Semileptonic B^- → $f_0(1710, 1500, 1370)e^ \bar{\nu}_e$ decays

Y. K. Hsiao, 1,2 C. C. Lih, 3,1,2 and C. Q. Geng^{2,1}

¹Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan

² Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan³ Department of Optomatry, Shy Zen College of Medicine and Managament Kachsiune Heigh

 β Department of Optometry, Shu-Zen College of Medicine and Management, Kaohsiung Hsien 452, Taiwan

(Received 16 March 2014; published 23 April 2014)

We study the semileptonic decays of $B^- \to f_0(1710, 1500, 1370)e^-\bar{\nu}_e$, in which the three f_0 states mix with glueball, $\bar{s}s$, and $(\bar{u}u + \bar{d}d)/\sqrt{2}$ states, respectively. By averaging the mixings fitted in the literature, we find that the branching ratios of $B^- \to f_0 e^- \bar{\nu}_e$ are $O(10^{-6})$, $O(10^{-6})$, and $O(10^{-5})$, respectively, which can be simultaneously observed in experiments at B factories. The large predicted branching rate for B^- → $f_0(1370)e^-\bar{\nu}_e$ would provide a clean mode to directly observe the $f_0(1370)$ state.

DOI: [10.1103/PhysRevD.89.077501](http://dx.doi.org/10.1103/PhysRevD.89.077501) PACS numbers: 12.39.Mk, 13.20.He, 14.40.Rt, 24.85.+p

It is believed that some exotic states with nonstandard internal structures, such as the four-quark and two-gluon bound states [\[1\]](#page-2-0), have been seen already. For example, the isovector $a_0(980)$ and the isodoublet $K_0^*(800)$ can be identified as $a_0(980) \equiv \bar{d}u\bar{s}s$ and $K_0^*(800) \equiv \bar{s}u(\bar{u}u + \bar{d}d)$ in the tetraquark (four-quark) picture, instead of $a_0(980) \equiv$ $\bar{d}u$ and $K_0^*(800) \equiv \bar{s}u$ in the standard $\bar{q}q$ picture. In addition, since only two of the three isoscalars of $f_0(1710)$, $f_0(1500)$, and $f_0(1370)$ can be simultaneously fitted into the nonet, a glueball (G) as a multigluon bound state can be a solution. Note that the lattice QCD (LQCD) calculations predict that the lightest glueball of $J^{PC} = 0^{++}$ is composed of two gluons with the mass in the range of 1.5–1.7 GeV [\[2,3\]](#page-2-1). These three f_0 states clearly mix with the glueball and quark-antiquark states.

Although $f_0(1710)$ or $f_0(1500)$ is taken to be mainly a glueball state [4–[9\],](#page-2-2) the radiative $J/\psi \rightarrow f_0(1370)\gamma$ decay via a gluon-rich process has not been observed yet, whereas the other two decays of $J/\psi \rightarrow f_0(1710, 1500)\gamma$ are clearly established [\[10\]](#page-2-3). This can be understood from the destructive G - $\bar{q}q$ interference [\[4,7\]](#page-2-2) or simply the weak couplings [\[11\]](#page-2-4) for the resonant $f_0(1370) \rightarrow KK (\pi \pi)$ in $J/\psi \rightarrow KK \gamma$ $(J/\psi \rightarrow \pi \pi \gamma)$. Nonetheless, it accords with the doubt of having seen the $f_0(1370)$ state with direct observations [\[12,13\]](#page-2-5). We note that a resonant scalar state, once identified as $f_0(1370)$ [\[14,15\]](#page-2-6) in the $\pi\pi$ spectrum of $\bar{B}_s^0 \to J/\psi \pi^+ \pi^-$, was reexamined to be more like $f_0(1500)$ [\[13\]](#page-2-7), while only $f_0(1500)$ is found [\[16\]](#page-2-8) in the analysis of $B^- \rightarrow K^+K^-K^-$. In addition, in the $\pi\pi$ spectrum of $D_s^+ \to \pi^+\pi^-\pi^+$, no peak around 1370 MeV is found in the recent investigation [\[17\]](#page-2-9) and it is not conclusive for $f_0(1370)$ in the $\pi\pi$ spectrum of $J/\psi \rightarrow \phi(1020)\pi\pi$ [\[18\]](#page-2-10) either. As a result, a concrete direct measurement for $f_0(1370)$ is urgently needed.

In this study, we propose to use the semileptonic $B^- \rightarrow$ $f_0(1370)e^{-}\bar{\nu}_e$ decay, arising from $b \to u\ell\bar{\nu}_e$ at quark level, to search for $f_0(1370)$. It is interesting to note that, in contrast with the partial observations in the aforementioned weak decays, all three $B^- \rightarrow f_0 e^- \bar{\nu}_e$ decays can be measured, providing a new way to simultaneously examine $f_0(1710)$, $f_0(1500)$, and $f_0(1370)$. According to the measured branching ratios of $B \to M(\bar{n}n)e^- \bar{\nu}_e$ [\[10\]](#page-2-3) with $M(\bar{n}n) = \pi^0$, $\eta^{(l)}$, ω , ρ and $\bar{n}n = (\bar{u}u + \bar{d}d)/\sqrt{2}$, $\mathcal{B}(B^- \to$ $f_0e^-\bar{\nu}_e$ are expected to be of order 10⁻⁶–10⁻⁵, which are accessible to the B factories. In this report, we average the mixings fitted in the literature [6–[9\]](#page-2-11) for the three f_0 states to explicitly evaluate the branching ratios of $B^- \rightarrow f_0 e^- \bar{\nu}_e$.

We start with the effective Hamiltonian at quark level, given by

$$
\mathcal{H}(b \to u\ell\bar{\nu}) = \frac{G_F V_{ub}}{\sqrt{2}} \bar{u}\gamma_\mu (1 - \gamma_5) b\bar{\ell}\gamma^\mu (1 - \gamma_5)\nu, \quad (1)
$$

for the $b \rightarrow u$ transition with the recoiled W boson to the lepton pair $\ell \bar{\nu}$. The amplitude for $B^- \to f_0^i e^- \bar{\nu}_e$ can be simply factorized as

$$
\mathcal{A}(B^- \to f_0^i e^- \bar{\nu}_e) = \frac{G_F V_{ub}}{\sqrt{2}} \alpha_3^i \langle \bar{n}n | \bar{u}\gamma_\mu (1 - \gamma_5) b | B^- \rangle
$$

$$
\times \bar{e} \gamma^\mu (1 - \gamma_5) \nu_e, \tag{2}
$$

where α_3^i is the coefficient of the mixing state of $\bar{n}n$ defined in Eq. [\(6\).](#page-1-0) The matrix element for the $B^- \rightarrow \bar{n}n$ transition is given by

$$
\langle \bar{n}n|\bar{u}\gamma_{\mu}(1-\gamma_{5})b|B^{-}\rangle = i\bigg[\bigg(p_{\mu} - \frac{m_{B}^{2} - m_{f(\bar{n}n)}^{2}}{q^{2}}q_{\mu}\bigg)F_{1}(q^{2}) + \frac{m_{B}^{2} - m_{f(\bar{n}n)}^{2}}{q^{2}}q_{\mu}F_{0}(q^{2})\bigg], \quad (3)
$$

with $p = p_B - q$ and $q = p_B - p_{\bar{n}n} = p_e + p_{\bar{\nu}_e}$, where the momentum dependences for the form factors $F_{0,1}$ are parametrized in the form of

$$
F(q^2) = \frac{F(0)}{1 - a(q^2/m_B^2) + b(q^2/m_B^2)}.
$$
 (4)

Subsequently, the differential decay width is given by

$$
d\Gamma = \frac{1}{(2\pi)^3} \frac{|\bar{\mathcal{A}}|^2}{32M_B^3} dm_{12}^2 dm_{23}^2,
$$
 (5)

with $m_{12} = p_{f_0} + p_e$, $m_{23} = p_e + p_{\bar{\nu}_e}$, and $|\bar{\mathcal{A}}|^2$ standing for the amplitude squared derived from Eqs. [\(2\)](#page-0-0), [\(3\)](#page-0-1), and [\(4\)](#page-0-2) with the bar denoting the summation over lepton spins.

In our numerical analysis, we adopt the PDG [\[10\]](#page-2-3) to have $|V_{ub}| = (4.15 \pm 0.49) \times 10^{-3}$ and $(m_{f_0(1710)}, m_{f_0(1500)},$ $m_{f_0(1370)}$ = (1720, 1505, 1350) MeV, while $m_{\bar{n}n}$ = 1470 MeV is from Refs. [\[6,7\].](#page-2-11) The parameters for $F_{0,1}$ shown in Table [I](#page-1-1) are calculated in the light-front QCD approach [\[19\]](#page-2-12), where we have used the constituent quark masses of $m_{u,d} = 0.26 \pm$ 0.04 and $m_b = 4.62^{+0.18}_{-0.12}$ GeV and the meson decay constants of f_B and f_π from the PDG [\[10\].](#page-2-3) We note that our results in Table [I](#page-1-1) are in agreement with those in the perturbative QCD approach [\[20\].](#page-2-13)

Now, we define

$$
|f_0^i\rangle = \alpha_j^i |f_j\rangle,\tag{6}
$$

TABLE I. The form factors of $B^- \rightarrow \bar{n}n$ at $q^2 = 0$.

$r_{0,1}$	F(0)	a	
F_0	0.20 ± 0.03	$0.65^{+0.15}_{-0.05}$	$0.29_{-0.01}^{+0.17}$
F	0.20 ± 0.03	$1.32_{-0.02}^{+0.08}$	$0.64^{+0.11}_{-0.08}$

where f_0^i (*i* = 1, 2, 3) stand for $f_0(1710)$, $f_0(1500)$ and $f_0(1370)$, f_i ($j = 1, 2, 3$) represent G, $\bar{s}s$, and $\bar{n}n =$ $(\bar{u}u + \bar{d}d)/\sqrt{2}$, and α_j^i (i, j = 1, 2, 3) are the mixings of a 3 ⊗ 3 matrix [4–[7\]](#page-2-2).

To obtain the mixing matrix (α_j^i) , there are two scenarios (I and II) in the literature. In scenario I, $f_0(1500)$ is considered to be the glueball candidate, such that $f_0(1500)$ with $m_{f_0(1500)} = 1505$ MeV has a large mixing to G, to match with the glueball state with $m_G \approx 1500$ MeV in the quenched LQCD calculation [\[2\]](#page-2-1). Here, we take the mixing matrices of $(\alpha_j^i)_a$ in scenario I to be

$$
(\alpha_j^i)_I = \begin{pmatrix} 0.36 & 0.93 & 0.09 \\ -0.84 & 0.35 & -0.41 \\ 0.40 & -0.07 & -0.91 \end{pmatrix}, \qquad \begin{pmatrix} -0.05 & 0.95 & -0.29 \\ 0.80 & -0.14 & -0.59 \\ 0.60 & 0.26 & 0.75 \end{pmatrix}, \qquad \begin{pmatrix} -0.83 & -0.45 & -0.33 \\ -0.40 & 0.89 & -0.22 \\ -0.39 & 0.05 & 0.92 \end{pmatrix}, \qquad (7)
$$

where $a = 1, 2, 3$ correspond to the three fittings in Refs. [\[6,8,9\],](#page-2-11) respectively. We remark that although $|\alpha_1^2|$ [\[9\]](#page-2-14) in the third matrix of Eq. [\(7\)](#page-1-2) related to G is small, it is still reasonable to have the $a = 3$ case in scenario I as m_G be fitted to be 1580 MeV, which is close to the quenched LQCD value. We note that the signs of α_i^i vary due to the different theoretical inputs. In this study, we shall take the absolute values $|\alpha_j|$ to represent the magnitudes of the mixings and average them in terms of

$$
\bar{\alpha}_j^i = \frac{\Sigma_{a=1}^3 |\alpha_j^i|_a}{3}, \qquad \Delta \bar{\alpha}_j^i = \sqrt{\frac{\Sigma_{a=1}^3 (\bar{\alpha}_j^i - |\alpha_j^i|_a)^2}{3}},\tag{8}
$$

where $\bar{\alpha}_i^i$ is the central value of each averaged absolute mixing and $\Delta \bar{\alpha}_i^i$ reflects the deviation among the fittings. As a result, from Eq. [\(7\)](#page-1-2) we obtain

$$
(\bar{\alpha}_j^i)_I = \begin{pmatrix} 0.41 \pm 0.32 & 0.78 \pm 0.23 & 0.24 \pm 0.10 \\ 0.68 \pm 0.20 & 0.46 \pm 0.32 & 0.41 \pm 0.15 \\ 0.46 \pm 0.10 & 0.13 \pm 0.10 & 0.86 \pm 0.08 \end{pmatrix}.
$$
 (9)

Scenario II prefers $f_0(1710)$ instead of $f_0(1500)$ as a glueball state with $m_G \approx 1700$ MeV, also predicted by the unquenched LQCD [\[3\]](#page-2-15). In this scenario, the fitted values for α_i^i in Refs. [\[7](#page-2-16)–9] are given by

$$
(\alpha_j^i)_{II} = \begin{pmatrix} 0.93 & 0.18 & 0.32 \\ 0.03 & 0.84 & -0.54 \\ -0.36 & 0.51 & 0.78 \end{pmatrix}, \qquad \begin{pmatrix} -0.96 & 0.17 & -0.23 \\ 0 & -0.82 & 0.57 \\ 0.29 & 0.55 & 0.79 \end{pmatrix}, \qquad \begin{pmatrix} -0.99 & -0.05 & -0.04 \\ -0.03 & 0.90 & -0.42 \\ -0.05 & 0.41 & 0.90 \end{pmatrix}, \qquad (10)
$$

respectively. Note that the three $|\alpha_1|$ values in Eq. [\(10\)](#page-1-3) are consistently bigger than 0.9, indicating $f_0(1710)$ to be mainly G. Similarly, from Eq. [\(10\)](#page-1-3) we get

$$
(\bar{\alpha}_j^i)_{II} = \begin{pmatrix} 0.96 \pm 0.02 & 0.13 \pm 0.06 & 0.20 \pm 0.12 \\ 0.02 \pm 0.01 & 0.85 \pm 0.03 & 0.51 \pm 0.06 \\ 0.23 \pm 0.13 & 0.49 \pm 0.06 & 0.82 \pm 0.05 \end{pmatrix}.
$$
\n(11)

Consequently, from the two scenarios in Eqs. [\(9\)](#page-1-4) and [\(11\)](#page-1-5), the branching ratios of B^- → $f_0(1710, 1500, 1370)e^- \bar{\nu}_e$ can be calculated based on Eqs. [\(2\)](#page-0-0)–[\(5\).](#page-0-3) Our results are shown in Table [II](#page-2-17), where the uncertainties come from $|\alpha_3^i|$, $|V_{ub}|$, and $F_{0,1}$, respectively.

With the mixing matrix elements in Eqs. (9) and (11) , we are able to specifically study the productions of the three f_0 states before the measurements. For example, we find that $\mathcal{B}(B^- \to f_0(1370)e^- \bar{\nu}_e)$ is about 2.57(2.33) × 10⁻⁵ in scenario I (II). Besides, $\mathcal{B}(B^- \to f_0(1710)e^-\bar{\nu}_e)$ and $\mathcal{B}(B^- \to f_0(1710)e^-\bar{\nu}_e)$ $f_0(1500)e^{-}\bar{\nu}_e$ in the two scenarios are predicted to be of order 10⁻⁶. Since $\mathcal{B}(B^- \to Ge^- \bar{\nu}_e)$ has been demonstrated to be as small as 1.1×10^{-6} [\[21\],](#page-2-18) where the magnitude of the uncertainty is as large as the central value, its contribution to $\mathcal{B}(B^- \to f_0 e^- \bar{\nu}_e)$ can be negligible. The only exception is that, due to the largest $|\alpha_1^1| = 0.96$ for scenario II in Eq. [\(11\)](#page-1-5), $\mathcal{B}(B^- \to f_0(1710)e^- \bar{\nu}_e) \simeq 1.0 \times 10^{-6}$ from the $B \to G$ transition, which is compatible to $\mathcal{B}(B^- \to f_0(1710)e^- \bar{\nu}_e) \simeq$ 1.4×10^{-6} from the $B \rightarrow \bar{n}n$ transition. With the branching ratios to be of order 10^{-6} – 10^{-5} , it is possible to measure the three modes simultaneously. This willimprove the knowledge of the mixing matrix as well as the glueball.

In sum, by averaging the mixings of $|\alpha_j|$, fitted from the most recent studies in the literature, we have found that

TABLE II. The branching ratios of $B^- \rightarrow f_0(1710, 1500,$ $1370)e^{\frac{-\tau}{\nu}}$ decays with the uncertainties corresponding to those in $|\alpha_3^i|$, $|\tilde{V}_{ub}|$, and $F_{0,1}$, respectively.

Mode	Scenario I	
$f_0(1710)$	$(1.96_{-1.29}^{+1.97} \times 10^{-6} \times 10^{-6} \times 10^{-6}$	
$f_0(1500)$	$(5.89^{+5.09+1.47+1.81}_{-3.52-1.31-1.58}) \times 10^{-6}$	
$f_0(1370)$	$(2.57^{+0.50+0.64+0.83}_{-0.45-0.57-0.67}) \times 10^{-5}$	
Mode	Scenario II	
$f_0(1710)$	$(1.36_{-1.14-0.30-0.33}^{+2.12+0.34+0.47}) \times 10^{-6}$	
$f_0(1500)$	$(9.11_{-2.02-2.02-2.44}^{+2.27+2.28+2.79}) \times 10^{-6}$	
$f_0(1370)$	$(2.33^{+0.29+0.58+0.75}_{-0.28-0.52-0.60}) \times 10^{-5}$	

 $\mathcal{B}(B^- \to f_0(1370)e^-\bar{\nu}_e)$ are around 2.6 and 2.3 × 10⁻⁵ in scenarios I and II, respectively. This decay mode is promising to be measured in the B factories, which would resolve the doubt for the existence of $f_0(1370)$. In addition, we have also shown that $\mathcal{B}(B^- \to f_0(1710)e^- \bar{\nu}_e)$ and $\mathcal{B}(B^- \to f_0(1500)e^- \bar{\nu}_e)$ are of order 10^{-6} . The measurements of these three modes will provide us with some useful information about the three f_0 states.

ACKNOWLEDGMENTS

This work was partially supported by the National Center for Theoretical Sciences, SZL10204006, the National Science Council (NSC-102-2112-M-471-001- MY3 and NSC-101-2112-M-007-006-MY3), and the National Tsing Hua University (103N2724E1).

- [1] M. Wagner et al., Proc. Sci., ConfinementX (2012) 108.
- [2] C. Michael and M. Teper, [Phys. Lett. B](http://dx.doi.org/10.1016/0370-2693(88)91510-9) 206, 299 (1988); Nucl. Phys. B314[, 347 \(1989\);](http://dx.doi.org/10.1016/0550-3213(89)90156-9) G. S. Bali, K. Schilling, A. Hulsebos, A. C. Irving, C. Michael, and P. W. Stephenson, [Phys. Lett. B](http://dx.doi.org/10.1016/0370-2693(93)90948-H) 309, 378 (1993).
- [3] C. J. Morningstar and M. J. Peardon, [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.60.034509) 60, [034509 \(1999\)](http://dx.doi.org/10.1103/PhysRevD.60.034509); Y. Chen et al., [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.73.014516) 73, 014516 [\(2006\).](http://dx.doi.org/10.1103/PhysRevD.73.014516)
- [4] F. E. Close, G. R. Farrar, and Z. p. Li, [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.55.5749) 55, 5749 [\(1997\)](http://dx.doi.org/10.1103/PhysRevD.55.5749); F. E. Close and A. Kirk, [Phys. Lett. B](http://dx.doi.org/10.1016/S0370-2693(00)00623-7) 483, 345 (2000).
- [5] X. G. He, X. Q. Li, X. Liu, and X. Q. Zeng, [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.73.051502) 73, [051502 \(2006\);](http://dx.doi.org/10.1103/PhysRevD.73.051502) Phys. Rev. D **73**[, 114026 \(2006\)](http://dx.doi.org/10.1103/PhysRevD.73.114026).
- [6] F. E. Close and Q. Zhao, Phys. Rev. D 71[, 094022 \(2005\).](http://dx.doi.org/10.1103/PhysRevD.71.094022)
- [7] H. Y. Cheng, C. K. Chua, and K. F. Liu, [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.74.094005) 74, [094005 \(2006\).](http://dx.doi.org/10.1103/PhysRevD.74.094005)
- [8] P. Chatzis, A. Faessler, T. Gutsche, and V. E. Lyubovitskij, Phys. Rev. D 84[, 034027 \(2011\)](http://dx.doi.org/10.1103/PhysRevD.84.034027).
- [9] S. Janowski and F. Giacosa, [arXiv:1312.1605.](http://arXiv.org/abs/1312.1605)
- [10] J. Beringer et al. (Particle Data Group Collaboration), [Phys.](http://dx.doi.org/10.1103/PhysRevD.86.010001) Rev. D 86[, 010001 \(2012\)](http://dx.doi.org/10.1103/PhysRevD.86.010001).
- [11] L. S. Geng, F. K. Guo, C. Hanhart, R. Molina, E. Oset, and B. S. Zou, [Eur. Phys. J. A](http://dx.doi.org/10.1140/epja/i2010-10971-5) 44, 305 (2010).
- [12] E. Klempt and A. Zaitsev, [Phys. Rep.](http://dx.doi.org/10.1016/j.physrep.2007.07.006) 454, 1 (2007).
- [13] W. Ochs, J. Phys. G 40[, 043001 \(2013\).](http://dx.doi.org/10.1088/0954-3899/40/4/043001)
- [14] J. Li et al. (BELLE Collaboration), [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.106.121802) 106, [121802 \(2011\).](http://dx.doi.org/10.1103/PhysRevLett.106.121802)
- [15] R. Aaij et al. (LHCb Collaboration), [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.86.052006) 86, [052006 \(2012\).](http://dx.doi.org/10.1103/PhysRevD.86.052006)
- [16] A. Garmash et al. (BELLE Collaboration), [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.71.092003) 71, [092003 \(2005\).](http://dx.doi.org/10.1103/PhysRevD.71.092003)
- [17] B. Aubert et al. (BABAR Collaboration), [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.79.032003) 79, [032003 \(2009\).](http://dx.doi.org/10.1103/PhysRevD.79.032003)
- [18] M. Ablikim et al. (BES Collaboration), [Phys. Lett. B](http://dx.doi.org/10.1016/j.physletb.2004.12.041) 607, [243 \(2005\)](http://dx.doi.org/10.1016/j.physletb.2004.12.041).
- [19] C. H. Chen, C. Q. Geng, C. C. Lih, and C. C. Liu, [Phys. Rev.](http://dx.doi.org/10.1103/PhysRevD.75.074010) D 75[, 074010 \(2007\)](http://dx.doi.org/10.1103/PhysRevD.75.074010).
- [20] R. H. Li, C. D. Lu, W. Wang, and X. X. Wang, [Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.79.014013) 79[, 014013 \(2009\).](http://dx.doi.org/10.1103/PhysRevD.79.014013)
- [21] W. Wang, Y. L. Shen, and C. D. Lu, [J. Phys. G](http://dx.doi.org/10.1088/0954-3899/37/8/085006) 37, 085006 [\(2010\).](http://dx.doi.org/10.1088/0954-3899/37/8/085006)