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In the framework of the two-flavor extended linear sigma model with mixing between scalar quarkonium
and tetraquark, we investigate the role of the tetraquark in the chiral phase transition. We explore various
scenarios depending on the value of various parameters in our model. The physical mass spectrum of
mesons put a tight constraint on the parameter set of our model. We find that a sufficiently strong cubic self
interaction of the tetraquark field can drive the chiral phase transition to the first order even at zero quark
chemical potential. Weak or absence of the cubic self-interaction term of the tetraquark field make the chiral
phase transition crossover at the vanishing density.
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I. INTRODUCTION

The role of chiral condensate is well known and well
studied in the context of chiral phase transition. Recently,
the possible role of tetraquark condensate in connection
to the chiral phase transition has also been considered [1,2].
The reason behind such consideration stems from the
unsettled nature of the lightest scalar f0ð600Þ (f0ð500Þ
in [3]) or σ meson. This issue is part of the unresolved
nature of the scalar mesons below 2 GeV. There are about
19 scalar resonances found below 2 GeV that cannot be
explained by the naive quark model. Their mass spectrum
and decay patterns are also quite contrary to what is
expected from the quark model. An intense effort is going
on to understand the nature and properties of these mesons
(see Refs. [4–7] and references therein).
Theoretical understanding of the lightest scalar

σ=f0ð600Þ is important as it is believed to be the Higgs
boson of QCD and plays an important role in chiral
symmetry breaking. Though its existence has been con-
firmed from theππ scattering process [5,8], the consensus on
its nature is still elusive. Conventionally,f0ð600Þ is regarded
as composed of quark-antiquark. But, in order to solve the
mass hierarchy problem for scalar mesons below 1 GeV,
Jaffe [9] in 1977 proposed to consider the scalar mesons
below 1 GeVas tetraquark states and those above 1 GeV to
be quarkonium states. Thus, in this picture f0ð600Þ is
predominantly a tetraquark state, whereas f0ð1370Þ is the
lightest quarkonium state made up of quark-antiquark. The
sizable tetraquark component has also been demonstrated in
a recent lattice simulation study [10]. However, there are
other suggestions as well, for example, recent data from ππ
and γγ scattering [11,12], the K-matrix analysis [13],
suggests that it has sizable glueball content.

The role of chiral condensate as an order parameter for
chiral phase transition is well established. But the role of
tetraquark condensate is not understood and work in this
direction has recently been started [1,2].
In [1] the implications of mixing between tetraquark and

quarkonium fields on chiral phase transition are studied for
zero baryon chemical potential. The authors favor the
scenario where f0ð600Þ is tetraquark dominated and the
heavy f0ð1370Þ is quarkonium dominated. According to
their study, the order of the phase transition is strongly
correlated with the extent of mixing between the two fields.
For a weak coupling constant for the mixing term, a soft
first order phase transition is obtained. On the other hand, a
strong coupling constant for the mixing term gives rise to a
crossover transition. Moreover, the most important and
interesting result coming out of their study is that beyond a
certain maximum temperature the nature of the heavy and
lighter mesons is exchanged. The heavy f0ð1370Þ becomes
tetraquark dominated and the lighter f0ð600Þ turns quar-
konium dominated and becomes degenerate with the pion
after the chiral symmetry restoring phase transition.
Whereas in [2] an alternate breaking of chiral symmetry
in dense matter was proposed.
Using Ginzburg-Landau effective potential consisting of

two and four quark states they show that in dense matter a
possible phase may arise where chiral symmetry is sponta-
neously broken but its center symmetry remains unbroken.
In this phase conventional chiral condensate vanishes and
the chiral symmetry breaking is due to the presence of
quartic condensate. Finally, chiral symmetry is restored as
quartic condensate also vanishes. Existence of a tricritical
point is also predicted between the broken and unbroken
center symmetric phase. Thus, in this scenario, restoration
of chiral symmetry occurs in two steps.
These studies warrant us to study the effect of mixing

between the quarkonium and tetraquark condensates on the
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chiral phase transition in detail. Here, in this work, we
study the two-flavor chiral phase transition within the
framework of the extended linear sigma model taking into
account both quarkonium and tetraquark effective fields.
We fix parameters from the physical meson masses.
Depending on the possible values of the various parame-
ters, the resulting phase diagram is discussed.
The paper is organized as follows: in the next section we

discuss the model we are going to consider and how the
various parameters in the model are fixed. In Sec. III we
present our result, and, finally, we summarize and conclude
in the last section.

II. THE MODEL

We are going to investigate the effect of quarkonium and
tetraquark mixing on the chiral phase transition in the
framework of the quark-meson model. In this model,
quarks propagate in the background potential of mesonic
fields and interact with the vacuum expectation values of
the scalar mean fields via Yukawa coupling. The generic
form of the Lagrangian consist of a fermionic part (Lq) and
a mesonic field part (Lm) and can be written as

L ¼ Lq þ Lm ¼ q̄ðiγμ∂μ − g3Φ − g4Φ0Þqþ Lm; (1)

with the mesonic part of the Lagrangian being

Lm ¼ Trð∂μΦ∂μΦ†Þ þ Trð∂μΦ0∂μΦ†0Þ −mΦ
2TrðΦ†ΦÞ

−mΦ02TrðΦ†0Φ0Þ þ λ1
2
TrðΦ†ΦΦ†ΦÞ

þ λ2
2

TrðΦ†0Φ0Φ†0Φ0Þ þ g2TrðΦ0Φ0Φ0Þ
− g1TrðΦ0ÞTrðΦÞTrðΦÞ þ k½DetðΦÞ þ H:c:�
− h½TrðΦÞ þ H:c:�; (2)

where, for two light flavors the quark field “q” can be
represented as q ¼ ðu; dÞ and g3, g4 are the Yuakwa
coupling constants for the quarkonium and tetraquark
fields, respectively. The mesonic Lagrangian part has
two effective fields: a 2 × 2 matrix field Φ, which denotes
the bare quarkonium field, and a 2 × 2 matrix field Φ0,
which denotes the bare tetraquark field. Following the
convention of the linear sigma model, we express the
quarkonium and the tetraquark fields as

Φ ¼ 1

2
ðσb þ ηbÞ þ

1

2
ð ~αb þ i ~πbÞ:~τ; (3)

Φ0 ¼ 1

2
ðσ0b þ η0bÞ þ

1

2
ð ~α0b þ i ~π0bÞ:~τ; (4)

with τi (i ¼ 1, 2, 3) representing the 2 × 2 Pauli matrix.
The transformation properties of these fields under
Uð2ÞL ×Uð2ÞR symmetry are defined as follows:

Φ → ULΦU†
R; (5)

Φ0 → ULΦ0U†
R; (6)

where UL;R are group elements of the Uð2ÞL ×Uð2ÞR
symmetry.
The mesonic spectra consist of sixteen physical mesons:

a pair of scalar isoscalars ff0ð600Þ; f0ð1370Þg, a pair of
pseudoscalar isoscalars fηp; η0pg, a pair of scalar isovectors
f ~αp; ~αp0g, and a pair of pseudoscalar isovectors f ~πp; ~πp0g.
Here, pseudoscalar isoscalar ηp and η0p mesons are com-
posed of u and d quarks only. The bare quarkonium and
tetraquark fields mixed with each other to give rise to
physical mesonic fields, one of them being quarkonium
dominated and the other tetraquark dominated mesons.
In mesonic part of the Lagrangian [see Eq. (2)], the cubic

term for the tetraquark meson with the coupling constant
g2, the mixing term between quarkonium and tetraquark
with the coupling constant g1, and the last term mimicking
the finite quark mass for the quarkonium with the coupling
constant h explicitly breaks the Uð2ÞL ×Uð2ÞR symmetry,
whereas the instanton determinant term explicitly breaks the
axial Uð1ÞA symmetry. The other terms in the potential part
of the Lagrangian are invariant under Uð2ÞL ×Uð2ÞR
symmetry. However, we spontaneously break the SUð2ÞA
part of the symmetry of these terms as well by assuming
vacuumexpectationvalues for the σb and σ0b fields. Themass
and the quartic interaction terms are the standard terms used
in the linear σmodel. An explicit symmetry breaking term to
account for the finite quark mass and an instanton determi-
nant term for the field Φ are also used. The explicit chiral
symmetry breaking terms for the field Φ render πb and ηb
massive. The instanton determinant term is responsible for
the splitting of masses between πb and ηb. The choice of the
cubic term is motivated from the study in Ref. [2].
Wewill investigate the chiral phase transition at the mean

field level. Following the standard procedure, we expand the
fields around the vacuum expectation values: σb ¼ σ þ σf
and σ0b ¼ χ þ σ0f, where σ and χ are the vacuum expectation
values of the corresponding fields. Keeping only the mean
fields and integrating out the fermionic fields, we obtain
(neglecting the ultraviolet divergent vacuum energy term
[14,15]) the expression for the thermodynamical potential at
temperature T and chemical potential μ as

Ω ¼ Uðσ; χÞ − 2TNcNf

Z
d3q
ð2πÞ3

× ½lnð1þ e−ðEq−μÞ=TÞ þ lnð1þ e−ðEqþμÞ=TÞ�; (7)

where

Uðσ; χÞ ¼ −
1

2
mΦ

2σ2 −
1

2
mΦ02χ2 þ 1

16
λ1σ

4 þ 1

16
λ2χ

4

þ 1

4
g2χ3 − g1σ2χ þ

1

2
kσ2 − 2hσ: (8)
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The single particle energy is given byEq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þmq

2
q

and

the constituent quark mass (mq) is given by mq ¼ g3σþ
g4χ. The number of colors Nc and flavors Nf of quark used
in this paper are 3 and 2, respectively.
From the extremum condition of the thermodynamic

potential we obtain equation of motions for σ and χ:

∂Ω
∂σ ¼ 0;

∂Ω
∂χ ¼ 0: (9)

We will solve this set of coupled equation of motions,
Eq. (9), self consistently at each value of temperature T and
chemical potential μ to determine the behavior of σ and χ as
a function of temperature and chemical potential and
analyze the effect of quarkonium-tetraquark mixing on
the chiral phase transition.

III. PARAMETER FIXING IN THE VACUUM

There are a total of 12 parameters in our model: mΦ
2,

m2
Φ0 , λ1, λ2, g1, g2, k, h, g3, g4, and zero temperature values

of σ, χ. Out of these 12 parameters, the coupling constants
g3, g4 are from the fermionic part (Lq) of the Lagrangian
and the other 10 are from the mesonic part (Lm). The values
of the 10 parameters in the mesonic part of the Lagrangian
are determined from the physical meson masses, the pion
decay constant (fπ ¼ 92.4 MeV), and two extremum con-
ditions for the mesonic potential:

∂Uðσ; χÞ
∂σ ¼ 0;

∂Uðσ; χÞ
∂χ ¼ 0: (10)

Values of the parameters so fixed are kept constant for
the whole range of temperature and chemical potentials.
The physical meson masses are so chosen that for each kind
of meson, one of the masses is below 1 GeVand the other is
above 1 GeV. One of them is the likely choice for the
quarkonium dominated meson and the other is tetraquark
dominated, as found by other studies [16,17].
The physical meson masses are obtained by diagonal-

izing the bare meson mass matrices. The expression for
those bare matrices as a function of the quarkonium, the
tetraquark fields, and the coupling constants are
noted below:
For the sigma mesons, we have

ðM2
f0
Þ ¼

2
4 1

2
λ1σ

2 þ 2 h
σ −2g1σ

−2g1σ 1
2
λ2χ

2 þ 3
4
g2χ þ g1

σ2

χ

3
5: (11)

For pions, we have

ðM2
πÞ ¼

2
4 2g1χ þ 2 h

σ 0

0 g1 σ2

χ − 9
4
g2χ

3
5: (12)

For eta, we have

ðM2
ηÞ ¼

"
4g1χ − 2kþ 2 h

σ 2g1σ

2g1σ − 9
4
g2χ þ g1 σ2

χ

#
: (13)

Last, the bare mass matrix for the αp meson reads

ðM2
αÞ¼

2
41

2
λ1σ

2þ2h
σþ2g1χ−2k 0

0 1
2
λ2χ

2þ 3
4
g2χþg1 σ

2

χ

3
5:
(14)

From the mass matrices, we find that there is no mixing
for the pion and α mesons. We choose the lightest pion as a
quarkonium meson and the heavier counterpart as the
tetraquark meson in its quark content. This is in agreement
with our current understanding. Since there is no mixing for
pion, we define the zero temperature value of σ equal to
the pion decay constant (σ ¼ fπ). From the expression of
the pion mass we see that the symmetry breaking terms
contribute to its mass and that the absence of those terms in
our Lagrangian would make the pion massless. The same
statement also holds for the eta mesons, although in this
case there is mixing between quarkonium and tetraquark
fields. In the absence of mixing, ðM2

ηÞ11 would represent
the physical eta meson mass and, comparing it with
conventional pion mass ðM2

πÞ11, we find the difference
between their masses is coming from the instanton term,
which is in line with our expectation.
In the following, we discuss three sets of parameters,

which will be used for our analysis of the chiral phase
transition in Sec. IV.

A. Case I: λ2, g2, k, h ¼ 0

Here, in the simplest version of the model, we want
to explore the scenarios where the lowest scalar is either
a quarkonium dominated or tetraquark dominated
meson. We find that within the limit of physical meson
masses (including the experimental uncertainty of mπ0 :
1.2–1.4 GeV, mf0ð600Þ: 0.4–1.2 GeV, and mf0ð1370Þ:
1.2–1.5 GeV), the scenario where the lightest scalar iso-
scalar is tetraquark dominated meson, cannot be realized.
For this, in this case, we take the value of the physical meson
masses to be slightly different from their real world values.
To make the comparison between the two scenarios mean-
ingful, we keep the physical meson masses for both the
scenarios as close as possible (see Table I). In this case, the
value of the parameters λ1, g1 and the zero temperature value
of χ are calculated using the physical masses of mf0ð600Þ,
mf0ð1370Þ; mπ0p mesons and the values of m2

Φ, m2
Φ0 are

calculated using the extremum conditions for the mesonic
potential [see Eq. (10)]. Please note that even if h ¼ 0 in this
case, the πp meson is still massive because of the interaction
term between quarkonium and tetraquark fields, which
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breaks the chiral symmetry explicitly. Since the value
of themπ mass is not used in the parameter fixing, its mass,
when calculated with the obtained parameter values, is
comparatively higher than the real world pion mass. Since
here we are only interested in qualitative comparison of the
two scenarios and more elaborate studies are considered in
the other cases (see case II and case III), we keep this high
pion mass.

Utilizing the expressions for the π0p mass together with
the relations

Tr½ðM2
f0
Þ� ¼ m2

f0ð600Þ þm2
f0ð1370Þ; (15)

Det½ðM2
f0
Þ� ¼ m2

f0ð600Þ ×m2
f0ð1370Þ; (16)

we get the expressions for g1, χ, λ1 as

g1 ¼
1

2fπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

f0ð600Þ þm2
f0ð1370Þ −m2

π0p
Þm2

π0p
−m2

f0ð600Þ ×m2
f0ð1370Þ

q
; (17)

χ ¼ g1
σ2

m2
π0p

; (18)

λ1 ¼
2

σ2
½m2

f0ð600Þ þm2
f0ð1370Þ −m2

π0p
�: (19)

Using Eq. (10), we can calculate the values for m2
Φ and m2

Φ0
from the expressions

m2
Φ ¼ −

�
−
1

4
λ1σ

2 þ 2g1χ

�
; (20)

m2
Φ0 ¼ −g1

σ2

χ
: (21)

The value of the physical meson masses used is given in
Table I. Depending on what value we choose for the mass
of mπ0p , we get two scenarios:
Scenario 1: The values of the parameters are such that the

lowest scalar f0ð600Þ is a quarkonium dominated meson,
whereas the heavier one, f0ð1370Þ, is tetraquark domi-
nated. The values of the parameters are given in Table II.
Scenario 2: In this case the nature of the scalar isoscalar

mesons is just opposite to that of scenario 1. But for that we
have to take the input value for mπ0p as slightly less than its
range of possible values 1.2–1.4 GeV. Here, the lowest
scalar, f0ð600Þ, is a tetraquark dominated meson, whereas
the heavier one, f0ð1370Þ, is quarkonium dominated. The
values of the parameters so obtained are given in Table II.

B. Case II: λ2, k, h ≠ 0 but g2 ¼ 0

To discuss how the parameter set for g2 ¼ 0 is obtained,
we first present the equations we are going to use to
determine the values of g1, χ, h, and k,

m2
πp ¼ 2g1χ þ 2

h
σ
; (22)

m2
π0p

¼ g1
σ2

χ
; (23)

Tr½ðM2
ηÞ� ¼ m2

ηp þm2
η0p
; (24)

Det½ðM2
ηÞ� ¼ m2

ηp ×m2
η0p
: (25)

Now, utilizing equations (23), (24), and (25), we get the
equation for g1 as

g1 ¼
1

2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

ηp þm2
η0p
−m2

π0p
Þm2

π0p
−m2

ηp ×m2
η0p

q
: (26)

From (23), we get the vacuum expectation values of the
tetraquark field as

χ ¼ g1
σ2

m2
π0p

: (27)

Using (22), (26), and (27), we can determine the value of h
from the following equation:

h ¼ σ

2
½m2

πp − 2g1χ�: (28)

According to the convention followed in this paper, the
vacuum expectation values σ and χ are positive. To make

TABLE II. Parameter set for case I.

Parameters σ (GeV) χ (GeV) mΦ
2 (GeV2) mΦ02 (GeV2) λ1 g1 (GeV)

Scenario 1 92.4 × 10−3 2.1 × 10−2 4.26 × 10−1 −1.69 281.1 4.15
Scenario 2 92.4 × 10−3 2.9 × 10−2 5.95 × 10−1 −1.21 393.55 4.17

TABLE I. Values of physical meson masses used in case I.

Mesons
mf0ð600Þ
(GeV)

mf0ð1370Þ
(GeV)

mπp
(GeV)

mπ0p
(GeV)

Scenario 1 0.8 1.5 0.42 1.3
Scenario 2 0.8 1.5 0.49 1.1
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sure we have the minimum of the mesonic potential lying in
the quadrant where both σ and χ are positive, we should
have g1 > 0 and h > 0. Apart from that, we should also
have positive λ1, λ2 in order to make our mesonic potential
bounded from below. There is a large uncertainty in the
value of mπ0p : (1.2–1.4) GeV. But, if we impose the
constraints g1 > 0 and h > 0 and fix the values of mηp
and mη0p at 0.55 and 1.3 GeV, respectively, we find that the
only allowed value is mπ0p ¼ 1.29 GeV (up to two signifi-
cant digits after the decimal). Mass values higher than that
would make g1 < 0 and for a mass less than 1.29 GeV the
value of h becomes negative.
The value of k can be determined from (22), (23),

and (24):

k ¼ 1

2
½2g1χ − ðm2

ηp þm2
η0p
−m2

πp
0 −m2

πpÞ�: (29)

Then the mass matrix of f0 mesons can be utilized to
determine the values of λ1 and λ2. The relevant equations
here are

Tr½ðM2
f0
Þ� ¼ m2

f0ð600Þ þm2
f0ð1370Þ; (30)

Det½ðM2
f0
Þ� ¼ m2

f0ð600Þ ×m2
f0ð1370Þ: (31)

Like the value ofmπ0p , there are also large uncertainties in
the values of mf0ð600Þ: (0.4–1.2) GeV and mf0ð1370Þ:
(1.2–1.5) GeV. Here, we have used mf0ð600Þ ¼ 0.6 GeV
and mf0ð1370Þ ¼ 1.35 GeV. Two sets of values can be
obtained from equations (30) and (31). But only one of
them satisfies the condition λ1; λ2 > 0 and is considered in
this work. We have checked for other values of mf0ð600Þ in
the range (0.4–1.2 GeV) and mf0ð1370Þ in the range
(1.2–1.5) GeV and one of the solutions for λ2 remains
always negative for the entire mass range.
Finally, the values of m2

Φ and m2
Φ0 can be determined

from the extremum condition mentioned in Eq. (10). The
explicit expression for them is given below:

m2
Φ ¼ −

�
−
1

4
λ1σ

2 þ 2g1χ − kþ 2
h
σ

�
; (32)

m2
Φ0 ¼ −

�
−
1

4
λ2χ

2 þ g1
σ2

χ

�
: (33)

The values of the input physical meson masses and the
resultant output parameter set are given in Tables III and IV,
respectively.

C. Case III: λ2, g2, k, h ≠ 0

To fix the parameters for g2 ≠ 0, we follow the
same procedure as mentioned above. Here, in this case
we have one more parameter, g2. For this, we made
an assumption that χ < σ, which is consistent with all
previous studies. Now the constraints, g1 > 0, h > 0,
λ1 > 0, λ2 > 0, restrict the value of χ to a certain range.
We assume χ ¼ σ=n and calculate the parameter set for
small and large possible values of “n” (n ¼ 10 and 18),
respecting all the constraints.
The expressions for g1, h, k remain the same as

mentioned in Eqs. (26), (28), and (29). The expression
for g2 in this case reads as follows:

g2 ¼
4

9χ

�
g1

σ2

χ
−m2

π0p

�
: (34)

Here, for n ¼ 18, i.e., if χ is small, we get the sign of g2
to be positive, while for n ¼ 10, corresponding to a
comparatively large value of χ, the sign of g2 becomes
negative. The values of λ1 and λ2 are calculated using
Eqs. (30) and (31).
Finally, m2

Φ and m2
Φ0 are calculated from the following

expressions using Eq. (10):

m2
Φ ¼ −

�
−
1

4
λ1σ

2 þ 2g1χ − kþ 2
h
σ

�
(35)

m2
Φ0 ¼ −

�
−
1

4
λ2χ

2 þ g1
σ2

χ
−
3

4
g2χ

�
: (36)

As in the case for g2 ¼ 0, here also, we only find one
set of solutions that respects the constraint λ1 > 0 and
λ2 > 0. The values of the input physical meson masses
used here are the same as in the previous section
(see Table III) and the output parameters obtained are

TABLE III. Values of the physical meson masses used for case II.

Fields mf0ð600Þ mf0ð1370Þ mπp mπ0p mηp mη0p

Mass (GeV) 0.6 1.35 0.14 1.29 0.55 1.3

TABLE IV. Parameter set for case II.

Parameters σ (GeV) χ (GeV) mΦ
2 (GeV2) mΦ02 (GeV2) λ1 λ2 g1 (GeV) h (GeV3) k (GeV2)

Value 92.4 × 10−3 5.23 × 10−3 1.9 × 10−2 −1.6 87.99 9103.07 1.02 4.2 × 10−4 −1.49 × 10−1
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given in Tables V and VI, corresponding to positive and
negative g2, respectively.

IV. RESULTS FOR PHASE TRANSITIONS

There are two more parameters in our model that have
not been discussed yet. They are the Yukawa coupling
constants g3 and g4. Their values are fixed from the given
value of the constituent quark mass. Since we have one
condition and two undetermined coupling constants, we
assume g4 ¼ g3=nχ , where nχ > 1. For a particular value of
g3, if we change the value of g4 by changing nχ then there is
no qualitative change in the behavior of σ, χ. However, the
nature of the phase transition is affected if we change
the value of g3. This can be seen from Fig. 1. If we
increase the value of g3, then we can get the first order
transition even at zero chemical potential. This depend-
ence of the order of the phase transition on the values of
the model parameters in the mean field approximation of
the linear sigma model/quark-meson model is not new and
is already noted in [1,15,18]. In this work, we have used
g3 ¼ 3.0 and g4 ¼ g3=10 corresponding to the vacuum
constituent quark mass of 0.28 GeV. The values of g3 and

g4 are so chosen to make the chiral phase transition
crossover at zero chemical potential, as found by the
lattice simulation study [19].
Before presenting our result, let us first discuss the nature

of the mesonic potential Uðσ; χÞ in a vacuum. As can be
seen from the parameter set presented in Tables IV, V, and
VI, the sign of mΦ02 is opposite to that of mΦ

2. Its sign
indicates that it has the opposite sign to what is required for
spontaneous breaking. This can be seen from Fig. 2 (the
right one) where the potential in the χ direction (for
constant σ ¼ 92.4 × 10−3 GeV) is plotted. There is only
one minimum and the minimum of the potential is slightly
tilted in the χ > 0 direction because of the explicit
symmetry breaking terms. On the other hand, because of
the negative sign of mΦ

2, the potential in the σ direction
exhibits the kind of pattern expected for spontaneous
symmetry breaking. The minimum in the σ > 0 direction
is lower than that in the opposite direction (see the left-hand
side of Fig. 2, here χ ¼ 5.23 × 10−3 GeV) because h > 0.
This indicates, the origin of σ and χ condensates have
different reasons in this work. Explicit symmetry breaking
is the origin for χ, whereas for σ it is the spontaneous
breaking.
For the values of parameters presented in Tables IV, V,

and VI, we find, irrespective of the scalar or pseudoscalar
nature of the mesons, that mesons with lower mass are
always quarkonium dominated and the mesons above
1 GeV are tetraquark dominated. The mixing angles for
the f0 meson for parameter sets presented in Tables IV, V,
and VI are −7.51, −7.44, and −7.45 (in degrees), respec-
tively. For η mesons, the mixing angles for the above-
mentioned parameter sets are 7.88, 7.84, and 7.86 (in
degrees), respectively. Like pions, there is no mixing for the
α meson. The masses of αp, α0p mesons are 0.83 and
1.34 GeV, respectively, for all three parameter sets. Since
there is no mixing, the lower mass αp meson is purely
quarkonium and the heavier counterpart is purely tetra-
quark in nature.
To characterize the phase transition and to find the

transition temperature, we have used the susceptibilities
of the order parameters. The susceptibility matrix is defined
as [2,20]

TABLE V. Parameter set for g2 ≠ 0. In this set, χ ¼ σ=n, where n ¼ 18 is used.

Parameters σ (GeV) χ (GeV) mΦ
2 (GeV2) mΦ02 (GeV2) λ1 λ2 g1 (GeV) g2 (GeV) h (GeV3) k (GeV2)

Value 92.4 × 10−3 5.13 × 10−3 1.9 × 10−2 −1.63 87.93 7527.9 10.16 × 10−1 2.25 4.2 × 10−4 −1.49 × 10−1

TABLE VI. Parameter set for g2 ≠ 0. In this set, χ ¼ σ=n, where n ¼ 10 is used.

Parameters σ (GeV) χ (GeV) mΦ
2 (GeV2) mΦ0 2 (GeV2) λ1 λ2 g1 (GeV) g2 (GeV) h (GeV3) k (GeV2)

Value 92.4 × 10−3 9.24 × 10−3 2.7 × 10−2 −0.63 89.88 25785.1 1.02 −34.88 3.8 × 10−5 −1.45 × 10−1
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FIG. 1. Variation of σ with temperature at zero chemical
potential for different values of g3. From left to right, the values
of g3 are 3.5, 3.0, and 2.5. Parameters are corresponding to the
scenario g2 ¼ 0, i.e., Table IV.
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χ̂ ¼ 1

CχχCσσ − C2
σχ

�
Cχχ Cσχ

Cσχ Cσσ

�
; (37)

where Cxx (x ¼ σ, χ) are the second derivatives of the
thermodynamic potential with respect to x:

Cxx ¼
∂2Ω
∂x2 : (38)

Susceptibility of σ is defined as χ2Q ¼ χ̂11 and that of χ is
given by χ4Q ¼ χ̂22. We determine the transition temper-
ature from the peak position of the respective susceptibil-
ities. For the critical point, CχχCσσ − C2

σχ becomes zero,
corresponding to the zero curvature of the thermodynamic
potential.

A. Phase diagram for case I

The behavior of the order parameters along with the
resultant phase diagram corresponding to the parameter set
for case I are summarized in Figs. 3 and 4.
As mentioned in the last section, here we have two

scenarios depending on the mass of mπ0 . For mπ0 ¼
1.3 GeV corresponding to scenario 1, the lowest isoscalar
is quarkonium dominated, whereas, for scenario 2 (we

consider mπ0 ¼ 1.1 GeV, which is slightly less than the
value quoted in the particle data group, 1.2–1.4 GeV), we
have the lowest isoscalar as a tetraquark dominated meson.
We find, for both the cases, that for all values of the

chemical potential, the transition temperatures calculated
from the susceptibilities χ2Q and χ4Q are the same. This can
also be seen from the behavior of the order parameters
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0.0004
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0.0004

U ,
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FIG. 2 (color online). Nature of the mesonic potential Uðσ; χÞ in a vacuum. Parameters are corresponding to Table IV. See text
for details.
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FIG. 3. Variation of σ and χ, with temperature for different values of chemical potential corresponding to the parameter set of case I.
The solid (μ ¼ 0 GeV) and dotted (μ ¼ 0.36 GeV) lines are for scenario 1, whereas the long (μ ¼ 0.0 GeV) and short dashed-dot
(μ ¼ 0.36 GeV) lines are for scenario 2.
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FIG. 4. Phase diagram for case I. The dotted line represents the
second order phase transition and the solid line stands for the first
order phase transition. The upper phase boundary line corre-
sponds to scenario 2 and the lower one corresponds to scenario 1.
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presented in Fig. 3. In Fig. 3, the temperature variation of σ
and χ is presented for low and high values of chemical
potential. From the figure, we see that σ and χ varies more
slowly with temperature in the case for scenario 2 than
in scenario 1. Consequently, the transition temperature in
scenario 2 is always higher than in scenario 1. For both the
scenarios, both σ and χ go to zero after the phase transition
because h ¼ 0. But, for scenario 1, there is a jump in the
case of σ after a certain temperature and this gap in the
order parameter increases slowly with the chemical poten-
tial. For χ, this gap is vanishingly small at low chemical
potential and slowly increases with the chemical potential.
If we compare the phase diagrams shown in Fig. 4, we

see that, for scenario 2, the order of the phase transition is
second order for both low as well as high values of the
chemical potential. But, for scenario 1, the second order
phase transition changes to the weak first order phase
transition above some critical value of the chemical
potential, thus indicating the presence of a critical point.
We consider the values of the chemical potential and the
temperature at which the curvature of the thermodynamic
potential becomes greater than 10−4 as the location of the
critical point. Using this condition, we find that the critical
point for scenario 1 is located at Tc ¼ 117.7 MeV and
μc ¼ 335 MeV. The departure from the zero curvature of
the thermodynamical potential together with the gap in the
order parameter are taken as the indication of a weak first
order phase transition. We are calling it weak first order
because curvature of the thermodynamic potential remains
very small (∼10−3) for μ > 335 MeV.

B. Phase diagram for case II and case III

The nature of the phase transition corresponding to cases
II and III is summarized in Figs. 5 and 6.
Behavior of the order parameters at low and high values

of the chemical potentials are presented in Fig. 5, where the
left figure corresponds to g2 ¼ 0 and the right one to
g2 < 0. We find for g2 ¼ 0 (see Table IV) and g2 > 0 (see

Table VI), the behavior of the order parameters are
qualitatively similar. This is expected as the positive cubic
interaction coupling constant for the tetraquark field is
relatively small and the other parameters are almost of the
same values. As can be seen from Fig. 5 (left), for small
chemical potential we have a crossover transition that turns
into first order transition at a high value of the chemical
potential because the finite “h” term for the Φ field makes
σ > 0 even at high temperature. But the absence of such a
term for the Φ0 field makes χ go to zero at high temperature.
However, the nature of the transition is quite different
corresponding to the scenario in which g2 < 0 (see
Table V). In this case, the strong cubic interaction term
makes the transition first order for the whole range of
chemical potentials, as can be seen from Fig. 5 (right).
Here, a relatively low value of “h” makes σ go to zero at
high temperature. However, there is one similarity with
respect to the chiral phase transition temperature for various
cases considered in this work. Like in case I, we note from
both the figures in Fig. 5, that the transitions for σ and χ are
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FIG. 5. Variation of σ and χ with temperature for different values of chemical potential. The figure in the left panel is for g2 ¼ 0 and the
right one is for g2 ¼ −34.88. The solid (μ ¼ 0 GeV) and short dashed (μ ¼ 0.27 GeV) lines are for the variation of σ. Variation of χ is
represented by long dashed (μ ¼ 0 GeV) lines and points (μ ¼ 0.27 GeV) for both the figures.
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FIG. 6. Phase diagram for case III. The solid line indicates the
first order phase transition and the dashed line is for the crossover
transition. The upper phase boundary is for g2 ¼ 2.25 and the
lower one is for g2 ¼ −34.88. The bold circle indicates the
location of the critical end point. See text for details.
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occurring at the same temperature that is verified from the
peak positions of the respective susceptibilities.
As a result, the resultant phase diagram shown in Fig. 6 is

represented with a single phase boundary line for each
case. For g2 ¼ 0 and g2 > 0 we have qualitatively
the same feature and thus we have included the phase
boundary for case III only in Fig. 6. In this case, we have a
crossover transition at low chemical potential that turns into
first order above some critical value of the chemical
potential. Thus, we have a critical end point for g2 ¼ 0
and g2 > 0. The location of the critical end point for g2 ¼ 0
is (μ ¼ 0.26 GeV, T ¼ 0.069 GeV) and for g2 > 0 is
(μ ¼ 0.226 GeV, T ¼ 0.0915 GeV), whereas for g2 < 0
we have only a first order phase transition line owing to the
strong cubic interaction term.

V. SUMMARY AND CONCLUSION

In the framework of the two-flavor quark-meson model,
we have investigated the effect of mixing between quar-
konium and tetraquark fields on the chiral phase transition.
The mixing between the effective fields is introduced

through an interaction term that breaks the chiral symmetry
explicitly. In addition to the interaction term, we also
considered a cubic self-interaction term for the effective
tetraquark field, an instanton determinant term, and a term
mimicking the effect of the current quark mass. The
existence of the heavy tetraquark dominated meson
π0ð1.2–1.4 GeVÞ, η0ð1.3 GeVÞ indicates that apart from
the finite quark mass term, we need another symmetry
breaking term to account for the mass of π0 and η0. In our
model those extra terms are given by the interaction term
and the cubic self-interaction term, which break the chiral
symmetry explicitly. Those terms not only give mass to π0
but also to π. The extent to which they contribute to the π
mass varies depending on the different scenarios. But,
nevertheless, they are bounded by the smallness of the π
and other meson masses. Thus, the smallness of the pion
mass is preserved. As a result, the effect of the cubic
interaction term for the quarkonium and tetraquark field as
well as the cubic self-interaction term for the tetraquark
field don’t interfere/override the symmetry breaking pat-
tern. The relevant question arising here is that of the origin
of those terms. But, within the setup and context of our
present model, this question cannot be answered and will
be addressed in our future endeavor.
The parameters of our model are calculated from the

masses of the physical mesons, pion decay constants, and
the stability conditions of the mesonic potential. We first
considered the effect of the mixing term without consid-
ering the cubic self-interaction term for the tetraquark field,

the term mimicking the current quark mass and the
instanton determinant term. Within the allowed experimen-
tal range for the masses for f0ð600Þ, f0ð1370Þ, π and π0
mesons, we find our lowest scalar f0ð600Þ meson is
quarkonium dominated.
For the scenario where f0ð600Þ is tetraquark dominated,

we find that the chiral phase transition is second order for
both low and high values of the quark chemical potential.
On the other hand, if we increase the absolute value of the
mass of the bare tetraquark field, thereby increasing the
value of the π0 mass, we can have a weak first order phase
transition above some critical value of the chemical
potential. Comparing the transition in both cases, we find
that the transition temperature is lowered with the increase
of the absolute value of the bare tetraquark field mass.
Next, we study the effect of the cubic self-interaction

term (with coupling constant g2) of the tetraquark fields.
We find that the physical meson mass spectrum and the
vacuum stability conditions put a tight constraint on our
parameter set. From the resulting parameter sets, we find
that the lowest scalar meson f0ð600Þ is a quarkonium
dominated meson, whereas f0ð1370Þ is tetraquark domi-
nated. For g2 ¼ 0 (but including the effect of the finite
current quark mass and the instanton term) and small but
positive g2, the chiral phase transition is a crossover for
small values of the quark chemical potential and then,
above some critical value of the chemical potential, the
transition becomes first order. Thus, we have a critical end
point in this case and the resultant phase diagram matches
well with the current consensus regarding the two-flavor
phase diagram, but, with a strong and negative g2, makes
not only the transition of χ first order but the transition for σ
as well becomes first order irrespective of the low or high
value of the quark chemical potential. A strong and
negative g2 also makes the chiral phase transition temper-
ature lower than that for the case of g2 ¼ 0 or positive. For
all the various scenarios considered in our study, the
common feature among all of them is that the transition
for quarkonium and tetraquark happens at the same temper-
ature for all values of the chemical potential.
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