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A self-gravitating gas in the Newtonian limit is studied in the presence of dark energy with a linear and
constant equation of state. Entropy extremization associates to the isothermal Boltzmann distribution an
effective density that includes “dark energy particles”—which either strengthen or weaken mutual
gravitational attraction in the case of quintessence or phantom dark energy, respectively—that satisfy a
linear equation of state. Stability is studied for microcanonical (fixed-energy) and canonical (fixed-
temperature) ensembles. Compared to the previously studied cosmological constant case, in the present
work it is found that quintessence increases the instability domain under gravitational collapse, while
phantom dark energy decreases it. Thus, structures are more easily formed in a quintessence- rather than in
a phantom-dominated universe. Assuming that galaxy clusters are spherical, nearly isothermal, and in
hydrostatic equilibrium, we find that dark energy with a linear and constant equation of state (for fixed
radius, mass, and temperature) steepens their total density profile. In the case of a cosmological constant,
this effect accounts for a 1.5% increase in the density contrast, that is, the center to edge density ratio of the
cluster. We also propose a method to constrain phantom dark energy.
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I. INTRODUCTION

Dark energy is considered a main component of our
Universe, since its existence relies on convincing obser-
vational data [1–3]. However, its nature still remains a
mystery for physics. Three main candidates are quintes-
sence [4–10], the cosmological constant, and phantom dark
energy [11–16].
In this expanding Universe, driven by dark energy,

structures form by the gravitational instability of self-
gravitating gas, which causes a density perturbation to
decouple from expansion and collapse. In the matter-
dominated era, the velocity of the gas constituents is low
and the Newtonian limit is appropriate. The thermodynamic
stability of a self-gravitating gas in the Newtonian limit is a
very old subject [17–24] (the relativistic case has recently
earned a lot of attention [25–34]). Hence, this subject is not
only interesting from a purely theoretical point of view; it
also has an additional cosmological motivation. Its direct
application to large structures in the Universe such as galaxy
clusters provides information on their formation and evo-
lution. Furthermore, one can extend [35,36] this analysis and
investigate the effects of a cosmological constant on the
stability of a self-gravitating gas [37–39].

In the present work we extend these latter studies [37–39]
in order to examine the effects of dark energy—satisfying a
linear equation of state—on the stability of isothermal
spheres and galaxy clusters. In particular, we would like
to see how the galaxy clusters and especially their more
massive component—namely, the dark matter haloes—are
affected by the presence of a quintessence or a phantom dark
energy, parametrized by a linear equation of state. Aswewill
see, compared to the simple cosmological constantΛ case—
apart from increasing the repulsion due to the negative
pressure—phantom dark energy in the Newtonian descrip-
tion introduces effective “dark energy particles” that weaken
gravitational attraction. On the other hand, quintessence
has the opposite effect, that is, it decreases repulsion due
to pressure and introduces dark energy particles that
strengthen mutual gravitational attraction compared to the
Λ case. Thus, for both reasons, phantom dark energy
decreases the instability domain (under gravitational col-
lapse) and quintessential dark energy increases the insta-
bility domain with respect to the Λ case. It is more difficult
for large-scale structures to form in a phantom universe than
in a quintessence one. This is onemain result of our analysis.
The potential effect of a dark energy component on the

formation of galaxy clusters has been inspected recently (see
Refs. [40,41] and references therein). As we will see, the
dark energy sector does indeed have effects on the density
profile of galaxy clusters and mainly their most massive
component, namely the dark matter haloes. We find that the
effects are in principle detectable, and more interestingly
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that the density profile steepens, in contrast with naive
expectations. Additionally, one can use these results the
otherway around, and impose constraints on the dark energy
equation of state from galaxy cluster observations.
The paper is organized as follows. In Sec. IIwe present the

thermodynamics of a self-gravitating gas in the presence of
dark energy and we study its effect on stability: we study
hydrostatic equilibrium, calculate the entropy extrema, and
perform a stability analysis. In Sec. III we study the galaxy
clusters: we investigate the effect of dark energy on the
clusters’ density profile and propose a method to constrain
the dark energy equation of state based on cluster observa-
tions. Finally, Sec. IV is devoted to the conclusions.

II. THERMODYNAMIC INSTABILITIES
AND DARK ENERGY

In order to investigate the dark energy effects on the
stability of a self-gravitating gas, we will use the results
from our previous studies [37–39]. We assume that the dark
energy sector is described by a perfect fluid of energy
density ρX and pressure pX, while its equation-of-state
parameter is defined as

w≡ pX

c2ρX
; (1)

where for clarity we keep the light speed c in the equations.
In the following we restrict ourselves to the observationally
favored case w < − 1

3
, although this is not necessary. In this

work we assume that w ¼ const, as we want to consider the
simplest possible setup in order to understand the basic
effects of dark energy. The extension to the full time-
varying w and/or time-varying cosmological constant
[42–46], as well as the incorporation of possible dark
energy-dark matter interactions [47–50] and the corre-
sponding complicated analysis, will follow in a subsequent
work.
Let us now derive the modified Poisson equation with a

dark energy component in the Newtonian limit. Denoting
by ρ and p the gas energy density and pressure, respec-
tively, we can write down the total energy-momentum
tensor as

Tμ
ν ¼ ½ðpþ pXÞ þ ðρþ ρXÞc2�gαν

dxμ

ds
dxα

ds
− ðpþ pXÞδμν ;

(2)

where gαν is the spacetime metric with sign ½þ;−;−;−�, xμ
is the spacetime coordinate of one fluid element, and s is
the proper length. In the nonrelativistic limit, and assuming
equilibrium (that is, d~x=ds ¼ 0), it becomes

Tμ
ν ≃ ½ρþ ð1þ wÞρX�c2δμ0δ0ν − wρXc2δ

μ
ν : (3)

Defining the gravitational potential ϕ as usual through

d2~x
dt2

¼ − ~∇ϕ;

we can calculate that for slowly moving particles Γi
00 ≈

d2xi=ðc2dt2Þ ¼ ∂iϕ=c2 [and thus in the static weak-field
(Newtonian) limit] we have R0

0 ¼ 1
c2 ∇2ϕ. Inserting these

Newtonian-limit expressions into the time-time component
of the Einstein equations

Rμ
ν ¼ 8πG

c4
Tμ
ν −

4πG
c4

Tδμν ; (4)

we finally obtain

∇2ϕðrÞ ¼ 4πGρþ 4πGð1þ 3wÞρX: (5)

This is the modified Poisson equation that determines the
gravitational potential in the Newtonian limit.

A. Hydrostatic equilibrium

It will be instructive to study the hydrostatic equilibrium
of a self-gravitating gas in the presence of dark energy. We
start with the relativistic equation of hydrostatic equilib-
rium, known as the Tolman-Oppenheimer-Volkof (TOV)
equation [51,52], which however we need to derive in the
presence of the dark energy component. As we show in
detail in Appendix A, in the static, spherically symmetric
case, the Einstein equations reduce to two equations,
namely

dp
dr

¼−
�
p
c2

þ ρþð1þwÞρX
��

GMðrÞ
r2

þ 4πG
p
c2
r

þ 4πG
3

ρXrð1þ 3wÞ
��

1−
2GMðrÞ

rc2
−
8πG
3c2

ρXr2
�

−1
;

(6)

dMðrÞ
dr

¼ 4πρr2; (7)

where ρðrÞ and pðrÞ are, respectively, the total mass-energy
density and pressure at point r, andMðrÞ is the total mass-
energy contained inside r. Equation (6) is the TOVequation
in the presence of a dark energy component. In the
Newtonian limit, that is, for c → ∞, we obtain

dp
dr

¼ −½ρþ ð1þ wÞρX�
�
G
MðrÞ
r2

þ 4πG
3

ρXrð1þ 3wÞ
�
;

(8)

where ρ is now the density of matter. This is the equation of
hydrostatic equilibrium in the presence of dark energy in
the Newtonian limit.
We observe that gravity is now exerted on the effective

matter with density
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ρeff ¼ ρþ ð1þ wÞρX: (9)

This definition for the effective matter density is also
inferred by the momentum component of the energy-
momentum tensor in the Newtonian limit, namely

T0i ¼ ½ρþ ð1þ wÞρX�
dxi

dt
; (10)

as it straightforwardly arises from Eq. (2).
We note that by looking at the Poisson equation (5) a

naive guess would be to define the effective density as ρþ
ð1þ 3wÞρX instead of Eq. (9). This would be wrong. Dark
energy introduces an attractive part coming from ρX and a
repulsive one coming from the negative pressure with three
components. In the case of a cosmological constant
(w ¼ −1) the attractive part is completely counterbalanced
by the one pressure component, as is evident by the
momentum (10), leaving only the term −2ρX in the
Poisson equation, without the need to introduce any kind
of new matter. However, we see that in the general dark
energy case—apart from the repulsive gravity due to the
pressure—in the Newtonian limit we have the effective
appearance of additional “matter particles” that gravitate
normally in the quintessence case (ρeff > ρ) or that tend to
gravitationally neutralize normal matter in the phantom
case (ρeff < ρ).
Let us determine the density distribution for which the

equation of hydrostatic equilibrium (8) leads to the modi-
fied Poisson equation (5). For an isothermal distribution
(T ¼ const) the velocity distribution of the gas particles
should be Maxwellian,

fðr; υÞ ¼
�

m
2πkT

�3
2 ρeffðrÞ

m
e−

m
kTυ

2=2; (11)

wherem is the particle mass, v is the particle velocity, and k
is Boltzmann’s constant. Respectively, the pressure is

pðrÞ≡
Z

f
1

3
mυ2d3υ ¼ ρeffðrÞ

kT
m

: (12)

Thus, in order to get Eq. (5) from Eq. (8) we should have

ρeff ¼ ρ0;effe−
m
kT½ϕ−ϕð0Þ�; (13)

which is just the Boltzmann distribution for ρeff. Inserting
this into Eq. (9), we acquire

ρ ¼ ½ρ0 þ ð1þ wÞρX�e−m
kT½ϕ−ϕð0Þ� − ð1þ wÞρX: (14)

Finally, by substituting Eqs. (12), (13), and (14) into the
equation of hydrostatic equilibrium (8), we finally obtain

1

r2
d
dr

�
r2

dϕ
dr

�
¼ 4πGρþ 4πGρXð1þ 3wÞ; (15)

which is the spherically symmetric version of the Poisson
equation (5).
The fact that the effective density as defined in Eq. (9)

obeys a Boltzmann distribution reassures us that it is the
correct choice. We stress that the correct definition of
the effective matter density is crucial, since it affects the
calculation of the potential energy, but most importantly
because it is the one measured in indirect mass observations
(for instance, in gravitational lensing measurements).

B. Entropy extremum

Let us prove that the distributions (11) and (13) extrem-
ize the entropy, and thus that they describe thermodynamic
equilibria. Let the self-gravitating gas be bounded by
spherical walls. This condition is needed for the entropy
to have an extremum. Equivalently, hydrostatic equilibrium
for a finite mass can only exist under this condition. Such a
configuration is called an “isothermal sphere” [18,53].
Let an isothermal sphere have radius R, and let

S ¼ −k
Z

fð~r; ~υÞ log fð~r; ~υÞd3~rd3~υ (16)

be the Boltzmann entropy, where the distribution fð~r; ~υÞ
provides the number of effective particles that are inside the
cube d3~r at ~r, with velocities from ~υ to ~υþ d~υ. Thus, we
have

ρeffð~rÞ ¼ m
Z

fð~r; ~υÞd3υ; (17)

and the total effective mass is

Meff ¼ m
Z

fd6τ; (18)

with d6τ ¼ d3~rd3~υ. In order to calculate the distribution f
that extremizes the entropy S, we have to calculate the
variation of Eq. (16) in terms of f.
The Poisson equation (5) can be written as

∇2ϕðrÞ ¼ 4πGρeff þ 8πGwρX: (19)

We see that the effective particles interact mutually with
Newtonian gravity and moreover interact with some
repulsive potential. Hence, we can define the effective
potentials

ϕNðeffÞ ¼ −G
Z

ρeffð~r0Þ
j~r − ~r0j d

3~r0; (20)

ϕXðeffÞ ¼
4πG
3

wρXr2; (21)
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with the total potential being

ϕ ¼ ϕNðeffÞ þ ϕXðeffÞ; (22)

and therefore the total potential energy takes the simple
form

U ¼ 1

2

Z
ρeffϕNðeffÞd3~rþ

Z
ρeffϕXðeffÞd3~r: (23)

Inserting Eqs. (17) and (20) into Eq. (23), we straightfor-
wardly find

U ¼ G
2

ZZ
m2fð~r; ~υÞ fð~r

0; ~υ0Þ
j~r − ~r0j d

6τ0d6τ þ
Z

mfϕXðeffÞd6τ:

(24)

We want to extremize the entropy with constant energy
and mass. Using the Lagrange-multiplier method, the
following variation condition should be satisfied to first
order:

δS=k − βδEþ αδMeff ¼ 0; (25)

where β, α are two as yet undetermined Lagrange multi-
pliers and k is Boltzmann’s constant. By using δS from
Eq. (16) and δMeff from Eq. (18), as well as calculating
from Eq. (24) that δE ¼ m

R
δfðυ2=2þ ϕ − CÞd6τ, with

C ¼ 2πGð1þ wÞρXR2, we finally acquire from Eq. (25)
that

log f þ 1þmβ

�
υ2

2
þ ϕ − C

�
−mα ¼ 0: (26)

This finally gives

fðr; υÞ ¼ Ae−βm½1
2
υ2þϕðrÞ�; (27)

where A ¼ emα−1þmβC. From this expression we derive the
average kinetic energy per particle,

R
f 1

2
mυ2d3~υR
fd3~υ

¼
R
e−mβð1

2
υ2Þ 1

2
mυ2d3~υR

e−mβð1
2
υ2Þd3~υ

¼ 3

2β
;

and therefore we see that β should be interpreted as the
inverse temperature,

β ¼ 1

kT
: (28)

Finally, by inserting the calculated fðr; υÞ from Eq. (27)
into Eq. (17), we obtain

ρþ ð1þ wÞρX ¼
�
2πkT
m

�3
2

mAe−
m
kTϕðrÞ;

which for

mA ¼
�

m
2πkT

�3
2½ρ0 þ ð1þ wÞρX�em

kTϕð0Þ

leads to Eq. (14),

ρðrÞ ¼ ½ρ0 þ ð1þ wÞρX�e−m
kT½ϕðrÞ−ϕð0Þ� − ð1þ wÞρX; (29)

and to the distribution (11),

fðr; υÞ ¼
�

m
2πkT

�3
2 ρeffðrÞ

m
e−

m
kTυ

2=2;

as desired.
In summary, we see that the hydrostatic equilibrium of a

self-gravitating gas in the presence of dark energy for an
isothermal distribution corresponds to a state of entropy
extremum, with an effective density given by Eq. (13) that
obeys the Boltzmann distribution. However, the stability of
this state depends on whether or not the extremum is a
maximum.

C. Energy, temperature, and stability

In order to determine the type of the entropy extremum,
and thus to deduce whether or not we have stability, we
have to examine the sign of the second variation of the
entropy. Fortunately, due to a theorem of Poincaré [54] and
its subsequent refinements by Katz [24,55], one does not
always have to calculate the second variation of the entropy
or free energy. In particular, for fixed energy E and mass
M—that is, in the case of the microcanonical ensemble—an
instability sets in at the equilibrium point where there is a
vertical tangent on the diagram of equilibria TðEÞ. On the
other hand, for fixed temperature T and massM—that is, in
the case of the canonical ensemble—an instability sets in at
the equilibrium point where there is a vertical tangent on the
diagramof equilibriaEðTÞ. For an isothermal sphere of a self-
gravitating gas, the instability in the microcanonical ensem-
ble is called a gravothermal catastrophe [17–19,37,38], while
the instability in the canonical ensemble is called an iso-
thermal collapse [21,38,39].
In practice, in a series-of-equilibria diagram of the

energy versus any variable, an extremum is a turning point
of stability. This implies that if one branch of the diagram
up to the turning point is known to be stable, the branch
beyond the turning point will be unstable, and vice versa. In
addition, since we have an extremum, no equilibria exist
above this extremum in the case where it is a global
maximum, or beneath this extremum in the case where it is
a global minimum. Therefore, we conclude that the system
exhibits a gravothermal catastrophe at the turning point in a
series-of-equilibria diagram of E versus any variable, and
similarly it exhibits an isothermal collapse at the turning
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point in a series-of-equilibria diagram of T versus any
variable.
In conclusion, instead of having to perform the compli-

cated calculation of the second variation of the entropy, we
just need to calculate the energy and temperature of the
isothermal sphere in the presence of dark energy and draw
the corresponding diagrams of series of equilibria.
Substituting the density distribution (29) into the Poisson

equation (15), we obtain the Emden equation [53], modi-
fied with the additional contribution of the dark energy
component, namely

1

r2
d
dr

�
r2
dϕ
dr

�
¼ 4πG½ρ0 þ ð1þ wÞρX�e−m

kT½ϕðrÞ−ϕð0Þ�

þ 8πGwρX; (30)

where ρ0 is the density of matter at the center of the sphere.
Defining the dimensionless variables

x ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρ0

m
kT

r
; y ¼ m

kT
½ϕ − ϕð0Þ�; λ ¼ 2ρX

ρ0
;

(31)

the modified Emden equation (30) becomes

1

x2
d
dx

�
x2

d
dx

y

�
¼

�
1þ 1þ w

2
λ

�
e−y þ wλ; (32)

with initial conditions yð0Þ ¼ y0ð0Þ ¼ 0. Hence, for given
values of w and ρX, an equilibrium configuration is
completely determined by the values of the mass M and
radius R that correspond to a temperature T and energy E.
In the following we desire to numerically generate a series
of equilibria TðEÞ for fixed mass M in order to study
stability, which is not straightforward since there are some
complications.
Let z be the value of x at R,

z ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρ0

m
kT

r
: (33)

To obtain a solution of Eq. (32) one has to specify the
couple ðz; λÞ. As we noted, we do not want just a solution,
but rather a consistent series of solutions (equilibria). By
assuming some fixed value of ρX, fixing λ and solving for
various z would generate a series with different masses at
each equilibrium. The reason for this is that fixing λ
corresponds to fixing ρ0. Therefore, in order to have
different equilibria for various radii R and hence z, these
equilibria should have different masses. The same holds if
one keeps z constant and varies λ. The deeper reason for
this difficulty in determining a consistent series of equi-
libria, which does not exist without dark energy, is that dark
energy introduces a mass scale

MX ¼ 4

3
πR3ρX (34)

to the system. Thus, we introduce a dimensionless mass,

μ ¼ M
2MX

¼ hρi
2ρX

: (35)

Using results from earlier works [29,37,38], we construct a
computer code that can solve Eq. (32) for various values of
ðz; λÞ, and choose the solutions that correspond to a fixed
(up to some tolerance determined by the user) value of μ. In
this way, we can generate consistent series of equilibria
corresponding to the same mass. By performing the
calculation for various values of μ we can generate the
series for various values of ρX.
In order to proceed to this numerical elaboration, we

define a dimensionless energy

E ¼ ER
GM2

(36)

and a dimensionless inverse temperature

B ¼ GMm
RkT

: (37)

In order to calculate B we integrate Eq. (15), using also the
dimensionless variables (31), and obtain

B ¼ zy0 −
1

6
ð1þ 3wÞλz2: (38)

The calculation of E is more complicated. We start by using
the distribution function (11) in order to calculate the
kinetic energy K ≡ 1

2
m
R
fðr; υÞυ2d6τ, which—using the

dimensionless variables (31)—leads finally to the dimen-
sionless kinetic energy

K≡ KR
GM2

¼ 3

2B

�
1þ 1

6
ð1þ wÞ λz

2

B

�
: (39)

Similarly, using Eq. (22) we define a dimensionless
expression for ϕð0Þ,

m
kT

ϕð0Þ ¼ −
��

1þ 1þ w
2

λ

�Z
z

0

xe−ydx

�
þ 1þ w

4
λz2;

(40)

and then, by inserting Eq. (40) into Eqs. (20), (21), and
(23), we calculate the dimensionless potential energy as
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U ≡ UR
GM2

¼ 1

2B2z

�
1þ 1þ w

2
λ

�Z
z

0

x2ye−ydx

−
1

2B

�
1þ 1

6B
ð1þ wÞλz2

��
1þ 1þ w

2
λ

�Z
z

0

xe−ydx

þ 1

12B2z
wλ

�
1þ 1þ w

2
λ

�Z
z

0

x4e−ydx: (41)

Finally, using Eqs. (39) and (41), the dimensionless energy
is written as

E ¼ Kþ U: (42)

We note that the virial equation is modified due to both
the dark energy and the external pressure P. It is relatively
easy to show that the virial equation becomes

2K þ UNðeffÞ − 2UXðeffÞ ¼ 3PV; (43)

where UNðeffÞ and UXðeffÞ are the potential energy of the
effective matter (which includes the dark energy particles)
and the remaining dark energy potential energy, respec-
tively. These two potential energies are the components of
Eq. (23). We verified numerically that the expressions (39)
and (41) indeed satisfy the generalized virial equation (43).
Thus, the entropy extrema correspond to virialized
configurations.
One would naturally expect the relaxation process

towards virialization—described by the Layzer-Irvine
equation [56] in an expanding universe—to be affected
as well [44]. But in the present work this does not affect our
results, as we derive our conclusions using only the radii at
which an instability sets in. However, a separate analysis of
the relaxation process would not only be interesting in its
own right, but it could also help one to understand some of
our conclusions, such as the steepening of the clusters’
density profile, as is demonstrated in Sec. III.
Let us now focus on our goals in this section, that is, to

draw the critical radius at which an instability sets in the
microcanonical and canonical ensembles with respect to ρX
for different values of w. To this end, we generate series of
equilibria by solving Eq. (32) with our code (which keeps μ
constant) for different values ofμ that correspond to different
values of ρX. In Fig. 1 we see the series of equilibria
expressed by E with respect to the density contrast ρ0=ρR for
each isothermal sphere, for a specific μ, for a simple
cosmological constant w ¼ −1, quintessential w ¼ −0.8,
and phantom dark energy w ¼ −1.2. Each minimum is a
turning point of stability in the microcanonical ensemble.
On the other hand, the maximum in B is a turning point of
stability in the canonical ensemble. We repeat the calcu-
lations ofminima in E andmaxima inB for many values of μ
and finally plot these critical values in Figs. 2 and 3. These
critical values correspond to the desired critical radii,

assuming M, E constant in the microcanonical ensemble
and M, T constant in the canonical ensemble.
In Fig. 2, for every w we observe the characteristic

reentrant behavior for the micorcanonical ensemble first
noticed in Refs. [37]. For a fixed ρX, equilibria do exist for
arbitrarily small radii. Then, at some bigger radius an
instability sets in and no equilibria are allowed. The system
undergoes a gravothermal catastrophe [17,18]. We note that
recently gravothermal catastrophe has been identified as

FIG. 1 (color online). The series of equilibria expressed as E ¼
ER=GM2 versus the density contrast ðρ0=ρRÞeff for a simple
cosmological constant ðw ¼ −1Þ, quintessential ðw ¼ −0.8Þ, and
phantom dark energy ðw ¼ −1.2Þ. At the points CPh, CΛ, and CQ
an instability sets in. The dashed curves correspond to unstable
equilibria, while the solid curves correspond to stable equilibria.

FIG. 2 (color online). The critical radius for fixed negative
energy E and massM (microcanonical ensemble) versus ρX for a
cosmological constant (w ¼ −1), quintessential (w ¼ −0.8), and
phantom dark energy (w ¼ −1.2). For each curve, the instability
domain is inside it, that is, no equilibria exist between the two
critical radii for some fixed ρX.
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being similar to the Jeans instability [57]. Returning to
Fig. 2, we see that for some even bigger radius—let us call
it the “reentrant radius”—the equilibria are restored. This
effect is due to the dark energy, which introduces a
harmonic, repulsive force proportional to the radius. The
equilibria above this radius have peculiar density profiles,
with an increasing density towards the edge or with various
local maxima [37,38]. This means that if the walls were
absent, these states would correspond to perturbations that
would follow the universe’s expansion. Such perturbations
would not collapse and could not lead to structure for-
mation. Thus, the reentrant radius defines the maximum
size of a perturbation that can lead to structure formation.
This resembles exactly the “maximum turnaround radius”
noticed recently [58]. We see in Fig. 2 that the reentrant
radius is smaller for a phantom dark energy than for a
quintessential one. Thus, large-scale structures are more
easily formed in a quintessential rather than a phantom
universe. This effect is due to the stronger repulsive
pressure of phantom dark energy and this was qualitatively
expected; however, in the above analysis it has been
incorporated quantitatively.
In Fig. 3 we notice that the critical radius in the canonical

ensemble is smaller for phantom rather than quintessential
dark energy. Since the instability domain is underneath the
critical radius, we conclude again that quintessence
increases the instability domain with respect to phantom
dark energy and the simple cosmological constant case. In
the case of the canonical ensemble, this effect is only due to
the effective particles that introduce additional mutual
attraction for quintessential dark energy. The negative
pressure is not important because the instability sets in

for small radii where the repulsive force is irrelevant (it
increases with distance).
Finally, we stress that the minimum in E corresponds to

some value of the density contrast ðρ0=ρRÞeff , as can be
seen in Fig. 1. This is a critical value where an instability
sets in. For larger density contrasts, the equilibria are
unstable and the system undergoes a gravothermal catas-
trophe. These unstable equilibria correspond to the dashed
curves in Fig. 1.
In the next section we will use this critical density

contrast, which for completeness is depicted in Fig. 4 where
we see that the critical density contrast is smaller for
phantom rather than quintessential dark energy. Equilibria
corresponding to a density contrast value that lies above
each curve are unstable, while the ones underneath each
curve are stable.

III. GALAXY CLUSTERS IN THE PRESENCE
OF DARK ENERGY

In the previous section we performed a detailed general
analysis of the stability of a self-gravitating gas in the
presence of a general dark energy component. In this
section we will apply it to the specific case of galaxy
clusters, which are dominated by the dark matter halo. Our
goal is first to estimate the effect of dark energy on the
density profile of the dark matter halo, and second to
examine whether any constraint on the equation of state of
dark energy can be deduced from observational facts of
galaxy clusters. We will perform the analysis in the most
simple setup, assuming hydrostatic equilibrium, an iso-
thermal distribution, and spherical symmetry.

FIG. 3 (color online). The critical radius for fixed temperature T
and mass M (canonical ensemble) versus ρX for a cosmological
constant (w ¼ −1), quintessential (w ¼ −0.8), and phantom dark
energy (w ¼ −1.2). For each curve the instability domain is the
one below the curve, and thus no equilibria exist for radii smaller
than the critical radius for some fixed ρX.

FIG. 4 (color online). The critical density contrast of the
effective density for fixed radius R and mass M versus ρX for
a cosmological constant (w ¼ −1), quintessential (w ¼ −0.8),
and phantom dark energy (w ¼ −1.2) in the microcanonical
ensemble. For each curve, all equilibria above it are unstable, that
is, those with a density contrast bigger than the critical value for
some fixed ρX.
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Galaxy clusters are the largest, virialized, self-gravitating
bound systems in the Universe. They have been the focus of
intense study for several decades (among other reasons)
because they provide crucial information on the formation
of large-scale structures and on estimates of cosmological
parameters [59]. Galaxy clusters consist of three compo-
nents. Dark matter is the main component, holding about
80–90% of the total mass, the X-ray emitting hot intra-
cluster medium (ICM) makes up about 10–20%, and only a
small fraction ∼1% corresponds to cold gas, dust, and stars
found mainly in galaxies. The intracluster medium is a hot
plasma with a temperature of about 2–10 keV, consisting
mainly of ionized hydrogen and helium and electrons. It
emits X-rays due to thermal bremsstrahlung. All three
components are found to be approximately in hydrostatic
equilibrium [60,61] inside the gravitational well of the
cluster, which is dominated by the dark matter halo.
The hypothesis of hydrostatic equilibrium corresponds to
the assumption that self-gravity is halted only by thermal
pressure. Nonthermal pressure is found to contribute at
about 10% [62–64] to the total pressure. Dark matter is
assumed to be collisionless, although recently the possibil-
ity that it is slightly self-interacting was inspected [65–68].
The ICM is nearly isothermal, at least apart from the central
regions [69,70].
Due to the equivalence between inertial and gravitational

mass, orbits in a gravitational system are independent of the
mass of the orbiting particles. Therefore, it is legitimate to
assume that different species in a relaxed, spherically
symmetric gravitational system have the same average
specific kinetic energy. In a gas system, equilibrium implies
energy equipartition between different species, while for a
relaxed gravitational system the corresponding principle
would be the common velocity dispersion, due to the
equivalence principle. Indeed, simulations of dark matter
haloes [71,72] do indicate that ðkT̄=mÞ=σ2DM ≃ 1, while
observational data indicate [73] that ðkT̄=mÞ=σ2gal ≃ 1,
where T̄ is the mean temperature of the ICM, σ2DM is the
dark matter velocity dispersion, σ2gal is the galaxy velocity
dispersion, m≃ 0.6mp is the mean particle mass of the
ICM, andmp is the proton mass. Therefore, we have strong
arguments to justify the consideration

σ2DM ¼ σ2gal ¼
kT
m

; (44)

where T is the temperature of the ICM in an isothermal
distribution. Consequently, under these assumptions the
three components of a galaxy cluster have the same density
distributions, leading to the total distribution

ρðrÞ ¼ ρ0e−
m
kT½ϕðrÞ−ϕð0Þ�: (45)

In realistic situations not all components have the same
distributions, but since in this work we are interested in

estimating the effect of dark energy on the distribution of
the cluster, and not in determining the exact distributions,
we expect that deviations from Eqs. (44) and (45) would
not alter the dark energy effect. Since clusters are domi-
nated by the dark matter halo, our results hold for the halo’s
profile. Additionally, it is interesting to note that the above
assumptions are exactly the same with those of the so-
called truncated isothermal sphere (TIS) model [74,75]. In
the TIS model the dark matter halo is assumed to be
spherical, isothermal, and in equilibrium (that is, it is an
isothermal sphere), and it is formed from the collapse and
virialization of “top hat” density perturbations. The TIS
scenario is a unique, nonsingular solution of the Emden
equation modified with a cosmological constant [75],
corresponding to the minimum-energy solution under
constant external pressure, while the gas and the dark
matter halo are assumed to have the same distribution as in
Eq. (45). The difference between the TIS model and our
analysis is that we consider all nonsingular solutions of the
modified Emden equation (32) rather than just the specific
TIS one. This model is in very good agreement with
simulations and observations [76], at least outside the inner
regions of the cluster. In the inner regions the TIS model
predicts a soft core; however, collisionless N-body simu-
lations of dark matter haloes predict a cusp, rather than a
core. The main reason for this difference is the assumption
of isothermality: the N-body simulations are nearly iso-
thermal apart from a small region dip near the center, which
causes the cuspy profile, while the self-interacting dark
matter is able to form a central core [77]. Moreover, in
contrast with simulations, observations at small scales favor
the existence of a central core in dark matter haloes, a
problem called the “core-cusp problem” [78,79]. Regarding
our work, the agreement of the nonsingular, isothermal
sphere with observations and simulations (besides the inner
region) is sufficient for our purposes.
Let us now proceed to the estimation of the effect of dark

energy on the density profile of galaxy clusters. We note
that the effective mass and density profile are those
measured by indirect measurements, such as gravitational
lensing and hydrostatic equilibrium. Thus, in all of our
subsequent analyses of galaxy clusters we use the effective
values of the density contrast (for the cosmological con-
stant w ¼ −1, however, the effective density is identical to
the matter density).
In the estimation procedure we will need the quantity

2ρX=hρi in galaxy clusters, where hρi ¼ 3Mvir=4πR3
vir is

the average density of the cluster as it arises from
observations. In order to extract this observation-related
value, we work with a sample of 11 clusters taken by
Hoekstra [80], who performed a model-independent analy-
sis based on weak lensing measurements. We use only
those clusters that have a virial radius, virial mass, and
temperature such that they correspond to an isothermal
equilibrium. The virial radius, the virial mass, the
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temperature, and the ratio 2ρX=hρi for each cluster is shown
in Table I. We have used ρX ≃ 6.5 · 10−30gr=cm3 [1]. The
mean ratio 2ρX=hρi is

1

μ
¼

�
2ρX
hρi

�
¼ 0.009; (46)

and the mean B ¼ GMvirm=kTRvir is

hBi ¼ 2.07: (47)

Using the computer code from the previous section, and
for a dimensionless mass [Eq. (35)] μ ¼ 111.11 [which
corresponds to Eq. (46)], we calculate numerically the
value corresponding to Eq. (47) for the effective density
contrast ðρ0=ρRÞeff in the presence of both dark energy and
for ρX ¼ 0, and we find the degree to which the profile is
altered by the presence of dark energy. For fixed radius,
mass, and temperature, we find the counterintuitive result
that dark energy—either quintessential or phantom or a
cosmological constant—tends to steepen the density pro-
file, and thus increase the density contrast. This can be seen
in Fig. 5 for density contrast values greater than the peak,
which are the ones that are relevant to observations. We
believe the reason for this is that for fixed temperature,
mass, and radius the extra outward pressure introduced by
dark energy enables more mass to be concentrated towards
the center of the cluster. For the case w ¼ −1, i.e., the
cosmological constant case, we find that the density profile
is steepened by 1.5%. Finally, we mention that the effect of
dark energy becomes stronger as w becomes more negative,
as can be seen in Fig. 6.
Finally, let us propose a method to impose constraints on

the dark energy equation-of-state parameter. As we dis-
cussed in Sec. II, as w attains more negative values, the
critical density contrast (the maximum allowed before

gravothermal catastrophe occurs) decreases, as in Fig. 4.
Therefore, we can use this property in order to find a
minimum allowed value of w. If the minimum possible
density contrast corresponding to an isothermal distribution
can be determined from cluster observations, then the
critical density contrast can be no smaller than this value.
Hence, provided the minimum observational density

TABLE I. The redshift z, virial mass Mvirð1014h−1M⊙Þ, virial
radius Rvirðh−1kpcÞ, temperature T (keV), and the ratio of the
cosmological constant to the mean density for ρX ¼
6.5 · 10−30 gr=cm3 for some galaxy clusters. The virial mass
was calculated by Hoekstra [80] with a Navarro-Frenk-White fit
to weak lensing data.

Cluster z Mvir Rvir T 2ρX
hρi

MS 0906þ 11 0.1704 8.3 1737 6.1 0.0103
MS 1224þ 20 0.3255 3.8 1226 4.8 0.0079
MS 1358þ 62 0.3290 10.3 1706 6.7 0.0079
MS 1512þ 36 0.3727 3.3 1139 4.1 0.0073
MS 1621þ 26 0.4275 12.3 1715 8.1 0.0067
A68 0.2550 10.5 1790 8.0 0.0089
A267 0.2300 7.5 1623 5.9 0.0093
A963 0.2060 6.5 1569 6.6 0.0097
A1763 0.2230 13.5 1982 7.7 0.0094
A2218 0.1756 8.8 1766 7.0 0.0102
A2219 0.2256 11.3 1865 9.8 0.0094

FIG. 5 (color online). The series of equilibria without dark
energy (dashed blue line) and with a cosmological constant, i.e.,
w ¼ −1 (solid red line), for 2ρΛ=hρi ¼ 0.009 (which corresponds
to our galaxy cluster sample) expressed as the ratio GMm=kTR
versus the natural logarithm of the central to edge density ratio of
the cluster. At GMm=kTR ¼ 2.07 two density profiles corre-
spond for each case (ρΛ ¼ 0 and ρΛ ≠ 0). The profiles with the
higher density contrast (after the peak) are the ones that are
relevant to galaxy clusters. The case ρΛ ≠ 0 has a greater density
contrast than the case ρΛ ¼ 0.

FIG. 6 (color online). The effect of dark energy on the
density profile of galaxy clusters. The percentage increase of
the effective density contrast ðρ0=ρRÞeff is shown, i.e., the center
divided by the edge density, for ρX ¼ 6.5 · 10−30 gr=cm3 with
respect to the case ρX ¼ 0 versus w, for fixed temperature, total
mass, and radius.
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contrast is given, we can numerically calculate the w that
has a critical density contrast equal to this value. This w
value would be the minimum possible in order for the
cluster to be in equilibrium.

IV. CONCLUSIONS

In this work we studied the effect of dark energy on the
stability of isothermal spheres for various values of ρX (in
Sec. II), and furthermore, based on this analysis, we
focused on the effect of dark energy on galaxy clusters
(in Sec. III).
We assumed a linear and constant equation of state for

dark energy and we investigated the effect on a self-
gravitating gas bound by external pressure (walls) in the
Newtonian limit. Dark energy introduces a repulsive force
due to the negative pressure, which is generated by an
effective potential [Eq. (21)], but it additionally introduces
“dark energy” particles through an effective density, given
in Eq. (9). These dark energy particles strengthen the
attraction in the case of quintessential dark energy
(w > −1) and weaken the attraction in the case of phantom
dark energy (w < −1). The total effect, however, of the
repulsive potential and dark energy particles is in all cases
repulsive. We calculated the entropy extremum and found
that it corresponds to a Boltzmann distribution for the
effective density [see Eqs. (13) and (29)].
Then, we focused on the effect of dark energy on the

stability of isothermal spheres. This effect can be summa-
rized in Figs. 2, 3, and 4. The microcanonical ensemble
(fixed energy) in the presence of a cosmological constant is
known to present a reentrant phase transition [37], that is,
for some fixed ρX there exist two critical radii and no
equilibria exist between these two values. The upper radius
is called the reentrant radius, and at this radius equilibria are
restored. These equilibria have increasing densities towards
the edge and correspond to perturbations that follow the
expansion in an expanding universe. Thus, the reentrant
radius defines the maximum size of a perturbation that can
lead to structure formation. Quintessence increases the
reentrant radius, while phantom dark energy decreases it, as
can be seen in Fig. 2. Therefore, a quintessence universe is
expected to present richer large-scale structures, with more
and larger bounded systems, than a phantom universe. In
the canonical ensemble (fixed temperature) there is only
one critical radius, below which there are no equilibria.
Quintessence increases this critical radius with respect to
the simple cosmological constant case, while phantom dark
energy decreases it, as can be seen in Fig. 3. Thus,
quintessential dark energy enlarges the instability domain,
while phantom dark energy narrows it, with respect to the
cosmological constant. Finally, we inspected how the
critical effective density contrast (the critical central to
edge effective density ratio) corresponding to a gravother-
mal catastrophe (fixed energy) is affected by dark energy.
The result is shown in Fig. 4. Quintessential dark energy

increases the critical density contrast, while phantom dark
energy decreases it. This implies that in a quintessence
universe more condensed large-scale structures are formed.
Regarding the second part of this work (Sec. III), let us

remark that we find a rather counterintuitive result. Dark
energy causes the density profile of galaxy clusters to be
more centrally concentrated. That is, for fixed mass, radius,
and temperature, the system will equilibrate in a larger
density contrast (central to edge ratio ρ0=ρR) in the
presence of dark energy. This is shown in Fig. 5. It seems
that for these equilibria the extra outward-pointing pressure
of dark energy is added to the thermal pressure, enabling
the system to equilibrate in a more condensed state. This
might be associated with the fact that these equilibria are
unstable under variations that preserve the temperature,
namely isothermal collapse. This is evident in Fig. 5, where
the equilibria corresponding to galaxy clusters are the ones
after the peak and hence are unstable under isothermal
collapse. However, they are stable under variations that
preserve the energy (instability in this case would corre-
spond to a gravothermal catastrophe), at least up to some
greater density contrast value. Most importantly, this
effect—that is, the steepening of the density profile due
to dark energy—corresponds in the case w ¼ −1 to the
equilibration of the cluster for the same values ofM, T, and
R at about 1.5% greater density contrast. The effect
becomes stronger as w attains more negative values.
This is evident in Fig. 6. We note that in Ref. [44] clustered
dark energy was found to produce even more concentrated
structures than the homogeneous vacuum energy consid-
ered in the current work. The case of clustered dark energy
is not considered here, as it would introduce various
complexities in the analysis such as a modification in
the virial theorem. We think the relevance of the current
formulation with respect to that of Ref. [44] should be
explored further.
Last but not least, we proposed a method to constrain

phantom dark energy from galaxy cluster observations. As
we have seen in Sec. II, the critical density contrast at which
the instability sets in decreases with decreasing w.
Therefore, if one can determine (based on galaxy cluster
observations) the density contrast corresponding to static
isothermal equilibrium then one can determine the mini-
mum w as the one that has a critical density contrast equal
to this value.
We close by making a comment on the generality of our

results. In the above analysis we considered only the case of
a linear and constant equation of state in order to under-
stand the basic effects of dark energy. Clearly, a divergence
from these assumptions deserves a separate investigation,
as the results could quantitatively (or even qualitatively)
change. This could be the more general case of a time-
varying w and/or time-varying cosmological constant
[42–46] (remaining in the linear equation of state), or even
going to more general equations of state such as the
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generalized polytropic one [81–84]. These extensions are
under investigation and will be presented in a future
publication. Finally, we note that in reality the dark energy
sector—and thus its equation of state—may have an
effective nature that does not correspond to fundamental
fields or degrees of freedom [85–87]. In this case its
implication on galaxy clusters might change too, and thus
it might offer a way to distinguish amongst the various dark
energy scenarios.
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APPENDIX A

In this appendix we derive the TOVequations (6) and (7).
Any spherically symmetric metric can be written in the
form

ds2 ¼ eνc2dt2 − eλdr2 − dΩ;

where in general ν ¼ νðr; tÞ and λ ¼ λðr; tÞ. The Einstein
equations

Rμ
ν −

1

2
Rδμν ¼ 8πG

c4
Tμ
ν

give

8πG
c4

T0
0 ¼ e−λ

�
λ0

r
−

1

r2

�
þ 1

r2
; (A1)

8πG
c4

T1
1 ¼ −e−λ

�
ν0

r
þ 1

r2

�
þ 1

r2
; (A2)

8πG
c4

T2
2 ¼

8πG
c4

T3
3 ¼ −e−λ

�
ν00

2
− λ0ν0

4
þ ν02

4

ν0 − λ0

4

�

þ e−ν
� ̈λ
2
þ

_λ2

4
− _λ _ν

4

�
; (A3)

8πG
c4

T1
0 ¼ −e−λ

_λ

r
; (A4)

8πG
c4

T0
1 ¼ e−ν

_λ

r
; (A5)

where a prime denotes differentiation with respect to r and
a dot denotes differentiation with respect to t. We set the
energy-momentum tensor to be that of a perfect fluid in the
presence of ρX with pX ¼ wρXc2, that is,

Tμ
ν ¼ ð ~pþ ~ρc2Þgαν

dxμ

ds
dxα

ds
− ~pδμν ; (A6)

with ~ρ ¼ ρþ ρX and ~p ¼ pþ wρXc2. At equilibrium it is
just Tμ

ν→ð~ρc2;− ~p;− ~p;− ~pÞ and _λ ¼ 0, _ν ¼ 0. Substituting
this into the Einstein equations and after some calculations,
Eqs. (A1)–(A5) give

dp
dr

¼ −
1

2
ðpþ ρc2 þ ð1þ wÞρXc2Þν0; (A7)

8πG
c2

ρ ¼ e−λ
�
λ0

r
−

1

r2

�
þ 1

r2
−
8πG
c2

ρX; (A8)

8πG
c4

p ¼ e−λ
�
ν0

r
þ 1

r2

�
−

1

r2
− w

8πG
c2

ρX; (A9)

which by the transformation

e−λ ¼ 1 −
2GMðrÞ

rc2
−
8πG
3c2

ρXr2 (A10)

become just two equations, namely

dp
dr

¼ −
�
p
c2

þ ρþ ð1þwÞρX
��

GMðrÞ
r2

þ 4πG
p
c2

r

þ 4πG
3

ρXrð1þ 3wÞ
��

1−
2GMðrÞ

rc2
−
8πG
3c2

ρXr2
�

−1
;

(A11)

dMðrÞ
dr

¼ 4πρr2: (A12)
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