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We study the pion condensation at the finite isospin chemical potential using a holographic QCD model.
By solving the equations of motion for the pion fields together with those for the isosinglet scalar and iso-
triplet vector meson fields, we show that the phase transition from the normal phase to the pion
condensation phase is second order with the mean-field exponent, and that the critical value of the isospin
chemical potential μI is equal to the pion mass, consistently with the result obtained by the chiral effective
Lagrangian at Oðp2Þ. For a higher chemical potential, we find a deviation, which can be understood as a
higher order effect in the chiral effective Lagrangian. We investigate the μI dependence of the chiral

condensate defined by ~σ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσi2 þ hπai2

p
. We find that ~σ is almost constant in the small μI region, while it

grows with μI in the large μI region. This implies that the strength of the chiral symmetry breaking is not
changed for small μI : The isospin chemical potential plays a role to rotate the “vacuum angle” of the chiral

circle tan−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hπai2=hσi2

p
with keeping the “radius” ~σ unchanged for small μI . For the large μI region, on the

other hand, the chiral symmetry breaking is enhanced by the existence of μI .
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I. INTRODUCTION

Quantum chromodynamics (QCD) at the finite isospin
chemical potential is an interesting subject to study. When
combined with the finite baryon number chemical potential
it will provide a clue to understand the symmetry energy
which is important to describe the equation of state inside
neutron stars [1]. In addition, it may give some information
on the structure of the chiral symmetry breaking [2].
When we turn on the isospin chemical potential μI at the

zero baryon number density, the pion condensation is
expected to occur at a critical point. Son and Stephanov
[3] showed that, using the chiral Lagrangian at Oðp2Þ, the
phase transition to the pion condensation phase is of the
second order and the critical value of μI is equal to the pion
mass. It was also shown [4] that hq̄γ5qi condenses in the
high isospin density limit. Then a conjecture of no phase
transition from the pion condensation phase to hq̄γ5qi
condensation phase was made. The structure in the mid μI
region is a highly nonperturbative issue, so that it is not
easy to understand such a region.
A pure isospin matter with zero baryon density can be

simulated by the lattice analysis. References [5–7] show
that the phase transition is of the second order, and that the
critical chemical potential is equal to the pion mass.
Because of the existence of the sign problem, it is difficult
to apply the lattice analysis for studying the hadron
property at the finite baryon number density. In this sense,
an analysis by models may give some clues to understand

the phase structure and the relevant phenomenon in the mid
μI region. Actually, many analyses were done by using the
Nambu-Jona-Lasinio model [8–15], the random matrix
model [16], the strong coupling lattice analysis [17], the
Ginzburg-Landau approach [18], the hadron resonance gas
model [19], and the holographic QCD models [20–31].
Although there are so many works on the pion con-

densation at the finite isospin chemical potential, there are
not many works for studying the strength of the chiral
symmetry breaking. Namely, it is interesting to ask whether
or not the chiral symmetry is partially restored in the
isospin matter.
In Refs. [12–15], based on the Nambu-Jona-Lasinio

model analysis, the authors seemed to conclude that the
reduction of hq̄qi in the isospin matter implies the partial
chiral symmetry restoration. In Ref. [18], the Ginzburg-
Landau approach is used to study the hq̄qi condensate
together with the pion condensation. However, the absolute
strength of the chiral symmetry breaking, which is char-
acterized by the chiral condensate ~σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσi2 þ hπai2

p
, is

not clearly studied. The analysis using the strong coupling
lattice in Ref. [17] shows that ~σ decreases in the high
isospin chemical potential associated with the decreasing
pion condensation. The decreasing pion condensation
might be a special feature in the strong coupling lattice
analysis, so that it would be interesting to study the
behavior of ~σ using the various ways.
In this work, we study the pion condensation phase in a

holographic QCD model [32,33] by solving the equations
of motion for mean fields corresponding to π, σ and the
time component of the ρ meson. Our results show that the
phase transition is of the second order, which is consistent
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with the one obtained in the Oðp2Þ chiral Lagrangian [3], as
well as the one in the holographic QCD model [27]. It is
remarkable that the chiral condensate defined by ~σ ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσi2 þ hπai2

p
is almost constant in the small μI region,

while it grows with μI in the large μI region. This implies
that the chiral symmetry breaking is enhanced by the
existence of the isospin chemical potential.
This paper is organized as follows: In Sec. II we

introduce some basic point of the model which we use
in the present analysis. Section III is devoted to the main
part of this paper, where we study the pion condensation
together with the chiral condensation. In Sec. IV we
analyze our result in terms of the chiral Lagrangian at
Oðp4Þ. Finally, we give a summary and discussions
in Sec. V

II. MODEL

In the present analysis we use the hard-wall holographic
QCD model given in Refs. [32,33]. The action is given by

S5 ¼
Z

d4x
Z

zm

ϵ
dzL5; (2.1)

where ε and zm are the UV and the IR cutoffs. The five-
dimensional Lagrangian is

L5¼
ffiffiffi
g

p
Tr

�
jDXj2þ3jXj2− 1

4g25
ðF2

LþF2
RÞ
�
þLBD

5 ; (2.2)

where the metric is given by

ds2 ¼ a2ðzÞðημνdxμdxν − dz2Þ (2.3)

with aðzÞ ¼ 1=z. The covariant derivative and the field
strength are given by

DMX ¼ ∂MX − iLMX þ iXRM; (2.4)

FL
MN ¼ ∂MLN − ∂NLM − i½LM;LN �; (2.5)

whereM ¼ ðμ; 5Þ are the fifth-dimensional indices. LBD
5 in

Eq. (2.2) is the boundary term introduced as [34]

LBD
5 ¼ −

ffiffiffi
g

p
TrfλzmjXj4 −m2zmjXj2gδðz − zmÞ; (2.6)

where zm in the coefficients of the jXj4 term and the jXj2
term are introduced in such a way that λ and m2 carry no
dimension. This model has a chiral symmetry correspond-
ing to Uð2ÞL × Uð2ÞR. There exists the Chern-Simons (CS)
term in addition to the above term. However, the CS term
does not contribute to the pion condensation when the
spatial rotational symmetry is assumed as in this paper.
The scalar field X and the gauge fields LM and RM

transform under the Uð2ÞL × Uð2ÞR as

X → X0 ¼ gLXg
†
R; (2.7)

LM → L0
M ¼ gLLMg

†
L þ igL∂Mg

†
L; (2.8)

where gL;R ∈ Uð2ÞL;R are the transformation matrices of
the chiral Uð2ÞL × Uð2ÞR symmetry. In the following
analysis we adopt the L5 ¼ R5 ¼ 0 gauge, and use the
IR-boundary condition FL

5μjzm ¼ FR
5μjzm ¼ 0.

In the vacuum, the chiral symmetry is spontaneously
broken down to Uð2ÞV by the vacuum expectation value of
X. This is given by solving the equation of motion as
[32,33]

X0ðzÞ ¼
1

2
ðmqzþ σz3Þ≡ 1

2
vðzÞ; (2.9)

where mq corresponds to the current quark mass and σ to
the quark condensate. They are related with each other by
the IR-boundary condition:

zm∂5vjIR ¼ −
v
2
ðλv2 − 2m2Þj

IR
: (2.10)

The fields are parametrized as

X ¼ 1

2
ðS0σ0 þ SaσaÞeiπbσbþiη; (2.11)

Vμ ¼
Lμ þ Rμ

2
; (2.12)

Aμ ¼
Lμ − Rμ

2
; (2.13)

VA
μ ¼ Tr½Vμσ

A�; (2.14)

AA
μ ¼ Tr½Aμσ

A�; (2.15)

where σa (a ¼ 1; 2; 3) are Pauli matrices and σ0 ¼ 1, and
the superscript index A runs over 0, 1, 2, and 3. The
isosinglet scalar part S0 is separated into a background field
part and a fluctuation part as S0 ¼ vþ ~S0. A parameter g25
is determined by matching with QCD as

g25 ¼
12π2

Nc
: (2.16)

The pion is described as a linear combination of the lowest
eigenstate of πa and the longitudinal mode of Aa

μ, and the ρ
meson is the lowest eigenstate of Vμ. The values of the mq
and zm together with that of σ are fixed by fitting them to
the pion mass mπ ¼ 139.6 MeV, the ρ-meson mass
mρ ¼ 775.8 MeV, and the pion decay constant fπ ¼
92.4 MeV as [32,33]

mq ¼ 2.29 MeV; zm ¼ 1=ð323 MeVÞ;
σ ¼ ð327 MeVÞ3: (2.17)
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By using this value of σ and a scalar meson mass as inputs,
the values of the parameters m2 and λ in the boundary
potential are fixed. [34] It was shown [34] that there is an
upper bound for the scalar meson mass as 1.2 GeV, but
the dependence on the mass on the value of λ is small. So in
the present analysis, we use the a0 meson mass ma0 ¼
980 MeV as a reference value, which fixes m2 ¼ 5.39 and
λ ¼ 4.4, and see the dependence of our results on the scalar
meson mass.

III. PION CONDENSATION PHASE

In this section we study the pion condensation for the
finite isospin chemical potential μI in the holographic QCD
model explained in the previous section. Since the pion
mass exists in the present model. We will have a phase
transition from the normal phase to the pion condensation
phase for increasing μI . In the present paper we are
interested in the pion condensation phase for the small
isospin chemical potential, so that we assume that the
rotational symmetry O(3) is not broken by, e.g., the ρ-
meson condensation. We also assume the time-independent
condensate; then the vacuum structure is determined by
studying the mean fields of five-dimensional fields which
do not depend on the four-dimensional coordinate.
We introduce the isospin chemical potential μI as a UV-

boundary value of the time component of the gauge field of
SUð2ÞV symmetry as

V3
0ðzÞjϵ ¼ μI; (3.1)

where the superscript 3 indicates the third component of
the isospin corresponding to the neutral ρ meson. The
assumption of rotational invariance implies Li ¼ Ri ¼ 0.
Then the wave functions of Va

0ðzÞ (a ¼ 1; 2; 3), πa0ðzÞ, and
Aa
0ðzÞ are determined by solving the equations of motion.
In the present analysis, the CS term, given as

SCS ∝
Z

d4x
Z

zm

ϵ
dz × ϵMNPQSL0

MTr½FL
NPF

L
QS� − ðL → RÞ;

(3.2)

vanishes because this term must be proportional to La
i

or Ra
i , where L

0
M is a gauge field corresponding to Uð1ÞL,

i.e., L0
M ¼ Tr½LM�. The gauge field corresponding to

Uð1ÞV , which includes the ω meson and its radial excita-
tions, does not show up in our analysis, because it couples
to other fields only through the CS term.
The X field consists of 8 degrees of freedom, which

include η and Sa (a ¼ 1; 2; 3). Since the η is an isosinglet, it
does not condense by itself. However, the existence of Sa

condensation (a0 meson condensation) together with the
pion condensation triggers the η condensation. The a0
meson condensation will occur for μI ≥ mða0Þ. Since we
study the region of μI ≤ mρ, we expect that both η and a0
condensations vanish in this region. Actually, we can check
that η ¼ Sa ¼ 0 is a solution of the equations of motion in
the following way: By using the parametrization of
Eq. (2.11), the terms including η and Sa of Lagrangian
(2.2) are written as

L5 ∼
a3

4
Tr½SSfðU∂5U†Þ2 þ L0L0 þ R0R0 þ a2g

− ððS0Þ2 þ SSÞð∂5ηÞ2 þ 4iS0ð∂5ηÞSðU∂5U†Þ
− ½S; ð∂5SÞ�ðU∂5U†Þ − ð∂5SÞ2 − 2SL0SUR0U†

þ 8S0A0
0SðL0 − UR0U†Þ�; (3.3)

where S ¼ Saσa and U ¼ eiπ
aσa . It is easy to confirm that

η ¼ Sa ¼ 0 together with A0
0 ¼ 0 is a solution of the

equations of motion for them. Then, in the following
analysis, we take η ¼ Sa ¼ 0.
For writing the equations of motion for mean fields, it is

convenient to express

eiπ
aσa ¼ cos b1þ i sin bðnaσaÞ; (3.4)

where

b ¼
ffiffiffiffiffiffiffiffiffiffi
πbπb

p
; na ¼ πa

b
: (3.5)

We include the condition ðnaÞ2 ¼ 1 into the Lagrangian
using a Lagrange multiplier ~λ.
Now, the coupled equations of motion are given as

∂5ð−a3ðS0Þ2sin2b∂5n3Þ − a3ðS0Þ2½sin2bn3ðnbVb
0Þ þ sin2bA3

0ðnbAb
0Þ þ sin b cos bϵb3cAb

0V
c
0� þ 2~λn3 ¼ 0;

∂5

�
a
g25

∂5A3
0

�
− a3ðS0Þ2½cos2bA3

0 þ sin2bn3ðnbAb
0Þ − sin b cos bϵbc3Vb

0n
c� ¼ 0;

∂5

�
a
g25

∂5V1
0

�
− a3ðS0Þ2½sin2bV1

0 − sin2bn1ðnbVb
0Þ þ sin b cos bϵbc1Ab

0n
c� ¼ 0;

∂5

�
a
g25

∂5V2
0

�
− a3ðS0Þ2½sin2bV2

0 − sin2bn2ðnbVb
0Þ þ sin b cos bϵbc2Ab

0n
c� ¼ 0; (3.6)

where the summation over the indices b and c are understood.
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We can easily check that π3 ¼ A3
0 ¼ 0 together with

V1
0 ¼ V2

0 ¼ 0 gives a set of solutions for the above coupled
equations of motion, which implies that the neutral pion
does not condense. Then, in the following we assume that
this set of solutions is physically realized, and take π3 ¼
A3
0 ¼ 0 and V1

0 ¼ V2
0 ¼ 0.

At the finite isospin chemical potential, this theory has the
U(1) symmetry which is a subgroup of the isospin SUð2ÞV .
Using this U(1) symmetry, we rotate away the condensation
of the π2 field to keep only the π1 condensation.
By setting π3 ¼ A3

0 ¼ 0 and V1
0 ¼ V2

0 ¼ 0 and writing

eiπ
aσa ¼ cos b1þ i sin bσ1;

Aa
0 ¼ θðcos ζ; sin ζ; 0Þ; V3

0 ¼ φþ μI;

the Lagrangian is rewritten as

L5¼
a3

2
½−ð∂5S0Þ2−ðS0Þ2ð∂5bÞ2�þ

a3ðS0Þ2
2

½sin2bðφþμIÞ2

−θsin2bsinζðφþμIÞþθ2−θ2sin2bsin2ζ�

þ3a5

2
ðS0Þ2þ a

2g25
½ð∂5φÞ2þð∂5θÞ2þθ2ð∂5ζÞ2�: (3.7)

From the above Lagrangian, the equations of motion are
obtained as

∂5ð−a3∂5S0Þ þ a3S0ð∂5bÞ2 − 3a5S0 − a3S0½sin2bðφþ μIÞ2 − θ sin 2b sin ζðφþ μIÞ þ θ2 − θ2sin2bsin2ζ� ¼ 0;

∂5ð−a3ðS0Þ2∂5bÞ −
a3ðS0Þ2

2
½sin 2bfðφþ μIÞ2 − θ2sin2ζg − 2θ cos 2b sin ζðφþ μIÞ� ¼ 0;

∂5

�
a
g25

∂5θ

�
−

a
g25

θð∂5ζÞ2 −
a3ðS0Þ2

2
½− sin 2b sin ζðφþ μIÞ þ 2θf1 − sin2b sin2ζg� ¼ 0;

∂5

�
a
g25

θ2∂5ζ

�
þ a3ðS0Þ2

2
½−θ sin 2b cos ζðφþ μIÞ − θ2 sin 2ζ� ¼ 0;

∂5

�
a
g25

∂5φ

�
−
a3ðS0Þ2

2
½2sin2bðφþ μIÞ − θ sin 2b sin ζ� ¼ 0: (3.8)

Using the boundary conditions listed in Table I, we solve
the above coupled equations of motion to determine the
isospin chemical potential as an eigenvalue. Then, we
calculate the isospin number density from the following
formula obtained from the Lagrangian (3.7):

nI ¼
Z

dz
∂L5

∂μI
¼

Z
dz

a3ðS0Þ2
2

½2sin2bðφþ μIÞ − θ sin 2b sin ζ�: (3.9)

We show the resultant relation between the isospin
chemical potential and the isospin density in Fig. 1 for
λ ¼ 1, 4.4, and 100 corresponding to ma0 ¼ 610, 980, and
1210 MeV. This shows that the phase transition is of the

second order and the critical chemical potential is predicted
to be equal to the pion mass. This is consistent with the
result obtained by the chiral Lagrangian approach in
Ref. [3] and the one from the holographic QCD model
[27]. Furthermore, our result on the relation between the
isospin number density and isospin chemical potential for
small μI agrees with the following one obtained by Oðp2Þ
chiral Lagrangian [3]:

TABLE I. Boundary conditions of variables.

Variables UV IR

S0 S0
z jϵ ¼ mq ∂5S0jzm ¼ − S0

2zm
ðλðS0Þ2 − 2m2Þj

zm
b bjϵ ¼ 0 ∂5bjzm ¼ 0

θ θjϵ ¼ 0 ∂5θjzm ¼ 0

ζ ζjϵ ¼ π
2

∂5ζjzm ¼ 0

φ φjϵ ¼ 0 ∂5φjzm ¼ 0

FIG. 1 (color online). Relation between the isospin number
density nI and the isospin number chemical potential μI . The
green, red, and blue curves show our results for λ ¼ 1, 4.4, and
100, respectively. The pink dashed curve shows the result given
by the chiral Lagrangian in Ref. [3]. Each choice of λ corresponds
to ma0 ¼ 610, 980, and 1210 MeV, respectively.
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nI ¼ f2πμI

�
1 −

m4
π

μ4I

�
: (3.10)

For μI > 500 MeV, there is a difference between our
predictions and the one from the Oðp2Þ chiral
Lagrangian, which can be understood as the higher order
contribution as we will show in the next section.
We next study the μI dependences of the “σ” condensate

corresponding to hq̄qi and the π condensate to hq̄γ5σaqi.
For obtaining these condensates through the AdS/CFT
correspondence, we introduce the scalar source s and the
pseudoscalar source pa as

δX
z

¼ δX†

z
¼ s

2
1;

δX
z

¼ −
δX†

z
¼ ipa

2
σa: (3.11)

The UV-boundary term of X is written as

δSUV ¼
Z

d4xTr

�
δX†

z
a2ð∂5XÞ þ H:c:

�
ϵ

¼
Z

d4xTr

�
δX†

z
a

�
∂5

X
z
þ X
z2

�
þ H:c:

�
ϵ

: (3.12)

We neglect the second term in the last line of the above
equation. Then the π condensate and σ condensate are
defined as1

hq̄γ5σaqi≡ 1

2
Tr

�
iσaa

�
∂5

X
z

�
þ H:c:

�
ϵ

¼ hπai;

hq̄qi≡ 1

2
Tr

�
a

�
∂5

X
z

�
þ H:c:

�
ϵ

¼ hσi: (3.13)

We show the μI dependences of these condensates in
Fig. 2, where hσi0 is the σ condensate at μI ¼ 0. This
shows that the σ condensate decreases rapidly after the
phase transition where the π condensate grows rapidly. The
σ condensate becomes very small for μI ≳ 400 MeV, while
the π condensate keeps increasing. Using the form hπai ∝
ðμI − μcI Þν near the phase transition point, we fit the critical
exponent ν to obtain ν ¼ 1

2
. This implies that the phase

transition here is the mean-field type.
We also show the “chiral circle” in Fig. 3. It

is remarkable that the value of the “chiral condensate”
defined by

~hσi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσi2 þ hπai2

q
(3.14)

is constant for increasing the isospin chemical potential
μI for μI ≲ 300 MeV, and that it grows rapidly in the large
μI region.

IV. COMPARISON WITH THE CHIRAL
LAGRANGIAN

In this section, we compare our prediction on the relation
between the isospin number density and the isospin
chemical potential shown in Fig. 1 as well as the μI
dependences of the π condensate and the σ condensate
in Fig. 2, with the ones from the chiral Lagrangian
including the Oðp4Þ terms. Here we use the following
chiral Lagrangian for two flavor case [35,36]:

LChPT¼1

4
F2
0Tr½DμUDμU†�þ1

4
F2
0Tr½χ†UþU†χ�

þLð2Þ
1 ðTr½DμU†DμU�Þ2þLð2Þ

2 Tr½DμU†DνU�
×Tr½DμU†DνU�þLð2Þ

4 Tr½DμU†DμU�Tr½χ†UþU†χ�
þLð2Þ

6 ðTr½χ†UþU†χ�Þ2þLð2Þ
7 ðTr½χ†U−U†χ�Þ2

þLð2Þ
8 Tr½χ†Uχ†UþχU†χU†�þiLð2Þ

9 Tr½FR
μνDμU†DνU

þFL
μνDμUDμU†�þLð2Þ

10 Tr½U†FL
μνUFRμν�

þHð2Þ
1 Tr½FLμνFL

μνþFRμνFR
μν�þHð2Þ

2 Tr½χ†χ�; (4.1)

where U is parametrized by the pseudoscalar meson
fields as

FIG. 2 (color online). μI dependences of the π condensate (red
curve) and the σ condensate (green curve).

FIG. 3 (color online). The chiral circle is showed as the red
curve. The black curve is an unit circle.

1Note that we use hq̄qi ¼ hūui þ hd̄di.
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U ¼ ei2π=fπ ; π ¼ πaTa: (4.2)

χ includes the scalar and pseudoscalar source fields,
and the covariant derivative DμU is expressed as

DμU ≡ ∂μU − iLμU þ iURμ; (4.3)

where Lμ and Rμ are external gauge fields corresponding
to SUð2ÞL;R.
In the following analysis, we will study the relation

between the isospin number density and the isospin
chemical potential as well as the condensates using the
above chiral Lagrangian at tree level. In the ordinary chiral
perturbation theory, the tree-level contribution from Oðp4Þ
terms are of the same order as the one-loop contribution of
Oðp2Þ, so that both contributions should be included.
However, because one-loop corrections are counted as
next to leading order in the 1=Nc expansion, we neglect
the one-loop corrections in the present analysis. Then, one
can simply introduce the isospin chemical potential μI as
vacuum expectation values of these external gauge fields as
hL3

μi ¼ hR3
μi ¼ μI

2
δ0μ. In this case, μI appears only through

the covariant derivative as

D0U ¼ ∂0U − i
μI
2
½σ3; U�; (4.4)

where σ3 is the third component of the Pauli matrices.
Parametrizing U as U ¼ cos αþ i sin αðσ1 cosϕþ
σ2 sinϕÞ, we get the effective potential as

Veff ¼ −LChPT

¼ −
f2π
2
μ2I ð2 − βÞβ − f2πm2

πð1 − βÞ − 4Aμ4I ð2 − βÞ2β2

þ 8Cm2
πμ

2
I ð2 − βÞβ2 − 8Bm4

πβ
2 þ ðconstÞ; (4.5)

where β≡ 1 − cos α and

A≡ Lð2Þ
1 þ Lð2Þ

2 ;

B≡ 2Lð2Þ
6 þ Lð2Þ

8 ;

C≡ Lð2Þ
4 : (4.6)

We determine the value of β by minimizing the above Veff ,
and then calculate the isospin number density, the σ
condensate and the π condensate through

nI ¼−
∂Veff

∂μI
¼ f2πμIð2−βÞβþ16Aμ3I ð2−βÞ2β2−16Cm2

πμIð2−βÞβ2;
(4.7)

hσi
hσi0

¼ 1 − κ

�
1 −

�
8C

μ2I
f2π

ð2 − βÞ − 16B
m2

π

f2π

�
ð1 − βÞ

�
β;

(4.8)

hπi
hσi0

¼ κ

�
1þ

�
8C

μ2I
f2π

ð2 − βÞ − 16B
m2

π

f2π

�
β

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð2 − βÞ

p
;

(4.9)

where

κ ¼ f2πm2
π

mqhσi0
: (4.10)

We set κ≃1.04,2 which is given by using mπ ¼
139.6 MeV, fπ ¼ 92.4 MeV, and (2.17).

TABLE II. The best fitted values of A≡ Lð2Þ
1 þ Lð2Þ

2 ,
B≡ 2Lð2Þ

6 þ Lð2Þ
8 , and C≡ Lð2Þ

4 compared with a set of empirical
values.

A × 103 B × 103 C × 103

Fitting result 0.093 1.01 0.63
Empirical values 0.4� 1.2 1.2� 0.9 1.1� 0.6

FIG. 4 (color online). μI dependence of nI obtained from the
Oðp4Þ chiral Lagrangian for the best fitted values of A, B, and C
(green curve) compared with our result (red curve).

FIG. 5 (color online). μI dependence of hσi
hσi0 and

hπ1i
hσi0 obtained

from the Oðp4Þ chiral Lagrangian for the best fitted values of A,
B, and C (green curve) compared with our result (red curve).

2The deviation of κ from 1 expresses the deviation from the
Gell-Mann-Oakes-Renner relation due to the contribution of
Hð2Þ

2 − 2Lð2Þ
8 .
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We fit the values of the coefficients A, B, and C to our

result on the μI dependence of nI ,
hσi
hσi0 and

hπ1i
hσi0 shown in

Figs. 1 and 2, by minimizing

X
date

��
nI
f2πμI

����
result

−
nIðA;B;CÞ

f2πμI

����
ChPT

�
2

þ
� hσi
hσi0

����
result

−
hσi
hσi0

����
ChPT

�
2

þ
�hπ1i
hσi0

����
result

−
hπi
hσi0

����
ChPT

�
2
�
:

(4.11)

We show the best fitted values of A, B, and C for λ ¼ 4.4 in
Table II together with a set of empirical values.3 We show
the μI dependence of nI in Fig. 4 and the μI dependence of
hσi
hσi0 and

hπ1i
hσi0 in Fig. 5. These figures show that the deviation

of our result from the one obtained from the Oðp2Þ chiral
Lagrangian is actually explained by including the effects of
Oðp4Þ terms.

V. A SUMMARY AND DISCUSSIONS

We studied the phase transition to the pion condensation
phase for finite isospin chemical potential using the holo-
graphic QCD model given in Refs. [32,33]. We introduced
the isospin chemical potential μI as a UV-boundary value of
the time component of the gauge field of the SUð2ÞV
symmetry as V3

0ðzÞjϵ ¼ μI . We assumed the nonexistence
of vector meson condensates since we are interested in
studying the small μI region. Furthermore, we assumed that
the neutral pion does not condense. We solved the coupled
equations of motion for the π condensate and σ condensate
together V3

0 to determine μI as an eigenvalue.
Our result shows that the phase transition is of the second

order and the critical chemical potential is predicted to be
equal to the pion mass. This is consistent with the result
obtained by the chiral Lagrangian approach in Ref. [3]
and the one from the holographic QCD model [27].
Furthermore, our result on the relation between the isospin
number density and the isospin chemical potential for small
μI agrees with the one obtained by the Oðp2Þ chiral
Lagrangian [3]. For large μIð> 500 MeVÞ, there is a

difference between our predictions and the one from the
Oðp2Þ chiral Lagrangian, which is shown to be understood
as the Oðp4Þ contributions.
We also studied the μI dependence of the π condensate

and σ condensate. Our result shows that, at the phase
transition point, the π condensate increases from zero as
hπai ∝ ðμI − μcI Þν with ν ¼ 1=2 consistently with the
mean-field type of the phase transition. Furthermore, we
find that the σ condensate decreases rapidly after the phase
transition where the π condensate grows rapidly, while the
value of the “chiral condensate” defined by ~hσi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσi2 þ hπai2

p
is constant for μI ≲ 300 MeV, and that it

grows rapidly in the large μI region, which is contrary to the
result by the strong coupling lattice shown in Ref. [17].
This indicates that the chiral symmetry restoration at finite
baryon density and/or finite temperature will be delayed
when the nonzero isospin chemical potential is turned on.4

In the present analysis, we did not include the effect of
CS term. When the CS term is included, an additional
contribution from the ω-type gauge field should be
included. However, as far as the O(3) spatial rotation is
kept unbroken, the result given in the present analysis will
not be changed.
It is interesting to study the ρ-meson condensation by

extending the present analysis. In such a case, the ω-type
gauge fieldwill give a contribution through the CS term. It is
also interesting to include the explicit degrees of nucleons,
by which we can study the phase structure, including the
baryon number chemical potential as well as the isospin
chemical potential. This will be done by using the “holo-
graphic mean-field” approach done in Refs. [38,39]. We
leave these analyses for future publications.
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3We calculate the empirical values of A, B, and C through
Eq. (4.6), where Lð2Þ

i are determined from the values of the low
energy constant in the two flavor ChPT [37] with the renorm-
alization scale equal to Mη.

4Our result of the enhancement of the chiral symmetry
breaking indicates that the critical point for the chiral phase
transition may be shifted to a higher chemical potential due to the
existence of the isospin chemical potential. This is consistent with
the result of Ref. [18].
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