction
of opacity in collisionally ionized clumps pclump;
and the mean physical Lyman-limit opacity κHI ¼
ðβHI þ βclumpÞκtot;0. This section will explore the conse-
quences of varying all of these except for bHI;u ¼ 1.5 (see
Appendix B for details). I will explore substantial varia-
tions around the default choices (justified earlier in the text)
of bj ¼ 3, n̄¼ 10−4h3Mpc−3, pclump ¼ 0.10 and ðaκHIÞ−1 ¼
570 Mpc comoving.
The top panel of Fig. 2 plots bHI against comoving wave

number k, Eq. (35). This represents the linear relationship
between HI density and total density as a function of scale.
The dashed and solid lines show respectively the assumed
relationship when there are no effects of inhomogeneous
radiation and the calculated relationship for the default
parameters.
The basic functional form and its bj dependence can be

understood as follows. On small scales (k ≫ κtot;0), SðkÞ
asymptotes to zero, so

bHIðk ≫ κtot;0Þ ¼ bHI;u; (36)

showing that the small modes are unaffected by radiative-
transfer phenomena at the linear level. Conversely on large
scales, SðkÞ asymptotes to one, giving

bHIðk ≪ κtot;0Þ ¼
bHI;u − bj;eff
1 − βHI

: (37)

For bj;eff > bHI;u, this makes the HI negatively biased on
large scales, i.e. anticorrelated with the total density. The
intensity of the radiation in dense regions overcompensates
for the clustering of hydrogen, causing a net deficit in
neutral hydrogen—a direct analogue of the proximity effect
but averaged over many sources on large scales.
This has profound consequences for the power spectrum

of HI fluctuations. Recall that ~δSN and ~δρ are uncorrelated,
so we have

PHIðkÞ ¼ bHIðkÞ2PðkÞ þ
�ð1 − βHIβrÞSðkÞ

1 − βHISðkÞ
�
2 1

n̄
: (38)

This power spectrum is plotted in the lower panel of Fig. 2,
with the default value n̄ ¼ 5 × 10−4h3Mpc−3 (Sec. II C)
and a fiducial PðkÞ for the Planck cosmology calculated
using CAMB [58]. The strong feature arises because b2HI
touches zero at k−1 ≈ 125h−1 Mpc comoving (for the
default parameters). Accordingly there is a sharp dip in
PðkÞ around that wave number. On larger scales still, at the
far left of Fig. 2, the HI fluctuations become stronger than
predicted in the scale-independent model. This arises from
a mixture of shot noise (discussed in more detail below) and
the large magnitude4 of the limiting bias (37).
Dotted lines in Fig. 2 explore the impact of changing

bj over a wide range; from top to bottom, bj ¼
1.5; 2.0; � � � ; 4.0. Recall that, as discussed in Sec. II C,
the source bias bj is composed of a photon-weighted
average of different populations (excluding recombination
emission, which is accounted for elsewhere within the
calculation). As the source bias increases, the effects
at a given wave number typically become stronger.
Consequently the zero in bHI moves to larger wave
numbers (shorter distances), making the radiation thumb-
print more observationally accessible. Even for small
biases, however (bj ¼ 1.5) the effects are significant on
scales of tens to hundreds of megaparsecs comoving.
On sufficiently small scales, the HI power spectrum is

unaffected by radiative transfer, regardless of the value of
bj. In particular, 1D measurements of the Lyman-alpha
forest are limited by the small path length that can be
observed with an individual quasar. Only wave numbers
greater than ∼0.02 s km−1, corresponding to 2hMpc−1

FIG. 2 (color online). (Upper panel) The calculated bias of
intergalactic HI at z ¼ 2.3 as function of comoving wave number.
The dashed line shows the bias in the uniform-radiation case; the
solid line shows the bias calculated with radiative transfer. On
small scales (towards the right), the calculated bias agrees with
that of the uniform case. On large scales, the HI is negatively
biased because overdensities imply high emissivity, high radia-
tion density and hence net HI under-density. Dotted lines show
the effect of changing the source bias bj; from top to bottom,
bj ¼ 1.5; 2.0; � � � ; 4.0. (Lower panel) The corresponding power
spectrum, PHIðkÞ, defined by Eq. (38), has a strong feature where
bHI passes through zero (near to k ¼ κ−1tot;0).

4Although bHI turns negative on large scales, this is not directly
seen in the power spectrum which is sensitive only to b2HI. On the
other hand bHI appears linearly when the forest is cross correlated
with another tracer population [29,59], so its sign is detectable in
principle, a point explored a little more in a moment.
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comoving at z ¼ 2.3, are measured [60]; from Fig. 2 it is
clear that the effects are minimal for such measurements.
(The nonlinear, non-Gaussian contribution to the shot noise
on those scales will become significant, but plausibly
average out over many sightlines [11,28].)

B. Auto- and cross-correlation function

To test the large-scale predictions against observations
one must turn to more recent three-dimensional (3D)
analyses that take advantage of modern surveys with dense
background sources [34]. In this context, it is more
conventional to consider the correlation function ξðrÞ ¼
hδðxþ rÞδðxÞi. It has been widely used to constrain the
BAO feature in Lyman-α and other large-scale structure
tracers [12,35,61]. By isotropy ξ is actually a function of
r ¼ jrj alone; one can show it is related to the power
spectrum via a Legendre transformation,

ξHIðrÞ ¼
1

2π2

Z
dk

sin kr
kr

k2PHIðkÞ: (39)

The correlation function for the Lyman-α flux ξF is closely
related to ξHI and can be measured from observations
relatively directly. As explained in the Introduction, this
paper will not go as far as calculating ξF, but a brief
discussion of the relationship to ξHI is given in Sec. V.
Figure 3 shows ξHI (renormalized by r2 to highlight the

BAO structure) for the scale-free (dashed line) and default
radiation model (solid line). Once again the dotted lines
show the calculated correlation function for a range of
different source biases bj from 1.5 to 4.0. The mapping
from power spectrum to correlation function causes a
substantial mixing of information on different scales, so
the new shape needs a little unpicking to understand. On
scales smaller than ∼5h−1 Mpc, the scale-free predictions
are barely altered; this corresponds to the small-scale limit
bHI → bHI;u in the bias, Fig. 2. Moving to larger separa-
tions, the radiation-corrected correlation function falls
rapidly compared to the scale-free counterpart, because
the HI bias is declining and the power on these scales is
suppressed. In fact, the new correlation function turns
negative at around 55h−1 Mpc; this is an artifact of the
constraint that

R
ξðrÞr2dr ¼ 0 for a properly mean-

calibrated sample, and the negativity in itself does not
indicate anything physically special about these scales.
The BAO feature—a hump at around r ¼ 100h−1 Mpc—

remains clearly visible in all cases, but the local maximum
in r2ξðrÞ shifts marginally. The local maximum can be
found at 100.0h−1Mpc in the homogeneous case (dashed
line) but at 101.2h−1 Mpc in the fiducial bj ¼ 3.0 case
(solid line). At distances exceeding 130h−1 Mpc, the new
correlation function begins to rise because of contributions
from the increased power on very large scales (far left
of Fig. 2).

In cross correlation, the signature looks slightly different.
As an illustration, the dot-dashed line in Fig. 3 shows a
hypothetical cross correlation against a fixed-bias popula-
tion with b ¼ 1.5 (this value has no significance except to
scale the overall function similarly to the autocorrelation).
In other words, I am plotting ξHI× ≡ 1.5hδHIðxþ rÞδρðxÞi.
In simple cases this would return the geometric mean of the
dashed and solid lines. However, there are a couple of more
subtle effects here. First, the negativity of the HI bias on
large scales reduces the large-distance cross correlation
(ξHI× probes bHI whereas ξHI is sensitive only to b2HI).
Second, the plot assumes cross correlation against a
population other than quasars so that the shot-noise term
cancels. Overall this leads to a cross correlation that is
suppressed more strongly on large scales than would be
expected from an averaging argument.

C. Varying other parameters

So far I have only shown results for varying bj. However
there are other parametric dependencies which ought to be
examined. The first is the physical HI opacity, κHI, which is
the inverse of the mean-free path of a photon in the absence
of redshifting or volume dilution. The default value has
been discussed extensively above; in Fig. 4 I have shown
what happens when κHI is changed by a factor of 0.25, 0.5,

FIG. 3 (color online). The correlation function of intergalactic
HI at z ¼ 2.3, as defined by the Legendre transform (39) of the
power spectrum shown in Fig. 2. As before, dashed lines show the
constant-bias case, whereas the solid line shows the calculated
bias for inhomogeneous radiation (in the default case, bj ¼ 3.0).
The dotted lines show a series of different source biases
(bj ¼ 1.5, nearest the dashed line; then 2.0, 2.5, 3.5 and 4.0).
The result of cross correlating the HI against a tracer population
with fixed bias is shown by the dash-dotted line.
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2 and 4. The actual uncertainty in the observationally
constrained value [33,40] is more likely under a factor of 2.
The upper and lower panels show the power spectrum and
correlation function respectively. Solid and dashed lines
therefore correspond exactly to those presented in Figs. 2
and 3; the dotted lines show the impact of changing κHI. As
this opacity increases (i.e. the mean-free path decreases),
the effects become more prominent on smaller scales. A
slightly more subtle change occurs at long wavelengths: as
the mean-free path decreases, the large-scale limiting bias
increases, as does the noise contribution. Since βHI
increases when H is fixed but κHI increases, this behavior
is in accordance with Eq. (37). Physically, photoionized HI

amplifies fluctuations in radiation on large scales: an
overdensity of radiation implies a lower HI fraction and
therefore a deficit in opacity, in turn boosting the over-
density of radiation. This is why, as κHI increases, the
fluctuations on large scales become more dramatic.
Next consider the effect of varying n̄ from its fiducial

value. Recall that this determines the large-scale shot-noise
contribution and is related to the underlying source pop-
ulation densities (Sec. II C). Fixing the other parameters,
Fig. 5 demonstrates the effect of n̄ varying between

5 × 10−3h3Mpc−3 and 10−5h3 Mpc−3 on the power
spectrum (upper panel) and autocorrelation function
(lower panel). Smaller source densities lead to a stronger
effect, with significant power added in the case of
n̄ ¼ 10−5h3 Mpc−3. It may come as a surprise that, in all
cases, the effects of low source density are most pro-
nounced as r becomes large (or k small) rather than in the
opposite limit. In the linear, averaged limit, however, this is
correct. The shot-noise power spectrum is suppressed on
small scales by SðkÞ2 which declines steeply at increasing k
(Fig. 1). The intuitive picture that shot noise matters more
on small scales depends on the transition to the nonlinear,
unaveraged regime which I have not attempted to model.
Finally let us return to the parameter pclump, which

controls the fraction of opacity arising from self-shielded,
collisionally ionized clumps as opposed to diffuse, photo-
ionized HI. As this parameter is increased, βHI decreases
and βclump increases. The overall effects are shown in Fig. 6
for pclump ¼ 0.0, 0.1 (the default), 0.2; � � � ; 0.5. For scenar-
ios with a greater fraction of opacity in clumps, the effect of
radiation is slightly mitigated on very large scales. However
the differences are minor.
For realistic observations, the effects of pclump will be

somewhat larger: here I am plotting the effect only on the

FIG. 4 (color online). The effect of varying the mean HI opacity
on the power spectrum (upper panel) and correlation function
(lower panel). Other parameters are held fixed. The dashed and
solid lines show the uniform-radiation and reference cases
respectively, so agreeing with the same lines in Figs. 2 and 3.
Dotted lines show the results for an HI opacity 0.25, 0.5, 2 and 4
times that of the default case. As the opacity increases, the mean-
free path decreases, meaning that the “dip” feature in the HI

power spectrum moves to shorter wave numbers. Consequently
small-scale power is increasingly suppressed, whereas large-scale
power is enhanced.

FIG. 5 (color online). The effect of source shot noise on the
power spectrum (upper panel) and correlation function (lower
panel). Other parameters are held fixed. The dashed and solid
lines show the uniform-radiation and reference cases respectively,
so agreeing with the same lines in Figs. 2 and 3. The dotted lines
show the results for (top to bottom) n̄ ¼ 10−5, 5 × 10−5, 10−4,
5 × 10−4 (solid line), 10−3 and 5 × 10−3h3 Mpc−3. As the
effective source density n̄ decreases, the amplitude of shot noise
increases, confusing the HI signal. The changes are strongest on
large scales for the reasons discussed in the text.
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photoionized intergalactic medium. Increasing the fraction
of clumps contributing to the Lyman-limit opacity will also
increase the balance of such systems in the Lyman-α forest
flux spectrum. Since they are collisionally ionized, they are
not much affected by the inhomogeneous radiation field
and therefore they dilute the scale-dependent effects
roughly by a fraction 1 − pclump. In other words, the
leading-order effect of a large pclump on observations will
be different to, and more important than, the physical effect
on the intergalactic HI which I have discussed here.
Nonetheless, whatever the value of any of these param-

eters, there are substantial changes to the intergalactic HI

correlation function at all scales exceeding 5h−1Mpc. It
seems likely that these should be detectable with BOSS
observations of the Lyman-α forest—even if observational
complications lead to a substantial dilution. This prospect is
considered further in the discussion below.

V. DISCUSSION

Radiative transfer imprints dramatic scale-dependent
bias in the intergalactic HI and therefore the Lyman-α
forest, even after reionization is complete. This follows

because regions separated by distances larger than the UV
photon mean-free path reach essentially independent
photoionization equilibria. Source clustering is stronger
than IGM clustering, leading to negative HI bias on
large scales (i.e. the HI anticorrelates with large-scale
overdensities).
This paper has presented a detailed calculation of these

new effects by adopting a monochromatic, equilibrium,
large-scale description, focusing on the large-scale, average
correlations [30–32] rather than small-scale nonlinear
fluctuations [9,11]. The systematic analytic treatment starts
from first-principles radiative transfer and produces, with
minimal computational effort, predictions for very large
scales.
The calculation reveals, as expected from the argument

above, a strong feature in the HI power spectrum and a
corresponding distortion of its correlation function.
According to the estimates here, this distortion should
have an effect at the BAO scale (≈100h−1 Mpc). The BAO
bump position is slightly shifted—in Fig. 3, the local
maximum is at 1.2% larger scales in the radiative-transfer
case (solid line) compared to the constant-bias case (dashed
line). That said, future cosmology constraints are unlikely
to come from measuring the peak in such a simple way; so
long as algorithms marginalize over possible broadband
distortions to the correlation function, they will likely still
recover an unbiased estimate of the BAO scale.
The most interesting conclusion is therefore that BAO-

focused Lyman-α observational programmes will be able to
recover helpful astrophysical constraints: the radiative-
transfer distortions are strongly dependent on the mean
bias of sources (Figs. 2 and 3), the HI opacity (Fig. 4) and
the effective number density of sources n̄ (Fig. 5). As bj
increases, the correlated component of the radiative fluc-
tuations grows and the power on BAO scales decreases
while the power on very large scales increases; as n̄
decreases, the random component of the radiative fluctua-
tions grows and the power on all scales increases. These
trends seem to agree with numerical results where a
comparison can be made [30–32].
The overall picture gives rise to a large number of

questions. The most obvious is whether existing BOSS
observations of the Lyman-α forest are compatible with the
expected thumbprint. A variety of subtle observational
issues must be taken into account before this can be
answered. First, converting an HI correlation function into
a flux correlation function is a nonlinear process that needs
at a minimum to be calibrated by suitable numerical
simulations [6]. Redshift-space distortions will mix the
dynamical growth of structure with the tracer statistics into
a final observed correlation function [6,62,63]. Dependent
on the exact survey design, angular binning and data cuts,
these effects could easily dilute the scale dependence,
making the observed correlation function closer to the
homogeneous-radiation result. However the changes in the

FIG. 6 (color online). The effect of changing the fraction of
opacity from collisionally ionized clumps on the power spectrum
(upper panel) and correlation function (lower panel). Other
parameters are held fixed. The dashed and solid lines show
the uniform-radiation and reference cases respectively, so agree-
ing with the same lines in Figs. 2 and 3. The dotted lines show the
results for (top to bottom) pclump ¼ 0.0, 0.1 (solid line),
0.2; � � � ; 0.5. When more opacity arises from clumps (higher
pclump), the effect of radiation is slightly weaker because the
clumps are able to partially counterbalance the enhanced radi-
ation in overdense regions. However, the effect is minor.
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underlying intergalactic HI bias are sufficiently dramatic for
it to seem implausible that the radiation-transfer signature
would be obscured completely in forthcoming precision
data. To be sure we will have to understand how the data
processing and parameter degeneracies impact on our
ability to measure the effects. Although the distortion is
large, it is also a very smooth function of scale and
therefore one needs to accurately calibrate the normaliza-
tion of the correlation function over a wide range of scales
to make a definitive detection; otherwise the effects are
degenerate with a renormalization of the uniform-limit
bias bHI;u.
The BOSS team has emphasized that their 3D Lyman-α

forest pipeline is presently designed to pick out localized
correlation-function features—i.e. the BAO bump—rather
than reconstruct the entire function accurately [12,35].
Nonetheless an attempt to measure scale dependence in
cross correlation against quasars has been made; none was
found [29]. Conversely some scale dependence in the cross
correlation between damped Lyman-alpha systems and the
forest can be seen in the plots of Ref. [59]. It is unclear
whether and how these results can be reconciled with the
present work; observational difficulties such as continuum
determination cause severely correlated errors in correla-
tion functions and dealing with these leads to certain large-
scale modes being projected out [12,35]. Overall, the task
of determining whether the effects of radiative transfer are
present in existing data is considerable. However, I hope
that the present calculation has underlined the rewards of
such an effort. The scale-dependent radiative transfer
contains a rich, valuable source of information on the
nature of UV sources.
21 cm emission studies will not be affected by these

considerations because the HI they probe is largely in
collisional- rather than photoionization equilibrium [41].
The 21 cm absorption forest would be affected in just the
same way as the Lyman-α forest; but this phenomena is of
most promise at high redshift before or during reionization
[64]—so the present calculation does not apply. One way to
tackle the larger fluctuations at high redshift is to use a
halo-model-based calculation [65]; alternatively, a linear-
theory approach has been taken to the problem by
Refs. [37,66,67]. In these cases, an explicit time integration
needs to be performed to follow the growth of ionized
bubbles whereas in the present case the integration is absent
because I have assumed equilibrium, making the present
paper’s calculations considerably simpler but more
restricted in scope.
Depending on one’s assumptions (for instance on the

relative importance of quasars to the UV background, and
on the quasar luminosity function), the rarity of sources
also has a substantial impact on very large scales. Here
I have modeled the resulting shot noise by a Gaussian
approximation similar to that of Ref. [32]; in that work,
noise was considered to be so large that the correlated

component of the radiation fluctuations was thrown out of
the calculation. In the present work the effects of shot noise
seem milder, which reflects that I work at lower redshift
(where the comoving density of quasars has increased) and
make greater allowance for a UV contribution from star-
forming galaxies. Crucially, the correlated component has a
qualitatively different signature to the noise component of
the radiation field: the former reduces the power of HI

fluctuations on large scales, whereas the latter can only ever
add power (at any scale). One effect that is absent from the
present work concerns scales below 10 Mpc or so—here
the noise would be significantly amplified [27] by 2-halo
and other nonlinear effects. Another missing aspect from
my analysis is that of time dependence which could, for
example, add further confusion from quasar duty cycles.
With all this in mind it would be of great interest to

supplement the linear-theory calculations of this work by
revisiting the BAO-scale correlation function of the
Lyman-α forest using nonlinear numerical simulations of
gigaparsec chunks of the IGM with correlated sources,
incorporating radiative transfer—along the lines of work
described by Refs. [30–32]. Hints of the anticorrelation
discussed at length in the present paper have been seen
before in such efforts [28,30]. It would be helpful to include
large-scale temperature fluctuations arising from helium
reionization [46]. Or, one might be able to tackle temper-
ature fluctuations analytically by relaxing the monochro-
matic assumption; it is worth reemphasizing that the current
work includes the zero-order effects of hard photons [the
spectral shape enters through Eq. (11)], but not first-order
changes from local fluctuations in spectral shape. At this
level of approximation, the gas thermal equilibrium is
nearly unaffected by radiation intensity fluctuations [47]
because the radiative heating rate can be approximately
rewritten as a function of density and temperature (via the
ionization equilibrium condition). To answer the important
question of how thermal fluctuations change the large-scale
signal one therefore needs either to incorporate multi-
wavelength radiative transfer or go beyond an equilibrium
approximation—or, preferably, both [47].
Further work is required to reach a unified view of how

radiation changes the observational prospects for cosmol-
ogy and astrophysics with the Lyman-α forest. The present
investigation forms a first guide to the effects that will
dominate on the largest scales.
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Note added.—After circulating a draft of this work, I was
made aware of an independent study by Gontcho A
Gontcho, Miralda-Escudè and Busca [73]; at present it
seems these authors reach many similar conclusions using a
different calculation framework. This is encouraging, and it
will be helpful to compare our approaches in due course.

APPENDIX A: ONCE MORE WITH GRAVITY

The plan for this appendix is to regenerate Eq. (8) but now
including peculiar velocity and gravitational inhomogene-
ities in accordance with general relativity. In fact, all the
effects turn out to be minor on scales of interest: dimension-
less perturbations to the metric ϕ are going to be small
compared to the dimensionless perturbations ~δ to the matter
except on scales comparable to or larger than the horizon:

ϕðkÞ ∼ 3H2
0Ωm;0ð1þ zÞ
2c2k2

~δðkÞ ≈ 4.2 Gpc−2

k2
~δðkÞ; (A1)

where, as in the main text, k is the comoving wave number.
If you are convinced by this argument, there is no need to
read any further.
On the other hand, factors arising from spectral integra-

tions could outweigh the scale contrast and make the effects
relevant. To be sure either way one needs to press ahead
with the calculation. I work in conformal-Newtonian gauge
to make the geodesic equations relatively simple, but will
briefly discuss the effect of gauge changes at the end of this
Appendix. The formal derivation starts with a suitably
perturbed flat Friedmann-Robertson-Walker universe
described by the metric [68],

ds2 ¼ −ð1þ 2ψÞc2dt2 þ aðtÞ2ð1 − 2ϕÞdx2; (A2)

where t is coordinate time, ψ and ϕ are the scalar potentials,
and x are the comoving position coordinates.
Consider a photon with wave vector kμ traveling through

this perturbed metric. The null condition kμkμ ¼ 0 implies
that (working throughout at first order in the potentials)

dx
dt

¼ c
a
ð1þ ψ þ ϕÞn; (A3)

where n is the unit vector in the spatial propagation
direction. The observed frequency of the photon in the
coordinate frame is ν ¼ ck0ð1þ ψÞ; combining this with
the geodesic equation for kμ one finds that

dν
dt

¼ ν

�
−H −

c
a
n ·∇ψ þ _ϕ

�
: (A4)

I will assume that on large scales all absorber and emitter
streaming velocities follow that of the pressureless dark
matter. The tangent 4-vector uμ with uμuμ ¼ −1 can be
related to the peculiar velocity v as

uμ ¼ c−1
�
1 − ψ
v=a

�
; (A5)

where I have used a new assumption that jvj=c is small (the
same order as the potentials). The frequency of the photon
as seen by an absorber is then

ν0 ≡ −uμkμ ≈ ν

�
1 − n ·

v
c

�
; (A6)

again at first order. Finally, the physical 3-volume of a fixed
x coordinate patch is proportional to a3ð1 − 3ϕÞ.
To define what is meant by an equilibrium solution to the

Boltzmann equation in the relativistic setting, consider the
rate of change _f of the distribution function along a dark
matter worldline. We have

_f ¼ cuμf;μ ≈ ð1 − ψÞ ∂f∂t þ
v · ∇f
a

; (A7)

and since the gradient term is overall second order, we can
again adopt the simple assumption that ∂f=∂t ¼ 0 to
obtain a well-defined equilibrium at first order, independent
of gauge.
Putting this together, the underlying number density f of

photons satisfies the collisional Boltzmann equation,

c
a
ð1þϕþψÞðn ·∇Þfþ ∂f

∂ν
dν
dt

þ
�
d ln ΔVΔν

dt

�
f ¼ Cν0 ½f�;

(A8)

where Cν0 ½f� is calculated according to Eq. (5) as before,
but evaluated at the Doppler-shifted frequency ν0 according
to Eq. (A6); ∇ again means the ordinary derivative with
respect to comoving spatial coordinates x, and I have taken
∂f=∂t ¼ 0 as explained above. The quantity ΔVΔν
appears because f is expressed in photons per unit physical
volume per unit frequency. A bundle of photons which
occupies a volume ΔVΔν in this space at one moment will
occupy a different volume at the next. The evolution of ΔV
can be calculated by setting up an initially cubic volume
with edges Δxð∥Þ, Δx⊥1 and Δx⊥2 such that Δx∥ is parallel
to ∇ðψ þ ϕÞ and the others are perpendicular. Then

ΔV ¼ a3ð1 − 3ϕÞΔx∥ · ðΔx⊥1 × Δx⊥2Þ (A9)

⇒
dΔV
dt

¼dΔx∥

dt
· ðΔx⊥1×Δx⊥2Þa3ð1−3ϕÞþ3ΔVðH− _ϕÞ

¼ΔV
�
c
a
n ·∇ðψþϕÞþ3H−3 _ϕ

�
(A10)

at first order, with other terms canceling from the choice of
Δx vectors. Along with the frequency factor, which follows
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immediately from Eq. (A4), the overall volume term
then reads

d ln ΔVΔν
dt

¼ 2ðH − _ϕÞ þ c
a
n ·∇ϕ: (A11)

To link the gravitational effects to the perturbed density
field ρ, we require the Einstein equations. The energy-
momentum tensor for the pressureless, matter-dominated
universe is

Tμν ¼ ρ0ð1þ δρÞuμuν: (A12)

We will work at sufficiently high redshift that we can take
Λ ¼ 0. The zero-order Einstein equations recover the
Friedmann and acceleration equations for the pressureless
fluid universe; the linear-order equations reduce to

ϕ ¼ ψ (A13)

c2∇ð _ϕþHϕÞ ¼ −4πGρ0avðxÞ (A14)

c2∇2ϕ ¼ 4πGρ0a2δρ þ 3a2Hð _ϕþHϕÞ (A15)

0 ¼ ϕ̈þ 4H _ϕ: (A16)

Equation (A16) is solved by _ϕ ¼ 0 (the potential is frozen,
which corresponds to putting the matter perturbation δρ in
the growing mode); substituting also the zero-order
Friedmann equation 3H2=c2 ¼ 8πGρ we have

ð−2c2∇2 þ 6a2H2Þϕ ¼ −3a2H2δρ (A17)

and 3aHv ¼ −2c2∇ϕ: (A18)

Let us now follow exactly the same procedure as in
Secs. II and III to obtain our previous approximation but
with the relativistic terms present. Multiply Eq. (A8) by σHI
and integrate over all frequencies; then, comparing against
Eq. (8) at linear order, only two extra terms survive. In
particular, the perturbation to dx=dt is irrelevant because
there are no spatial gradients in the background. Of the two
remaining terms, first consider how the peculiar velocities
induce an extra term on the right-hand side:Z

Cν0 ½f�σHIdν ≈
Z

Cν½f�σHIdν −
n · v
c

αvHfLL; (A19)

where αv ¼
1

HfLL

Z ∂Cν½f�
∂ ln ν

σHIdν; (A20)

the first term is the same as in our original calculation. The
integral in the second term needs be evaluated only at
zero-order, for which we can use the background
(zero-order) Boltzmann equation (A8) in the form

1

H
∂Cν½f0�
∂ ln ν

¼ 2
∂f0
∂ ln ν

−
∂2f0

∂ðln νÞ2 : (A21)

With the above, again using the z ¼ 2.3 spectrum from
Ref. [21], I obtain αv ¼ −12.0.
The only other remaining gravitational term is the

gradient term in (A4) and (A11); this and the velocity
term discussed above appear in the effective opacity which
now reads

κtot ¼ σ̄HInHI þ κ̄clump þ
H
c

�
αz þ 2þ n · v

c
αv

�

þ αz þ 1

a
n · ∇ϕ: (A22)

Using the Einstein constraint equation in the form (A18)
we can update our expression (29) for the fractional
variations in κtot:

~δκtot ¼ βHI ~δnHI þ βclump
~δκ̄clump

þ βϕ
in · kϕ
aκtot;0

; (A23)

where βϕ ¼ αz þ 1 −
2

3
αv ≈ 10.6: (A24)

With this updated definition, Eq. (28) remains valid.
Integrating (28) over n to obtain the solution for ~δΓ is
slightly more involved because angular dependence now
appears on the numerator as well as denominator; I obtain

~δΓ ¼ −βϕϕþ ½ð1 − βHIβrÞj − βHIð1 − βrÞ~δnHI
− βclump

~δκ̄clump
þ βHIβr ~δΓ þ βϕϕ�SðkÞ: (A25)

The relation between local HI density and radiation
fluctuations is still specified by Eq. (31), which allows us to
find the solution for the HI fluctuations:

~δnHI ¼
~δnHI;u þ βϕϕðkÞ − ½~δj;eff þ βϕϕðkÞ�SðkÞ

1 − βHISðkÞ
; (A26)

where ~δnHI;u is the HI density fluctuations in the absence of
radiation inhomogeneities. Writing the difference between
Eqs. (A26) and (32) as Δ~δnHI , one can define the change to
the HI bias from the gravitational and Doppler effects:

ΔbHI ¼
Δ~δnHI
~δρ

¼ βϕ
1 − SðkÞ

1 − βHISðkÞ
−3a2H2

2c2k2 þ 6a2H2
; (A27)

where I have made use of Eq. (A17). This function is
plotted in Fig. 7 (dashed line), where it can be seen that
even on gigaparsec scales it reaches a maximum shift of
around −0.05, a tiny change in the bias (compare to Fig. 2).
Note that the shot-noise component is unaffected.

SCALE-DEPENDENT BIAS IN THE BARYONIC- … PHYSICAL REVIEW D 89, 083010 (2014)

083010-15



It may be more natural to think of the bias on large scales
in another gauge—it is more plausible, in particular, to
imagine that bHI;u and bj are scale invariant in the
comoving-synchronous than in the conformal-Newtonian
gauge [69]. (Ultimately one ought to derive gauge-invariant
observables, but for the reasons outlined in the conclusions,
that is beyond the scope of the current work.) The gauge
transformation consists of a small coordinate transforma-
tion ðt;xÞ → ðtþ T;xþXÞ; to reach the comoving-
synchronous gauge one uses the freedom to eliminate
the peculiar velocities in the coordinate frame. Following
this through for any quantity Z, assuming Z0 ∝ a−q, one
finds that

δNZ ¼ δSZ − 2qϕ=3; (A28)

where superscripts N and S stand for perturbations in
conformal-Newtonian and comoving-synchronous gauges
respectively. Equation (A28) can be used to transform the
conformal-Newtonian expression (A26) into the synchro-
nous equivalent, giving

~δSnHI ¼
~δnHI;u

Sþβϕϕ− ½~δSj þβϕϕþ 2
3
ðβHIqHI−qj;effÞϕ�SðkÞ

1−βHISðkÞ
:

(A29)

Then, in the synchronous gauge, we have

ΔbSHI ¼
−3a2H2

2c2k2
βϕ − ½βϕ þ 2

3
ðβHIqHI − qj;effÞ�SðkÞ

1 − βHISðkÞ
;

(A30)

where ΔbSHI ≡ Δ~δSnHI=
~δSρ , and the result has been obtained

using the relation between Newtonian potential and
synchronous-gauge density,

ϕ ¼ −3a2H2

2c2k2
~δS: (A31)

To gain a quantitative picture we must estimate qHI and
qj. Note that for any quantity Y composed of a linear sum
of components, Y ¼ P

iYi, one has

qY ¼ d ln Y
d ln a

¼ 1

Y

X
i

dYi

d ln a
¼

X
i

βiqYi
; (A32)

where βi ¼ Yi=Y. It therefore follows from using the
background equilibrium (27) that

qj ≈ ½βHIð1 − βrÞ þ βclump�qHI −
3

2
½βz þ βV � ≈ 2.7;

qj;eff ≈ ð1 − βHIβrÞqj þ ðβHIβr − βclumpÞqHI ≈ 2.3; (A33)

where I have used d ln H=d ln a ≈ −3=2 and qHI ≃ 4.3,
the latter from Ref. [33].
Adopting these estimates, Eq. (A30) is plotted as a solid

line in Fig. 7. The changes are larger than in the Newtonian
gauge but still small. It is worth noting that the synchronous-
gauge bias as derived above describes a different universe—
it is not, in fact, related by a gauge transformation to the
Newtonian case. This follows because I have formulated
both descriptions assuming a constant large-scale bias as an
input distribution; this assumption implies something physi-
cally different in the two different gauges. As previously
stated, it is probably a more appropriate assumption in the
synchronous than in the Newtonian gauge.
This, however, is a tangential question because the

gravitational and Doppler effects are tiny in both gauges.
The original decision to drop these terms is therefore shown
to be strongly justified.

APPENDIX B: AN ESTIMATE OF bHI;u

To complete the calculation in the main text it was
necessary to specify a value of the bias bHI;u of HI in the
absence of inhomogeneous radiative effects. One can
estimate this from the photoionization equilibrium equa-
tions for a uniform field, coupled with a description of
the temperature-density relation for the averaged IGM.
Specifically, the uniform ionization equilibrium in the limit
that only a trace of neutral HI survives specifies [70] that

FIG. 7 (color online). The change in the HI bias arising from the
velocity and potential terms in the radiative transfer. The solid
and dashed lines show the conformal-Newtonian (A27) and
comoving-synchronous expressions respectively. The effects
are extremely minor as anticipated.
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nHI ∝
αðTÞρ2
Γ0

; (B1)

where I have assumed the local electron and proton
densities are both proportional to the cosmic density ρ.
Next write the equation of state T ∝ ργ−1 and approximate
[42] αðTÞ ∝ T−0.7; expanding both ρ and nHI in terms of
their background values and perturbations, one obtains

bHI;u ¼
δnHI;u
δρ

¼ 2 − 0.7ðγ − 1Þ: (B2)

For a value [47] γ ¼ 1.6, this gives an estimate ofbHI;u ≃ 1.6.
However, there is a slight inconsistency in the derivation

above. The recombination rate actually depends on the
strictly local value of the electron and proton densities, not
on any linear-theory average on large scales. Depending on
how small-scale clustering reflects large-scale density
inhomogeneities, the assumption that the local density
scales with the environmental density may fail. I therefore
also estimated bHI;u directly from a cosmological simu-
lation with 2563 dark matter and 2563 gas particles in a
50 Mpc-side box. The code Gasoline [71] implements
gravity, hydrodynamics, star formation feedback (which is
likely of minor importance here) and a uniform UV field,
the values for which I adopted from Ref. [21]. Much more
careful work has been performed in simulating the forest by
other authors [6,18,72] but they quote statistics on the flux
field, which is related to the HI field by a nonlinear
transformation and therefore does not directly tell us bHI;u.
Taking the output at z ¼ 2.3, I interpolated the gas and

dark matter particles back onto a 2563 grid to obtain two 3D
density maps, the first of HI and the second of total mass
density with ∼0.2 Mpc resolution. To study the behavior of
the intergalactic medium, I flagged all cells with dark
matter density less than ten times the cosmic mean. Only
the flagged cells were subsequently used to produce a
degraded map with 83 supercells, in which the mean dark
matter and HI density of the flagged subcells was recorded.
This allows us to see the large-scale relationship between

IGM overdensity and HI (Fig. 8). Each point represents an
IGM supercell; the two axes correspond to dimensionless
total mass overdensity and HI overdensity in the IGM,
expressed as a fraction according to Eq. (1). The plots show

a very near-linear relationship between the total overdensity
and the HI overdensity as expected. The slope of the line
gives the bias, which is found to be bHI;u ¼ 1.48 ≈ 1.5. This
is in fair agreement with the analytic estimate of 1.6 given
above, given the multitude of uncertainties.
I tested that this result is reasonably insensitive to the size

of the supercells and the IGM threshold density. Repeating
the exercise with the IGM threshold at δ ¼ 5, for instance,
gives bHI;u ¼ 1.45; with the original threshold but 163

supercells, I retrieve bHI;u ¼ 1.43, although the nonlinearity
in the relation starts to become more prominent (as we are
probing smaller scales) so the fit is less meaningful. For the
illustrative purposes of this paper, adopting bHI;u ¼ 1.5
seems to pin down the large-scale relationship to a
sufficient accuracy.
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