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It has already been shown that in thermal nonlocal Nambu—Jona-Lasinio models some unphysical
behavior, such as a negative pressure, may arise. In this paper, it is shown how this behavior can be related
to the presence of highly unstable poles of the propagator of the model, for both the Gaussian and
Lorentzian regulator cases. Computations are carried out within the real time formalism, which allows us to
isolate the contributions from different poles and identify the source of these instabilities. It has also been
shown in recent papers how these instabilities are softened by the inclusion of the Polyakov loop when a
Gaussian regulator is considered. This paper shows how the softening of instabilities can be understood by
studying the effect of the Polyakov loop on the poles of the propagator for the Gaussian regulator.
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I. INTRODUCTION

There are several aspects of QCD, like the mechanism
behind quark confinement or the phase diagram, that are
not yet fully understood. Several models have been
developed in order to describe some of these properties,
such as the bag model [1–4], Dyson-Schwinger models
[5–7], and the linear sigma model [8–11]. Another attempt
in this direction is the Nambu—Jona-Lasinio (NJL) model
[12,13]. Although it was originally proposed as a model of
interacting nucleons, the NJL model is now interpreted as a
model of interacting quarks and is vastly used to study
thermal properties of QCD [14–18].
The nonlocal Nambu—Jona-Lasinio (nNJL) model is a

generalization of the NJL model [19,20] with a nonlocal
interaction that is modulated by a regulator. The nNJL
model is also used to study thermal properties of QCD
[21–25]. Thermal computations in nNJL models are
usually carried out by using the imaginary time formal-
ism. Although calculations are usually simpler in the
imaginary time formalism, the physical interpretation of
the propagator can be a bit cumbersome. However, in the
real time formalism the quark propagator has the usual
structure where we have singularities that can be inter-
preted as quasiparticles. This structure of the propagator
allows us to manipulate expressions in order to study all
or only a few of the quasiparticles contributions.
Expressions in the real time formalism will usually have
the form of a zero temperature contribution plus several
terms from thermal contributions, each of them corre-
sponding to a different pole of the propagator. This
allows us to track different poles by isolating their
contributions to some thermal quantity like the chiral
condensate.
In a few recent papers [26,27], it has been shown that

some unphysical instabilities arise within these models
which, however, are softened by the inclusion of the

Polyakov loop in the case of the Gaussian regulator.
This paper shows that these instabilities arise, for both
Gaussian and Lorentzian regulators, because one is con-
sidering highly unstable poles of the propagator. The
physical input from the quasiparticle interpretation for
the poles of the propagator allows us to comment on the
reasons behind these instabilities and their relation with
unstable poles. By working in the real time formalism,
contributions from different poles can be isolated. In this
manner it is possible to isolate the contributions of different
quasiparticles and study their relation to the appearance of
thermal instabilities. The Polyakov loop is then included in
the model for the Gaussian regulator case. By doing so, one
is also incorporating new singularities into the propagator.
Then, the behavior of these new singularities is studied, and
they are related to the softening of instabilities. The most
commonly used regulators, the Gaussian and the
Lorentzian regulators, are considered in this paper.
Thermal instabilities are present, and they can be related
to the appearance of unstable poles. These thermal insta-
bilities can be removed in some cases by a careful selection
of poles or by a different choice in the parameters of
the model.
The paper is organized as follows. In Sec. II, the nNJL

model is introduced, and the real time formalism is
developed in a general manner. In Sec. III, the formalism
is applied to the Gaussian regulator. In Sec. IV, the
formalism is applied to an integer Lorentzian regulator
and in Sec. V to a fractional Lorentzian regulator. In
Sec. VI, a few remarks on how these instabilities may be
handled, and the physical motivation for doing so, are
made. In Sec. VII, a brief discussion on the inclusion of the
Polyakov loop in the model, for the Gaussian regulator
case, and how this affects the quasiparticle behavior and the
occurrence of thermal instabilities is presented. In
Sec. VIII, conclusions are presented.
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II. nNJL MODEL IN REAL TIME FORMALISM

The nNJL model is described through the Euclidean
Lagrangian

LE ¼
�
ψ̄ðxÞð−i∂ þmÞψðxÞ −G

2
jaðxÞjaðxÞ

�
; (1)

with ψðxÞ being a quark field. The nonlocal aspects of the
model are incorporated through the nonlocal currents jaðxÞ:

jaðxÞ ¼
Z

d4yd4zrðy − xÞrðz − xÞψ̄ðxÞΓaψðzÞ; (2)

where Γa ¼ ð1; iγ5~τÞ. A bosonization procedure can be
performed by defining scalar (σ) and pseudoscalar (~π)
fields. Then, in the mean field approximation,

σ ¼ σ̄ þ δσ; (3)

~π ¼ δ~π; (4)

where σ̄ is the vacuum expectation value of the scalar field.
In this manner, σ̄ is closely related to the chiral condensate,
and they must behave in exactly the same manner. Also, it
was assumed for the pseudoscalar field to have a null
vacuum expectation value because of isospin symmetry.
Quark fields can then be integrated out of the model [23,28]
and the mean field effective action can be obtained:

ΓMF ¼ V4

�
σ̄2

2G
− 2Nc

Z
d4qE
ð2πÞ4 tr ln S−1E ðqEÞ

�
; (5)

with SEðqEÞ being the Euclidean effective propagator:

SE ¼ −qE þ Σðq2EÞ
q2E þ Σ2ðq2EÞ

: (6)

Here, Σðq2EÞ is the constituent quark mass:

Σðq2EÞ ¼ mþ σ̄r2ðq2EÞ: (7)

Finite temperature (T) effects can be incorporated through
the Matsubara formalism. To do so, one can make the
following substitutions:

V4 → V=T; (8)

q4 → −qn; (9)

Z
dq4
2π

→ T
X
n

; (10)

where qn includes the Matsubara frequencies

qn ≡ ð2nþ 1ÞπT: (11)

With this, the propagator in Eq. (6) will now look like

SEðqn; q; TÞ ¼
γ4qn − γ · qþ Σðqn; qÞ
q2n þ q2 þ Σ2ðqn; qÞ

: (12)

It is worth noting that the propagator in Eq. (12) has no
singularities. Since there are no poles at some p2, the
definition of an effective mass for the particle with such
propagator is nontrivial. Because of this, it is harder to
physically understand and interpret some quantities in the
imaginary time formalism.
The σ field will evolve with temperature. This evolution

can be computed through the grand canonical thermody-
namical potential in the mean field approximation
ΩMFðσ̄; T; μÞ ¼ ðT=VÞΓMFðσ̄; T; μÞ [29]. Then the value
of σ̄ must be at the minimum of the potential where
∂ΩMF=∂σ̄ ¼ 0, which means

σ̄

G
¼ 2NcT

X
n

Z
d3q
ð2πÞ3 r

2ðq2EÞ trSEðqEÞ
����
q4¼−qn

: (13)

From this equation, one can get the temperature evolution
of σ̄. So far, all of the computations have been made in the
imaginary time formalism. Similar derivations are readily
available in the literature (see, for example, [23,30]).
The next step is to work out the model in the real time

formalism [1,21,26]. In order to do so, one should first
perform a Wick rotation q4 ¼ iq0 that will take us from
Euclidean to Minkowski space. Doing this in Eq. (6) will
yield the zero temperature Minkowski space propagator

S0 ¼ i
qþ Σð−q2Þ
q2 − Σ2ð−q2Þ ; (14)

where q2 ¼ −q2E. This propagator has singularities in the
complex q2 plane. Each of these singularities may be
interpreted as a different quasiparticle of the model. Then, it
is possible to define a mass and a decay width for
the quasiparticles. If q2 ¼ M2 is a singularity of the
propagator, the following definition can be made:

q2 ¼ M2 ¼ M2 þ iMΓ; (15)

where M is the constituent mass of the quasiparticle and Γ
its decay width. The next step is to obtain the thermal
propagator in the real time formalism.
In the real time formalism, the number of degrees of

freedom is doubled [31–36]. This means that the thermal
propagator is given by a 2 × 2 matrix with elements Sij.
However, in one-loop calculations only the S11 component
is necessary. A general expression for S11 can be written in
terms of the spectral density function (SDF):

S11 ¼
Z

dk0
2πi

ρðk0; qÞ
k0 − q0 − iε

− nFðq0ÞρðqÞ; (16)
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where nFðq0Þ is the Fermi-Dirac distribution nFðq0Þ ¼
ðeq0=T þ 1Þ−1. The SDF can be obtained from

ρðqÞ ¼ SþðqÞ − S−ðqÞ; (17)

where

S�ðqÞ ¼ �
I
Γ�

dz
2πi

S0ðz∓iε; qÞ
z − q0 � iε

: (18)

This is just a generalization of the free particle case where
ρðqÞ ¼ S0ðq0 þ iε; qÞ − S0ðq0 − iε; qÞ. The integration
path Γ� is shown in Fig. 1.
The integrations can be performed and the SDF can be

found to be

ρðqÞ ¼
X
M

i

�
AðM2Þ
M2 − q2

−
AððM2Þ�Þ
ðM2Þ� − q2

�
; (19)

where the sum is over the various poles (M) of the
propagator and

AðM2Þ ¼ ZðM2Þ
2E

ðq0ðqþ Σð−M2ÞÞ − γ0ðq2 −M2ÞÞ;
(20)

with E2 ¼ M2 þ q2 and where

ZðM2Þ ¼
� ∂
∂q2 ðq

2 − Σ2ð−q2ÞÞ
�
−1
����
q2¼M2

(21)

is the renormalization constant. This calculation is fairly
general and is valid for any regulator with real or complex
poles of first order. It is worth noting that in Eq. (19) the
contributions from each pole to the SDF are decoupled
from each other. This structure is crucial, since it allows one
to isolate the contribution from each pole. The real time
thermal propagator can then be obtained by putting Eq. (19)
into Eq. (16). It is clear that the propagator will also have

the same structure of the SDF in the sense that contributions
form different poles are decoupled from each other.
Moreover, the propagator will also have the zero temper-
ature contribution decoupled from the finite temperature
one, i.e.,

S11ðq; T; μÞ ¼ S0ðqÞ þ ~Sðq; TÞ: (22)

Of course, in the case where Γ → 0, i.e., when considering
real poles, then the propagator reduces to the usual
Dolan-Jackiw propagator [37]

SDJðq;MÞ¼ ðqþMÞ
�

i
q2−M2þ iε

−2πNðq0Þδðq2−M2Þ
�
:

(23)

The gap equation in the real time formalism should now be
obtained through the substitution SE → S11 in Eq. (13).
Using the structure in Eq. (22) yields

∂ΩMF

∂σ̄ ¼ g0ðσ̄Þ þ ~gðσ̄; TÞ ¼ 0; (24)

where

g0ðσ̄Þ ¼
σ̄

G
−
Nc

π2

Z
∞

0

dqEq3E
r2ðq2EÞΣðq2EÞ
q2E þ Σ2ðq2EÞ

; (25)

~gðσ̄; TÞ ¼ −2Nc

Z
d4q
ð2πÞ4 r

2ð−q2Þ tr ~Sðq; TÞ; (26)

and where again ~gðσ̄; TÞ has all of the finite temperature
contribution. By putting the expression for ~S into Eq. (26)
we get

~gðσ̄; TÞ ¼ 2iNc

X
M

ZðM2ÞΣð−M2Þ

×
Z

d4q
ð2πÞ4

r2ð−q2Þ
E

2nFðq0Þ

×

�
q0

M2 − q2
−

q0
ðM2Þ� − q2

�
þ C: (27)

The integration in q0 can be performed along the path
shown in Fig. 2.
The integration along the vertical lines where Re q0 →

�∞ gives a divergent contribution that, however, is
independent of temperature and will be canceled by the
constant C in Eq. (27). The integration then can be
computed to giveFIG. 1. Integration path in the definition of S�.

UNSTABLE QUASIPARTICLES AS A SOURCE OF … PHYSICAL REVIEW D 89, 076010 (2014)

076010-3



~gðσ̄; TÞ ¼ −
Nc

π2
X
M

�
ZðM2ÞΣð−M2Þr2ð−M2Þ

×
Z

dkk2
2nFðEÞ

E
þ ðM2 → ðM2Þ�Þ

�
: (28)

This is the final expression for the gap equation in the
real time formalism. Once again, this expression has the
contributions from different poles decoupled from each
other which is crucial for studying the contributions from
different poles independently. Every quasiparticle mass and
decay width will evolve with temperature. If we are
interested in studying the behavior of just one quasiparticle
by itself, we can toss all of the other terms in Eq. (28)
coming from different poles and solve solely for the
quasiparticle we are interested in. Formally, this can be
done by deforming the integration path in Fig. 1 around the
undesired poles in order to exclude them. This will be of
the most importance when trying to identify the source of
the thermal instabilities that arise in this type of models.
The main quantity we are going to look at is σ̄. It should

behave in the same manner as a chiral condensate. This
means that one would expect for σ̄ to monotonically
decrease as the temperature increases. Otherwise, we would
have a condensate that becomes larger at larger temper-
atures. The gap equation in Eq. (28) will allow us to get the
behavior of σ̄ as a function of temperature. Any growth of σ̄
will then be considered an “instability,” since it does not
correspond to the usual behavior of a condensate.

III. GAUSSIAN REGULATOR

Let us now consider the nNJL model with a Gaussian
regulator of the form

rðq2Þ ¼ eq
2=Λ2

: (29)

Two different sets of parameters will be considered for this
regulator. They are conveniently chosen because of the pole
structure the propagator exhibits with such parameters. The

parameters are shown in Table I. Set A is taken from
Ref. [26] and set B from Ref. [38].
Then, by solving q2 − Σ2ð−q2Þ ¼ 0 one can find the

poles of the propagator, which means

Reðq2 − Σ2ð−q2ÞÞ ¼ 0; (30)

Imðq2 − Σ2ð−q2ÞÞ ¼ 0: (31)

Figure 3 shows solutions to Eqs. (30) and (31) for
parameter set A. The poles of the propagator are found at
the intersection of the dashed and solid lines. The first pole
that appears has a negative real part. If we follow our
identification in Eq. (15), this means that this pole
represents a quasiparticle with negative squared mass.
However, one could write q2 ¼ ðM þ i Γ

2
Þ2, in which case

the pole simply has a decay width greater than its mass. We
will therefore consider poles like this to be highly unstable
poles. It is also important to note that poles of this kind do
not have a clear quasiparticle interpretation. By having such
a big decay width, they are very short-living states.
The propagator will exhibit an infinite number of poles.

All of them, except the first pole we already discussed, will
be complex poles with positive real parts. However, they
will also exhibit big imaginary parts and must be treated as
highly unstable poles, too.

FIG. 2. Integration path for the thermal part of the gap equation.
The poles of the Fermi-Dirac distribution are marked with
crosses.

TABLE I. Both parameter sets used for the Gaussian regulator
case. σ̄0 is the mean value of the scalar field at zero temperature.

Set Λ (MeV) m (MeV) GΛ2 σ̄0 (MeV)

A 687 6 28.43 677.8
B 1042.2 4.6 15.08 235

1.0 0.5 0.0 0.5 1.0

4

2

0

2

4

Re q2

2

Im
q2 2

FIG. 3. Poles of the propagator for set A of parameters for the
Gaussian regulator in the q2 plane. The dashed lines are solutions
to Eq. (31) and the solid lines solutions to Eq. (30).
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Figure 4 shows solutions to Eqs. (30) and (31) for
parameter set B. The poles of the propagator are found at
the intersection of the dashed and solid lines. Quite
differently from what was found for set A of parameters,
in this case, the first two poles of the propagator have
vanishing imaginary parts. These states can clearly be
interpreted as deconfined quasiparticles [21]. On the other
hand, and similarly to what was found in parameter set A,
there are an infinite number of other poles that are complex
poles with big imaginary parts, i.e., with decay widths of
the same order as, or greater than, their masses.
Our next step is to solve Eq. (28) in order to get the

behavior of σ̄ as a function of temperature. In the Gaussian
regulator case, highly unstable poles are present in our
propagator. It is reasonable to expect some odd behavior of
σ̄ in the presence of such poles. On the other hand, a pole
with a positive real part and a vanishing imaginary part is a
stable quasiparticle, and one would expect from it the usual
behavior of a condensate. This makes the study of the poles
of the propagator a crucial matter in order to understand the
behavior of σ̄. Because of this, before solving Eq. (28), it is
important to take a closer look at the poles of the
propagator.
Figure 5 shows the behavior of the first three poles of the

propagator for both sets as a function of σ̄. As can be seen,
the first pole of set A has a negative real part for σ̄ ¼ σ̄0.
However, at lower values σ̄ ≈ 300 MeV, the pole has a
positive real part and a vanishing imaginary part; i.e., it has
turned into a positive real pole and, hence, a well-defined
quasiparticle. On the other hand, for set B, we have two
positive real poles and no pole with a negative real part. All
of the other poles will turn out to be poles with positive real
parts and nonvanishing imaginary parts. They will, how-
ever, be much more massive than the poles here considered

and should have smaller contributions to the behavior of σ̄.
The gap equation can then be solved by considering only a
few of the poles, and the result will not differ greatly from
the complete calculation. Let us now solve Eq. (28) for
these three poles in order to get σ̄ as a function of
temperature for both sets.
As can be seen from Fig. 6, for set A, σ̄ rises with

temperature between T ≈ 80 and 110 MeV. This is exactly
the kind of thermal instability found in Ref. [26]. However,
for set B, there is no such instability. Let us recall that the
main difference between sets A and B was the presence of a
pole with a negative real part in set A as opposed to two
positive real poles in set B. One could suspect then that the
rising of σ̄ with temperature in set A is a consequence of the
presence of this odd pole. To better understand this, let us
solve again Eq. (28) but now for three different cases:
considering the first three poles of set A, considering only
the first pole of set A, and considering only the second and
third poles of set A.
As can be seen from Fig. 7, when we take into account

the first pole (solid and dashed lines in Fig. 7), the
instability remains. When we consider only the second
and third poles (dotted line in Fig. 7), the initial rising is
gone, but a new rising appears now at a higher temperature.
This means that the initial instability that was observed

3 2 1 0 1 2 3

4

2

0

2

4

Re q2

2

Im
q2 2

FIG. 4. Poles of the propagator for set A of parameters for the
Gaussian regulator in the q2 plane. The dashed lines are solutions
to Eq. (31) and the solid lines solutions to Eq. (30).

FIG. 5. Behavior of the first three poles of the propagator, with
a Gaussian regulator, as a function of σ̄ for set A (plots on the left)
and set B (plots on the right). The solid lines represent
Reðq2=Λ2Þ, and the dashed lines represent Imðq2=Λ2).
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when solving with all three poles being considered was
caused by the pole with a negative real part. The new
instability that appears in the dotted line of Fig. 7 is caused
by the second and third poles. This instability was not
present when solving considering all three poles, because,
at the temperature values at which the instability appears, σ̄
had already decreased enough so that the first pole had
turned to a well-defined quasiparticle and, being much less

massive than the second and third poles, its contribution
was dominant over the others.
This analysis has been performed with the Gaussian

regulator, because it allows one to compare the results of
this paper to those of Ref. [26]; however, the Gaussian
regulator is far from ideal to study these situations. On the
one hand, it has an infinite number of poles which makes
the full computation extremely challenging. On the other
hand, the pole with a negative real part, for set A, is also the
only pole that, at lower σ̄, is a stable pole. This means that
the same pole that produces the instability is the only
“well-behaved” pole that will also make our condensate
rapidly decrease as the temperature increases. In this
manner, it seems that achieving the usual behavior for σ̄
when considering the Gaussian regulator with parameter set
A may be impossible. Because of this, it is useful to
consider other regulators, such as the Lorentzian regulator,
that exhibit a finite number of poles and thus allow us to
better study how each pole affects the behavior of σ̄.

IV. INTEGER LORENTZIAN REGULATOR

Let us now consider the following regulator in
Minkowski space:

rðq2Þ ¼ 1

1þ ð− q2

Λ2Þ2
: (32)

The following parameters are taken from Ref. [38]:
m ¼ 4.6 MeV, σ̄0 ¼ 216 MeV, Λ ¼ 868 MeV, and
GΛ2 ¼ 9.61. Equations (30) and (31) can be solved to
find the poles of the propagator with this regulator.
As can be seen from Fig. 8, there are three poles for this

regulator. One of the poles is real (M1), while the other two
are complex conjugate pairs, and one of them (M2

2) has a
negative real part. Similarly to what was done in the
previous section, Eq. (28) can be solved to get the behavior
of σ̄ as a function of temperature. It will be done in three
different cases: by counting all three poles, by counting
only M1, and by counting only M2.
As can be seen from Fig. 9, instabilities appear with this

regulator as well. However, if we consider only the real pole
(the dashed line in Fig. 9), then we have no instability. The
instability arises fromthe highlyunstable poles. Ifwe consider
only these poles (dotted line in Fig. 9), then the instabilities
become much larger. This is the same type of behavior that
was present with the Gaussian regulators. Those poles with
big decay widths produce these types of thermal instabilities.
However, if the highly unstable poles are neglected (dashed
line in Fig. 9), then the instabilities disappear.
Just as in the Gaussian case, it is the real pole that

produces no instability. One might expect the same thing
from a complex pole with a small imaginary part, i.e., a
well-defined, confined quasiparticle. However, none of the
regulators considered so far exhibits such a pole. This will
be the case in the next section.

FIG. 6. Behavior of σ̄ as a function of temperature. The solid
line corresponds to set A and the dashed line to set B. In both
cases, the the first three poles of the propagator are being
considered.

FIG. 7. Behavior of σ̄ as a function of temperature. The solid
line corresponds to the solution for the first three poles of set A.
The dashed line is the solution with only the first pole of set A,
and the dotted line is the solution with only the second and third
poles of set A.
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V. FRACTIONAL LORENTZIAN REGULATOR

Lorentzian regulators with fractional exponents have
become interesting, because they are able to reproduce
lattice data from the light quark propagator [28]. Inspired
by that, we consider the following regulator in Euclidean
space:

rðq2EÞ ¼
1

1þ ðq2EΛ2Þ3=2
: (33)

On performing the rotation to Minkowski space, one has to
define how the half-integer exponent will be understood
[1]. In Minkowski space, momentum may take complex
values, and so the regulator is a multivalued function of the
momentum. If we take q2=Λ2 ≡ Reiθ, then we define in
Minkowski space

rðq2Þ ¼ 1

1þ R3=2e
3
2
iðθþπÞ : (34)

With this definition the multivalued nature of our regulator
is preserved. Therefore, there will be two Riemann sheets,
and, hence, poles for our propagator will be found in both
of them. This propagator will then have several poles. For
our analysis we will work in the chiral limit where m ¼ 0.
In this manner, the number of poles is significantly reduced,
and the model is better suited to study the effects of each
pole as is the aim of this paper. The following parameters
are taken from [1]: m ¼ 0 MeV, σ̄0 ¼ 261 MeV,
Λ ¼ 635 MeV, and GΛ2 ¼ 10.81.
In Fig. 10, the poles of the propagator are shown. There

is one pole with a negative real part in the first sheet (M2).
In the second sheet, there are two other poles with big
imaginary parts (M3 and M4). So far, one would expect
some instabilities from these poles. However, in the first
sheet, we also have one pole with a positive real part and a
small imaginary part (M1). This is exactly the kind of pole
that was present neither in the Gaussian regulator nor in the
integer Lorentzian regulator, and one would expect for this
pole to yield no instability.
As can be seen from Fig. 11, an instability is present

when all of the poles of the model are considered. If only
the first pole (M1 in Fig. 10) is taken into account, then the
instability disappears. However, if we take into account
only the highly unstable poles (M2, M3, and M4 in
Fig. 10), then we can see that the instability increases. This
reinforces the statement that such instabilities arise from
considering condensates of highly unstable quasiparticles.

VI. HANDLING THE INSTABILITIES

So far, it has been shown in agreement with Ref. [26] that
thermal instabilities arise in nNJL models. Three regula-
tors, the Gaussian, integer, and fractional Lorentzian
regulators, have been analyzed, and thermodynamic insta-
bilities are present. It was shown that these instabilities are
caused by the presence of highly unstable poles of the
propagator. There are two possible ways to handle these
instabilities. On the one hand, one can search for a
parameter set that exhibits no such poles, or are otherwise
highly suppressed, like in parameter set B for the Gaussian
regulator. However, such a parameter set may not be
possible. If this is the case, then one is forced to carefully
select the poles that will be considered and leave the highly
unstable poles out. This can be achieved by deforming the
integration path in Fig. 1 to surround the highly unstable

FIG. 8. Poles of the propagator for the integer Lorentzian
regulator. The dashed lines are solutions to Eq. (31) and the solid
lines solutions to Eq. (30).

0 50 100 150 200

0.2

0.4

0.6

0.8

1.0
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1.4

1.6

T MeV

0

FIG. 9. Behavior of σ̄ as a function of temperature. The solid
line corresponds to the solution from counting all the poles. The
dashed line is the solution for counting only M1, and the dotted
line is the solution for counting only M2 and M3.
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poles. Although this may seem arbitrary, there is a clear
physical motivation for excluding these poles. Highly
unstable poles have big decay widths and correspond to
wide resonances. If we are to interpret these poles as
quasiparticles, then they are highly unstable quasiparticles
that are widely spread. However, once we introduce the
bosonic field σ and take the mean field approximation, we
are considering bound states of the quasiparticles. These
highly unstable poles will not form physically well-defined
bound states, since they represent very unstable quasipar-
ticles. Furthermore, once we take the mean field value of
the scalar field, we are considering condensation of such
quasiparticles. If one is to work in the mean field approxi-
mation, then the model should consider well-defined
quasiparticles that can form bound states and condensate.
In this manner, if the original effective propagator exhibits

highly unstable poles, one should remove these poles in
order to have well-defined bosonic states.
In Ref. [26], it has been shown that the inclusion of the

Polyakov loop in the model also contributes to soften these
instabilities. In the next section, it will be analyzed how the
Polyakov loop affects the poles of the propagator for the
Gaussian regulator case, particularly how it affects the pole
with a negative real part and, based on this analysis, why it
contributes to soften the instabilities.

VII. THE POLYAKOV LOOP AND
SOFTENED INSTABILITIES

The Polyakov loop hΦi is defined as [25]

hΦðxÞi ¼ 1

Nc
htrc½LðxÞ�i; (35)

where trc is a trace over color indices and

LðxÞ ¼ P exp

�
i
Z

β

0

dτA4ðτ; xÞ
�
: (36)

Here, P is the path-ordering operator, and A4 is the fourth
component, in Euclidean space, of the gluon fields. The
Polyakov loop can be incorporated into the model through
the substitution pμ → pμ þ Aμ [25]. The Polyakov gauge
[39] is considered, where only A3

μ and A8
μ are nonvanishing

and, as in [40–44], A8
μ ¼ 0. Then, in Minkowski space

FIG. 10. Poles of the propagator for the half-integer Lorentzian
regulator.
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0

FIG. 11. Behavior of σ̄ as a function of temperature. The solid
line corresponds to the solution from counting all the poles. The
dashed line is the solution from counting onlyM1, and the dotted
line is the solution from counting only M2, M3, and M4.
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Aμ ¼ i
λ3
2
A3
0δμ0 ≡ i

λ3
2
ϕδμ0; (37)

where λ3 is the third Gell-Mann matrix in SUð3Þ color
space. The propagator is then

SðpÞ ¼ ðp − ΣðqÞÞ−1; (38)

where p0 ¼ q0 þ iϕ
2
λ3 and p ¼ q, q being the four-

momentum in Minkowski space. To look at the poles of
the propagator, it can be rewritten like

SðpÞ ¼ ðpþ ΣðqÞÞðpþ ΣðqÞÞ−1ðp − ΣðqÞÞ−1: (39)

Here ðpþ ΣðqÞÞ−1ðp − ΣðqÞÞ−1 is a matrix in Lorentz and
color space. This matrix can be inverted and the propagator
rewritten as

Sðϕ; qÞ ¼ pþ Σ
ðq2 − Σ2ðqÞÞ½ðq2 − Σ2ðqÞ − ϕ2=4Þ2 þ q20ϕ

2�K;
(40)

where K ¼ I ⊗ L. Here, I is the identity matrix in Lorentz
space, and L is a matrix in color space with no singularities:

L ¼ diagððq2 − Σ2ðqÞÞ
�
q2 − Σ2ðqÞ − iq0ϕ −

ϕ2

4

�

× ðq2 − Σ2ðqÞÞ
�
q2 − Σ2ðqÞ þ iq0ϕ −

ϕ2

4

�

×

����q2 − Σ2ðqÞ þ iq0ϕ −
ϕ2

4

����
2
�
: (41)

From Eq. (40), it is clear that the usual poles we had
at q2 − Σ2ðqÞ ¼ 0 are still there, but new poles have
been added through the Polyakov loop. Such poles are
solutions to

ðq2 − Σ2 − ϕ2=4Þ2 þ q20ϕ
2

¼ ðq2 − Σ2ðqÞ − ϕ2=4Þ2 þ ðqμA3
μÞ2 ¼ 0: (42)

This last equation is explicitly Lorentz covariant, so poles
can be searched for in a reference frame where q ¼ 0.
In this manner, the new poles that have been included
through the Polyakov loop can be found by solving
ðq20 − Σ2 − ϕ2=4Þ2 þ q20ϕ

2 ¼ 0. Of course, for ϕ ¼ 0 we
recover the poles we had before. This allows us to study the
behavior of a single pole as a function of the Polyakov loop.
In Ref. [26], the Gaussian regulator for parameter set A

was shown to have softened the instabilities once the
Polyakov loop is included. As was discussed previously
in this paper, the main instability present in this case was
caused by a negative real part pole. In this manner, since the
instability is softened, the Polyakov loop should have a
stabilizing effect on this pole.

Figure 12 shows the evolution of the pole with a negative
real part as a function of the Polyakov loop. As can be
seen, the real part of the pole becomes positive at
ϕ ¼ �338 MeV. Also, the imaginary part becomes
smaller. It is clear that if ϕ ¼ 0 MeV, then the usual poles
are recovered and the instability would remain. However,
once ϕ shifts to nonvanishing values, the poles divide
themselves. The old poles will still be there, but new poles
will also appear. If we focus in the negative real part pole,
responsible for the instability, at nonvanishing values of the
Polyakov loop, this pole will remain, but a new pole will
appear that no longer has a negative real part. When
ϕ ¼ 0 MeV, both factors in the denominator of Eq. (40)
contribute to the appearance of the negative real part pole.
On the other hand, once ϕ is nonvanishing, only one of
those factors will produce the negative real part pole, while
the other will give rise to the new pole in Fig. 12. In this
manner, the contribution of the negative real part pole
should be reduced in the case of a nonvanishing Polyakov
loop, and, hence, the instability will be softened. This is the
reason behind the softening of instabilities found in
Ref. [26] for the Gaussian regulator.

VIII. CONCLUSIONS

The appearance of thermodynamic instabilities in the
thermal nonlocal NJL model for three different regulators
has been studied. For all three regulators it was shown that
the instabilities were caused by the presence of highly
unstable poles of the propagator, i.e., poles with negative
real parts or big imaginary parts. The removal of these poles
eliminates the instability. On the other hand, well-defined
quasiparticles, i.e., real poles and poles with small

FIG. 12. Behavior of the negative real part pole from set A of
the Gaussian regulator as a function of the Polyakov loop. The
solid line is the real part of the pole, and the dashed line is the
imaginary part. Computations were made at σ̄ ¼ σ̄0.

UNSTABLE QUASIPARTICLES AS A SOURCE OF … PHYSICAL REVIEW D 89, 076010 (2014)

076010-9



imaginary parts, contribute to the expected behavior from a
condensate, and instabilities are not present when only
these poles are considered.
The highly unstable poles do not represent well-

defined quasiparticles because of their big decay widths.
Furthermore, since we introduce bosonic fields, we con-
sider bound states of these poles. However, these highly
unstable poles will not form well-defined bound states. In
this manner, when working in the mean field approxima-
tion, one should remove these highly unstable poles by
deforming the integration path in Fig. 1. Also, in some
cases, the instability may be avoided by searching for a set
of parameters for which there are no highly unstable poles
of the propagator.

It was also shown how the softened instabilities in the
Gaussian regulator with a Polyakov loop may be under-
stood by the effect the Polyakov loop has on the poles. The
contribution of the negative real part pole in this case is
reduced by the presence of the Polyakov loop, and a new
pole is introduced. It is this fact that contributes to soften
the instabilities.
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