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In connection with massless two-flavor QCD, we analyze the chiral symmetry restoring phase transition
using three distinct gluon-quark vertices and two different assumptions about the long-range part of the
quark-quark interaction. In each case, we solve the gap equation, locate the transition temperature Tc, and
use the maximum entropy method to extract the dressed-quark spectral function at T > Tc. Our best
estimate for the chiral transition temperature is Tc ¼ 147� 8 MeV, and the deconfinement transition is
coincident. For temperatures markedly above Tc, we find a spectral density that is consistent with those
produced using a hard thermal loop expansion, exhibiting both a normal and plasmino mode. On a domain
T ∈ ½Tc; Ts�, with Ts ≃ 1.5Tc, however, with each of the six kernels we considered, the spectral function
contains a significant additional feature. Namely, it displays a third peak, associated with a zero mode,
which is essentially nonperturbative in origin and dominates the spectral function at T ¼ Tc. We suggest
that the existence of this mode is a signal for the formation of a strongly coupled quark-gluon plasma and
that this strongly interacting state of matter is likely a distinctive feature of the QCD phase transition.
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I. INTRODUCTION

It is widely held that experiments at the relativistic heavy
ion collider (RHIC) have produced a quark-gluon plasma
(QGP) [1–4]. Analyses of RHIC experiments [5,6], which
couple viscous fluid dynamics for the QGP with a micro-
scopic transport model for hadronic freeze-out, have related
the measured elliptic flow, v2, to the ratio η=s, where
η, s are, respectively, the medium’s shear viscosity and
entropy density. Such studies yield 1 < 4πη=s < 2.5 on the
domain 1≲ T=Tc ≲ 2, where Tc is the temperature
required for QGP creation.
To place this result in context we note that an ideal fluid

has η ¼ 0, and hence no resistance to the appearance and
growth of transverse velocity gradients. A perfect fluid with
near-zero viscosity is the best achievable approximation to
that ideal. Arguments within string theory have been used
to suggest that in gauge theories with a gravity dual one has
a lower bound on viscosity; viz. [7], 1 ≤ 4πη=s. The RHIC
result above has therefore led many to conclude that the
QGP is an almost perfect fluid on 1≲ T=Tc ≲ 2; i.e., it as
close as physically achievable to the case of zero viscosity.
Considering Newton’s law for viscous fluid flow; viz.,

ðv=dÞ ¼ ð1=ηÞðF=AÞ, it is apparent that in near-perfect
fluids a macroscopic velocity gradient is achieved from a
microscopically small pressure. Strong interactions between
particles constituting the fluid are necessary to achieve this
outcome. Hence the medium produced at RHIC is com-
monly described as a strongly coupled quark gluon plasma
(sQGP), in which case its properties should differ substan-
tially from those anticipated via perturbation theory.
Quantum chromodynamics (QCD) is known to produce

the bulk of the mass of normal matter [8,9]. The T ¼ 0

theory is characterized by confinement and dynamical
chiral symmetry breaking (DCSB), phenomena that are
represented by a range of order parameters, some or all of
which vanish in the sQGP. Understanding the sQGP
therefore requires elucidation of the behavior and proper-
ties of quarks and gluons within this state. Perturbative
techniques have been developed for use far above Tc; viz.,
the hard thermal loop (HTL) expansion [10,11], which has
enabled the computation of gluon and quark thermal
masses mT ∼ gT and damping rates γT ∼ g2T, with g ¼
gðTÞ being the strong running coupling. It also suggests the
existence of a collective plasmino or “abnormal” branch to
the dressed-quark dispersion relation, which is character-
ized by antiparticle-like evolution at small momenta [12].
Owing to asymptotic freedom, the running coupling in

QCD increases as T → Tþ
c . Therefore, a simple interpre-

tation of the HTL results suggests the plasmino should
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disappear before Tc is reached from above because γT
increases more rapidly than mT and γT=mT ∼ 1 invalidates
a quasiparticle picture. On the other hand, nonperturbative
studies using lattice-regularized quenched QCD [13] or
Dyson-Schwinger equations (DSEs) [14] suggest that the
plasmino branch persists in the vicinity of Tc.
Resolving the active degrees of freedom in the neighbor-

hood of Tc is important because the spectral properties of the
dressed-quark propagator are intimately linked with light-
quark confinement [9,15–23] and it is long-range modes
which might produce strong correlations. Further in this
connection, there is an accumulating body of evidence that,
in addition to the normal and plasmino modes, an essentially
nonperturbative fermionic zero mode exists on a material
domain of T > Tc [14,24–27] and, moreover, that the
domain upon which it exists defines the extent of the sQGP.
Hitherto, however, those studies which expose the zero

mode have worked in the simplest symmetry-preserving
approximation of the DSEs; i.e., they have effectively used
the rainbow-ladder (RL) truncation. That truncation may be
characterized as incorporating dressing only for the γμ
component of the gluon-quark vertex [28–31]. It is accurate
for ground-state vector and isospin-nonzero-pseudoscalar
mesons [32–34], and nucleon and Δ properties [35–38]
because corrections in these channels largely cancel, owing
to parameter-free preservation of the Ward-Green-Takahashi
identities [39–41]. However, they do not cancel in other
channels [42–45]. Hence studies based on the RL truncation,
or low-order improvements thereof, have usually provided
poor results for scalar and axial-vector mesons [46–51],
produced masses for exotic states that are too low in com-
parisonwith other estimates [46,47,51–53], and exhibit gross
sensitivity to model parameters for excited states [52–55]
and tensor mesons [56]. In these circumstances one must
conclude that physics important to these states is omitted.
Given these observations, it is evidently worth analyzing

both the impact of more sophisticated gluon-quark vertices
on the T ≠ 0 phase transitions, and whether they affect the
existence and appearance of the normal, plasmino and zero
modes. Likewise, one should determine the impact of
different assumptions about the long-range part of the
quark-quark interaction. To that end, herein we employ
three different vertex Ansätze—the rainbow, Ball-Chiu
(BC) [57] and anomalous magnetic moment-improved
(DB) [58–64] structures; and two different interactions—
Maris-Tandy (MT) [30,31] and Qin-Chang (QC) [52,53].
With each of the six permutations that these inputs allow,
we solve the gap equation, locate the transition temperature
Tc, and use the maximum entropy method (MEM) to
extract the dressed-quark spectral function at T > Tc. The
latter contains the information needed in order to expose
the properties of fermionic modes in the sQGP.
Our report is arranged as follows. Section II describes the

quark gap equation, the vertex Ansätze and the interaction
models. Section III recapitulates upon the MEM and

explains our use of the method. Numerical results are
explained in Sec. IV; and we summarize in Sec. V.

II. QUARK DSE

At nonzero temperature, the gap equation is [65]

Sð~p; iωnÞ−1 ¼ ZA
2 i~γ · ~pþ Z2iγ4ωn

þ T
X
l

4

3

Z
d3q
ð2πÞ3 g

2Dμνð~p − ~q;ωn − ωlÞ

× ðZA
1 γ

T
μ þ Z1γ

L
μ ÞSð~q; iωlÞΓνð~q;ωl; ~p;ωnÞ;

(1)

where Sð~p; iωnÞ is the dressed-quark propagator, with
ωn ¼ ð2nþ 1ÞπT, n ∈ Z being the fermion Matsubara
frequency; Dμν is the dressed-gluon propagator; Γν is the
dressed-quark-gluon vertex; Z1;2, ZA

1;2 are, respectively,
vertex and wave function renormalization constants;
and γTμ ¼ γμ − γLμ , with γLμ ¼ uμγαuα and u ¼ ð0; 0; 0; 1Þ.
We use the same renormalization scheme and scale as
Refs. [66,67].
The solution of Eq. (1) has the form

Sð~p; iωnÞ−1 ¼ i~γ · ~pAð~p2;ωnÞ þ iγ4ωnCð~p2;ωn; Þ
þ Bð~p2;ωn; Þ: (2)

The chiral limit is defined by m̂ ¼ 0, where m̂ is the
renormalization group invariant current-quark mass. If
Bð~p2;ωnÞ ≠ 0 in that limit, then chiral symmetry is
dynamically broken and the symmetry is realized in the
Nambu mode. The critical temperature for chiral symmetry
restoration is that value of T ¼ Tc abovewhichBð~p2;ωnÞ≡
0 is the only solution to Eq. (2). This situation defines the
Wigner phase. In DSE studies conducted to date, the critical
temperature for chiral symmetry restoration typically coin-
cides with that for deconfinement [14,27,65–71].

A. Vertices

The gap equation is defined once the elements in its
kernel are specified. A simple kernel is obtained using the
rainbow truncation

ΓR
μ ð~q;ωl; ~p;ωnÞ ¼ γμ; (3)

with all associated dressing of this Dirac matrix structure
absorbed into the interaction g2Dμνðωn − ωlÞ [30,72].
A more sophisticated Ansatz, which includes some

aspects of DCSB in the vertex, is obtained with [57]

ΓBC
μ ð~q;ωl; ~p;ωnÞ

¼ γTμΣA þ γLμΣC þ ðpn þ qlÞμ
×

�
1

2
γTαðpn þ qlÞαΔA þ 1

2
γLα ðpn þ qlÞαΔC − iΔB

�
;

(4)
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with (F ¼ A, B, C)

pn ¼ ð~p;ωnÞ; ql ¼ ð~q;ωlÞ;

ΣFð~q2;ω2
l ; ~p

2;ω2
nÞ ¼

1

2
½Fð~q2;ω2

l Þ þ Fð~p2;ω2
nÞ�;

ΔFð~q2;ω2
l ; ~p

2;ω2
nÞ ¼

Fð~q2;ω2
l Þ − Fð~p2;ω2

nÞ
q2l − p2

n
: (5)

It is shown elsewhere [58–64] that Eq. (4) is incomplete
in the presence of DCSB. A dressed-quark anomalous
chromomagnetic moment term must also be included.
Defining σμν ¼ ði=2Þ½γμ; γν�, Tμν ¼ δμν − kμkν=k2, one
can express this improvement as

ΓDB
μ ¼ ΓBC

μ þ ΓACM
μ ; (6)

ΓACM
μ ¼ ΓACM4

μ þ ΓACM5
μ ; (7)

ΓACM4
μ ¼ ½Tμνlνγ · kþ iTμνγνσρσlρkσ�τ4ðp; qÞ; (8)

ΓACM5
μ ¼ σμνkντ5ðp; qÞ; (9)

τ4 ¼
4τ5ðp; qÞ½Mðp2Þ þMðq2Þ�
p2 þMðp2Þ2 þ q2 þMðq2Þ2 ; (10)

where k ¼ p − q, l ¼ ðpþ qÞ=2, τ5 ¼ ςΔB with ς ¼ 0.65,
andMðxÞ ¼ BðxÞ=AðxÞ. N.B. For T ≥ Tc, ΓDB

μ ¼ ΓBC
μ ; but

this does not entail identical results for BC and DB vertices
at T > Tc because a realistic description of in-vacuum
physics requires a different value of the interaction strength
in each case, as discussed below in connectionwith Eq. (17).

B. Interactions

A widely used form for the interaction g2Dμν is that
presented in Ref. [31]. However, as explained elsewhere
[52,53], some aspects of the infrared behavior of that
interaction, notably its zero at k2 ¼ 0, are in stark conflict
with the results of modern DSE and lattice studies. Those
analyses indicate that the gluon propagator is a bounded,
regular function of spacelike momenta, which achieves its
maximum value on this domain at k2 ¼ 0 [73–84]; and the
dressed-quark-gluon vertex does not possess any structure
which can qualitatively alter this behavior [85,86]. The
interaction in Refs. [52,53] expresses these features.
Herein we consider both types of interaction, which at

nonzero temperature can be represented in the form [67]

g2Dμνð~p − ~q;ωn − ωlÞΓνð~q;ωl; ~p;ωnÞ
¼ ½Pμν

T ðkΩÞDTðkΩÞ þ Pμν
L ðkΩÞDLðkΩÞ�Γν; (11)

where Γν is one of the Ansätze in Sec. II A;
kΩ ≔ ð~k;ΩÞ ¼ ð~p − ~q;ωn − ωlÞ;

Pμν
T ðkΩÞ ¼

(
0; μ and=or ν ¼ 4;

δij −
kikj
k2 ; μ; ν ¼ 1; 2; 3;

(12)

with Pμν
L þ Pμν

T ¼ δμν − kμΩk
ν
Ω=k

2
Ω; and

DTðkΩÞ ¼ Dðk2Ω; 0Þ; DLðkΩÞ ¼ Dðk2Ω; m2
gÞ; (13)

where sΩ ¼ k2Ω ¼ Ω2 þ ~p2 þm2
g and, in generalizing to

T ≠ 0, we have followed perturbation theory and included
a Debye mass in the longitudinal part of the gluon
propagator: m2

g ¼ ð16=5ÞT2.
Following this procedure, the interactions in

Refs. [31,52] are represented via

Dðk2Ω;m2
gÞ ¼Dirðk2Ω;m2

gÞ þ
8π2γm

ln½τþ ð1þ sΩ=Λ2
QCDÞ2�

F ðsΩÞ;

(14)

with F ðsΩÞ¼ð1−expð−sΩ=4m2
t Þ=sΩ, τ¼e2−1, mt¼

0.5GeV, γm ¼ 12=25, Λ
Nf¼4

QCD ¼ 0.234 GeV; and,
respectively,

DMT
ir ðk2Ω; m2

gÞ ¼ 4π2D
sΩ
w6

e−sΩ=w
2

; (15)

DQC
ir ðk2Ω; m2

gÞ ¼ 8π2D
1

w4
e−sΩ=w

2

; (16)

where, as we now explain, w is a parameter
and wD ¼ fixed.

C. Qualitative features of the kernels

It is worth reiterating that at T ¼ 0 each of the six kernels
constructed from the elements expressed in Secs. II A, II B
reproduce the results of perturbative QCD for
p2 ≳ 2 GeV2, so any model dependence is restricted to
the infrared. The single model parameter, w, is fixed by
requiring that a particular kernel provides the best possible
description of a diverse array of ground-state meson
observables [31,52,53,62]. As made apparent in
Refs. [52,53,87,88], there is typically a material domain
of w within which the predicted value for observables is
unchanged so long aswD ¼ constant. Herein we primarily
use the following values, in GeV:

MT

QC

rainbow BC DB
ðwDÞ1=3 0.72 0.54 0.40

w 0.4 0.4 0.4
ðwDÞ1=3 0.80 0.60 0.53

w 0.5 0.5 0.5

; (17)

which are those determined elsewhere [31,52,53,62],
modified slightly, if necessary, so as to ensure a uniform
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result for the chiral-limit value of the in-pion condensate
[30,89–93]: hq̄qiπ1 GeV ¼ ð−0.24 GeVÞ3.
It is notable that the extension of these interaction kernels

to T > 0 preserves the agreement with perturbative QCD at
large spacelike momenta. However, an insufficiency of the
interactions is that D, the parameter expressing their
infrared strength for fixed w, is assumed to be T inde-
pendent. Since the nonperturbative part of the interaction
should be screened for T ≳ Tc, we remedy that by writing
D → DðTÞ with

DðTÞ ¼ D

(
1; T < Tp;

a
bþln½T=ΛQCD� ; T ≥ Tp

; (18)

where Tp is a “persistence” temperature; i.e., a scale below
which nonperturbative effects associated with confinement
and dynamical chiral symmetry breaking are not materially
influenced by thermal screening. Logarithmic screening is
typical of QCD and we take Tp ¼ Tc herein. The param-
eters a, b are fixed by applying the constraint mT ¼ 0.8 T
for T ≳ 2Tc; viz., requiring a thermal quark mass consistent
with lattice QCD [13], a procedure which yields

MT

QC

rainbow BC DB
10a 0.30 0.30 0.25
b 0.56 0.41 0.62
10a 0.29 0.53 0.57
b 0.53 0.35 0.58

: (19)

III. MAXIMUM ENTROPY METHOD

The solution of Eq. (1) can be used to compute the
retarded real-time propagator

SRð~p;ωÞ ¼ Sð~p; iωnÞjiωn→ωþiηþ ; (20)

from which one may obtain the spectral density

ρð~p;ωÞ ¼ −2ℑSRð~p;ωÞ: (21)

Equations (20) and (21) are equivalent to the statement:

Sð~p; iωnÞ ¼
1

2π

Z þ∞

−∞
dω0 ρð~p;ω0Þ

ω0 − iωn
: (22)

N.B. If one requires a non-negative spectral density, then
Eq. (22) is only valid on the deconfined domain.
In the absence of DCSB, the spectral density associated

with the propagator in Eq. (2) can be expressed

ρð~p;ωÞ ¼ ρþðj~pj;ωÞPþ þ ρ−ðj~pj;ωÞP−; (23)

where P� ¼ ðγ4 � i~γ · ~upÞ=2, ~up · ~p ¼ j~pj, are operators
which project onto spinors with a positive or negative value
for the ratio H ≔ helicity=chirality: H ¼ 1 for a free

positive-energy fermion. By analogy with Eq. (23), one
may write

Sð~p;ωÞ ¼ Sþðj~pj;ωÞPþ þ S−ðj~pj;ωÞP−: (24)

The spectral density is interesting and expressive
because it reveals the manner by which interactions
distribute the single-particle spectral strength over momen-
tum modes; and the behavior at T ≠ 0 shows how that is
altered by a heat bath. As with many useful quantities,
however, it is nontrivial to evaluate ρðj~pj;ωÞ. Nonetheless,
if one has at hand a precise numerical determination of the
dressed-quark propagator in Eq. (2), then it is possible to
obtain the spectral density via the MEM [94], as we shall
shortly explain.
The dressed-quark propagator is a matrix-valued com-

plex function. Further analysis can therefore be simplified
by employing a Fourier transform of Eq. (22). Using the
identity

T
X
n

e−iωnτ

ω − iωn
¼ e−ωτ

1þ e−ω=T
; (25)

combined with Eqs. (23) and (24), then Eq. (22) entails

D�ðj~pj; τÞ ≔ T
X
n

e−iωnτS�ðj~pj; iωnÞ (26)

¼
Z þ∞

−∞

dω
2π

ρ�ðj~pj;ωÞ
�

e−ωτ

1þ e−ω=T

�
: (27)

It is in connection with Eq. (27), which defines real-valued
functions, that the MEM may be used effectively.
The MEM [94–97] is an approach that can be used to

solve an ill-posed inversion problem, in which the number
of data points is much smaller than the number of degrees
of freedom available to the function whose reconstruction is
sought. Its basis is Bayes’ theorem in probability theory
[98], which states the probability of an event “A,” given that
a condition “B” is satisfied:

PðAjBÞ ¼ PðBjAÞPðAÞ
PðBÞ ; (28)

where, within the sample space, PðBjAÞ is the probability
that events of type A satisfy the condition B (likelihood
function); PðAÞ is the total probability that event A can
occur (prior probability); PðBÞ is the total probability that
condition B is satisfied (normalization).
In using the MEM to reconstruct the spectral density, one

works with the conditional probability that a spectral
function ρðωÞ corresponds to a correlation function DðτÞ:

P½ρjDM� ¼ P½DjρM�P½ρjM�
P½DjM� ; (29)
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where M represents the body of all definitions and prior
knowledge of the spectral function.
According to the central limit theorem, the natural choice

for the likelihood functional is

P½DjρM� ¼ 1

ZL
e−L½ρ�; (30)

L½ρ� ¼
XNdata

i

ðDdataðτiÞ −DρðτiÞÞ2
2σ2i

; (31)

where ZL is a normalization factor; fDdataðτiÞ; i ¼
1;…; Ndatag are computed from the solution of the gap
equation, Eq. (1), using Eq. (26); and fDρðτiÞ; i ¼
1;…; Ndatag are obtained from Eq. (27) using any given
model for ρðωÞ. One typically chooses σi ¼ sDdataðτiÞ,
with s≲ 0.01.
The central feature of the MEM is the prior probability,

which is here expressed in terms of the spectral entropy

P½ρjMðα;mÞ� ¼ 1

ZS
eαS½ρ;m�; (32)

where ZS is a normalization factor, α is a positive-definite
scaling factor, and the exponent involves the Shannon-
Jaynes entropy [99–101]

S½ρ;m� ¼
Z

∞

−∞

�
ρðωÞ −mðωÞ − ρðωÞ log ρðωÞ

mðωÞ
�
: (33)

The quantity mðωÞ is the “default model” of the spectral
function, which is usually chosen to be a uniform distri-
bution so as to avoid assumptions about the structure of the
spectral density [14]; viz.,

mðωÞ ¼ m0θðΛ2 − ω2Þ: (34)

A MEM result for ρðωÞ is considered reliable if it does not
depend on the choices for m0, Λ.
Given a value of α, the most probable spectral function,

ραðωÞ, is obtained by maximizing P½ρjDMðα;mÞ�. This
may be achieved via the singular-value decomposition
algorithm in Ref. [95]; and dependence on the scale factor
α can also be eliminated by following Ref. [95] and
defining the MEM result for the spectral density as

ρ̄ðωÞ¼
Z

∞

0

dα
Z
DρðωÞρðωÞP½ρjDMðα;mÞ�P½αjDMðmÞ�;

(35)

where the second is a functional integral and
P½αjDMðα;mÞ� is the conditional probability distribution
for α. In readily workable cases, P½ρjDMðα;mÞ� is sharply
peaked in the neighborhood of a single function ραðωÞ, in
which case Eq. (35) yields

ρ̄ðωÞ ≈
Z

∞

0

dαραðωÞP½αjDMðmÞ�: (36)

At this point, Bayes’ theorem can again be employed to
obtain

P½αjDMðmÞ� ∝
Z

DρðωÞP½αjMðmÞ�P½ρjDMðα;mÞ�;
(37)

where we have used the fact that a sensible result is only
achieved if it is independent of the default model, Eq. (34).
N.B. The conditional probability P½αjMðmÞ� is indepen-
dent of ρðωÞ; and if one considers α and M to be
independent, then P½αjMðmÞ� is simply a constant.
As noted above, in practically workable instances,

P½ρjDMðα;mÞ� is sharply peaked in the neighborhood
of a single function ραðωÞ, so the functional integral in
Eq. (37) is accurately estimated using Laplace’s method,
with the result [95]

P½αjDMðmÞ�

≈
1

ZΛ
exp

�
1

2

X
k

ln

�
α

αþ λk

��
P½ραjDMðα;mÞ�; (38)

where ZΛ is a normalization constant and fλkg is the set of
eigenvalues of the real, symmetric matrix

ΛijðραÞ ¼ ρ
1
2

i
∂2L½ρ�
∂ρi∂ρj ρ

1
2

j

����
ρ¼ρα

; (39)

where the set fρig represents a discretized version of the
function ρðωÞ; i.e., the set of values of ρðωÞ obtained by
evaluating the function on a large but finite number of
points ω ∈ R.
Inserting Eq. (38) into Eq. (36), we have our MEM result

for the spectral function.

IV. RESULTS AND DISCUSSION

A. Critical temperature, Tc

We first solve the gap equation in the chiral limit using
each of the six interactions specified in Sec. II and the
interaction parameters in Eq. (17). Using the solutions and
the chiral susceptibility criterion in Ref. [102], we obtain
the critical temperatures for chiral symmetry restoration
(in GeV):

rainbow BC DB
MT 0.135 0.150 0.143
QC 0.142 0.160 0.149

: (40)

Since these values do not differ widely and are obtained
using interaction kernels that provide equivalent descrip-
tions of π and ρ meson properties, then we judge it
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reasonable to combine them in order to obtain a DSE
prediction for the transition temperature in two-flavor
chirally symmetric QCD:

Tc ¼ 147� 8 MeV; (41)

where the error indicates standard deviation from the
average. A recent lattice-QCD analysis of the chiral
transition temperature in a theory with two massless flavors
yields Tc ¼ 154� 9 MeV [103].
Notably, by employing a straightforward generalization

of the inflection point criterion introduced in Refs. [22,23],
one can readily establish that in all cases reflection
positivity is violated for T < Tc, which signals confine-
ment. On the other hand, the spectral function is non-
negative for T > Tc. Hence, deconfinement is coincident
with chiral symmetry restoration for all interaction kernels
in our study.

B. Far above Tc

With the dressed-quark propagator in hand it is straight-
forward to determine the MEM spectral function; and so we
first checked the approach by computing the spectral
function with our six kernels on T ≳ 3Tc. The results
are all qualitatively and semi-quantitatively equivalent.
They are also consistent with HTL calculations [11], as
apparent in Fig. 1, which shows that our approach yields
both a normal and plasmino mode, with

ω�ðj~pjÞ ¼p∼0mT � 0.33j~pj: (42)

The plasmino dispersion law exhibits the expected mini-
mum, in this case at j~pj=T ≃ 2=3; and both ω�ðj~pjÞ
approach free-particle behavior at j~pj ≫ T, with that of
the plasmino approaching this limit from below. The right
panel shows that the contribution to the spectral density
from the plasmino is strongly damped and contributes little
for p≳ 3T. These results are in line with those obtained via
simulations of lattice QCD [13].
It is anticipated from HTL analyses that T > 0 propa-

gators exhibit branch cuts whose appearance can be
attributed to the opening of scattering channels that are
absent at T ¼ 0 [104]; and isolated single quasiparticle
poles may broaden to yield a finite lifetime at nonzero
temperature [105]. In our analysis, however, such branch
cuts do not materially contribute to the nonperturbatively
determined spectral density and the spectral peaks are
sharp. This is plausible because a branch point is a lower-
order nonanalyticity than a pole; namely, in numerical
studies, poles are features with large height, very narrow
width and significant spectral strength, whilst branch points
are low, broad features with lesser spectral strength. Thus,
compared with poles, branch points may be invisible to a
given numerical procedure. This is similarly true for a small
but nonzero width. Uncovering these features would

probably require fine tuning within the MEM, or any other
method.
Subject to these observations, we have checked whether

our numerical results omits significant spectral strength by
testing two sum rules for the spectral function:

Z2

Z
∞

−∞

dω0

2π
ρ�ðj~pj;ω0Þ ¼ 1; (43)

hωi ≔ Z2
2

ZA
2

Z
∞

−∞

dω0

2π
ω0ρ�ðj~pj;ω0Þ ¼ j~pj: (44)

Regarding Eq. (43), we find that ∀ T > Tc

Z2

Z
∞

−∞

dω0

2π
ρ�ðj~pj;ω0Þ ¼ Z2

X
Q¼þ;−

ZQ; (45)

namely, the sum rule is saturated by the residues of the
normal and plasmino modes, a result that Fig. 1 illustrates
for T ¼ 3Tc. We discuss the case of T ≳ Tc in Sec. IV C.
The second sum rule, Eq. (44), is readily checked. We

illustrate the result for T ¼ 3Tc in Fig. 2 using the QC
interaction with the rainbow and DB vertices: the sum rule
is satisfied to a high degree of accuracy, limited only by the
error on our MEM extraction of the spectral function. The
results from the other kernels are semiquantitatively
equivalent.

C. Neighborhood of Tc

In Fig. 3 we depict the T > Tc dependence of the
locations of the poles in ρð~p ¼ 0;ωÞ; i.e., the thermal
masses. Plainly, as also found for temperatures significantly
larger than Tc, spectral strength is located at ωþð~p ¼ 0Þ and
ω−ð~p ¼ 0Þ ¼ −ωþð~p ¼ 0Þ, corresponding to the fermion’s
normal and plasmino modes. Notable, however, is that on a
measurable T domain, spectral strength is also associated
with a quasiparticle excitation described by ω0ð~p ¼ 0Þ ¼ 0.
The appearance of this zero mode is an essentially non-
perturbative effect. It was previously found using the MT

FIG. 1 (color online). Left panel: quasiparticle dispersion
relations at T ¼ 3Tc, where ωþð−Þ denotes normal (plasmino)
mode. Diagonal dashed line: free-fermion dispersion relation at
this temperature. Right panel: Momentum dependence of the
residues associated with these quasiparticle poles. Results ob-
tained with rainbow vertex, Eq. (3), and QC interaction, Eq. (16).
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interaction in the rainbow truncation [14]. This mode is an
outgrowth of the evolution in-medium of the gap equation’s
T ¼ 0 Wigner-type solution and its appearance here is
analogous to the Wigner solution’s persistence at nonzero
current-quark mass in vacuum [106–111].
We find that with all interaction kernels, the spectral

density possesses support associated with this zero mode
on T ∈ ½0; Ts�, where the value of Ts depends mildly on the
interaction, changing by no more than 6% over the
collection we have considered. As found previously [14]
with the rainbowþMT kernel, Eqs. (3) and (15), all the
Wigner-phase spectral strength is located within this mode
at T ¼ 0; it is the dominant contribution for T ≳ Tc; and,
while it is dominant, it is the system’s longest wavelength
collective mode. On the other hand, as evident in the right
panel of Fig. 3, the mode’s spectral strength diminishes
uniformly with increasing T and finally vanishes at

Ts=Tc ¼ 1.42� 0.07: (46)

Then, for T > Ts the quark’s normal and plasmino modes
exhibit behavior that is broadly consistent with HTL
calculations, as described in Sec. IV B. Most notable,
perhaps, is that the thermal masses associated with these
modes are a little larger in magnitude when the QC
interaction is used. Given these observations and their lack
of material sensitivity to the interaction kernel, we judge
that the system should be considered as a sQGP for
T ∈ ½Tc; Ts�, whereupon it contains a long-range collective
mode.
One caveat should be borne in mind when considering

this assessment; viz., all interaction kernels we have
considered lie within the mean-field class. The effect
of resonant contributions to the gap equation kernel
[112–115] should be checked. However, so long as such
contributions do not materially affect the T ¼ 0 Wigner-
mode solution of the gap equation, and there is no sign that

they do, then our conclusions should qualitatively be
unaffected.
In Fig. 4 we display the dispersion relations for each

quasiparticle mode and the momentum dependence of their
residues at T ¼ 1.1Tc. The results are qualitatively and
semiquantitatively similar in all cases. The zero mode
dominates the spectral density at lower momenta but this
role passes to the normal mode at larger momenta. The
momentum at which the switch takes place depends weakly
on the gap equation’s kernel: it is approximately 0.5 GeV
for the rainbow and BC vertices, Eqs. (3) and (4), and
approximately 0.6 GeV for the DB vertex, Eq. (6). The
j~pj ¼ 0 values of the normal and plasmino mode residues
are identical in all cases but the plasmino’s residue, and
hence its contribution to the spectral density, vanishes
quickly with increasing momentum. Correlated with this,
the “effective mass” of the plasmino mode; i.e., ω−ðj~pjÞ, is
always greater than that of the normal mode for j~pj > 0. In
the absence of the zero mode; i.e., for T > Ts, this pattern is
reversed (see, e.g., Fig. 1).
It is notable, and also a useful check on our results, that

for each value of j~pj the sum rule in Eq. (43) is saturated,

FIG. 2 (color online). Numerical check of the momentum sum
rule in Eq. (44): solid curve: DB vertex, Eq. (6), with QC
interaction, Eq. (16); dashed: rainbow vertex, Eq. (3), plus QC;
dotted: ideal reference result. The curves would be indistinguish-
able with a perfect reconstruction of the spectral density.

FIG. 3 (color online). Left panels: Temperature dependence of
the dressed-quark thermal masses. Notably, spectral strength is
associatedwith amasslessmode.Right panels:T dependence of the
residue associated with that zero mode. From top to bottom: QC
interaction and rainbow vertex; MTþ BC; and QCþ DB.
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within MEM numerical error, by the addition of all
residues. For example, with the DB vertex, Eq. (6), and
QC interaction, Eq. (16), (bottom right panel of Fig. 4):

j~pj=GeV Zþ Z0 Z− Σi¼þ;0;−Zi

0.10 0.13 0.75 0.11 0.99
0.27 0.21 0.71 0.09 1.01
0.57 0.45 0.50 0.06 1.01

: (47)

We note that Eq. (18) is a model and it is natural to
enquire after its influence. None of our results are quali-
tatively altered by varying Tp but, as one would expect, the
width of the sQGP domain expands slowly with increasing
Tp; e.g., a 50% increase in Tp typically produces a roughly
30% increase in Ts.

D. Survey of interaction kernels

In order to complete our investigation, we computed
the critical temperature for chiral symmetry restoration and
the zero mode’s survival domain in each model on that
domain of interaction strengths which preserves a uniform
value for the chiral-limit value of the in-pion condensate;

viz., hq̄qiπ1 GeV ≈ ð−0.24 GeVÞ3. The results are listed in
Table I and depicted in Fig. 5.
The trends are clear and uniform across all six models.

Namely, the relative width of the survival domain increases
as the absolute value of the critical temperature diminishes;
and, as observed elsewhere [102], Tc decreases as the
confinement length scale rw ¼ 1=w decreases.
The panels in Fig. 5 show that the variation domains

for each interaction overlap considerably and hence it is
sensible to list their averages as conservative measures
of the critical temperature and zero mode survival
domain:

Tc ¼ 0.131� 0.014 GeV; Ts=Tc ¼ 1.53� 0.12: (48)

These values are consistent with those in Eqs. (41),
(46). The latter describe estimates based on parameter
values at the midpoint of the domain within which zero
temperature observables show almost no sensitivity to
parameter variation (see the introduction to Sec. II C).
[N.B. The uncertainty on Ts does not include a
response to variations of Tp in Eq. (18). Should good
reason be offered for Tp > Tc, then, as remarked
already, this will modestly increase the central value
of Ts=Tc.]

FIG. 4 (color online). Left panels: Calculated dispersion rela-
tions, ω�;0, for all quasiparticles at T ¼ 1.1Tc; and right panels:
momentum dependence of the residues of the poles. As in Fig. 3,
from top to bottom: QC interaction and rainbow vertex;
MTþ BC; and QCþ DB.

TABLE I. Parameter and model dependence of the critical
temperature for chiral symmetry restoration and deconfinement,
Tc, and the upper bound of the zero mode’s survival domain, Ts.
The parameters and kernels are defined in Eqs. (3), (4), (6) and
Eqs. (15), (16).

Vertex Interaction ðDwÞ13=GeV w=GeV Tc=MeV Ts=Tc

Rainbow QC 0.80 0.50 142 1.55
0.80 0.55 132 1.59
0.80 0.60 123 1.67
0.80 0.65 118 1.70

Rainbow MT 0.72 0.40 135 1.38
0.72 0.45 125 1.44
0.72 0.50 119 1.51
0.72 0.55 108 1.60

BC QC 0.60 0.50 160 1.38
0.62 0.55 152 1.40
0.64 0.60 138 1.45
0.66 0.65 123 1.57

BC MT 0.54 0.40 150 1.40
0.56 0.45 135 1.46
0.58 0.50 123 1.60
0.60 0.55 110 1.75

DB QC 0.54 0.50 148 1.41
0.57 0.55 142 1.44
0.60 0.60 132 1.52
0.63 0.65 121 1.69

DB MT 0.40 0.40 142 1.42
0.43 0.45 133 1.46
0.46 0.50 127 1.53
0.49 0.55 114 1.72
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E. Wider view

Additional context for our results is provided by observ-
ing that the appearance of a third and long-wavelength
mode in the dressed-fermion spectral density on a material
temperature domain above Tc has also been seen in
straightforward one-loop computations of the fermion
self-energy, irrespective of the nature of the boson which
dresses the fermion [24–26]. Where a comparison is
possible, the dependence of our spectral density on
ðω; j~pj; TÞ is similar to that seen in one-loop analyses of
model gap equations. In analogy with a similar effect in
high-temperature superconductivity [116], that behavior
has been attributed to Landau damping, an interference
phenomenon known from plasma physics. Indeed, Landau
damping is typical of in-medium self-energy corrections
when the thermal energy of the fermion, πT, is commen-
surate with the mass scale which characterizes the
dispersion law of the dressing boson; viz., Mg ≈
0.5 GeV in QCD (see, e.g., Sec. 2.3 in Ref. [9]).
Notably, our analysis shows that a coupling to mesonlike

correlations in the gap equation is not a precondition for

appearance of the zero mode because such correlations are
absent in mean-field truncations [112]. On the other hand,
our gap equation’s kernel is characterized by an interaction
that features an infrared mass scale Mg ≈ πTc and supports
dynamical chiral symmetry breaking in-vacuum. We antici-
pate that the zero mode will markedly affect color-singlet
vacuum polarizations on T ∈ ½Tc; Ts�. This could be
explicated using the methods of Refs. [117,118].
Our results, in conjunction with these remarks describing

their compatibility with outcomes of other studies whose
foundations are distinct, suggest strongly that the existence
of a three-peak spectral density, with a zero mode, on a
domain that extends to approximately 1.5Tc, is a feature of
any realistic kernel for QCD’s gap equation.

V. CONCLUDING REMARKS

In order to expose the active fermionic quasiparticle
degrees of freedom in the neighborhood of the critical
temperature for chiral symmetry restoration in massless
two-flavor QCD, Tc, we analyzed the phase transition
obtained with three distinct gluon-quark vertices and two
different assumptions about the long-range part of the
quark-quark interaction. With each of the six permutations
that these inputs allow, we solved the gap equation, located
the transition temperature Tc, and used the MEM to extract
the dressed-quark spectral function at T > Tc.
Each of the kernels is characterized by a single

parameter, which may be interpreted as defining a length
scale for confinement, rw; and numerous in-vacuum
observables are independent of this parameter for varia-
tions of �20% about its optimal value. Based on these
observations, we obtained a best estimate for the critical
temperature; viz., Tc ¼ 147� 8 MeV, described in con-
nection with Eq. (41). In this study, as with those DSE
analyses preceding it, deconfinement at nonzero temper-
ature is coincident with chiral symmetry restoration. If
we allow for variations in rw within the domain of in-
vacuum stability, then we obtain the more conservative
estimate: Tc ¼ 131� 14 MeV, discussed in connection
with Eq. (48).
We demonstrated that the MEM is a reliable tool for

reconstructing the quark spectral density and therewith
obtained a result for that density which is consistent with
those produced using a hard thermal loop expansion at
temperatures markedly above Tc, exhibiting both a normal
and plasmino mode (see Sec. IV B).
On the other hand, with each of the six kernels we

considered, the spectral function contains a significant
additional feature on a domain T ∈ ½Tc; Ts�, with
Ts ≃ 1.5Tc. Therein, as discussed in Sec. IV C, the
spectral function displays a third peak, associated with
a zero mode; i.e., a long-wavelength quasiparticle mode
described by a dispersion law ω0ðj~pjÞ, with ω0ð0Þ ¼ 0.
This mode is essentially nonperturbative in origin and
dominates the spectral function at T ¼ Tc. Our best

RQC RMT BCQC BCMT DBQC DBMT

0.1

0.12

0.14

0.16

Interaction

T c

RQC RMT BCQC BCMT DBQC DBMT

1.3

1.5

1.7

Interaction

T s
T c

FIG. 5 (color online). Pictorial representation of results listed in
Table I. Upper panel: Interaction and parameter dependence of the
critical temperature for chiral symmetry restoration and deconfine-
ment. (The dashed line and band mark Tc ¼ 0.13� 0.014.) Lower
panel: Analogue for upper bound on the zero mode’s survival
domain, Ts, measured with respect to Tc. (The dashed line and
band mark Ts=Tc ¼ 1.53� 0.12.)

ZERO MODE IN A STRONGLY COUPLED QUARK GLUON … PHYSICAL REVIEW D 89, 076009 (2014)

076009-9



estimate for the upper bound of its survival domain is
Ts=Tc ¼ 1.42� 0.07, as described in connection with
Eq. (46). A more conservative estimate, accommodating
variations in rw, is Ts=Tc ¼ 1.53� 0.12, explained in
connection with Eq. (48).
Notwithstanding the fact that all interaction kernels we

considered lie within the mean-field class, we presented
arguments and examples that suggest it should survive the
inclusion of resonant contributions to the gap equation
kernel. We therefore judge that the existence of this mode is
a signal for the formation of a strongly coupled QGP and,
moreover, that this strongly interacting state of matter is
probably a distinctive feature of the QCD phase transition.
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