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Using the Green’s function representation technique, the late time behavior of localized scalar field
distributions on Schwarzschild spacetimes is studied. Assuming arbitrary initial data we perform a spectral
analysis, computing the amplitude of each excited quasibound mode without the necessity of performing
dynamical evolutions. The resulting superposition of modes is compared with a traditional numerical
evolution with excellent agreement; therefore, we have an efficient way to determine final black hole wigs.
The astrophysical relevance of the quasibound modes is discussed in the context of scalar field dark matter
models and the axiverse.

DOI: 10.1103/PhysRevD.89.083006 PACS numbers: 95.30.Sf, 04.70.-s, 98.62.Mw, 95.35.+d

I. INTRODUCTION

Scalar fields show up in many areas of physics. In the
standard model of particle physics they are necessary to
give particles their observed mass. At the effective level, the
charged pions mediating the strong nuclear interaction are
described by a scalar field. Another example is provided by
the axion, introduced in order to resolve the strong CP
problem in quantum chromodynamics. Generically, a
plethora of scalar fields emerge in the axiverse from
superstring and higher dimensional theories [1–8]. In a
cosmological context, a scalar field could guide an early
phase of exponential expansion, and also represent the dark
energy, and possibly even the dark matter, in the present
Universe [9–28].
On the other hand, black holes are a natural consequence

of general relativity. They appeared for the first time as a
purely mathematical result, but they were later recognized
as real astrophysical objects. Presently, we believe black
holes represent the final fate of sufficiently massive stars,
and supermassive black holes probably reside at the center
of most galaxies [29].
Since both scalar fields and black holes seem to inhabit

our Universe, a natural question arises: how do scalar fields
and black holes interact with each other? Static, spherically
symmetric, asymptotically flat black holes with a nontrivial
scalar field distribution cannot exist in nature [30,31];
however, these results do not rule out extremely long lived
transient phenomena [32,33].

The massive Klein-Gordon equation on a black hole
background has been studied extensively. For a
Schwarzschild black hole Ternov et al. [34] found the
existence of quasibound modes (also called quasistationary
modes or quasiresonances), describing scalar field con-
figurations surrounding the black hole for some period of
time; see also Refs. [35,36] for later work on these states.
Similar modes were found on a Kerr black hole background
[34,37,38]. In the rotating case, there is a specific range of
parameters for which these modes are exponentially grow-
ing in time, implying that a massive scalar field on a
rotating Kerr black hole is unstable. See Refs. [39–42] for
rigorous results on this instability, and [43–45] for recent
numerical studies. Based on Leaver’s continuous fraction
method [46], Konoplya and Zhidenko [47] computed the
quasinormal frequencies of a massive scalar field on a
Schwarzschild spacetime background, and mentioned con-
ditions under which quasibound states could arise. For a
generalization to the Kerr-Newman case, see Ref. [48].
Finally, we mention that Dolan and collaborators [49,50]
generalized the computation of quasibound modes to
different types of fields, vectorial or fermionic.
Motivated by the possibility of describing the dark

matter in the galactic halo by the coherent excitation of
an ultralight scalar field [9–28], including the supermassive
black hole [51–54], in previous work we analyzed the time
scale for the quasibound states on a supermassive, non-
rotating black hole background [32,33]; see [55] for a
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recent generalization to the Dirac field. In particular, we
showed in Ref. [33] that these states can actually survive
for cosmological times, as long as the product of the
black hole and the scalar field mass is sufficiently small.
Furthermore, we provided strong evidence in Ref. [33] that
these quasibound modes are generic. This conclusion was
reached by numerically evolving arbitrary initial data and
Fourier-transforming the solution with respect to time. The
spectrum revealed a clear excitation of the quasibound
frequencies.
In this paper we use the Green’s function representation

technique [56] to determine the late time behavior of
localized scalar field distributions on a Schwarzschild
background. Within this technique, the Green’s function
of the problem is decomposed into three contributions,
corresponding to different contours in the complex fre-
quency plane. The contribution we are focusing on in this
work is the one arising from the residua of the poles of the
Green’s function, which describe the excitations of the
quasibound states. This allows us to predict, given arbitrary
initial data for the scalar field on a spacelike hypersurface,
the amplitude of each quasibound state in the solution by
computing a simple, one-dimensional integral. Furthermore,
we show by comparison with results obtained from numerical
evolutions that for large times (within the time scales of our
simulations) the behavior of the solution is well approximated
by the corresponding superposition of quasibound states;
therefore, the remaining two contributions to the Green’s
function become negligible for those times. Note that this
situation is different than the case of a massless scalar field
propagating on a Schwarzschild background, where the
oscillating part of the solution, described by a superposition
of quasinormal modes, is soon taken over by the slower,
polynomial tail decay. This difference resides in the fact that
the quasibound modes have a decay rate which is much
smaller than the quasinormal modes, so that they dominate
the solution for a much larger time.
At this point we would like to stress that our definition of

“large” or “late” times in this article is the following: we
consider time scales which are very large compared to the
Schwarzschild radius of the black hole, but which are
within the lifetime of the quasibound states. In particular,
we do not claim that for t → ∞ the solution is described by
a simple superposition of quasibound states since in this
limit the contribution from the tail part is expected to play
an important role. However, for the physical scenario we
are interested in, it is enough to consider large times which,
according to our definition, could be larger than the age of
the Universe as we explained above.
Our results provide the basis for a generalization to the

case of a rotating black hole. Several lines of work have
been developed in the context of scalar and other fields on
Kerr background; there are those which consider unstable
modes in the vicinity of the Kerr black hole [57,58], and
even possible radiation emission due to such instabilities

[59,60]. The continuation of our work, however, will focus
on a somewhat different direction, namely the scalar field in
the Kerr background in connection with dark matter halos.
The remaining part of this work is organized as follows.

In Sec. II we briefly review the Green’s function method
and the corresponding decomposition of the solution in
three different contributions. Next, in Sec. III we discuss
the case of a potential formed by a delta and a step function,
as a toy model for which the modes can be represented
analytically. In particular, we determine the quasibound
frequencies in the limit for which the height of the step is
very small compared to the amplitude of the delta barrier
and show that they are located very close to the resonant
band, resulting in very small decay rates. Then, we compute
the excitations of each quasibound state, compare the
resulting superposition to the results obtained from a
numerical evolution, and find a very good agreement at
late times.
In Sec. IV we apply the Green’s function technique to the

case of a massive scalar field on a Schwarzschild back-
ground. Here the modes and quasibound frequencies are
computed semianalytically via a matching algorithm from
which the excitation amplitudes can be determined. In
Sec. V we compare the semianalytic results with those
obtained from numerical evolutions of the Cauchy prob-
lem, and as in the case of the toy model, for late times we
find an excellent agreement between the two approaches.
Then, in Sec. VI we use our semianalytic solution to extract
some physical properties of the quasibound states that
might be relevant in the astrophysical context, and finally in
Sec. VII we present our conclusions.
We also include two appendixes. In the first one we

generalize the Green’s function technique to time foliations
different than the one arising from standard Schwarzschild
coordinates. In the second appendix we provide some
estimates on the location of the quasibound frequencies
for the toy model example and the time after which the
solution can be described by a superposition of the
corresponding modes.

II. GREEN’S FUNCTION REPRESENTATION AND
SPECTROSCOPY

In this section we briefly review the Green’s function
representation technique and the corresponding decompo-
sition of the integral kernel. We will concentrate on the
solution of 1þ 1 dimensional wave problems with time-
independent, non-negative potentials VðxÞ; see the original
paper by Leaver [56] and the review articles [61–63] for
further details. Therefore, we consider the Cauchy problem

∂2ϕ

∂t2 −
∂2ϕ

∂x2 þ VðxÞϕ ¼ 0; (1a)

with t > 0, x ∈ R, and initial data
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ϕð0; xÞ ¼ ϕ0ðxÞ;
∂ϕ
∂t ð0; xÞ ¼ π0ðxÞ: (1b)

We assume ϕ0 and π0 to be smooth and compactly
supported. In this paper we will be interested only in the
late time behavior.
The solution of the problem in Eqs. (1) can be repre-

sented in terms of an integral kernel kðt; x; yÞ,

ϕðt; xÞ ¼
Z

∞

−∞

∂k
∂t ðt; x; yÞϕ0ðyÞdyþ

Z
∞

−∞
kðt; x; yÞπ0ðyÞdy;

(2)

where kðt; x; yÞ can formally be written as

kðt; x; yÞ ¼ 1

2πi

Z
ηþi∞

s¼η−i∞
estGðs; x; yÞds; η > 0; (3)

with Gðs; x; yÞ ¼ Gðs; y; xÞ the Green’s function,

Gðs; x; yÞ≔ 1

WðsÞ
�
f−ðs; yÞfþðs; xÞ; y ≤ x
f−ðs; xÞfþðs; yÞ; y > x

�
: (4)

Here fþðs; xÞ and f−ðs; xÞ are two nontrivial solutions of
the mode equation s2f − f″ þ VðxÞf ¼ 0 with exponential
decay at x → þ∞ and x → −∞, respectively, when
ReðsÞ > 0, and the prime denotes the derivative with
respect to the variable x. WðsÞ is their Wronski determi-
nant defined as

WðsÞ≔ det

�
fþðs; xÞ f−ðs; xÞ
f0þðs; xÞ f0−ðs; xÞ

�
: (5)

Note thatWðsÞ does not depend on x, and by definition, it is
zero if and only if the two solutions fþðs; ·Þ and f−ðs; ·Þ are
proportional to each other.
A priori, the Green’s function is a well-defined, analytic

function on the right complex plane ReðsÞ > 0. However, it
is interesting to consider its analytic continuation to the left
complex plane ReðsÞ < 0 since this offers the possibility to
“close” the integration contour in Eq. (3), as illustrated in
Fig. 1. As a consequence, the kernel typically splits into a
sum of three different contributions,

kðt; x; yÞ ¼ kmodesðt; x; yÞ þ ktailðt; x; yÞ þ khfaðt; x; yÞ: (6)

Here, kmodes is a sum over the residua of the poles of the
analytic continuation of the Green’s function, and each
term in the sum is proportional to esnt. These terms describe
the resonances; they oscillate with frequency ωn ¼ ImðsnÞ
and their amplitude decays exponentially in time since
ReðsnÞ < 0. Next, ktail is the contribution that comes from
the integration around the branch cuts, and it is usually
associated with the tail decay, giving rise to a polynomial
decay of the form t−p for some p > 0. Finally, khfa is the

contribution from the high-frequency arc (see the curve μR
in Fig. 1). This contribution is highly dependent on the
initial data; however, it vanishes for large enough t.
Of course, the structure of the analytic continuation of

the Green’s function (including the location of the poles
and the branch cuts) depends on the potential VðxÞ and the
problem at hand. In the next section, we analyze this
structure for the case of a simple toy model, and we show
that all the poles are located close to the resonant band
ið−μ; μÞ and give rise to quasibound states. Based on this
analysis we expect the structure of the analytic continuation
to be very similar in the case of a massive scalar field
propagating on a Schwarzschild black hole.
In this work we are mainly interested in the contribution

from the poles, that is, kmodes, since in our context this is the
part corresponding to the quasibound states. The poles, sn,
of the Green’s function are determined by the zeros of the
Wronskian WðsÞ; notice that at such zeros the functions
fþðsn; ·Þ and f−ðsn; ·Þ are linearly dependent. Assuming
that WðsÞ has only simple zeros at s ¼ sn, that is,
WðsÞ ¼ αnðs − snÞ þOðs − snÞ2, with

αn ≔
d
ds

WðsÞj
s¼sn

≠ 0; (7)

the mode contribution to the solution from the nth mode sn
is given by

ϕmodes;nðt; xÞ ¼ Anesntfþðsn; xÞ; (8a)

with amplitude

An ≔
�
d
ds

WðsÞ
�
−1
����
s¼sn

×
Z

∞

−∞
f−ðsn;yÞ½snϕ0ðyÞþπ0ðyÞ�dy:

(8b)

ΓR γ

µR

Re(s)

µi

µ

−R η

Im(s)

−i

FIG. 1 (color online). The branch cut (broken lines) for the
analytic function κðsÞ defined in Eq. (20) and the deformation of
the curve γ which allows us to close the integration contour.
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When the potential VðxÞ in Eq. (1a) is real, the poles come
in complex conjugate pairs, s−n ¼ s�n, and since WðsÞ and
f�ðs; xÞ are analytic functions in s, the sum ϕmodes;nðt; xÞ þ
ϕmodes;−nðt; xÞ is real.
For a generalization of these expressions to more general

foliations by spacelike hypersurfaces, see Appendix A.

III. A TOY MODEL EXAMPLE

Before applying the Green’s function technique just
described to the scalar field problem on a Schwarzschild
black hole we consider the following simple toy model
potential [33]:

VðxÞ ¼ AδðxÞ þ μ2θðx − aÞ; (9)

consisting of a delta barrier with positive amplitude A at
x ¼ 0 and a step function at x ¼ a > 0, where VðxÞ jumps
from zero to its asymptotic value μ2. (Do not confuse the
amplitude A in the potential with the amplitudes An of the
quasibound modes.) As it turns out, this model captures all
the rough qualitative features of the scalar field problem.
In order to construct the Green’s function for the

potential in Eq. (9), we consider first the region x < 0,
where VðxÞ ¼ 0, such that

f−ðs; xÞ ¼ esx; (10a)

fþðs; xÞ ¼ aþðsÞe−sx þ bþðsÞesx: (10b)

Notice that f−ðs; ·Þ decays exponentially at x → −∞ when
ReðsÞ > 0, as required. The coefficients aþðsÞ and bþðsÞ
are unknown to this point and will be determined by the
matching conditions. In the region 0 < x < a, the two
solutions have the form

f−ðs; xÞ ¼ c−ðsÞe−sx þ d−ðsÞesx; (11a)

fþðs; xÞ ¼ cþðsÞe−sx þ dþðsÞesx; (11b)

with coefficients c�ðsÞ, d�ðsÞ. Finally, in the region x > a,
where VðxÞ ¼ μ2, we have

f−ðs; xÞ ¼ a−ðsÞe−κðsÞx þ b−ðsÞeκðsÞx; (12a)

fþðs; xÞ ¼ e−κðsÞx; (12b)

with coefficients a−ðsÞ and b−ðsÞ and where we have
defined κðsÞ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ μ2

p
with the choice for the sign such

that ReðκðsÞÞ > 0 for ReðsÞ > 0, such that fþðs; ·Þ has the
required asymptotic behavior at x → þ∞.
Because of the delta barrier, the matching conditions at

x ¼ 0 consist of the continuity of the functions f�ðs; ·Þ, and
the jump condition f0�ðs; 0þÞ − f0�ðs; 0−Þ ¼ Af�ðs; 0Þ for
their derivatives. At x ¼ a, both f�ðs; ·Þ and f0�ðs; ·Þ need
to be continuous. These matching conditions yield the
following values for the coefficients c�ðsÞ and d�ðsÞ:

c−ðsÞ ¼ −
A
2s

; (13a)

d−ðsÞ ¼ 1þ A
2s

; (13b)

cþðsÞ ¼
1

2s
ðκ þ sÞe−ðκ−sÞa; (13c)

dþðsÞ ¼ −
1

2s
ðκ − sÞe−ðκþsÞa: (13d)

This information is already sufficient to compute the
mode solutions ϕmodeðt; xÞ inside the potential well,
0 < x < a, assuming that the initial data are supported
inside this well. For this, we first compute the Wronskian,

WðsÞ ¼ 2s det

�
cþðsÞ c−ðsÞ
dþðsÞ d−ðsÞ

�

¼ 2scþðsÞc−ðsÞ
�
d−ðsÞ
c−ðsÞ

−
dþðsÞ
cþðsÞ

�
; (14)

where we have factored out the nonvanishing terms c−ðsÞ
and cþðsÞ. From this we conclude that the zeros of the
determinant are equal to the zeros of the function

FðsÞ≔ dþðsÞ
cþðsÞ

−
d−ðsÞ
c−ðsÞ

¼ 1þ 2s
A

−
κ − s
κ þ s

e−2sa: (15)

With these observations Eqs. (8) yield

ϕmodes;nðt; xÞ ¼ Cn

�
esnðt−xÞ −

�
1þ 2sn

A

�
esnðtþxÞ

�
; (16)

for 0 < x < a, with the amplitude Cn given by

Cn ¼ Bn

Z
a

0

�
e−sny −

�
1þ 2sn

A

�
esny

�
× ½snϕ0ðyÞ þ π0ðyÞ�dy; (17)

and

Bn ≔ −
1

2sn

�
d
ds

FðsÞ
�
−1
����
s¼sn

: (18)

In deriving these equations we have used the fact that, for
0 < x < a,

fþðsn; xÞ ¼ cþðsnÞ
�
e−sx þ dþðsnÞ

cþðsnÞ
esx

�

¼ cþðsnÞ
�
e−sx þ d−ðsnÞ

c−ðsnÞ
esx

�
: (19)

Therefore, in order to compute the mode solutions, one first
needs to determine the zeros of the Wronskian, which
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coincide with the zeros of the function FðsÞ defined in
Eq. (15). Next, one needs to determine the quantities Bn
from Eq. (18), and from this one can compute the amplitude
for arbitrary initial data ϕ0 and π0 from Eq. (17). In the
following, we compute the poles and the corresponding
amplitude coefficients Bn in the limit μ ≪ A.

A. Computation of the poles

Before computing the zeros of the function F, it is
important to discuss the analytic continuation of the function
κðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ μ2

p
for ReðsÞ ≤ 0. For what follows, we define

κðsÞ≔ exp

�
1

2
logðs2 þ μ2Þ

�
; (20)

which is well defined for all s ∈ C except those for which the
argument of the logarithm is negative or zero. Therefore, κðsÞ
is defined for all s belonging to the set

U≔fs ∈ C∶s∉� i½μ;∞Þg; (21)

see Fig. 1. This continuation has the property that
ReðκðsÞÞ > 0 for all s ∈ U, implying that the function
fþðs; ·Þ decays exponentially at x → þ∞ for all such s.
Note that this is different than what occurs for the quasi-
normal modes, where for ReðsÞ < 0 the function fþðs; ·Þ
grows exponentially when x → þ∞. It turns out that for our
purposes the definition in Eq. (20) provides the correct choice
of analytic continuation, since it contains the complex
interval ið−μ; μÞ (the resonant band), close to which the
quasibound modes lie.
For the following calculations it is convenient to replace

s ∈ U with the complex angle φ defined by the analytic,
one-to-one transformation

Q → U; φ↦s≔ iμ sinðφÞ; (22)

with Q≔fφ ∈ C∶ − π=2 < ReðφÞ < π=2g. The lines
ReðφÞ ¼ const. describe hyperbolas in the s plane with
focal points �iμ, and when ReðφÞ → �π=2, these hyper-
bolas approach the branch cuts �i½μ;∞Þ. The lines
ImðφÞ ¼ const., in turn, describe a semiellipsis in the s
plane with focal points �iμ. In the limit ImðφÞ → 0 these
lines approach the complex interval i½−μ; μ�; see Fig. 2.
Working with the complex angle φ instead of s simplifies

the following calculations. For example, κðsÞ ¼ μ cosðφÞ
and κ � s ¼ e�iφ have simpler representations, and the
function F defined in Eq. (15) has the form

Fðλ;φÞ≔1þ iλ sinφ − e−2iφ−2qi sinφ; (23)

where the parameter q is defined as q≔aμ. As shown in
Ref. [33], the zeros of F can be determined analytically
based on a series expansion in λ≔2μ=A. When λ ¼ 0, the
zeros of Fð0;φÞ are given by

e−2iφ−2qi sinφ ¼ 1; (24)

whose solutions φð0Þ
n ∈ ½−π=2; π=2� are real and satisfy

q sinðφð0Þ
n Þ ¼ nπ − φð0Þ

n ; n ¼ −Nq;…; Nq: (25)

They give rise to a finite set of purely imaginary
frequencies s ¼ iωð0Þ

n inside the resonant band, with ωð0Þ
n ¼

μ sinφð0Þ
n .

For small values of λ > 0 we introduce the quantity
qn ≔2qþ 2= cosðφð0Þ

n Þ, and the zeros of Fðλ;φÞ can be
written as the following series expansion:

φnðλÞ ¼ φð0Þ
n −

tanðφð0Þ
n Þ

qn
λ

þ tanðφð0Þ
n Þ

�
1

q2n
þ q
q3n

tan2ðφð0Þ
n Þ þ i

2

sinðφð0Þ
n Þ

qn

�
λ2

þOðλ3Þ; (26)

which yields

snðλÞ¼ iωð0Þ
n

�
1−

λ

qn
þσn
q2n

λ2þ i
2

sinðφð0Þ
n Þ

qn
λ2þOðλ3Þ

�
; (27)

with σn ≔1 − q−1n sin2ðφð0Þ
n Þ=cos3ðφð0Þ

n Þ. This expansion
shows that, when λ > 0, the poles, which for λ ¼ 0 all
lie on the imaginary interval ið−μ; μÞ, wander to the left
half-plane, with the real part scaling like λ2 for small λ;
see Fig. 3.
It follows from the estimate Eq. (B1) in Appendix B that

jFðλ;φÞj ≥ eβð2 sinh β − λÞ for all φ ¼ αþ iβ with β > 0,
implying that there are no poles in the left-half plane which
lie outside the semiellipse ImðφÞ ¼ β0 ≔arcsinhðλ=2Þ.

0

β =

α = Re(s)

Im(s)

α =

α =const. > 0

const. < 0

β =const. < 0

µi

µ−i

const. > 0

FIG. 2 (color online). Visualization of the complex angle φ ¼
αþ iβ in the s plane.
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Therefore, when λ > 0 is small, all poles must lie inside a
small region to the left of the resonant band ið−μ; μÞ; see
Fig. 3 again. This is different from the quasinormal mode

case, where there are poles arbitrarily far away from the
origin.

B. Computation of the coefficients Bn

In order to compute the coefficients Bn defined in
Eq. (18), we first notice that�
d
ds

FðsÞ
�
s¼sn

¼
�∂Fðλ;φÞ

∂φ
�
ds
dφ

�
−1
�
s¼sn

¼1

μ

�
2ð1þ iλsinφnðλÞÞ

�
qþ 1

cosφnðλÞ
�
þλ

�
;

(28)

from which

BðλÞ
n ¼ i

2sinφnðλÞ
�
2ð1þiλsinφnðλÞÞ

�
qþ 1

cosφnðλÞ
�
þλ

�
−1
:

(29)

Here, we can substitute the expansion (26) for φnðλÞ, which
yields

sinφnðλÞ ¼ sinφð0Þ
n

�
1 −

1

qn
λþ σn

q2n
λ2 þ i

2

sinφð0Þ
n

qn
λ2 þOðλ3Þ

�
; (30a)

cosφnðλÞ ¼ cosφð0Þ
n

�
1þ tan2φð0Þ

n

qn
λ − tan2φð0Þ

n

�
1

q2n
þ 1

q3n

qþ cosφð0Þ
n

cos2φð0Þ
n

þ i
2

sinφð0Þ
n

qn

�
λ2 þOðλ3Þ

�
: (30b)

C. The case λ ¼ 0

It is instructive to discuss in more detail the limit λ → 0,
corresponding to a delta barrier with infinite amplitude, i.e.
a hard wall. In this case one expects normal modes, i.e.
purely imaginary poles for the Green’s function. Indeed,
when λ ¼ 0, we saw that the zeros of the Wronskian are
purely imaginary, sð0Þn ¼ iμ sinðφð0Þ

n Þ, where φð0Þ
n ∈

ð−π=2; π=2Þ are the solutions of Eq. (25).
In the limit λ → 0, the amplitude coefficients Bn reduce to

Bð0Þ
n ¼ i

4ωð0Þ
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðωð0Þ

n Þ2
q

1þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðωð0Þ

n Þ2
q ; (31)

where we recall that ωð0Þ
n ¼ μ sinφð0Þ

n . Taking into account
that 2sn=A ¼ iλ sinφnðλÞ, the expression (17) for the coef-
ficients Cn reduces to

Cð0Þ
n ¼ 1

2ωð0Þ
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðωð0Þ

n Þ2
q

1þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ðωð0Þ

n Þ2
q

×
Z

a

0

sinðωð0Þ
n yÞðiωð0Þ

n ϕ0ðyÞ þ π0ðyÞÞdy: (32)

Therefore, the mode solution in this limit is

ϕmodesðt; xÞ ¼ 4 Im

�XNq

n¼1

Cð0Þ
n eiω

ð0Þ
n t sinðωð0Þ

n xÞ
�
; (33)

for 0 < x < a, and as expected, it is a sum over purely
oscillating factors.

D. Numerical results

To complement our previous analytic results, we solve
numerically the Cauchy problem in Eqs. (1) and (9). First,
we define a new set of variables, π ¼ ∂tϕ and D ¼ ∂xϕ, to
convert Eq. (1a) into a first-order system of linear differ-
ential equations. Then, we apply the method of lines with a
third-order iterated Crank-Nicholson integrator, and use
second-order finite differences for the spatial discretization.
We work on the spatial domain ½0; xmax�, with xmax larger
than a. The boundary condition imposed at the origin,
x ¼ 0, is ∂xϕR ¼ ∂tϕR þ AϕR, where the labels refer to the
left and right of x ¼ 0. This condition comes from the
behavior of the function dictated by the delta potential. To
see this, notice that due to the continuity at x ¼ 0, ϕ must
satisfy that ϕR ¼ ϕL, and ∂xϕR ¼ ∂xϕL þ AϕL. If we

0
µ

/2−λµ

−iµ

iµcoshβ

Re(s)

Im(s)

i

FIG. 3 (color online). The location of the poles of the Green’s
function for small λ > 0 are shown by the crosses and the lines
emanating from them. There are no poles outside the shaded region.
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impose that the flux is purely outgoing at x < 0, we have an
extra condition, namely ∂tϕL ¼ ∂xϕL. After eliminating
∂tϕL from these equations, we arrive at the desired
condition. At the right boundary x ¼ xmax we use an
outgoing Sommerfeld-like condition.
We find a very good agreement between the numerical

solution and the function given by the sum of modes
defined in Eq. (16). In Fig. 4, we present the numerical
solution and the function obtained from the sum over the
contribution of the modes. This example corresponds to
Gaussian initial data of the form ϕ0ðxÞ ¼ ~ϕ0e−ðx−x0Þ

2=σ2 and
π0ðxÞ ¼ D0ðxÞ. After an initial transient period, the con-
tribution from the quasibound modes dominates and the
solution can be accurately represented by the sum of
these modes.
The fact that at large times the solution can be accurately

described solely in terms of the quasibound modes is
remarkable, since as discussed in Sec. II the solution is
really a sum over three contributions. In order to get some
understanding about this fact, we analyze in Appendix B
the contribution from the high-frequency arc and show that
it vanishes identically for times larger than 2a, corres-
ponding to two crossing times of the potential well.
Interestingly, it seems that the tail contribution is also
negligible, at least for the time scales of our simulations.
We will find a similar behavior in the next two sections
when discussing the Klein-Gordon equation on a
Schwarzschild black hole.
We also calculate the energy of the field inside the well

using the integral EϕðtÞ ¼ 1
2

R
a
0 ðπðt; xÞ2 þDðt; xÞ2Þdx. In

Fig. 5 we show the evolution of the energy normalized by

the energy of the initial configuration. At late times, when
the modes’ contribution is dominant, the remaining energy
for this toy model is about 0.6% of its initial value.

IV. QUASIBOUND STATES AND SPECTROSCOPY
FOR THE KLEIN-GORDON EQUATION

The evolution of a scalar field with fixed angular
momentum number, l, propagating on a Schwarzschild
background spacetime is described by the Cauchy problem
in Eqs. (1), where the potential is given now by

VðxÞ ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
þ 2M

r3
þ μ2

�
: (34)

Here x≔r� ¼ rþ 2M logðr=2M − 1Þ is the tortoise radial
coordinate, with r > 2M; please see Ref. [33] for further
details concerning the notation in this section. The physical
field Φ is related to the field ϕ satisfying Eq. (1a) by

Φðt; r;ϑ;φÞ ¼ 1

r
ϕðt; xÞYlðϑ;φÞ

with Yl a spherical harmonic function with associated
angular momentum number l.
Assuming again that all zeros of the Wronskian are

simple, we apply the formulas in Eqs. (8) to the Cauchy
problem with potential given in Eq. (34). The difficulty
now is that the functions f�ðs; xÞ and their Wronskian
cannot be computed in an explicit simple form, as it was
possible in the previous section. As explained in more
detail below, the functions f�ðs; xÞ belong to the confluent
Heun class, and it is not known to the authors whether or
not there are simple expressions for the Wronskian of such
functions. Approximations which are valid in the smallMμ
limit have been worked out in Ref. [37]. However, in this
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FIG. 4 (color online). For a fixed observer at x1 ¼ 45, we plot
the wave function obtained as the contribution of the first five
quasibound modes [twice the real part of the sum over n ¼
1; 2;…; Nq ¼ 5 of the modes defined in Eq. (16)] and the
numerical solution. The parameters for the potential used in this
example are A ¼ 6, μ ¼ 0.3, a ¼ 50, and the parameters for the
initial data are ~ϕ0 ¼ 0.1, x0 ¼ 15, σ ¼ 1. The relative numerical
error is estimated to be less than 1%.
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FIG. 5. After some transient period in which the field bounces
between the potential barriers, the energy drops from its initial
value and settles down around a fixed value. This late contribu-
tion is given by the sum of the modes, Eq. (16).
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work we will not make use of these approximations; rather,
we will construct the functions f�ðs; xÞ numerically via a
matching procedure.

A. Exact mode solutions

For practical reasons it is convenient to define the
dimensionless variables

z≔
r
2M

− 1; ε≔Mμ: (35)

Introducing the ansatz ϕðt; r�Þ ¼ estfðzÞ into Eqs. (1a) and
(34), we obtain in terms of these new variables

−
�

z
zþ 1

d
dz

�
2

f þ
�
lðlþ 1Þz
ðzþ 1Þ3 þ z

ðzþ 1Þ4 −
4ε2

zþ 1

�
f

¼ −ΩðsÞ2f: (36)

Here we have defined

ΩðsÞ≔2ε

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

μ2

s
¼ 2ε

κðsÞ
μ

; (37)

where the function κðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ μ2

p
and its branch points

are given in Eq. (20). Notice that accordingly, ΩðsÞ has
positive real part for all s in the domainU defined in Eq. (21).
Equation (36) has an irregular singular point at z ¼ ∞,

and two regular singular points at z ¼ 0 and z ¼ −1,
respectively. As z → ∞, the solutions behave as e�ΩðsÞz;
here we are interested in the one with the minus sign,
corresponding to an exponential decay. At z ¼ 0 the
characteristic exponents of the regular singular point are
�2Ms, meaning the solution behaves as z�2Ms close to
z ¼ 0; the plus sign corresponds to the solution we want to
consider which is purely outgoing (that is, moving towards
the horizon). At z ¼ −1 there is a degenerated character-
istic exponent equal to 1.
An exact solution to the Eq. (36) satisfying the required

conditions at z ¼ 0 is given by

f−ðs;zÞ¼ðzþ1Þz2Mse−ΩðsÞzHeunCðα;β;γ;δ;η;−zÞ; (38)

with HeunC the confluent Heun function as defined in
MAPLE, the parameters being

α≔2ΩðsÞ; (39a)

β≔4Ms; (39b)

γ≔0; (39c)

δ≔ΩðsÞ2 þ ð2MsÞ2; (39d)

η≔ − δ − lðlþ 1Þ: (39e)

Since by definition HeunC is regular in the vicinity of
z ¼ 0, and equal to 1 at z ¼ 0, expression (38) gives a

closed-form representation for the left solution of our
problem.
The quasibound states correspond to those frequencies

for which the left solution, f−ðs; zÞ, decays exponentially
when z → þ∞. In view of the closed-form expression,
Eq. (38), this means that HeunC should not grow faster than
polynomially when z → ∞. Unfortunately, the authors are
not aware of known asymptotic expansions for the con-
fluent Heun function HeunC when z → ∞.

B. Hydrogen limit

For our applications to dark matter halos discussed
below, we are interested in small values of ε ¼ Mμ > 0.
In this case, the potential VðrÞ develops a well whose
minimum is located at rmin ≃ lðlþ 1ÞM=ε2. Therefore,
focusing on effects that occur near or to the right of the
minimum of the potential well, it is appropriate to replace z
with the rescaled variable ζ≔ε2z. Accordingly, we can
replace ΩðsÞ with kðsÞ≔ε−2ΩðsÞ. When written in terms
of ζ and kðsÞ, the mode equation (36) reduces to

−
d2

dζ2
f þ

�
lðlþ 1Þ

ζ2
−
4

ζ

�
f ¼ −ðkð0ÞðsÞÞ2f; (40)

when taking the pointwise limit ε → 0 and assuming that
kðsÞ → kð0ÞðsÞ converges to a finite value in this limit. This
is the eigenvalue problem encountered in the discussion of
the hydrogen atom. Therefore, in the limit ε → 0, the
frequencies are determined by the Balmer spectrum
for kð0ÞðsÞ:

kð0Þn ¼ 2

n
; n ¼ lþ 1;lþ 2;…; (41)

with the corresponding eigenfunctions

fð0Þn ðζÞ ¼ ζle−k
ð0Þ
n ζ

Xn−l
j¼0

ðlþ 1 − nÞj
ð2ðlþ 1ÞÞj

ζj

j!
: (42)

Here ðaÞ0 ≔1, and ðaÞj ≔aðaþ 1Þ � � � ðaþ j − 1Þ. In view
of Eq. (37), and taking kðsÞ ¼ ε−2ΩðsÞ, Eq. (41) implies
the following asymptotic expressions for s [compare with
Eq. (49) in Ref. [50]]:

sð0Þn ¼ �iμ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ε2

n2

r
; n ¼ lþ 1;lþ 2;…; (43)

corresponding to a purely imaginary spectrum. This is to be
expected, since our considerations here completely neglect
effects near the horizon, and as a consequence of our
rescaling, the potential is replaced by the effective potential
of the hydrogen problem, which diverges at ζ → 0.
Therefore, the effect of our zeroth-order approximation
is to replace the potential barrier by an infinite barrier.
Consequently, one finds normal modes instead of
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quasibound states. This is similar to what occurred in the
limit λ → 0 of the toy model problem discussed in the
previous section.
As it turns out the zeroth-order expression for the

frequencies given in Eq. (43) yields already a rather good
approximation for the imaginary part of sn, as long as
Mμ ≪ 1. When ε is nonzero but small, one still expects the
solution f to be described by Eq. (40) for large enough z.
The solution of this equation which decays as z → ∞ is
given by [37]

fþðs; zÞ ¼ e−ξ=2ξlþ1Uðlþ 1 − ν; 2ðlþ 1Þ; ξÞ; (44)

where ξ≔2ΩðsÞz, ν ¼ 2=kðsÞ, and Uða; b; ξÞ denotes the
confluent hypergeometric function as defined in Ref. [64].

C. Shooting to a matching point

Based on the exact expression for f− given in Eq. (38),
and the approximate expression for fþ given in Eq. (44),
we determine by a shooting algorithm the complex
frequencies, sn, corresponding to the quasibound modes.
Starting from a given point r in the interval 2M < r < 4M,
and using the known convergent series expansion of
HeunCðα; β; γ; δ; η;−zÞ at z ¼ 0 (with convergence radius
1; see Ref. [65]), this algorithm first numerically integrates
the mode equation (36) in order to extend the function
f−ðs; zÞ to some intermediate point z1. [Typically, we
choose z1 ¼ lðlþ 1ÞM=ε2 to be located close to the
minimum of the potential well.] For the numerical inte-
gration we use a fourth-order Runge-Kutta scheme. Then,
the solution fþðs; zÞ is extended to z1 in a similar fashion,
starting from a large value of z where the approximation in
Eq. (44) can be used. Then, the Wronski determinant,
WðsÞ, defined in Eq. (5) is computed at z1. The last
ingredient of the algorithm consists of a Newton iteration
scheme whose purpose is to find the roots of the
Wronskian WðsÞ.
In order to illustrate the effectiveness of the method we

use similar initial data to the ones used in Refs. [32,33]. The
radial part of the initial data is given by

ϕð0; rÞ ¼ r ×

�
Nðr − R1Þ4ðr − R2Þ4 for R1 ≤ r ≤ R2

0 otherwise
;

(45)

with the normalization N ¼ ½2=ðR1 − R2Þ�8. The free
parameters R1 and R2 allow us to set different “locations”
and “sizes” for the scalar field distributions at t ¼ 0. The
initial value of the time derivative is chosen
as _ϕð0; rÞ ¼ π0ðrÞ ¼ 0.
Next, we show the results for two evolutions correspond-

ing to Mμ ¼ 0.30 and Mμ ¼ 0.20, respectively. In both
cases l ¼ 1, and the initial data are supported inside the
interval ½R1; R2� ¼ ½4M; 8M�; see Eq. (45). The first nine
quasibound frequencies sn are shown in Table I.
After determining the quasibound frequencies, we com-

pute the amplitude each of them is excited from the given
initial data. This is performed based on Eq. (A5) of
Appendix A, assuming the initial data are specified on
an ingoing Eddington-Finkelstein slice. The corresponding
amplitudes An for the first nine modes are shown in
Table II. The number of modes that are excited is infinite
in principle, but as can be seen from Table II, the
amplitudes decrease rapidly for large n. More specifically,
we have found that for the particular initial data chosen, the
first five modes are relevant, while the sixth one starts to
contribute in a negligible way. Of course, the number of
modes required to accurately describe the modal part of the
solution may change depending on the initial data.
The top panels of Fig. 6 show the final output for the

excited modes,

ψnðt; rÞ≔2ReðAnesntfþðsn; rÞ=rÞ; (46)

where the values of An and sn are the ones given in Tables I
and II. The sums of these modes, ψðt; rÞ ¼ P

nψnðt; rÞ
(n ¼ 1;…; 9 in our examples), are shown in the lower
panels of Fig. 6. In the next section, these solutions will be
compared to the numerical evolutions obtained from the
same initial data; see Figs. 9 and 10 below.

TABLE I. Frequencies, sn, for the case l ¼ 1 and different values of parameters Mμ and n.

Mμ ¼ 0.30 Mμ ¼ 0.20
n ReðMsnÞ Mμ − ImðMsnÞ ReðMsnÞ Mμ − ImðMsnÞ
1 −9.4556 × 10−6 3.8076 × 10−3 −4.060 × 10−8 1.0473 × 10−3

2 −3.6585 × 10−6 1.6648 × 10−3 −1.473 × 10−8 4.6253 × 10−4

3 −1.6491 × 10−6 9.2004 × 10−4 −6.582 × 10−9 2.5845 × 10−4

4 −8.6199 × 10−7 5.8091 × 10−4 −3.446 × 10−9 1.6456 × 10−4

5 −5.0203 × 10−7 3.9934 × 10−4 −2.014 × 10−9 1.1384 × 10−4

6 −3.1649 × 10−7 2.9111 × 10−4 −1.275 × 10−9 8.3395 × 10−5

7 −2.1180 × 10−7 2.2152 × 10−4 −8.564 × 10−10 6.3700 × 10−5

8 −1.4836 × 10−7 1.7418 × 10−4 −6.021 × 10−10 5.0238 × 10−5

9 −1.1332 × 10−7 1.4032 × 10−4 −4.829 × 10−10 4.0487 × 10−5

SCHWARZSCHILD SCALAR WIGS: SPECTRAL ANALYSIS … PHYSICAL REVIEW D 89, 083006 (2014)

083006-9



V. DYNAMICAL EVOLUTION AND COMPARISON

In this section we present some numerical evolutions,
with the purpose of extending previous work, as well as
comparing with the semianalytical results of Sec. IV. We
will corroborate that, after some transient initial period (and
for the time scales reached with our numerical evolutions),
the scalar field can be accurately described by a super-
position of quasibound modes alone. Furthermore, the
amplitude of each excited mode can be computed using
the recipe presented in the previous section; see for instance
Figs. 9 and 10, where the agreement between the numerical
evolutions and the semianalytical estimations is remark-
able. As mentioned above, only the first few modes
contribute significantly for the particular initial data con-
sidered in this paper.

A. Dynamical evolutions

Evolutions of quasibound modes on a Schwarzschild
background were performed in Ref. [32]. In that case,
initial conditions were specifically chosen in order to excite
mainly individual quasibound modes. To our knowledge,

long lasting evolutions for more generic initial data,
showing the excitation of a combination of quasibound
states at late times, were first performed in Ref. [33] and
later also in [43]. In both cases a generic feature is
observed: the excitation of quasibound modes, which
can be determined (from a Fourier analysis) by a perfect
match between the frequencies in the evolution and those of
the quasibound modes.
We begin this section by extending the study presented in

[33] regarding the evolution of arbitrary initial data,
considering now a larger number of cases. While the initial
configurations evolved in previous works were quite wide
(from 100M to 2000M) as compared to the black hole size,
here we consider initial data as thin as 2M.
Starting from the initial configurations described in the

previous section, we proceed to solve the dynamic equa-
tions to obtain the time evolution. The system is solved
numerically with the code used in our previous work, with
the addition of (fixed) mesh refinement based on the
method presented in [66]. This addition resolved the
appearance of noise originating at the right boundary when
performing very large evolutions, as reported in [33], by

TABLE II. Amplitudes, An, for the case l ¼ 1 and different values of parameters Mμ and n.

Mμ ¼ 0.30 Mμ ¼ 0.20
n ReðAnÞ ImðAnÞ ReðAnÞ ImðAnÞ
1 6.343 × 10−4 5.540 × 10−4 5.87 × 10−6 2.71 × 10−6

2 2.404 × 10−4 2.092 × 10−4 2.11 × 10−6 9.87 × 10−7

3 1.075 × 10−4 9.357 × 10−5 9.42 × 10−7 4.41 × 10−7

4 5.602 × 10−5 4.874 × 10−5 4.93 × 10−7 2.31 × 10−7

5 3.256 × 10−5 2.834 × 10−5 2.88 × 10−7 1.35 × 10−7

6 2.050 × 10−5 1.785 × 10−5 1.82 × 10−7 8.55 × 10−8

7 1.371 × 10−5 1.194 × 10−5 1.22 × 10−7 5.74 × 10−8

8 9.598 × 10−6 8.360 × 10−6 8.60 × 10−8 4.04 × 10−8

9 7.321 × 10−6 6.392 × 10−6 6.90 × 10−8 3.24 × 10−8
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FIG. 6. Quasibound modes at t ¼ 104857.6M for initial data of the form given in Eq. (45), with R1 ¼ 4M and R2 ¼ 8M. In this case
we have fixed Mμ ¼ 0.3 (left) and Mμ ¼ 0.2 (right). Top panel: Individual contribution of each excited mode,
ψnðt ¼ 104857.6M; rÞ ¼ ϕnðt ¼ 104857.6M; rÞ=r, given the initial data. Bottom panel: Sum over the first nine modes.
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allowing the use of a much larger spatial domain. Aside
from this addition, the original code, of which a detailed
description is given in [67], was unchanged. To give a brief
description, the code uses second-order finite differences in
space and evolves in time using a method of lines with a
third-order Runge-Kutta integrator. The use of horizon
penetrating coordinates allows one to use free left boundary
conditions (inside the horizon), while the right boundary is
set far away and all incoming modes are set to zero there.
For the results presented here we set a spatial domain

½rmin; rmax� with rmin ¼ 1M and rmax up to about
420; 000M, always satisfying rmax > T þ 1200M, where
T is the total evolution time. This choice ensures that the
region ½rmin; 1200M�, where we analyze the results, is not
affected by unphysical signals originating at the right
boundary. A total of eight grids were used, each one
doubling in resolution towards the left, with the highest

resolution being Δr ¼ 0.1M. In all cases the finest grid
extended from r min to r ¼ 400M, hence covering both the
black hole and the initial scalar field distribution. Following
Ref. [33], we study the spectrum by evaluating the Fourier
transform in time of ϕðt; rÞ at many locations r, and then
calculating the average.
The evolutions considered here correspond to initial

configurations with scalar field “pulses” with ½R1; R2� ¼
½0; 100M�, ½100M; 200M�, ½200M; 300M�, ½3M; 9M�,
½4M; 8M� and ½5M; 7M�. The spectra obtained from these
evolutions are shown in Figs. 7 and 8, where we can see a
perfect agreement between the peak positions and the mode
frequencies (indicated by the vertical lines). Note how the
quasiboundmodes are exited even for very “thin” initial scalar
distributions (Fig. 8), althoughwith smaller amplitudes.Letus
point out that the casewith ½R1; R2� ¼ ½100M; 200M� (center
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FIG. 7 (color online). The Fourier spectrum for evolutions with
initial scalar field configurations with ½R1; R2� ¼ ½0M; 100M�,
½100M; 200M� and ½200M; 300M�. The gray shaded area indi-
cates the resonance region, and the vertical lines indicate the
modes’ frequencies.
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FIG. 8 (color online). The Fourier spectrum for evolutions with
initial scalar field configurations with ½R1; R2� ¼ ½3M; 9M�,
½4M; 8M� and ½5M; 7M�. The gray shaded area indicates the
resonance region, and the vertical lines indicate the modes’
frequencies.
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panel of Fig. 7), was already presented in [33], with the
difference that in that work there was some noise to the
right of the resonant region (indicated in gray in the figure).
On that occasion we claimed that the noise originated at
the right boundary, and that it did not notably affect the
spectrum inside the resonant region. Here we were able to
eliminate that noise using mesh refinement to push the right
boundary far enough, showing that our previous claims were
correct.
Given how generically the quasibound modes seem to

appear in dynamical evolutions, one may wonder how easy
it really is to see themmanifest as an effective scalar hair (or
wig) in general. Put another way, we can ask which
conditions allow, and furthermore favor, long lasting scalar
field distributions around black holes. To answer this
question, we first remind the reader that quasibound modes
on a Schwarzschild spacetime cannot exist unless the
resonance condition

ðMμÞ2 < −
1

32
ðl2 þ l − 1Þðl2 þ lþ 1Þ2

þ 1

288

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3l4 þ 6l3 þ 5l2 þ 2lþ 3Þ3

q
(47)

is satisfied [32]. This represents a small range of Mμ for
typical values of l. For example, for l ¼ 0 the condition is
0 < Mμ < 1=4. Second, even when the parameters are in
the resonance region, depending on the initial configura-
tion, the quasibound modes may get excited with a very
small amplitude relative to the initial scalar field distribu-
tion. While for very wide initial configurations most of the
scalar field remains as a combination of quasibound modes,
thinner configurations (of order M for instance) lose most
of their mass by falling into the black hole, or being
radiated towards infinity. This difference between wide and
thin initial configurations can be noted by comparing the
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FIG. 9 (color online). The scalar field, ψðt; rÞ ¼ ϕðt; rÞ=r, as a function of time at r ¼ 81.05M for initial data of the form in Eq. (45),
with R1 ¼ 4M and R2 ¼ 8M. Comparison between dynamical evolutions (dots) and semianalytical results containing only the first nine
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amplitudes in Fig. 7 (wide initial configuration) with those
in Fig. 8 (thin initial configuration). Although the con-
ditions leading to very long lasting scalar fields around
black holes are somehow restrictive, we would like to
emphasize that they may be satisfied in astrophysically
relevant scenarios, as discussed in Ref. [33].

B. Comparison with the semianalytical results

Now we proceed to compare the numerical evolutions
with the semianalytical results presented in Sec. IV. For
definiteness we consider two evolutions, corresponding to
Mμ ¼ 0.30 and Mμ ¼ 0.20, and in both cases we fix
l ¼ 1. The initial data are supported inside the interval
½R1; R2� ¼ ½4M; 8M�; see Eq. (45) above. We compare the
results of the evolution both in time and in spatial
distribution.
In order to compare as a function of time, we fix an

observer at a point r ¼ 81.05M, although we have verified
that similar results appear for various other values of r.
These comparisons are shown in Fig. 9. As also pointed out
in Ref. [43], we can see a “beating” due to the combination
of different quasibound frequencies. We note that, for this
particular case, evaluating the contribution from the first
nine quasibound modes was enough to have a good
matching with the dynamical evolution.
Concerning the distribution along the radial coordinate,

we can compare the semianalytical result at a given time
with a snapshot of the numerical evolution. In particular,
we will take the function ψðt ¼ 104857.6M; rÞ obtained as
the superposition of the first nine quasibound modes shown
in the lower panels of Fig. 6. The result of such comparison
is presented in Fig. 10, where we can see an excellent
agreement between the two methods.
To perform a more quantitative comparison it is conven-

ient to first do an error estimation for each case. For a
semianalytical solution obtained from the first m modes,

ΨAðt; rÞ ¼
P

m
n¼1Ψnðt; rÞ, we estimate the error as the last

term in the series. For a numerical evolution with resolution
Δr, ΨNðt; rÞ ¼ ΨΔrðt; rÞ, we estimate the error as the
difference with a solution with resolution 2Δr. In order to
do a comparison in time, we take the L2 norm in r of the
difference between the analytical and numerical solutions
and their respective errors: dANðtÞ≔ jjΨAðt; rÞ −ΨNðt; rÞjj,
eAðtÞ≔ jjΨmðt; rÞjj, and eNðtÞ≔ jjΨΔrðt; rÞ −Ψ2Δrðt; rÞjj.
We consider that a good agreement up to numerical error is
achieved whenever dAN ≲ eA þ e N. These quantities are
shown in Fig. 11 for the same cases shown in the previous
figures; that is, m ¼ 9 and Δr ¼ 0.1M in the inner grid. As
expected, we see good agreement only at late times, when
the semianalytical solution becomes a good approximation.
Note that these error estimations can be considered when
deciding where to stop the semianalytical series. For the
results presented in this work the error eA is of the order of
1% at the later times shown.

VI. POSSIBLE OBSERVATIONAL FEATURES

There has been some recent interest in the possibility that
dark matter may be described by the coherent excitation of
a massive scalar field [9–28]. In the axiverse [1–8], scalar
fields with masses in the range 10−33 to 10−10 eV might
naturally appear. It is very interesting that precision black
hole physics can be used to explore such a possibility
[3,5,6]. In this section we speculate about some further
astrophysical observables that can be easily computed from
the results in this paper.
The semianalytic method presented in Sec. IV (and

tested against numerical evolutions in Sec. V) offers
interesting possibilities. Among them, it allows the evalu-
ation of the scalar field at any time t without the need for a
full numerical evolution, as long as t is large enough such
that the contribution of the high-frequency arc vanishes.1

This allows us to study efficiently the amount of scalar field
that “survives” around the black hole in the form of the
superposition of quasibound modes that are excited by the
initial data. We have referred to these remaining scalar
field configurations as Schwarzschild scalar wigs [33].
Furthermore, we can estimate the size of these wigs by
estimating the size of each quasibound mode. Note that
even narrow initial data, with a width of just 4M, can excite
a large number of modes. Most of them, as shown in Fig. 6,
have a radial extension of hundreds or thousands of M.
In order to obtain a rough estimate of the size of the

quasibound modes,2 we can calculate the location of the
local minimum, rmin, of the effective potential VðrÞ defined
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FIG. 11 (color online). The difference between semianalytical
and numerical solutions, dAN, and their respective errors, eA and
eN, are shown for the case l ¼ 1, Mμ ¼ 0.2.

1At very large times, the tail contribution to the integral kernel
could in principle have some relevance [68,69], but it does not
appear for the time scales of our simulations; see Sec. III D for
similar results in the case of the toy model.

2A more precise definition would be to determine the radius of
a sphere containing, let us say, 99% of the mass.
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in Eq. (34). Since the actual size is usually much larger
[32], this value gives a lower bound for the size of the scalar
wig. Figure 12 shows rmin as a function of μ for l ¼ 0 and
l ¼ 1, and black hole masses of orderM ¼ 108M⊙. Larger
values of l give larger values of rmin. The values shown in
Fig. 12 seem to be consistent with galactic halos. For l > 0
we obtain sizes larger than those of the typical visible part
of galaxies. For the case with l ¼ 0, although the size
seems too small, let us emphasize that rmin is usually much
smaller than the actual size. Moreover, even if the modes
with l ¼ 0 were smaller than the typical size of actual
galactic halos, in order to describe a galaxy one would
actually have to consider combinations of modes with
different values of l for a more realistic scenario, hence
yielding larger sizes.
Concerning the amount of scalar field in one of those

wigs, we will compute now the total energy, EðtÞ, con-
tained in a slice t ¼ const. [32]. For the particular case of
the Klein-Gordon equation in ingoing Eddington-
Finkelstein coordinates it can be shown that

EðtÞ ¼
Z

∞

2M

��
1þ 2M

r

����� ∂ϕ∂t
����2 þ

�
1 −

2M
r

����� ∂ϕ∂r
����2

þ
�
lðlþ 1Þ

r2
þ 2M

r3
þ μ2

�
jϕj2

�
dr: (48)

At late times the scalar field can be written as a super-
position of quasibound states, ϕðt; rÞ ¼ P

nAnesntϕnðrÞ,
where the mode solutions in Eddington-Finkelstein coor-
dinates ϕnðrÞ are related to the mode functions f−ðsn; xÞ
defined in Eq. (38) through the relation ϕnðrÞ ¼
ðr=2M − 1Þ−2Msnf−ðsn; zÞ; see Appendix A. Given the
properties of the Heun function, it follows that
limr→2MϕnðrÞ ¼ 1. Using these identities and integration
by parts, it can be shown that the energy in Eq. (48) can be
rewritten as

EmodesðtÞ ¼ −2
X
n;m

eðs�nþsmÞt s�nsm
s�n þ sm

A�
nAm: (49)

Therefore, at late times the total energy of the scalar field
can be computed solely from the quasibound frequencies
and the excitation amplitudes corresponding to given initial
data. For the particular case of the initial data defined in
Eq. (45) (with R1 ¼ 4M and R2 ¼ 8M), we have computed
the energy EmodesðtÞ given in Eq. (49) for large times,
t > 10; 000M, and compared it to the initial energy, E0,
which was computed from the integral in Eq. (48). The
evolution of the normalized energy EmodesðtÞ=E0 for the
same initial data but different values of Mμ is shown
in Fig. 13.
The following comments on the behavior of

EmodesðtÞ=E0 are interesting. In contrast to the evolution
of the energy shown in Ref. [32], where only one quasi-
bound state was evolved and an exponential decay was

obtained, for the case of arbitrary data the behavior of
EðtÞ=E0 shows transitions from one exponential decaying
phase to another one. This is due to the fact that at late
times, the solution is a superposition of different quasi-
bound states. However, note that the energy EmodesðtÞ is a
nonincreasing function of time, since the time derivative of
the right-hand side of Eq. (49) is equal to −2 times a perfect
square. Another interesting property is that for given initial
data, the amount of energy of the scalar field is initially
smaller but lasts for a larger time when Mμ is decreased.
The reason for this lies in the fact that when Mμ → 0, the
real parts of the complex frequencies sn, giving rise to
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the decay of the solution, become very small, so that the
configuration can last for a longer time.
The profile in the energy density ρnlmðt; rÞ of each

individual mode ϕnlm is of the form shown in Figs. 6 and 7
of Ref. [32]. However, the energy density of a combination
of modes with different frequencies will have nontrivial
oscillations, due to its nonlinear dependency on the scalar
field. Assuming that galactic halos are described by a
combination of these modes, such oscillations might be
observable, producing changes in the galactic rotation
curves over time.
Let us consider a combination of modes with two

frequencies, ω1 and ω2. The energy density will be given
by the sum of the energy density of each mode (a
quasistatic term), plus a cross term (given the quadratic
form of the density as function of the scalar field) with
frequency ωr ¼ jω1 − ω2j.
In general, the maximum possible frequency ωr will then

be given by the difference of the higher and lower
frequencies. This value will be approximately equal to
the upper bound given by the size of the resonance region:
ωb

2 ¼ minfμ2; Vmaxg − Vmin, where Vmax (Vmin) is the
local maximum (minimum) of the effective potential
VðrÞ. In terms of periods, we have the lower
bound Tb ¼ 2π=ωb.
In order to give some estimations, if we choose

M ¼ 1010M⊙, μ ¼ 10−22 eV, and l ¼ 0, we have
Tb ¼ 17 years; thus in this case it seems plausible to
detect the oscillations by, for instance, comparing rotation
curves observed during a few decades of observation. This
relatively small value of Tb is obtained for minimum l, and
large M and μ, although still within acceptable limits for
galactic halos. However, as soon as we choose slightly
smaller M or μ, or larger l, the period Tb gets extremely
larger. For example, M ¼ 108M⊙, μ ¼ 10−23 eV and l ¼
0 gives Tb ¼ 5500 years; M ¼ 105M⊙, μ ¼ 10−22 eV and
l ¼ 1 gives Tb ¼ 1011 years. Thus, it remains unclear
whether the oscillations might be observed.

VII. CONCLUSIONS

We have considered the late time behavior of localized
scalar field configurations surrounding a Schwarzschild
black hole, using both numerical evolutions and the
Green’s function representation technique. At any time
in the evolution, the scalar field can be represented as the
convolution of the initial data with a suitable integral
kernel. The integral kernel can be divided into three
different contributions, where each one is a contour integral
in the complex frequency plane over the Green’s function
of the problem. After some transient initial period, and for
the time scales reached with our numerical evolutions, we
have shown that the scalar field can be accurately described
by a superposition of quasibound modes alone, which
correspond to the residua of the poles of the Green’s
function.

Given arbitrary initial data for the scalar field on a
spacelike hypersurface, the amplitude of each quasibound
state in the solution can be obtained by computing a simple,
one-dimensional integral. Therefore, once these amplitudes
have been calculated, it is possible to predict the late time
behavior of the scalar field distribution without performing
a numerical evolution.
These conclusions were reached by applying the Green’s

function technique first to a toy model consisting of a
potential formed by a delta and a step function, where the
modes can be computed in exact form, and where the
asymptotic form of the frequencies and the amplitudes can
be obtained analytically. In particular, we showed that for
this model problem all the poles of the Green’s function are
located very close to the resonant band, and thus have very
small decay rates. By comparison with a numerical
evolution we showed that at late times the solution is
accurately described by a superposition of quasibound
modes. Then, we turned to the case of a massive scalar
field on a Schwarzschild black hole background, for which
the quasibound frequencies, modes and amplitudes were
determined semianalytically, and showed that in this case
too the agreement with the numerical evolutions at late
times is remarkable.
We discussed some of the astrophysical implications of

our findings, in particular to the scalar field dark matter
models and to the axiverse. We corroborated the results in
our previous works, where we found that for appropriate
values of the scalar field and the black hole mass the
quasibound states can be extremely long lived. We also
estimated the size of the wigs for supermassive black holes,
and speculated about a possible observational feature in the
rotational curves of galaxies.
Although the method presented in this paper has been

applied only to the case of a massive scalar field living on a
Schwarzschild spacetime background, it can be naturally
extended to higher order spin fields on other stationary
spacetime geometries.
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APPENDIX A: GREEN’S FUNCTION
REPRESENTATION FOR ARBITRARY TIME

SLICES

In this appendix we generalize the integral representation
(2) for the solutions of Eq. (1a) to arbitrary spacelike
foliations t̄ ¼ const., where the new time coordinate t̄
parametrizing the new foliation is related to t through

t̄ ¼ t − hðxÞ; (A1)

with h∶R → R the height function. h should be smooth and
satisfy jh0ðxÞj < 1 in order to ensure that the time slices
t̄ ¼ const. are spacelike. With respect to the new coordi-
nates ðt̄; rÞ Eq. (1a) is transformed into the following
equation for ϕ̄ðt̄; xÞ ¼ ϕðt; xÞ:

∂2ϕ̄

∂ t̄2 −
� ∂
∂x − h0ðxÞ ∂∂ t̄

�
2

ϕ̄þ VðxÞϕ̄ ¼ 0:

We solve this equation given initial data on the initial
surface t̄ ¼ 0 which is of the form

ϕ̄ð0; xÞ ¼ ϕ0ðxÞ;
∂ϕ̄
∂t ð0; xÞ ¼ π0ðxÞ; x ∈ R:

To do this, we perform a Laplace transformation in time,
which yields the ordinary differential equation

�
s2 −

� ∂
∂x − h0ðxÞs

�
2

þ VðxÞ
�
~ϕðs; xÞ ¼ Fðs; xÞ; (A2)

where ~ϕðs; xÞ refers to the Laplace transformation of
ϕ̄ðt̄; xÞ and the source term is given by

Fðs; xÞ ¼ ð1 − h0ðxÞ2Þðπ0ðxÞ þ sϕ0ðxÞÞ

þ 2h0ðxÞ ∂ϕ0

∂x ðxÞ þ h00ðxÞϕ0ðxÞ:

The solution of Eq. (A2) which is well behaved at x → �∞
can be written as

~ϕðs; xÞ ¼
Z

∞

−∞
Ḡðs; x; yÞFðs; yÞdy;

with the Green’s function

Ḡðs; x; yÞ≔ 1

W̄ðs; yÞ
�
f−ðs; yÞfþðs; xÞ; y ≤ x
f−ðs; xÞfþðs; yÞ; y > x

�
; (A3)

where here f−ðs; xÞ and fþðs; xÞ are two nontrivial
homogeneous solutions of Eq. (A2), with f− representing
an outgoing mode at x → −∞ and fþ an outgoing mode at
x → þ∞. W̄ðs; xÞ is the Wronski determinant of f̄�,
defined as

W̄ðs; xÞ≔ det

�
fþðs; xÞ f−ðs; xÞ
fþ0ðs; xÞ f−

0ðs; xÞ
�
:

What is the relation between Ḡðs; x; yÞ and the Green’s
function Gðt; x; yÞ corresponding to the original time slices
t ¼ const.? Because of Eq. (A1) the mode solutions f� and
f� are related to each other through

f�ðs; xÞ ¼ eshðxÞf�ðs; xÞ:
Accordingly, it follows that W̄ðs; xÞ ¼ e2shðxÞWðsÞ and
Ḡðs; x; yÞ ¼ esðhðxÞ−hðyÞÞGðs; x; yÞ. With these observations,
it is not difficult to generalize the formulas (8) to the case
where the initial data is specified on the t̄ ¼ 0 surface
instead of the t ¼ 0 surface. The result is

ϕ̄modes;nðt̄; xÞ ¼ Anesntfþðsn; xÞ ¼ Anesnt̄fþðsn; xÞ; (A4)

with the amplitude

An ≔
�
d
ds

WðsÞ
�
−1
����
s¼sn

Z
∞

−∞
f−ðsn; yÞe−snhðyÞFðsn; yÞdy:

(A5)

Comparing with Eqs. (8) we see that the only change
required for computing the mode solution is the replace-
ment ½snϕ0ðyÞ þ π0ðyÞ�↦e−snhðyÞFðsn; yÞ in the expression
for the amplitude An.
As an example, for ingoing Eddington-Finkelstein coor-

dinates we have with r > 2M,

x ¼ rþ 2M log

�
r
2M

− 1

�
; hðxÞ ¼ r − x;

and

Fðs;xÞdx¼
��

1þ2M
r

�
ðπ0þsϕ0Þ−

4M
r
∂ϕ0

∂r þ2M
r2

ϕ0

�
dr:

APPENDIX B: CONTRIBUTIONS FROM THE
HIGH-FREQUENCY ARC AND THE BRANCH

CUT TO THE SOLUTION OF THE TOY MODEL

In Sec. III we provided an analytic derivation of the
mode part of the solutions to the toy model problem. In this
appendix, we briefly discuss some properties of the
remaining parts of the solution, namely the ones coming
from the integration over the high-frequency arc μR and the
two curves ΓR around the branch cut (see Fig. 1). The
corresponding integral kernels are given by

ktailðt; x; yÞ ¼ lim
R→∞

1

2πi

Z
ΓR

estGðs; x; yÞds;
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and

khfaðt; x; yÞ ¼ lim
R→∞

1

2πi

Z
μR

estGðs; x; yÞds:

In terms of the complex angle φ defined in Eq. (22) we
can parametrize the integration curves ΓR and μR as
follows. Let ε > 0 and R > 0. Then, ΓR is defined as
the union of the two hyperbolae φ ¼ αþ iβ with −R ≤

β ≤ R and α ¼ �ðπ=2 − εÞ, respectively, and μR as
the elliptic arc described as φ ¼ αþ iR with
−π=2þ ε ≤ α ≤ π=2 − ε; see Fig. 2. As in Sec. III, we
assume that the initial data are supported inside the
potential well, 0 < x < a, and we only consider the
solution inside this region. Then, the Green’s function
Gðs; x; yÞ can be computed using Eqs. (4), (13a)–(13d). In
terms of the complex angle φ one obtains

estGðs; x; yÞds ¼ ð1þ λi sinφÞei sinφðτ−ηÞ þ ei sinφðτþη−2qÞ−2iφ − ð1þ λi sinφÞei sinφðτþξ−2qÞ−2iφ − ei sinφðτ−ξÞ

2 tanðφÞFðλ;φÞ dφ;

where we have introduced the dimensionless quantities
τ≔μt, ξ≔μðxþ yÞ, η≔μjx − yj, and where we recall the
definitions λ≔2μ=A and q≔aμ and the function Fðλ;φÞ
defined in Eq. (23).
Explicit evaluation of the resulting integrals is, of course,

a nontrivial task. However, we prove the following result
which shows that the contribution from the high-frequency
arc vanishes identically after two crossing times of the
potential well:
Proposition 1 Let t > 2a. Then, khfaðt; x; yÞ ¼ 0 for

all 0 < x; y < a.
Proof We start with a basic estimate for the function

Fðλ;φÞ ¼ 1þ iλ sinðφÞ − e−2iφ−2qi sinφ. Writing φ ¼ αþ
iβ with −π=2 < α < π=2 and β > 0 we have

i sinφ ¼ − cos α sinh β þ i sin α cosh β;

which has a negative real part. Using the estimates sinh β ≤
eβ and cosh β ≤ eβ which are valid for β > 0 we obtain
from this

ji sinφj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2αsinh2β þ sin2αcosh2β

q
≤ eβ:

On the other hand,

−2iφ − 2qi sinφ ¼ 2β þ 2q cos α sinh β

− 2iðαþ q sin α cosh βÞ

which implies

je−2iφ−2qi sinφj ¼ e2βþ2q cos α sinh β ≥ e2β:

Therefore, it follows that

jFðλ;φÞj ≥ e2β − j1þ iλ sinφj ≥ e2β − λeβ − 1; (B1)

and choosing R > 0 large enough, we have jFðλ;φÞj ≥
e2β=2 for all β ≥ R. In particular, this proves that there are
no poles which lie arbitrarily far from the origin in the
complex plane.

Next, we observe that

1

jtan2ðφÞj ¼
cosh2β − sin2α
sinh2β þ sin2α

≤
cosh2β
sinh2β

:

The right-hand side converges to 1 for β → ∞, implying
that 1=j tanðφÞj is uniformly bounded for large β’s.
Now that we have control of the terms in the denom-

inator, it is not difficult to estimate each term of the Green’s
function. For example, for the first term we find

����
Z
μR

ð1þ λi sinφÞei sinφðτ−ηÞ
2 tanðφÞFðλ;φÞ dφ

����
≤ const × eRe−2R

Z
π=2−ε

−π=2þε
e− cos α sinhðRÞðτ−ηÞdα⟶

R→∞
0;

since τ − η ¼ μðt − jx − yjÞ > 0. The second and fourth
terms can be estimated in a similar way. For the third term
we obtain

����
Z
μR

ð1þ λi sinφÞei sinφðτþξ−2qÞ−2iφ

2 tanðφÞFðλ;φÞ dφ

����
≤ const × eRe−2R

Z
π=2−ε

−π=2þε
e− cos α sinhðRÞðτþξ−2qÞþ2Rdα

≤ const × 2 sinhðRÞ
Z

π=2−ε

−π=2þε
e− cos α sinhðRÞðτþξ−2qÞdα:

In the limit R → ∞ this term also converges to zero. This
can be seen by setting z≔ sinhðRÞðτ þ ξ − 2qÞ ¼
sinhðRÞμðtþ xþ y − 2aÞ > 0 and using the estimate
cos α ≥ 1 − 2α=π, α ≥ 0, such that

z
Z

π=2−ε

−π=2þε
e−z cos αdα ≤ 2z

Z
π=2−ε

0

e−zð1−2α=πÞdα

¼ πðe−2εz=π − e−zÞ⟶
R→∞

0:

This concludes the proof of the proposition. □
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