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We correct a number of earlier calculations of the loop contribution of a dimension-6, CP-violating
operator involving WþW−γ to the neutron electric dipole moment, showing that measurements imply a
very strong bound on the operator. We also quantify the link between this operator and a companion
operator involving WþW−Z, which has been suggested as a target for new physics searches at the Large
Hadron Collider, showing that even strongly coupled new physics could only be observable in the proposed
searches if it appeared at a scale below ∼170 GeV.
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I. INTRODUCTION

Despite its laudable performance, the first run of the
Large Hadron Collider (LHC) saw no evidence for physics
beyond the Standard Model, and neither have many other
experiments, putting the naturalness paradigm under severe
pressure. This has the twofold effect of pushing the bounds
on the new physics scale higher and making theorists’
rhetoric about what we should look for less convincing. In
light of this, it makes increasing sense for experiments to
frame their searches in terms of effective Lagrangians, in
which new physics is parameterized by higher dimension
operators built out of the Standard Model degrees of
freedom. Even if no new physics is found, this approach
ensures that the LHC leaves a useful legacy in its wake, in
the form of optimal, model-independent constraints on
possible new physics.
Of particular interest (independent of the naturalness

issue) are higher dimensional operators violatingCP, which
could generate the baryon asymmetry in the Universe. In
this work, we examine two such dimension-6 operators [1],
namely, Oγ ≡Wþμ

νW−ν
λ
~Fλ
μ and OZ ≡Wþμ

νW−ν
λ
~Zλ
μ, where

W�μ
ν is the usual field strength tensor for W�, ~Fμν ≡

ϵμνρσFρσ is the dual field strength tensor for the photon, and
~Zμν the dual field strength tensor for the Z.
Oγ ≡Wþμ

νW−ν
λ
~Fλ
μ contributes to the electric dipole

moment (EDM) of the neutron via the 1-loop diagrams
in Fig. 1. We have found five independent computations in
the literature (see Table I) of the diagrams of Fig. 1; no two
sets of authors agree on the result, with one set [5]
suggesting a suppression by a factor of ∼10−10 compared
to a naïve estimate. As we explain in Sec. II, most of these
discrepancies arise because of an inappropriate choice of
regulator. Dimensional regularization is the way forward,
and using this, we correct the result of [5] and confirm an
earlier result of [3], when interpreted correctly. There is no

suppression of the EDM, and so there is little point in
searching for Oγ at the LHC.
By contrast, LHC searches for OZ have been suggested

more than once (although there are still contributions to the
neutron EDM at two loops, which we do not consider here)
[7–9]. However, as we explain in Sec. III, any attempt to
increase the coefficient, αZ, of OZ without increasing αγ of
Oγ to preserve the SUð2Þ × Uð1Þ relation cWαγ ¼ sWαZ
necessarily lowers the cutoff of the EFT. This is most easily
seen in an SUð2Þ ×Uð1Þ-invariant formalism, where devi-
ations from the relation cWαγ ¼ sWαZ arise from operators
of dimension eight or higher, but it can also be seen easily
enough in the original formulation in terms of operators Oγ

and OZ. Moreover, it is evident (in either formulation) that
the cutoff is lowered by further factors of gauge couplings.
As a result, we conclude that visible effects of the operator
OZ at the LHC require a new physics scale around 170 GeV.
If there did exist strongly coupled physics at such a low
scale, effects would appear all over the place at the LHC.

FIG. 1. One-loop EDMs of Oγ: 1-loop contributions of Oγ ¼
Wþμ

νW−ν
λ
~Fλ
μ (shaded blob) to the neutron EDM. Custodial

symmetry implies that the diagrams change sign under mu↔md.
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Dedicated searches of the type advocated would be
superfluous.

II. THE 1-LOOP CONTRIBUTION
TO THE NEUTRON EDM

Let us first then consider the contribution to the neutron
EDM. To facilitate comparison with the existing literature
we consider not Oγ (and OZ), but rather the SUð2Þ ×Uð1Þ-
invariant CP-odd operator OW ¼ Wþμ

νW−ν
λ
~W3λ

μ [and the
SUð2Þ × Uð1Þ-noninvariant operator OB ≡Wþμ

νW−ν
λ
~Bλ
μ]

[10,11].
We list the results of the five calculations in Table I. One

can see from the table that there is disagreement not only on
the result but also on whether the 1-loop diagrams are finite
or not. Boudjema et al. [3] did the computation with a
number of different regulators and obtained a number of
different results, showing that any result can be obtained by
varying the regulator; we quote only the result obtained
using dimensional regularization in the table.
Most of these discrepancies are resolved by noting that

unlike for the case of renormalizable quantum field theory
(where many regulators lead to identical results) in non-
renormalizable EFT one cannot use a dimensionful cutoff.
Indeed, EFT works because tree-level contributions to
scattering from the infinity of higher dimension operators
are suppressed by powers of the small external momenta.
But these same operators are, with a generic regulator,
unsuppressed in loop diagrams, where energies up to the
cutoff are allowed (see, e.g., [13]). The only way tomaintain
predictivity, i.e., to maintain a finite number of loop
diagrams with sizable contributions, is to use a dimension-
less regulator, such as dimensional regularization with MS.
Here the only mass scales that can appear in the numerators
of diagrams correspond to lightmasses ormomenta,with the
renormalization scale appearing only in logarithms.
This still leaves us with the problem that two of

the results in the table are done using MS but nevertheless
disagree, with that of Novales-Sánchez and Toscano [5]

being suppressed by a factor m2
f=m

2
W, where mf is a

light quark mass. Two purported explanations for the
suppression are given in [5]. The first is custodial sym-
metry. The operator OW is indeed invariant under a
SUð2ÞL × SUð2ÞR symmetry under which the W boson
transforms as a (3,1), but this cannot explain the suppres-
sion. This is easily seen in the following way. In the limit
mu ¼ md, custodial symmetry becomes an exact symmetry
of all of the interactions appearing in the diagrams of Fig. 1.
If custodial symmetry suppresses the EDM, then the result
quoted in [5] should vanish in this same limit, but it does
not. In fact, custodial symmetry does not imply a constraint
on either diagram; rather it relates the two diagrams, which
sum to zero in the limit mu ¼ md. [To see this, consider the

element of SUð2ÞL × SUð2ÞR given in the fundamental

representation by L ¼ R ¼ e
iπσ1
2 ¼ iσ1. Up to an overall

phase, this effects the transformation W1 → W1;
W2 → −W2;W3 → −W3; uL → dL; dL → uL. The upshot
is that one of the charged current vertices picks up a minus
sign when transforming from top to bottom in Fig. 1.] The
second explanation invokes the decoupling theorem [14],
which, applied to the situation at hand, states that all effects
of W bosons on low-energy physics (such as the neutron
EDM) should decouple in the limit mW → ∞. While this is
quite true, one cannot take the limit mW → ∞ within an
EFT without simultaneously taking 1= ffiffiffiffiffi

αγ
p ≡ Λγ → ∞.

Thus, the αγ in the EDM result guarantees that the
decoupling theorem is obeyed, without the need for an
extra factor of m−2

W . In fact, it turns out that the calculation
in [5] is erroneous: we have repeated the computation
independently, and we obtain the same result as Ref. [3]
does using MS, namely

df ¼ mfαγ
g2W
64π2

: (1)

This may be translated into a bound on αγ . Expressing a
fermion f’s EDM operator as − 1

2
idfψ̄fσ

μνψf
~Fμν, experi-

ment gives jdnj < 2.9 × 10−26e cm at 90% C.L. for the
neutron [15]. We use the form factors of [16] to convert this
into quark EDM bounds: dn ∼ 1.77dd − 0.48du. The result
(1) gives jαγj≲ 6 × 10−8 GeV−2 [17]. Evidently, barring
implausible cancellations against contributions coming from
other higher dimension operators, we cannot hope to see an
effect from OW alone in searches at the LHC.

III. CUTOFFS IN AN EFT WITH OB

Having discounted OW alone as a means of getting a
visible WW ~Z effect at the LHC, we now consider the
operator OB ¼ Wþμ

νW−ν
λ
~Bλ
μ. This latter operator does not

respect the SUð2Þ × Uð1Þ gauge symmetry of the renor-
malizable standard model (SM). Now, this invariance is
clearly not a sine qua non—it is violated, for example, in
the mass terms of theW and Z bosons in a Higgsless model.
However, then, as now, we must ask what the cutoff of the

TABLE I. EDM calculations: the effective operator
− 1

2
dfψ̄σμνψ ~Fμν for a down quark ψ of mass mf due to a

1-loop diagram including the operator −iαγWþμ
νW−ν

λ
~Fλ
μ. The sign

of the result is reversed for an up quark.

Authors Regularization df

Atwood et al. [2] cutoff Λ mfαγ
g2

64π2

h
ln
�

Λ2

m2
W

�
þ Oð1Þ

i

Boudjema et al. [3] MS mfαγ
g2

64π2

Hoogeveen [4] cutoff Λ 0

Novales-Sánchez and
Toscano [5]

MS mfαγ
g2sW
64π2

·
2m2

f

3m2
W

de Rújula et al. [6] cutoff Λ mfαγ
g2

64π2
2
s2W
ln
�

Λ2

m2
W

�
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theory is. One can see that the cutoff must be lowered in the
case at hand by considering the contributions to a scattering
amplitude of operators with different powers of momenta:
when these are equal, the momentum expansion of EFT
breaks down, and predictivity is lost.
To this end, consider the diagrams of Fig. 2, which

represent contributions to WþW−B scattering at different
orders in the momentum expansion. For simplicity, we
assume that the gauge couplings and hence the masses
and mixings are small: this suffices us to derive the
functional dependence of the cutoff. The first diagram,
which is at leading order in the momentum expansion,
arises in the SM from the three-point Yang-Mills vertex
with an insertion of the W3-B mixing operator
1
2
gg0v2W3

μBμ, where v ¼ 246 GeV. It has size
gg0v2 · 1

p2 · gp, whereas the second diagram involves

OB, arises at the next order in the momentum expansion,
and has value αBp3. The momentum expansion breaks
down roughly at a scale Λ where these terms become of
equal size, namely when

Λ ∼ ðg2g0v2Λ2
BÞ14; (2)

using ΛB ≡ 1=
ffiffiffiffiffiffi
αB

p
. It is thus clear that the cutoff

that follows from the presence of OB is not the naïve ΛB
but is suppressed. The suppression comes not just from the
ratio v=ΛB, but also from factors of the gauge couplings.
Thus, for a given size of αB (which sets the size of new
physics effects of OB at the LHC and elsewhere), we find a
cutoff that is rather lower than the naïve one.
Our result can be obtained in a more perspicuous

fashion by using a formalism that is completely equiv-
alent but in which SUð2Þ × Uð1Þ is manifest, albeit
nonlinearly realized [19,20]. To do so, we define the

sigma model field Σ ¼ e
iπaσa

v
ffiffi
2

p
, where πa are three

Goldstone boson fields and σa are the Pauli matrices.
Under an SUð2Þ ×Uð1Þ transformation, Σ → ULΣU

†
Y≡

eiα
a
L
σa
2 Σe−iαY σ

3

2 . The terms

þm2
WW

þμW−
μ þ 1

2
m2

ZZ
μZμ − i 1

Λ2
B
Wþμ

νW−ν
λ
~Bλ
μ (3)

in our original EFT Lagrangian can then be rewritten as

v2
2
TrððDμΣÞ†ðDμΣÞÞ − 2

Λ2
B
TrðΣ†Wμ

νWν
λΣ ~Bλ

μÞ; (4)

where Dμ ≡ ∂μ þ igWa
μ
σa

2
þ ig0Bμ

σ3

2
. To see that the two

EFTs are equivalent, it suffices to fix the gauge Σ ¼ 1
in (4).
As has been emphasized, e.g., in [21], the formulation

(4) is far more convenient for the purposes of extracting the
EFT cutoff Λ. Indeed, the cutoff is finite because scattering
amplitudes involving longitudinal gauge boson polariza-
tions grow with the energy, but at high energies, we may
replace the longitudinal gauge bosons by Goldstone
bosons, and the cutoff can be extracted from the latter
via the Goldstone boson equivalence theorem. The result
[22,23] is that if we write the EFT as

L ¼ Λ2v2F

�∂
Λ
;
gA
Λ

;Σ
�

(5)

(where we have generically indicated a gauge field and its
coupling by A and g, respectively), then the theory has
cutoff Λ≲ 4πv [24]. This result immediately tells us that
the coefficient αB in (4) is given by

αB ∼
g2g0v2

Λ4
; (6)

whereΛ is the true cutoff of the theory [25]. Once again, we
see that the cutoff is not ΛB ≡ 1=

ffiffiffiffiffiffi
αB

p
.

Thus far, we have avoided referring to the Higgs doublet
H, but it is straightforward to include it in the discussion. If
the Higgs is present (and the LHC suggests that it is), then
we have one more field that can be included in our EFT
[27]. This can be done straightforwardly by the replace-
ment Σ → H in (4). The Higgs field unitarizes gauge boson
scattering, and so the cutoff of the resulting EFT can be
made arbitrarily large. Nevertheless, the operator
α0BTrðH†Wμ

νWν
λH ~Bλ

μÞ is of dimension eight, and the result-
ing WWZ operator has coefficient ∼α0Bv2. Yet again,
observability of the effects of α0B ≠ 0 implies new physics
at a low energy scale.
Now that we have some confidence in our result, we

should ask just how low the cutoff must be in order for us to
have a chance of seeing the effects of OZ at the LHC. To
date, there have been no dedicated ATLAS or CMS searches
for such operators [28], and so we content ourselves with
reintepreting the projections of [7] for searches for CP
violation via the operator αZOZ, in the light of our results.
A CP-odd observable is constructed using the momenta of
the leptonic decay products of a WþW− pair. Using
reasonable cuts the authors find, for the SM plus OZ, with
100 fb−1 of data, the 14-TeV LHC is sensitive at the 7σ
level to jαZm2

W j ¼ 0.1. The nonzero contribution to the
CP-odd observable comes from the interference between

FIG. 2. WþW−B scattering: contributions to WþW−B scatter-
ing in the SM with the operator OB ¼ Wþμ

νW−ν
λ
~Bλ
μ (denoted by a

shaded blob) added. The × denotes the mixing betweenW3 and B
in the SM.
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SM and OZ amplitudes, a term linear in αZ, whereas
the statistical fluctuations in the number of events (i.e.
the size of a σ) come predominantly from the constant SM
cross section. Hence, for a 5σ detection we require
jαZm2

W j ≳ 5
7
× 0.1, or equivalently jαZj≳ ð300 GeVÞ−2.

Given our size estimate (6) for αB in terms of the true
cutoff, we conclude that this maximum of sensitivity
corresponds to a theory with cutoff Λ ∼ 170 GeV. An
electroweak sector that becomes strongly coupled at this
energy would contain an infinite set of non-SM effective
operators, each with O(1) effects on scattering amplitudes
at momenta ∼170 GeV, and by extension O(1) contribu-
tions to electroweak precision tests. Needless to say, such
large effects are absent in existing measurements. We infer

from this absence that the effects ofOZ, like those of Oγ , are
unlikely to be seen at the LHC.
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