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We show that Hor
̬
ava gravity can be obtained from Einstein-aether theory in the limit that the twist

coupling constant goes to infinity, while holding fixed the expansion, shear and acceleration couplings.
This limit helps to clarify the relation between the two theories, and allows Hor

̬
ava results to be obtained

from Einstein-aether ones. The limit is illustrated with several examples, including rotating black hole
equations, parametrized post-Newtonian parameters, and radiation rates from binary systems.
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I. INTRODUCTION

Einstein-aether theory [1–3] is a generally covariant
modification of general relativity (GR), in which the
spacetime metric gab is coupled to a unit timelike vector
field ua, the “aether.” Hor

̬
ava gravity [4,5] is a related

theory, in which the aether is kinematically restricted
at the level of the action to be twist-free or, equivalently,
hypersurface orthogonal. Originally formulated in terms
of the spatial metric, lapse and shift on a fixed foliation,
Hor

̬
ava gravity includes higher spatial derivative terms

leading to “Lifshitz scaling” at short distances, that render
the theory power counting renormalizable as a quantum
field theory. It is not clear whether a similar Lifshitz
version can be formulated for Einstein-aether theory, since
it lacks the preferred hypersurfaces that play a role in
defining the scaling behavior. Here I will restrict attention
to the IR limits of these theories, although if a Lifshitz
extension of Einstein-aether theory exists, the main result
of the paper would generalize to that context.
At second order in derivatives, the Einstein-aether

(hereafter called “æ-theory”) Lagrangian is a combination
of five scalars (including the Ricci scalar R) that yield
independent contributions to the equations of motion. The
second order Lagrangian for Hor

̬
ava gravity (hereafter

called “T-theory”, and which is also known as
Khronometric gravity [6]) consists of the same scalars,
although the hypersurface-orthogonal (HO) condition
reduces the number of independent ones from five to four
[6,7]. Any HO solution to the æ-theory field equations is
also a T-theory solution, since the action is stationary with
respect to all variations of the aether (preserving unit
norm), not just HO variations [7]. For the same reason,
some T-theory solutions are not æ-theory solutions. An
example is provided by the (perturbative) rotating black
hole solutions [8–11].
The main purpose of this paper is to identify a limit of

æ-theory that coincides with T-theory. This limit includes
not only the HO solutions of æ-theory, but also T-theory
solutions that are not æ-theory solutions, for example the
rotating black hole solution just mentioned. I have not quite

proved that all T-theory solutions arise via this limit, but I
will argue that, if they do not, it is only because of boundary
effects. Having established this limit, the relation between
the theories can be better understood, and information
about T-theory can be obtained using results previously
established for Einstein-aether theory.
In brief, the argument goes as follows. One of the

five independent terms in the Lagrangian is chosen to be
the square of the twist of the aether (to be defined
explicitly below), which vanishes if and only if the aether
is HO. The coupling coefficient of this term is sent to
infinity, so that the twist terms in the aether and metric
equations of motion diverge unless they vanish. In this
limit, a solution can remain regular only if all of these
terms vanish; but not all of them can vanish unless the
twist itself vanishes. This limit therefore selects the HO
Einstein-aether solutions. More surprisingly, the limit has
the effect of suppressing the terms in the field equation
that come from non-HO variations of the metric, so one
obtains also T-theory solutions that are not æ-theory
solutions. This phenomenon is explained in Sec. III,
and illustrated in Sec. III A using the rotating black hole
solution. In Sec. III B various parameters characterizing
the physics of T-theory are derived from those of æ-theory
by use of this limit, and Sec. III C discusses how the
difference in PPN parameters affects the observational
constraints.

II. Æ-THEORY AND T-THEORY

The two-derivative action for æ-theory has the form

S ¼ 1

16πG0

Z
ð−Rþ LæÞ

ffiffiffiffiffiffi
−g

p
d4x; (1)

where R is the 4D Ricci scalar, the aether Lagrangian Læ is
a sum of four independent scalars quadratic in ∇aub, and
the unit constraint gabuaub ¼ 1 is either implicit or
imposed with a Lagrange multiplier term. [The conventions
are those of [12] except for the spacetime signature, which
is taken as ðþ� ��Þ.] In most of the literature, the aether
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Lagrangian has been expressed as −ðc1L1 þ c2L2þ
c3L3 þ c4L4Þ, where the ci’s are dimensionless coupling
constants, and

L1 ¼ ð∇aubÞð∇aubÞ; (2)

L2 ¼ ð∇auaÞ2; (3)

L3 ¼ ð∇aubÞð∇buaÞ; (4)

L4 ¼ ðum∇muaÞðun∇nuaÞ: (5)

It is more revealing, however, to use a decomposition
of the covariant derivative of the aether into terms trans-
forming by irreducible representations of the SOð3Þ
Lorentz subgroup that leaves the aether invariant,

∇aub ¼ −
1

3
θhab þ σab þ ωab þ uaab: (6)

Taking into account the unit norm of ua, the spatial
projection of ∇aub is ∇aub − uaab, where aa ¼ um∇mua

is the acceleration (which is orthogonal to ua). The
expansion term − 1

3
θhab and shear σab are the trace and

trace-free parts of the symmetric part of this spatial
projection, while the twist ωab is the antisymmetric part,

ωab ¼ ∇½aub� − u½aab�: (7)

(A different quantity that contains essentially the same
information, and is also called the twist, is
~ωa ≡ ϵabcdub∇cud ¼ ϵabcdubωcd.) The twist vanishes if
and only if u½a∇buc� vanishes. If the aether is HO, ua
can be written as ua ¼ f∇ag for some functions f and g,
hence u½a∇buc� ¼ f∇½ag∇bf∇c�g ¼ 0, so the twist van-
ishes. That the converse holds is not so obvious, but it is
implied by the Frobenius theorem [12].
The four terms in (6) are mutually orthogonal with

respect to the spacetime metric gab, the first three have zero
contraction with ua on either index, the last three have zero
contraction with gab, so the only quadratic scalars that can
be formed from them using gab and ua are just their squares
formed with the metric. These squares can serve as the
scalars defining the Lagrangian. The action for Einstein-
aether theory can thus be written as

S¼ −1
16πG0

Z �
Rþ1

3
cθθ2þcσσ2þcωω2þcaa2

� ffiffiffiffiffiffi
−g

p
d4x:

(8)

The relation between the coupling constants defined here
and those that have been used previously for æ-theory is
found by substitution of the decomposition (6) in (2)–(5),
which yields

cθ ¼ c1 þ c3 þ 3c2; (9)

cσ ¼ c1 þ c3; (10)

cω ¼ c1 − c3; (11)

ca ¼ c1 þ c4: (12)

These combinations of coupling constants have been found
to appear in numerous physical quantities [3].
The aether in æ-theory is unconstrained, other than being

a unit vector, so it has three kinematic degrees of freedom.
In T-theory the aether is restricted to be HO, so it can be
expressed in terms of the gradient of a scalar field T (the
“khronon” [6]), via

ua ¼ ∇aTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið∇mTÞð∇mTÞp : (13)

(Note that ua is unchanged if T is replaced by any
monotonically increasing function of T.) The action for
T-theory is the same as the æ-theory action (8), but with the
aether defined by (13) [6,7]. The twist term vanishes
identically for HO ua, however, so the coupling constant
cω plays no role. A common notation for the remaining
constants ca, cσ , and cθ in T-theory is α, β, and β þ 3λ,
respectively [13]. Hor

̬
ava’s original formulation results by

choosing T as a spacetime coordinate, thus fixing some of
the coordinate freedom. This coordinate choice may be
imposed in the action, since the T equation of motion is
implied by the other equations of motion [7].

A. Remarks on the form of the action

As an aside, it is worth making a few remarks about the
action (8). This action was first constructed in Ref. [14]
using the irreducible parts of the covariant derivative of the
Goldstone bosons associated with the breaking of local
Lorentz invariance down to the rotation group. The authors
also noted that the coupling constants of the irreducible
terms are the ones that appear more simply in many
physical properties of the theory. Indeed, with the action
expressed in this way, it is sometimes easy to see which
terms, and hence which coupling constants, can play a role
in a given setting. For instance, in a static configuration,
the aether when tangent to a timelike Killing vector has
vanishing expansion, shear, and twist. Since these quan-
tities appear quadratically in the action, those terms cannot
contribute, so only the acceleration coupling ca enters such
solutions. As the Newtonian limit is based on such
solutions, the value of Newton’s constant GN (22) also
depends only on ca. Similarly, in homogeneous, isotropic
configurations the aether has vanishing shear, twist, and
acceleration, so such solutions, as well as the cosmological
gravitational constant Gcosmo (23), involve only the expan-
sion coupling cθ. As to waves, the spin (helicity) content of
the various quantities is 0 for θ, (0, 1, 2) for σ, 1 for ω, and
(0, 1) for a. Hence the spin-2 wave speed involves only cσ,
the spin-1 wave speed involves all but cθ, and the spin-0
wave speed involves all but cω.
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III. T-THEORY LIMIT OF Æ-THEORY

Now consider the cω → ∞ limit of æ-theory, with all
other coupling constants held fixed.1 (In terms of the usual
parameters, this limit corresponds to c1 − c3 → ∞, with
c1 þ c3, c1 þ c4, and c2 held fixed. Thus c1, c3, and c4 all
diverge in this limit.) Any term in the equations of motion
involving cω will diverge in this limit unless that term
vanishes. One of these terms, which arises from varying the
volume element, is ∼cωω2gab, and the only way this can
vanish is if ωab ¼ 0. Thus we may conclude that only HO
solutions are regular in this limit. However, if the limit is to
coincide with T-theory, then not only æ-theory solutions
but all T-theory solutions should arise in the limit. This
would be the case only if the limit somehow “turned off”
the part of the aether field equations that arises from non-
HO variations of the action. This seems indeed to be the
case, except for possible boundary effects.
To understand how this works, it is instructive to

consider an elementary analogy, in which the action
Sðx; yÞ depends on just two variables x and y, with y
playing the role of the twist. Expanding in y, we have

Sðx; yÞ ¼ S0ðxÞ þ S1ðxÞyþ cyS2ðxÞy2 þ � � � ; (14)

where cy is a coupling parameter, analogous to cω, that we
will take to infinity. Dropping for the moment any higher
order terms in y, the y and x equations of motion are given,
respectively, by

S1ðxÞ þ 2cyS2ðxÞy ¼ 0; (15)

S00ðxÞ þ S01ðxÞyþ cyS02ðxÞy2 ¼ 0: (16)

Unless S2ðxÞ vanishes, the only regular solutions in the
limit cy → ∞ will have y ¼ 0. If we set y to zero before
taking the limit, then the y equation (15) survives as
S1ðxÞ ¼ 0. However, we could also solve the y equation
for every finite cy, obtaining y ¼ −S1ðxÞ=ð2cyS2ðxÞÞ. In
the limit, we then have y ¼ 0, and the y equation has been
satisfied without imposing any further conditions on x. If
Sðx; yÞ contains higher order terms in y that are indepen-
dent of cy, then still the only regular solutions in the limit
will be those with y ¼ 0, and still the y equation will imply
nothing about x.
This simple example can be generalized to any finite

number of coordinates, and even to a field theory setting.
However, when the variables are fields and the action
involves derivatives, integration by parts can lead to
boundary terms. Boundary terms could be avoided by
working on a compact space, or by fixing boundary
conditions. I therefore expect the argument should hold

locally for æ-theory, although in a noncompact space some
T-theory solutions might perhaps be missing from the limit.

A. Rotating black hole

An example of the appearance, in the limit, of T-theory
solutions that are not æ-theory solutions, occurs in the
case of the slowly rotating black holes. There are no HO
æ-theory solutions [8,10], but there are T-theory solutions
of this type [8–11]. We can see them arise in the cω → ∞
limit, making use of the field equations in Ref. [15], which
include the first order contributions of the rotation.
Consider in particular Eqs. (60) and (61) of that paper,

which hold in æ-theory under the assumption that the
spacetime is asymptotically flat:

d1ψ 0 þ d2ψ 00 þ d3λ0 þ d4λ00 ¼ 0; (17)

b1ψ 0 þ b2ψ 00 þ b3λ0 þ b4λ00 ¼ −r−4λ; (18)

where ψ , λ and all the coefficients are functions of r. The
coefficient functions depend on the background spherical
black hole solution and the coupling constants. The
function ψðrÞ determines the angular velocity of the aether,
while the function λðrÞ governs the twist, in the sense that
the twist vanishes if and only if λðrÞ ¼ 0. It has been shown
that asymptotic flatness requires λ → 0 as r → ∞ [16].
If the aether is HO, so that λðrÞ ¼ 0, then by combining

the two equations one finds that ψ 0ðrÞ ¼ 0, which implies
that the solution must be the nonrotating black hole
(generally in rotating coordinates) [11]. That is, there is
no HO rotating black hole solution in æ-theory. In T-theory,
on the other hand, Eq. (17) is not present, and the general
solution to Eq. (18) for ψðrÞ describes a rotating black hole.
Consider now what happens if λðrÞ is kept nonzero in

the æ-theory equations as the limit is taken. The functions
b1;2;3;4 are independent of cω, the functions d1;2;4 diverge as
cω in the limit, and the function d3 diverges as c2ω.
Therefore (17) can be viewed as an equation for λðrÞ
which implies that λ0ðrÞ ¼ 0 in the limit. Since all asymp-
totically flat æ-theory solutions have λð∞Þ ¼ 0, this
implies λðrÞ ¼ 0. The remaining equation thus reduces
in the limit to the T-theory equation, and so the T-theory
solutions are recovered in the limit.

B. T-theory parameters from æ-theory ones

Quantities characterizing T-theory can be obtained as
the infinite cω limit of those characterizing æ-theory. In this
section a number of such quantities will be examined, both
as an illustration of the correspondence, and to elucidate the
relation between the two theories.
To begin with, the wave speeds s2;1;0 for the spin-2,

spin-1, and spin-0 waves in æ-theory are given by [17]

s22 ¼
1

1 − cσ
; (19)

1A similar method was used in Ref. [5] to relate the projectable
case of Hor

̬
ava gravity (lapse function spatially constant) to the

nonprojectable case, taking the limit ca → ∞.
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s21 ¼
ðcσ þ cω − cσcωÞ

2cað1 − cσÞ
; (20)

s20 ¼
ðcθ þ 2cσÞð1 − ca=2Þ
3cað1 − cσÞð1þ cθ=2Þ

: (21)

The spin-2 and spin-0 wave speeds are independent of cω
so they coincide in the two theories, while the spin-1 wave
speed diverges as

ffiffiffiffiffi
cω

p
. The energy density at fixed

amplitude and frequency remains finite [18,19], so the
energy flux from a periodic source behaves as

ffiffiffiffiffi
cω

p
times

the squared wave amplitude. One can see by inspection of
the radiation analysis of Ref. [19] that the wave amplitude
generated by such a source vanishes as c−3=2ω , so we
conclude that the power radiated in spin-1 waves vanishes
as c−5=2ω . The spin-1 mode thus decouples in this limit.
Newton’s constant GN and the cosmological gravita-

tional constant Gcosmo appearing in the Friedmann equation
are related to the "bare" constant G in the action (8) by [20]

GN ¼ G=ð1 − ca=2Þ; (22)

Gcosmo ¼ G=ð1þ cθ=2Þ: (23)

Both of these relations are independent of cω, hence they
hold also in T-theory, as shown independently in Ref. [5].
The parametrized post-Newtonian (PPN) parameters are

also related by this limit. All PPN parameters of æ-theory
are identical to those of GR, except for the preferred frame
parameters α1 and α2, which are given by [21,22]

α1 ¼ 4
cωðca − 2cσÞ þ cacσ
cωðcσ − 1Þ − cσ

; (24)

α2 ¼
α1
2
þ 3ðca − 2cσÞðcθ þ caÞ

ð2 − caÞðcθ þ 2cσÞ
: (25)

In the infinite cω limit α1 becomes

αT1 ¼ 4
ca − 2cσ
cσ − 1

; (26)

and the formula (25) for α2 is otherwise unchanged, in
agreement with previous computations for T-theory [6,13].
Finally, radiation amplitudes and rates can be carried

over in the limit from æ-theory to T-theory, both in the
weak and strong self-gravity regimes. For weak self-
gravity, the results of [13] are obtained from the limit of
those of [19] (modulo typos), while for strong self-gravity,
the limit of [23] should agree with new results for T-theory,
which have recently been derived ab initio in [24] and
reported in [25]. (In fact, computational errors in [23] were
discovered by the failure of the limit to agree.)

C. Observational constraints

Equations (24)–(26) reveal an important discrepancy in
how α1 and α2 can be set to zero (or to small values) in the
two theories [13]. In æ-theory two conditions on the
parameters are required [22]:

ca ¼ 2
cωcσ

cσ þ cω
⟶2cσ; (27)

cθ ¼ −ca ¼ −2
cωcσ

cω þ cσ
⟶ − 2cσ; (28)

where the arrows denote the limit cω → ∞. (An alternative
would be to set ca ¼ 0 ¼ cσ , which would make the spin-0
and spin-1 wave speeds diverge.) In T-theory the first
condition (27) alone, ca ¼ 2cσ , suffices to set both αT1 and
αT2 to zero. (Since there is one less coupling constant to
begin with in T-theory, this again leaves a two-dimensional
coupling constant space unconstrained, as in æ-theory.)
Hence the second condition, (28), need not be applied, so
the limit of the æ-theory conditions for the vanishing of the
PPN parameters is stronger than the T-theory condition.
On the other hand, this second condition (28) for

æ-theory implies also that GN ¼ Gcosmo (22),(23), ensuring
agreement with the primordial nucleosynthesis constraint
[20] and constraints from the spectrum of CMB and matter
anisotropies [26]. If the PPN constraints are met in T-theory
just by imposing the first condition, ca ¼ 2cσ, then these
cosmological constraints must be separately imposed as the
requirement that the second condition hold approximately,
up to a deviation smaller than something of order ∼0.1 for
nucleosynthesis [13] and ∼0.01 for anisotropies [26].
If exact vanishing of α1;2 is imposed in T-theory, then

Gcosmo=GN ¼ ð1 − cσÞ=ð1þ cθ=2Þ, from which it follows
that the spin-0 mode speed (21) vanishes as Gcosmo
approaches GN . This is ruled out by the vacuum
Čerenkov constraint [27] (arising from the observation
of ultrahigh energy cosmic rays) which requires the mode
speed to be at least that of light (minus a tiny amount). If the
spin-0 mode speed is adjusted to be unity, i.e., the minimum
value allowed by the Čerenkov constraint, then it follows
that Gcosmo=GN ¼ 1 − 3ca=2, so the nucleosynthesis con-
straint jGcosmo=GN − 1j≲ 0.13 implies ca ≲ 0.08, i.e.
cσ ≡ β ≲ 0.04. At the other extreme, as ca ¼ 2cσ → 0,
the spin-0 mode speed diverges, Gcosmo=GN ¼
1=ð1þ cθ=2Þ, and the nucleosynthesis constraint implies
cθ ≡ 3λ≲ 0.30 (cθ ¼ 3λ when cσ ¼ 0). These constraints
are consistent with those reported in [25].
It was found in [13] that a qualitative difference in the

scalar radiation for the two theories arises, again due to
the different way the PPN parameters are set to zero. When
restricting to α1;2 ¼ 0, radiation sourced by the second time
derivative of the second monopole moment (∼

R
d3rρ̈r2)

vanishes in æ-theory but not in T-theory. The coupling to
this monopole term is proportional to
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α1 − 2α2
ca − 2cσ

¼ 6ðcθ þ caÞ
ðca − 2Þðcθ þ 2cσÞ

: (29)

As explained above, in æ-theory the vanishing of the PPN
parameters does not require ca ¼ 2cσ (but does entail
ca þ cθ ¼ 0), so the monopole coupling vanishes. In
T-theory, the vanishing of the PPN parameters requires
ca ¼ 2cσ only, so the left-hand side of (29) is 0=0, and the
right-hand side shows that the coupling survives.
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