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The supersymmetric grand unified theory where the SUð5Þ gauge symmetry is broken by the Hosotani
mechanism predicts the existence of adjoint chiral superfields whose masses are at the supersymmetry
breaking scale. The Higgs sector is extended with the SUð2ÞL triplet with hypercharge zero and neutral
singlet chiral multiplets from that in the minimal supersymmetric standard model. Since the triplet and
singlet chiral multiplets originate from a higher-dimensional vector multiplet, this model is highly
predictive. Properties of the particles in the Higgs sector are characteristic and can be different from those in
the Standard Model and other models. We evaluate deviations in coupling constants of the standard model-
like Higgs boson and the mass spectrum of the additional Higgs bosons. We find that our model is
discriminative from the others by precision measurements of these coupling constants and masses of the
additional Higgs bosons. This model can be a good example of grand unification that is testable at future
collider experiments such as the luminosity upgraded Large Hadron Collider and future electron-positron
colliders.
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I. INTRODUCTION

One of the most prominent achievements in particle
physics in the past decades is the discovery of a new boson
whose mass is around 125 GeV, as reported in 2012 by the
ATLAS and CMS Collaborations of the CERN Large
Hadron Collider (LHC) [1]. After that, properties of the
new particle have been carefully investigated and have
turned out to be consistent with those of the Standard
Model (SM) Higgs boson. Now the SM has been estab-
lished as a successful low energy effective theory that can
consistently describe phenomena below the energy scale
of Oð100Þ GeV.
However, several high energy experiments and cosmo-

logical observations show evidence for new physics beyond
the SM, which include neutrino oscillations, the existence
of dark matter, and baryon asymmetry of the Universe. In
addition to such experimental results, the SM suffers from
theoretical problems. One is a serious fine-tuning problem
called the hierarchy problem. To reproduce the weak scale
Higgs boson mass, a huge cancellation between its bare
mass and contribution from radiative corrections is
required. The reason the electric charges of the SM particles
are fractionally quantized is unexplained.
It is intriguing that some of the theoretical problems can

be elegantly solved by introducing concepts of supersym-
metry (SUSY) and grand unification [2,3]. The SUSY

offers us a solution to the hierarchy problem. The quad-
ratically divergent contributions to the Higgs boson mass
from the SM particles are canceled if we introduce their
partner particles whose spins differ from those of the
corresponding SM particles by half. Grand unified theories
(GUTs) provide unified descriptions of the SM gauge
groups. Simultaneously, SM fermion multiples are
embedded into larger group representations, leading to
the charge quantization. Therefore, the combination of the
SUSY and the grand unification is an excellent candidate
for the underlying theory. Moreover, in the minimal SUSY
GUT, the three gauge coupling constants are naturally
unified at a high energy scale.
Although the idea itself is fascinating, GUT models have

several difficulties. Notice that the typical energy scale of
the gauge coupling unification (GCU) in conventional
SUSY GUTs is around 1016 GeV. Given such a high
GUT scale, superheavy GUT particles completely decouple
from the low energy effective theory [4]. Therefore, testing
GUTs usually relies on checking relations among masses
and coupling constants at the TeV scale, which are related
to each other through renormalization group equations
(RGEs). Moreover, there is a fine-tuning problem about the
mass splitting between the electroweak Higgs doublets and
colored Higgs triplets, and many ideas to solve the doublet-
triplet (DT) splitting have been proposed [5–10]. In
extended SUSY GUT models, the successful GCU is
spoiled in many cases, and the GCU becomes a constraint
instead of a prediction.
Recently, a SUSY GUT model that circumvents the

above mentioned difficulties is proposed by one of the
authors [11] by supersymmetrizing the grand gauge–Higgs
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unification (GHU) [12], where the GCU is just a constraint
as in many extended SUSY GUT models. We call the
supersymmetric version the supersymmetric grand gauge–
Higgs unification (SGGHU) in this paper. The idea of the
grand GHU is to break the GUT gauge group by applying
the so-called Hosotani mechanism [13]. In the SGGHU, by
using the nontrivial vacuum expectation value (VEV) of a
Wilson loop, the doublet-triplet splitting problem is natu-
rally solved. As a by-product, the existence of new light
chiral adjoints is predicted. At the TeV scale, our model is
reduced to the minimal supersymmetric standard model
(MSSM) with a color octet superfield, an SUð2ÞL triplet
superfield with hypercharge zero, and a neutral singlet
superfield. In particular, since the Higgs sector is extended
by the triplet and singlet superfields, we can test our GUT
model by exploring the properties of the extended Higgs
sector with collider experiments. Because of couplings
between the MSSM Higgs doublets and the new Higgs
triplet and singlet, the SM-like Higgs boson mass can be
more naturally as large as 125 GeV, as compared to the
prediction of the MSSM [14,15]. Thus, the little hierarchy
can also be relaxed. As we see later, even when the masses
of the triplet and singlet superfields are as small as the
electroweak scale, it turns out that the mass of the color
octet is too large to probe its effects at colliders due to
radiative effects.
In this paper, we focus on the Higgs sector of the

SGGHU and explore its phenomenological consequences.
We derive values of parameters in the low energy effective
theory using the RGEs, and evaluate how the masses and
couplings of the SGGHU Higgs sector particles are
modified from those in the MSSM due to the existence
of the light triplet and singlet chiral multiplets. We
emphasize that by measuring the masses and couplings
of the Higgs bosons precisely at the LHC and future
electron-positron colliders such as the International Linear
Collider (ILC) [16] and the CLIC [17], particle physics
models can be distinguished. We show that the SGGHU is a
good example to show the capabilities of collider experi-
ments for testing GUT scale physics.
This paper is organized as follows. In Sec. II, we briefly

review the model of the SGGHU and its low energy
effective theory. Particular attention is paid to the Higgs
sector, which is extended by the triplet and singlet chiral
multiplets. Section III is devoted to the discussion of the
SM-like Higgs boson mass using RGEs. Some benchmark
points reproducing the observed Higgs boson mass are
provided. In Sec. IV, predictions about couplings of the
SM-like Higgs boson and mass relation of additional Higgs
bosons are presented based on the benchmark points.
Definitions of model parameters and RGEs are collected
in Appendix A. Mass matrices of Higgs bosons, neutra-
linos, and charginos are summarized in Appendix B.
Necessary formulas for computing the radiative corrections
to the SM-like Higgs boson mass are also given there.

II. MODEL

A. Review of supersymmetric grand gauge–Higgs
unification

In this subsection, we briefly review the grand GHU
scenario proposed in Ref. [11]. This scenario is a type of the
grand unification where the Hosotani mechanism [13] is
employed to break the SUð5Þ unified gauge symmetry. The
simplest setup that can accommodate the chiral fermions is
a five-dimensional (5D) SUð5Þ model compactified on an
S1=Z2 orbifold with its radius being of the GUT scale. We
first discuss the non-SUSY version of the simplest setup
discussed in Ref. [12] for illustration purposes, and then we
supersymmetrize it [11].
The Hosotani mechanism is a mechanism for gauge

symmetry breaking that works on higher-dimensional
gauge theories. To be more concrete, the zero modes of
extradimensional components of the gauge fields, which
behave as scalar fields after the compactification, develop
VEVs to break the gauge symmetry. To apply this mecha-
nism to the SUð5Þ unified gauge symmetry breaking,
massless adjoint scalar fields, with respect to the SUð5Þ
symmetry that remains unbroken against the boundary
conditions (BCs), should appear. It is known that such
components tend to be projected out in models that realize
the chiral fermions due to the orbifold BCs. In Ref. [12],
this difficulty is evaded via the so-called diagonal embed-
ding method [18] that is proposed in the context of the
string theory. In our field theoretical setup on the S1=Z2

orbifold, we impose two copies of the gauge symmetry
with an additional discrete symmetry that exchanges the
two gauge symmetries. Namely, the symmetry is SUð5Þ ×
SUð5Þ × Z2 in our SUð5Þmodel. Here, we name the gauge
fields for the two SUð5Þ groups Að1Þ

M and Að2Þ
M , respec-

tively, where M ¼ μð¼ 0 − 3Þ, 5 is a 5D Lorentzian
index, and we define the eigenstates of the Z2 action as
Xð�Þ ¼ ðXð1Þ � Xð2ÞÞ= ffiffiffi

2
p

. We set the BCs around the two
end points of the S1=Z2, y0 ¼ 0 and yπ ¼ πR, as

Að1Þ
μ ðyi − yÞ ¼ Að2Þ

μ ðyi þ yÞ;
Að1Þ
5 ðyi − yÞ ¼ −Að2Þ

5 ðyi þ yÞ;
(1)

for i ¼ 0; π, where y denotes the 5th dimensional coor-
dinate. With these BCs, we see that AðþÞ

μ and Að−Þ
5 obey the

Neumann BC at each end point to have the zero modes,
and thus that the gauge symmetry remaining unbroken in
the four-dimensional (4D) effective theory is the diagonal
part of the SUð5Þ × SUð5Þ (or our GUT symmetry is
embedded into the diagonal part) and an adjoint scalar
field is actually realized.
An interesting point is that Að−Þ

5 is not a simple adjoint
scalar field but composes a Wilson loop since it is a part of
the gauge field. The Wilson loop is given by
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W ¼ P exp

�
i
Z

2πR

0

gffiffiffi
2

p Að−Þ
5

aðTa
1 − Ta

2Þdy
�

→ exp ðidiagðθ1; θ2; θ3; θ4; θ5ÞÞ; (2)

whereP denotes the path-ordered integral, g is the common
gauge coupling constant, T1 and T2 are the generators of
the two SUð5Þ symmetries, and a is an SUð5Þ adjoint
index. In the last expression, we show the expression on the
fundamental representation for concreteness, and we have
used the (remaining) SUð5Þ rotation to diagonalize Að−Þ

5 .
This expression shows that the VEV (and actually the
system itself) is invariant under the shift θi → θi þ 2π.
The form of the VEV that is discussed in Ref. [12] and in

which we are interested is given by θ1 ¼ θ2 ¼ θ3 ¼ 2π and
θ4 ¼ θ5 ¼ −3π, i.e., hWi ¼ diagð1; 1; 1;−1;−1Þ≡ PW .
This VEV does not affect the triplet component of the 5
representation but does affect the doublet to split them. This
“missing VEV,” which is forbidden for a simple adjoint
scalar field by the traceless condition, is allowed since the
Wilson loop is valued on a group instead of an algebra and
thus is free from the condition. This fact plays an essential
role to solve the DT splitting problem.
In this paper, for simplicity, we do not consider matter

fields that are nonsinglet under both the gauge groups. We
introduce, for instance, a fermion ΨðR; 1Þð1Þ with R being
a representation of the SUð5Þ group and its Z2 partner
Ψð1;RÞð2Þ. Here, we call the above pair a “bulk R
multiplet.” Their BCs are given as Ψð1Þðyπ − yÞ ¼
−ηΨi γ5Ψð2Þðyπ þ yÞ where ηi ¼ �1 is a parameter associ-
ated with each fermion. As one of ηi can be reabsorbed
by changing γ5, i.e., by the charge conjugation, we set

η0 ¼ þ1 and ηπ ¼ η hereafter. Then, ΨðþÞ
L and Ψð−Þ

R have
the zero modes when η ¼ þ1 while they do not when
η ¼ −1, when the VEV of A5 vanishes.
Notice that it is always possible to gauge away the VEV

of A5 (∝ θ). In this basis, called the Scherk-Schwartz basis,
the SUð5Þ breaking effect appears only on the BCs as

Ψð1Þðyπ − yÞ ¼ −ηΨi γ5WRΨð2Þðyπ þ yÞ; (3)

where WR is the Wilson line phase acting on R. In
concrete, for instance, WR coincides with PW for the
fundamental representation, i.e., R ¼ 5. Then, we see that
when the fundamental fermion with η ¼ −1 is introduced,
its doublet component has the zero-mode while its triplet
component does not.
The same story as that discussed above can be applied

also to the SUSY extensions if we replace all the fields by
the corresponding superfields. Thus, once the desired VEV
PW is obtained, the DT splitting is easily realized by
introducing a bulk 5 hypermultiplet with η ¼ −1 for the
MSSM Higgs fields. In a similar way, if we introduce bulk
10 hypermultiplets with η ¼ þ1, light vectorlike pairs
ðU; ŪÞ [ð3̄; 1Þ−2=3] and ðE; ĒÞ [ð1; 1Þ1] appear, where the
values denote SUð3ÞC; SUð2ÞL, and Uð1ÞY quantum

numbers. This is utilized to recover the gauge coupling
unification later.
We note that the zero modes appear always in vectorlike

pairs from the bulk fields. The chiral fermions can simply
be put on each boundary. Interestingly, since the bulk fields
do not couple to A5 and thus neither to the SUð5Þ breaking,
the chiral fermions appear in SUð5Þ full multiplets. In
contrast, the bulk fields serve vectorlike pairs in SUð5Þ
incomplete multiplets. These matches well with the MSSM.
The remaining task to show that the DT splitting problem

is actually solved is to examine when the VEV is realized.
Here, we do not request that the vacuum resides on the
global minimum but require only that it is stable so that the
lifetime is long enough. For this purpose, we have to check
whether there is no huge tadpole term for the fluctuation of
θi around the desired vacuum, δθi, and whether it is not
tachyonic around the desired vacuum. Since there are two
largely different scales, the compactification scale and the
SUSY breaking scale, the RG analysis should be performed.
Before going on the low energy effective theory, we note

that the exchanging Z2 symmetry, under which δθi is odd,
remains unbroken on the relevant vacuum even though θi is
nontrivial. This is understood by the transformation of the
Wilson line that is the order parameter. Under the Z2 action
W transforms as W → W� and the VEV hWi is invariant
since it is real. This Z2 invariance prohibits the tadpole
terms. In the following, we introduce soft Z2 breaking as
small as the SUSY breaking scale, and thus a small tadpole
term will be generated.

B. Low energy effective theory

As a consequence of the supersymmetrization of the
grand gauge–Higgs unification, there appear adjoint chiral
superfields whose gauge quantum numbers are the same as
the SM gauge bosons. Since these new adjoint fields are
originally embedded in the five-dimensional vector mul-
tiplets, their masses vanish in the SUSY limit. The chiral
adjoints acquire masses after the SUSY breaking.
Therefore, typical masses of the adjoint supermultiplets
are of the order of the SUSY breaking scale independently
of the compactification scale.
The low energy effective theory contains the SUð3ÞC

octet, the SUð2ÞL triplet, and the singlet chiral superfields
in addition to the MSSM superfields. As discussed later,
since the mass of the octet chiral superfield is Oð10Þ TeV
due to the radiative correction, its effect on the TeV scale

TABLE I. SUð3ÞC × SUð2ÞL × Uð1ÞY quantum numbers of the
Higgs sector superfields Hu, Hd, Δ, and S.

SUð3ÞC SUð2ÞL Uð1ÞY
Hu 1 2 þ1=2
Hd 1 2 −1=2
Δ 1 3 0
S 1 1 0

HIGGS SECTOR AS A PROBE OF SUPERSYMMETRIC … PHYSICAL REVIEW D 89, 075013 (2014)

075013-3



phenomenology is negligible. Therefore, here we focus on
the impact of the Higgs sector with the SUð2ÞL triplet and
singlet chiral superfields.
The Higgs sector is composed of the superfields shown

in Table I. Here, Hu (Hd) gives masses to the up-type
quarks (down-type quarks and charged leptons). The super-
potential of the effective theory of our model is given by

W ¼ μHu ·Hd þ μΔtrðΔ2Þ þ μS
2
S2

þ λΔHu · ΔHd þ λSSHu ·Hd; (4)

where Δ ¼ Δaσa=2 with σaða ¼ 1; 2; 3Þ being the Pauli
matrices. Notice that there are no trilinear self-couplings
among S and Δ although such couplings are not prohibited
by the symmetry of the effective theory because S and Δ
originate from the gauge supermultiplet. Moreover, the two
new Higgs couplings λΔ and λS are unified with the unified
gauge coupling gGUT as λΔ ¼ 2

ffiffiffiffiffiffiffiffi
5=3

p
λS ¼ gGUT at the

GUT scale. Thus, this model is predictive up to the soft
SUSY breaking parameters. Masses of the fermionic
components of S and Δ are denoted by μS and μΔ,
respectively, and their magnitudes are of the order of the
TeV scale because they are generated due to the SUSY
breaking [19]. Similarly, the supersymmetric tadpole
parameter of S is expected to be of the order of μmSUSY,
as discussed in the previous section. This tadpole term is
removed by field redefinition without loss of generality.
The soft SUSY breaking terms are written by

Vsoft ¼ ~m2
Hd
jHdj2 þ ~m2

Hu
jHuj2 þ 2 ~m2

ΔtrðΔ†ΔÞ þ ~m2
SjSj2

þ
�
BμHu ·Hd þ ξSþ BΔμΔtrðΔ2Þ þ 1

2
BSμSS2

þ λΔAΔHu · ΔHd þ λSASSHu ·Hd þ H:c:

�
: (5)

The low energy values of these parameters introduced in
the Higgs sector are obtained by solving the RGEs, which
are discussed in the next section. It should also be noted
that the VEVof the neutral component of the triplet Higgs
boson vΔ has to be smaller than ≃10 GeV in order to
satisfy the rho parameter constraint.

III. REPRODUCTION OF THE HIGGS
BOSON MASS

In this section, we discuss the mass of the SM-like Higgs
boson based on RG evolution of the coupling constants and
the mass parameters in our model. First, we focus on the
unification of the three gauge coupling constants. The
existence of the light adjoint chiral multiplets disturbs
successful gauge coupling unification, which is achieved in
the minimal SUSY SUð5Þ GUT. In our model, extra
incomplete SUð5Þ matter multiplets can be introduced so
that the gauge coupling unification is recovered [11]. Next,

we derive values of the model parameters at the TeV scale
by solving the RGEs. We show some benchmark points
consistent with the observed value of the mass of the
Higgs boson.

A. Coupling unification

The coefficients of the beta functions of the gauge
couplings in the MSSM are given by

bMSSM ¼ ð33=5; 1;−3Þ; (6)

while contributions from the adjoint chiral multiplets are

δadjb ¼ ð0; 2; 3Þ: (7)

One way to recover the gauge coupling unification is to
introduce incomplete SUð5Þ multiplets whose contribu-
tions are

δaddb ¼ ð3þ n; 1þ n; nÞ; (8)

with n being a natural number. However, too large n may
cause a violation of perturbativity around the GUT scale.
We here take n ¼ 1, and the unified gauge coupling is in a
perturbative region: αG ≃ 0.3. This case is realized by
adding two vectorlike pairs of ðL̄; LÞ ½ð1; 2Þ−1=2�, one of
ðŪ; UÞ ½ð3̄; 1Þ−2=3�, and one of ðĒ; EÞ ½ð1; 1Þ1� [11].
Figure 1 shows the evolution of the gauge coupling
constants in the MSSM (black lines), the MSSM with
the adjoint multiplets (red lines), and the MSSM with the
adjoint and additional chiral multiplets (blue lines). In this
figure, we set the SUSY-breaking scale as the weak scale
for simplicity.
In this model, the strong interaction is not asymptotically

free independently of the choice of the additional fields to
recover the gauge coupling unification. Thus, the QCD
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FIG. 1 (color online). Evolution of the gauge coupling constants
in the MSSM (black lines), the MSSM with the adjoint multiplets
(red lines), and the MSSM with the adjoint and additional chiral
multiplets (blue lines) is plotted from the top to the bottom.
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corrections are large, and the masses of the colored particles
tend to be large at the TeV scale, as compared to those in
the MSSM. It is interesting to examine the extraordinary
pattern of the mass spectrum of the colored particles for the
hadron colliders. We, however, focus on the colorless
fields: the SUð2ÞL triplet and singlet Higgs multiplets.
These additional fields couple to the two MSSM Higgs
doublets. Their coupling constants push up the SM-like
Higgs boson mass due to the tree level F-term contribution,
and thus the correct value of the Higgs boson mass (around
125 GeV) can easily be realized.
Furthermore, they cause mixing between the MSSM

doublet Higgs fields and the additional Higgs fields, which
results in modification of the coupling constants of the SM-
like Higgs field. When such corrections are large enough to
be detected at collider experiments, we can discriminate our
model from other models by precisely measuring the
pattern of the deviations in the Higgs coupling constants.
In the next section, we will discuss these issues in more
detail.
One of the characteristic features of this model is that the

coupling constants of the triplet and singlet Higgs multip-
lets are unified with the SM gauge coupling constants at the
GUT scale. Thus, the low-energy values of these coupling
constants in the Higgs sector are unambiguously deter-
mined by the RG running once the extra matters are
specified.
For instance, taking the above example of the additional

chiral matter multiplets to recover the gauge coupling
unification, the Higgs sector coupling constants λΔ (red
line) and λS (blue line), and the gauge coupling constants
g3;2;1 (green lines) evolve as shown in Fig. 2. Here, we
normalize the singlet coupling as λ0S ¼ ð2 ffiffiffiffiffiffiffiffi

5=3
p ÞλS and the

Uð1ÞY gauge coupling as g1 ¼ ð ffiffiffiffiffiffiffiffi
5=3

p Þg0, respectively, and
one loop RGEs are used. For the list of the RGEs, see
Appendix A. Since the SUð2ÞL gauge coupling is strong
around the GUT scale, λΔ grows as the energy decreases.
After the SUð2ÞL gauge coupling becomes weak, λΔ
decreases as the energy decreases due to large trilinear
couplings in the superpotential. We note that the triplet
coupling λΔ remains in a perturbative region down to the
TeV scale. At the TeV scale, we obtain

λΔ ¼ 1.1; λS ¼ 0.25: (9)

Similarly, the μ parameters of the adjoint chiral multiplets
are unified at the GUT scale, and their ratio at the TeV scale
is determined as μS∶μΔ∶μO ¼ 1∶2.9∶230, where μO stands
for the octet μ parameter. The mass scale of the octet is far
beyond the reach of collider experiments, as discussed
qualitatively above.
Let us turn to the running of the soft SUSY breaking

parameters. Since the unified gauge coupling is strong,
the gaugino masses around the GUT scale must be large
in order to avoid the experimental gluino mass limit [20].
For instance, for the unified gaugino mass of M1=2 ¼
3600 GeV, the gluino mass is pushed down to m~g ¼
1400 GeV. As a result, soft mass parameters at the TeV
scale are typically as large as 4–7 TeV for colored particles
and 1–2 TeV for colorless particles. As in the MSSM, the
soft mass squared of the up-type Higgs boson has a large
contribution due to the large top Yukawa interaction.
Therefore, some tuning is needed to realize electroweak
symmetry breaking. The Higgsino mass parameter μ and
the CP-odd Higgs boson mass mA also tend to be 1–4 TeV.
To realize scenarios where some of the extra Higgs boson
masses are of the order of Oð100Þ GeV, further tuning is
required among the input parameters.

B. Benchmark points and the mass of the
SM-like Higgs boson

After the electroweak symmetry breaking, we obtain
four CP-even, three CP-odd, and three charged Higgs
bosons as physical states in the Higgs sector, as well as six
neutralinos and three charginos. Features of our model
include new additional particles to the MSSM and
differences in the properties of the MSSM Higgs bosons.
Among them, here we focus on the mass of the SM-like
Higgs boson, which is determined by low energy soft
SUSY breaking parameters obtained by solving the RGEs
discussed above.
Before we discuss the cases where effects of the RG

running is involved in calculating the SM-like Higgs boson
mass, we exemplify rough predictions of our low energy
effective theory without solving the RG equations. For
relatively large triplet and singlet scalar masses, the SM-
like Higgs boson mass is approximately written as [21]

'S

g3

g2

g1

2 4 6 8 10 12 14 16
0.0

0.5

1.0

1.5

2.0

2.5

log10 GeV

g,

FIG. 2 (color online). An example of running of the Higgs
triplet and singlet coupling constants λΔ (red line) and λ0S (blue
line) as well as the gauge coupling constants g3, g2, and g1 (green
lines) from the top to the bottom. The horizontal axis is the
common logarithm of the energy scale in units of GeV. Here, we
normalize the singlet and Uð1ÞY gauge couplings as λ0S ¼
ð2 ffiffiffiffiffiffiffiffi

5=3
p ÞλS and g1 ¼ ð ffiffiffiffiffiffiffiffi

5=3
p Þg0, respectively, and one loop

RGEs are used.
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m2
h ≃m2

Zcos
2β þ 3m4

t

2π2v2

�
ln
m2

~t

m2
t
þ X2

t

m2
~t

�
1 −

X2
t

12m2
~t

��

þ 1

8
λ2Δv

2sin22β þ 1

2
λ2Sv

2sin22β; (10)

wheremZ is the Z-boson mass,mt is the top quark mass,m~t
is the average of the two stop masses, and Xt ¼ At − μ cot β
parametrizes mixing between the two stops. The first two
terms correspond to the MSSM prediction. The last two
terms originate from the existence of the trilinear couplings
between the MSSM Higgs doublets and the additional
triplet and singlet.
Within the MSSM, at the tree level the SM-like Higgs

boson mass is smaller than the Z-boson mass. To reach
125 GeV using the effect of the stop loop correction, the
mass scale of the stops or the mixing parameter Xt should
be very large. For Xt ¼ 0, the stop mass should be of the
order of Oð10Þ TeV. Even in the maximum mixing case
where Xt ¼ � ffiffiffi

6
p

m~t, the stop mass is required to be as large
as Oð1Þ TeV [15]. We also note that the preferable range
for tan β is larger than 10.
In our model, on the contrary, the predicted Higgs boson

mass tends to be larger than that in the MSSM thanks to the
tree level F-term contributions, in particular, for the small
tan β region. Such a result is reminiscent of the next-to-
MSSM (NMSSM) [22], where the SM-like Higgs boson
mass is lifted up by coupling with a singlet superfield.
For computation of the masses of the Higgs scalars and

superparticle, we have used the public numerical code
SUSPECT [23], which takes the DR renormalization
scheme, instead of the approximate formula Eq. (10).
We have appropriately modified SUSPECT to add the
new contributions from the Higgs trilinear couplings.
Here, for simplicity, we have taken the limit vΔ → 0.
The computation of the SM-like Higgs boson mass
including these triplet and singlet contributions is described
in Appendix B. The LHC result mh ¼ 125 GeV can be
achieved even for small tan β and small stop mixing. We
note that the formula given in Eq. (10) is valid when the
neutral components of the triplet and singlet are heavier
than the MSSM-like CP-even Higgs bosons. In general, the
CP-even Higgs bosons mix with each other, and the
formulas for their mass eigenvalues are rather complicated.

Next, let us consider the mass of the SM-like Higgs
boson including the radiative effects. As we mentioned, to
have a successful electroweak symmetry breaking, fine-
tuning for input parameters at the GUT scale is required.
Therefore, we will show some benchmark points that
reproduce the mass of the SM-like Higgs boson, instead
of scanning the parameter space. We focus on the following
three different cases:
(A) All the Higgs bosons other than the SM-like Higgs

boson are heavy.
(B) The new Higgs bosons other than the MSSM-like

Higgs bosons are heavy.
(C) The new Higgs bosons affect the SM-like Higgs

boson couplings.
Bearing the fact that there are a few GeVuncertainties in the
numerical computation of the SM-like Higgs boson mass,
we take the range of 122 GeV < mh < 129 GeV as its
allowed region. Examples of successful benchmark points
of input parameters at the GUT scale are listed in Table II.
Here, μ and B parameters for the extra matters have
insignificant effects on Higgs sector parameters and are
omitted from the list. Values of parameters of the TeV-scale
effective theory are obtained after RG running and are
shown in Table III. Definitions of the parameters are
provided in Appendix A.

IV. IMPACT ON HIGGS PROPERTIES

In this section, we discuss properties of the particles in
the Higgs sector. We will show that our model can be
distinguished from other new physics models by measuring
the masses and the coupling constants of the Higgs sector
particles at the LHC and future electron-positron colliders
[16,17,24,25]. Even in the cases where the additional Higgs
particles are beyond the reach of direct discovery at these
colliders, the existence of these new particles can be
indirectly probed by precise measurements of the coupling
constants of the discovered SM-like Higgs boson and
MSSM Higgs boson masses.

A. Vertices of the SM-like Higgs boson

First, we address the couplings between the SM-like
Higgs boson and SM particles, which have already been
measured to some extent at the LHC. So far, no deviation

TABLE II. Benchmark points of input parameters at the GUT scale.

Case tan β M1=2 μΣ

(A)(B)(C) 3 3600 GeV −300 GeV

Case A0 ~m2
0 ~m2

Hu
~m2
Hd

~m2
5 ~m2

10 ~m2
Σ

(A) 5500 GeV ð1000 GeVÞ2 ð10375 GeVÞ2 ð8570 GeVÞ2 −ð6300 GeVÞ2 −ð2000 GeVÞ2 −ð570 GeVÞ2
(B) 1000 GeV ð1800 GeVÞ2 ð12604 GeVÞ2 ð10381.5 GeVÞ2 −ð7700 GeVÞ2 −ð1960 GeVÞ2 −ð670 GeVÞ2
(C) 8000 GeV ð3000 GeVÞ2 ð10605.1 GeVÞ2 ð8751.4 GeVÞ2 −ð6418 GeVÞ2 −ð1638.5 GeVÞ2 −ð400 GeVÞ2
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that obviously contradicts the SM predictions has been
reported. In the future, precision of these observables will
be significantly improved by the high-luminosity LHC and
the ILC, and therefore this method serves as a powerful tool
in discriminating beyond-the-SM models.
Discarding the VEVof the triplet Higgs boson, the Higgs

boson coupling with the W or Z boson is given by

ghVV ¼ gVmVðRS
11 cos β þ RS

12 sin βÞ; V ¼ W;Z;

(11)

those with the up-type quarks, down-type quarks, and
charged leptons are given by

ghuu ¼
ffiffiffi
2

p
mu

v
RS
12

sin β
; ghdd ¼

ffiffiffi
2

p
md

v
RS
11

cos β
;

ghll ¼
ffiffiffi
2

p
ml

v
RS
11

cos β
; (12)

respectively, and the Higgs self-coupling is

ghhh ¼
X
a;b;c

RS
1aR

S
1bR

S
1cλsasbsc ; (13)

where RS denotes the orthogonal matrix that diagonalizes
the CP-even Higgs mass matrix, and λsasbsc are tree-level
couplings among CP-even Higgs bosons in the gauge
basis. Their definitions are summarized in Appendix B. The
effective vertex of hγγ including contributions from the
additional charged Higgs bosons is given by

ghγγ ¼
X
f

NcQ2
fghffA1=2ðτfÞ þ ghWWA1ðτWÞ

þ
X
h�i

m2
Wλhhþi h−i
2c2Wm

2
h�i

A0ðτh�i Þ; (14)

where the number of color is Nc ¼ 3, and Qf denote the
electric charges of fermions f. For the definitions of the

amplitudes Ai, see, for example, Ref. [26]. The Higgs
boson couplings with the charged Higgs bosons are
given by

λhhþi h−i ¼
X
a;b;c

RS
1aU

C�
ib U

C
icλsawþ

b w
−
c
: (15)

The definitions of the unitary matrix UC and couplings
λsawþ

b w
−
c
are summarized in Appendix B.

The corresponding couplings in the SM are1

ghVV jSM ¼ gVmV; ghuujSM¼
ffiffiffi
2

p
mu

v
; ghddjSM¼

ffiffiffi
2

p
md

v
;

ghlljSM¼
ffiffiffi
2

p
ml

v
; ghhhjSM¼m2

Z

v
: (16)

It is useful to define deviation parameters

κX ¼ ghXX
ghXXjSM

; (17)

where X denotes SM particles. Such deviations are
extracted from measurements of the decay widths of the
Higgs boson.
In Fig. 3, the deviations in the Higgs boson coupling

with the tau lepton κτ and that with the bottom quark κb
from the SM predictions are plotted. The predictions of the
three benchmark points (A), (B), and (C) in the SGGHU are
shown with green blobs. The MSSM and NMSSM pre-
dictions are shown with red and blue lines, respectively.
Here, we simply adjust the stop masses and mixing so that
the observed Higgs boson mass is reproduced. In our
model, the Higgs boson couplings to the down-type quarks
and charged leptons are common and fall in the category of
the two Higgs doublet models. Therefore, the predicted
SGGHU deviations lie on the MSSM and NMSSM lines, as

TABLE III. Parameters of the TeV-scale effective theory obtained after RG running.

Case M1 M2 M3 μΔ μS

(A)(B)(C) 194 GeV 388 GeV 1360 GeV −252 GeV −85.8 GeV

Case μ Bμ ~mu3 ~mq3 ytAt

(A) 205 GeV 41400 GeV2 3290 GeV 4830 GeV 4030 GeV
(B) 177 GeV 40800 GeV2 1730 GeV 4480 GeV 6050 GeV
(C) 174 GeV 42000 GeV2 4220 GeV 5550 GeV 2910 GeV

Case ~mΔ ~mS λΔAΔ λ0SAS BΔμΔ BSμS mh

(A) 607 GeV 805 GeV 662 GeV 683 GeV 92000 GeV2 −78700 GeV2 123 GeV
(B) 784 GeV 612 GeV 1340 GeV 1110 GeV 30700 GeV2 −110000 GeV2 123 GeV
(C) 521 GeV 216 GeV 284 GeV 446 GeV 207000 GeV2 −33600 GeV2 122 GeV

1Since the Higgs trilinear coupling is calculated at the tree
level, we choose ghhhjSM ¼ m2

Z=v for its normalization.
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is evident from Eq. (12). The recent LHC results show
strong evidence of the Higgs boson coupling with the tau
lepton consistent with the SM prediction [27]. At the ILC
with

ffiffiffi
s

p ¼ 500 GeV, expected accuracies for the devia-
tions κτ and κb are 2.3% and 1.6%, respectively [25].
In Fig. 4, the deviations in the Higgs boson coupling

with the weak gauge bosons κV and that with the bottom
quark κb from the SM predictions are plotted. The
predictions of the three benchmark points (A), (B), and
(C) in the SGGHU are shown with green blobs. The MSSM
predictions are shown with red lines for tan β ¼ 10 (thick
line) and tan β ¼ 3 (dashed line). The NMSSM predictions
are shown with blue grid lines, which indicate mixings
between the SM-like and singletlike Higgs bosons of 10%,
20%, and 30% from the right to the left. As is reported in
Ref. [25], the ILC with

ffiffiffi
s

p ¼ 500 GeV can reach an
accuracy of 1.0% (1.1%) for the Higgs boson coupling
with the Z boson (the W boson). Therefore, signatures
different from the MSSM and its variants are expected to be
observed using κV at the ILC. Notice that the VEV of
the triplet Higgs boson vΔ is small compared to those of the
doublet Higgs bosons. Therefore, the mixing between the
SM-like Higgs boson and the CP-even component of
the Higgs singlet dominates over that between the SM-
like Higgs boson and the triplet component. In this sense,
our model is similar to the NMSSM. It will be difficult to
distinguish our model from only these observables.
In Fig. 5, the deviations in the Higgs boson coupling

with the charm quark κc and that with the bottom quark κb

from the SM predictions are plotted. As in Fig. 4, the
predictions of the three benchmark points (A), (B), and (C)
in the SGGHU are shown with green blobs, and the MSSM
and NMSSM predictions are shown with red and blue lines,
respectively. In sharp contrast to the κV-κb relation,
correlations between κc and κb strongly depend on the
value of tan β. For example, the benchmark point (C) with
tan β ¼ 3 is not covered by the NMSSM predictions with
tan β ¼ 10, and the deviation can be measured at the ILC
with

ffiffiffi
s

p ¼ 500 GeV, which aims to measure κc with an
accuracy of 2.8%. Independent tan β measurement using
the decay of the Higgs boson at the ILC [28,29] will also
play an important role in discriminating models. Although
it will be difficult to completely distinguish our model
from the NMSSM from the precision measurements of
Higgs boson couplings, if the deviation pattern of the
Higgs couplings is found to be close to our benchmark
points, there is a fair possibility that the SGGHU is
realized. The ILC is absolutely necessary for investigating
the Higgs properties and distinguishing particle physics
models.
As for other Higgs boson couplings, the deviations of the

Higgs boson coupling with the photon are 0.94 < κγ < 1.0,
and those of the Higgs self-coupling 0.82 < κh < 0.93 for
the benchmark points we show. To observe deviations in
these observables from the SM predictions one needs more
precise measurements at the ILC with

ffiffiffi
s

p ¼ 1 TeV [25].

0.9 1 1.1 1.2 1.3 1.4
κτ

0.9

1

1.1

1.2

1.3

1.4

κ b

SM

NMSSM
MSSM

SGGHU
A

C

B

FIG. 3 (color online). The deviations in the Higgs boson
coupling with the tau lepton κτ and that with the bottom quark
κb from the SM predictions are plotted. The predictions of the
three benchmark points (A), (B), and (C) in the SGGHU are
shown with green blobs. The MSSM and NMSSM predictions
are shown with red and blue lines, respectively. For the purpose of
illustration, the NMSSM line is slightly displaced from κτ ¼ κb.

0.92 0.94 0.96 0.98 1 1.02
κ

V

0.9

1

1.1

1.2

1.3

1.4

κ b

tanβ=10

SGGHU

SM

MSSM

NMSSM

tanβ=3

A

B

C

FIG. 4 (color online). The deviations in the Higgs boson
coupling with the weak gauge bosons κV and that with the
bottom quark κb from the SM predictions are plotted. The
predictions of the three benchmark points (A), (B), and (C) in
the SGGHU are shown with green blobs. The MSSM predictions
are shown with red lines for tan β ¼ 10 (thick line) and tan β ¼ 3
(dashed line). The NMSSM predictions are shown with blue grid
lines, which indicate mixings between the SM-like and singletlike
Higgs bosons of 10%, 20%, and 30% from the right to the left.
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B. Additional Higgs bosons

Finally, we mention the additional MSSM-like Higgs
bosons. Since four-point couplings in the Higgs sector are
expressed in terms of gauge couplings and F-term cou-
plings in SUSYmodels, the differences of the masses of the
MSSM-like Higgs bosons are also useful measures in
probing more fundamental physics. The MSSM-like
charged Higgs boson mass mH� is given by

m2
H� ¼ m2

H�jMSSMð1þ δH�Þ2

≃m2
A þm2

W þ 1

8
λ2Δv

2 −
1

2
λ2Sv

2; (18)

where δH� is the deviation in mH� from the MSSM and mA
is the MSSM-like CP-odd Higgs boson mass. The sign
of the singlet contribution is opposite to the triplet one due
to the group theory. From Eq. (9), mH� becomes large as
compared to the MSSM.We emphasize that these λS and λΔ
couplings are determined by the RGEs and a larger mH� is
a prediction in this model. The charged Higgs boson is
always heavier than the CP-odd Higgs boson. Since
δH�jMSSM is the sum of mA and mW , when the CP-odd
Higgs boson and the charged Higgs boson are discovered,
we can obtain δH� by measuring mA and mH� precisely.
Figure 6 shows the deviation parameter δH� of the
MSSM-like charged Higgs boson mass mH� as a function
of mA in the large soft mass scenario. The black, blue, and
green lines correspond to the triplet contribution, the
singlet contribution, and the sum of the singlet and triplet
contributions, respectively. Here, we choose λΔ ¼ 1.1
and λS ¼ 0.25. The mass deviation is found to be

Oð1Þ%–Oð10Þ% if the mass scale of the MSSM-like
Higgs bosons are below 500 GeV. On the other hand, the
deviation in the heavy CP-even Higgs boson mass mH
from the MSSM prediction is less than Oð1Þ%. Since the
charged Higgs boson mass can be determined with an
accuracy of a few percent at the LHC given such small
masses [24], we can test our model.
When the masses of the tripletlike and singletlike scalar

bosons are below 500 GeV, the ILC and CLIC have the
capability to directly produce these new particles. For
example, the benchmark point (C) gives the mass spectrum
of the Higgs sector particles shown in Table IV. In this case,
the mass of the lighter tripletlike Higgs boson Δ� is less
than 500 GeV, and we can probe Δ� using the channel
eþe− → ΔþΔ− → tbt̄ b̄, which proceeds via the mixing
between the MSSM-like and tripletlike charged Higgs
bosons.

V. DISCUSSION AND CONCLUSION

In this paper, we have investigated the phenomenology
of the Higgs sector of the supersymmetric version of the
grand gauge–Higgs unification model, where the SUð5Þ
grand unified gauge symmetry is broken by the Hosotani
mechanism. Our model provides a natural solution to the

0.9 0.92 0.94 0.96 0.98 1 1.02
κ

c

0.9

1

1.1

1.2

1.3

1.4

κ b

B

MSSM

SM
NMSSM

tanβ=3

C

tanβ=10

A

SGGHU

FIG. 5 (color online). The deviations in the Higgs boson
coupling with the charm quark κc and that with the bottom
quark κb from the SM predictions are plotted. See the caption of
Fig. 4 for details.
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±
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Triplet

Singlet

Triplet +Singlet

FIG. 6 (color online). The deviation parameter δH� of the
MSSM-like charged Higgs boson mass mH� as a function of the
MSSM-like CP-odd Higgs boson mass mA in the large soft mass
scenario. The black, blue, and green lines correspond to the triplet
contribution, the singlet contribution, and the sum of the singlet
and triplet contributions, respectively. Here, we choose λΔ ¼ 1.1
and λS ¼ 0.25.

TABLE IV. Mass spectrum of the Higgs scalars for the bench-
mark point (C).

CP-even CP-odd Charged

122 GeV � � � � � �
139 GeV 171 GeV 204 GeV
370 GeV 304 GeV 496 GeV
745 GeV 497 GeV 745 GeV
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doublet-triplet splitting problem thanks to the phase nature
of the Hosotani mechanism, and it predicts the existence of
a light color octet, an SUð2ÞL triplet, and neutral singlet
chiral multiplets whose masses are around the TeV scale.
Since the adjoint chiral multiplets originated from the
GUT gauge multiplet, there are no trilinear self-couplings
among them and their couplings to the MSSM fields are
unified to the SM gauge coupling constants at the GUT
scale. Therefore, our model is highly predictive. We have
performed RGE analysis to obtain masses and coupling
constants of the low-energy effective theory of our model.
Although the mass scale of the color octet chiral multiplet
is found to be beyond reach of collider experiments, the
masses of the triplet and singlet multiplets can remain as
small as those of the MSSM Higgs doublets, and thus the
Higgs sector is extended by these new Higgs multiplets.
We have computed the SM-like Higgs boson mass,

including the tree level and one loop level contributions
from the triplet and singlet couplings, and shown bench-
mark points consistent with the LHC Higgs boson mass
measurements. Based on the benchmark points, we have
evaluated deviations of couplings between the Higgs boson
and SM particles from the corresponding SM values, which
are one of the main targets of the future ILC project. The
deviations of the couplings from the SM predictions turn
out to be Oð1Þ% when the triplet and singlet Higgs boson
masses are below≃1 TeV. Given such small masses, we can
distinguish our model, MSSM, and NMSSM by comparing
patterns of the deviations of these new physics models. As for
additional Higgs bosons, the mass gap between the MSSM-
like charged Higgs boson and the MSSM-likeCP-odd Higgs
boson differs from that of the MSSM by Oð1Þ%–Oð10Þ%
when their masses are below≃500 GeV. Such a deviation is
within the scope of the LHC.
Last but not least, the extension of the Higgs sector in

SUSY models means that the neutralino and chargino
sectors are also extended. For the benchmark points we
have shown, masses of the six neutralinos and three
charginos are all less than 500 GeV. Collider signatures
of such additional neutralinos and charginos will be
discussed elsewhere.
We emphasize that our supersymmetric grand gauge–

Higgs unification model serves as a good example of grand
unification that is testable at future electron-positron
colliders, and research along this strategy should be
encouraged.
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APPENDIX A: RENORMALIZATION GROUP
EQUATIONS

In this appendix, we summarize the one loop RGEs
between the SUSY scale and the GUT scale for our model.
Here, for later reference, we give them in a form that
correctly includes the flavor structure, though it is less
relevant to our analysis in this article.

1. Notations

To treat the flavor, it is convenient to use a notation
different from the one used in the main text for the A and B
terms so that the corresponding SUSY parameters are not
extracted. To distinguish them, we append a bar on top of
the A and B terms used in this appendix. Namely, for
example, the B term of the singlet is defined as B̄S ¼ BSμS.
The flavor structure is expressed by using 3 × 3matrices as

usual. Here we use the character Y for the Yukawa couplings
with the flavor, and thus Y is treated as a matrix, and the
characterλ for thosewithout theflavor.Thecharacterydenotes
all the Yukawa coupling, Y and λ, symbolically. A dot on a
parameter PðQÞ is used for a partial derivative by the renorm-
alization scale Q with a normalization factor: ð16π2Þ∂P=∂
ln ðQ=Q0Þ where Q0 is an arbitrary reference scale.
The superpotential we consider is

W ¼ Wmatter þWHiggs þWadd; (A1)

with

Wmatter ¼ uYuq ·Hu − dYdq ·Hd − eYel ·Hd; (A2)

WHiggs is given in Eq. (4), and

Wadd ¼ L̄j · ðλLjΔΔ − λLjSSþ μLj
ÞLj

þ Ū

�
λUGG −

4

3
λUSSþ μU

�
U

þ ð2λESSþ μEÞĒEþ μGtrðGGÞ: (A3)

Here, q, u, d, l, and e denote the MSSM matter chiral
multiplets, Yx (x ¼ u; d; e) is a 3 × 3 matrix, S, Δ, and G
are the adjoint chiral multiplets, and ðL̄j; LjÞ (j ¼ 1; 2),
ðŪ; UÞ, and ðĒ; EÞ are the additional vectorlike pairs
introduced to recover the gauge coupling unification.2

The SUSY-breaking soft terms contain the tadpole term
of S, aside from the usual soft mass squared terms, A terms,
and B terms,

Vsoft ¼ Vmatter
soft þ VHiggs

soft þ Vadd
soft; (A4)

2In general, there exist the mixing terms between these
vectorlike fields and MSSM fields. The pattern of the mixing
terms is highly model dependent while these mixings have little
effects on the Higgs sector. Hence, we impose an additional Z2

symmetry that forbids such mixing terms to avoid unessential
complications.
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with

Vmatter
soft ¼ ~q† ~m2

q ~qþ ~uT ~m2
u ~u� þ ~dT ~m2

d
~d� þ ~l† ~m2

l
~lþ ~eT ~m2

e ~e� þ ½uĀuq ·Hu − dĀdq ·Hd − eĀel ·Hd þ H:c:�; (A5)

VHiggs
soft is given in Eq. (5), and

Vadd
soft¼ ~m2

Lj
jLjj2þ ~m2

L̄j
jL̄jj2þ ~m2

UjUj2þ ~m2
ŪjŪj2þ ~m2

EjEj2þ ~m2
ĒjĒj2þ ~m2

GjGj2

þ
�
L̄j · ðĀLjΔΔ− ĀLjSSþ B̄Lj

ÞLjþ Ū

�
ĀUGG−

4

3
ĀUSSþ B̄U

�
Uþð2ĀESSþ B̄EÞĒEþ B̄GtrðGGÞþH:c:

�
: (A6)

It is worthwhile to notice that the tadpole term of the scalar
component of S in VHiggs

soft is generated even when the
tadpole term in the superpotential is forbidden, while that of
the F component of S can be removed by a field
redefinition. Since the latter is generated by the loop
corrections, we have to do the field redefinition at each
scale, and the RGEs of the B terms for the fields that couple
to S are affected.

2. RGEs

The formalism including some notations in this sub-
section is the one in Ref. [30].

a. Gauge couplings and gaugino masses

The RGEs for the gauge couplings gi and the gaugino
masses Mi are given as

_gi ¼ big3i ;

_Mi ¼ 2big2i Mi; (A7)

with the beta function coefficients bi. In this model they
are bi ¼ ð53

5
; 5; 1Þ.

b. Yukawa couplings

The RGEs for the Yukawa couplings are

_Yu ¼ γTuYu þ Yuγq þ γHu
Yu;

_Yd ¼ γTdYd þ Ydγq þ γHd
Yd;

_Ye ¼ γTe Ye þ Yeγl þ γHd
Ye;

_λΔ ¼ ðγHu
þ γHd

þ γΔÞλΔ;
_λS ¼ ðγHu

þ γHd
þ γSÞλS;

_λLjΔ ¼ ðγLj
þ γL̄j

þ γΔÞλLjΔ;

_λLjS ¼ ðγLj
þ γL̄j

þ γSÞλLjS;

_λUG ¼ ðγU þ γŪ þ γGÞλUG;

_λUS ¼ ðγU þ γŪ þ γSÞλUS;

_λES ¼ ðγE þ γĒ þ γSÞλES; (A8)

with the anomalous dimensions γ, among which γf
(f ¼ q; u; d;l; e) is a 3 × 3 matrix.

γq ¼ −2
�
4

3
g23 þ

3

4
g22 þ

1

60
g21

�
1þ Y†

uYu þ Y†
dYd;

γu ¼ −2
�
4

3
g23 þ

4

15
g21

�
1þ 2Y�

uYT
u ;

γd ¼ −2
�
4

3
g23 þ

1

15
g21

�
1þ 2Y�

dY
T
d ;

γl ¼ −2
�
3

4
g22 þ

3

20
g21

�
1þ Y†

eYe;

γe ¼ −2
�
3

5
g21

�
1þ 2Y�

eYT
e ;

γHu
¼ −2

�
3

4
g22 þ

3

20
g21

�
þ Trð3Y†

uYuÞ þ δγH;

γHd
¼ −2

�
3

4
g22 þ

3

20
g21

�
þ Trð3Y†

dYd þ Y†
eYeÞ þ δγH;

(A9)

δγH ¼ jλSj2 þ
3

4
jλΔj2;

γS ¼ 2jλSj2 þ
X
j

2jλLjSj2 þ
16

3
jλUSj2 þ 4jλESj2;

γΔ ¼ −2ð2g22Þ þ
1

2
jλΔj2 þ

X
j

1

2
jλLjΔj2;

γG ¼ −2ð3g23Þ þ
1

2
jλUGj2;

γLj
¼ γL̄j

¼ −2
�
3

4
g22 þ

3

20
g21

�
þ jλLjSj2 þ

3

4
jλLjΔj2;

γU ¼ γŪ ¼ −2
�
4

3
g23 þ

4

15
g21

�
þ 16

9
jλUSj2 þ

4

3
jλUGj2;

γE ¼ γĒ ¼ −2
�
3

5
g21

�
þ 4jλESj2: (A10)

c. μ terms

Similarly, the supersymmetric mass terms evolve as

_μ ¼ ðγHu
þ γHd

Þμ; _μS ¼ 2γSμS; _μΔ ¼ 2γΔμΔ;

_μG ¼ 2γGμG; _μLj
¼ ðγL̄j

þ γLj
ÞμLj

;

_μU ¼ ðγŪ þ γUÞμU; _μE ¼ ðγĒ þ γEÞμE: (A11)
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d. A terms

The RGEs for the A terms can be derived from those for
the corresponding Yukawa couplings given in Eq. (A8),
which are functions of the Yukawa couplings y and the
anomalous dimensions γ, _yðy; γÞ, by

_̄Ax ¼ _yxjy→Ā þ _yxjγ→~γ ¼ _yxðĀ; γÞ þ _yxðy; ~γÞ: (A12)

Here, the quantities ~γf can be built from the corresponding
anomalous dimensions in Eqs. (A9) and (A10) with the
replacements

g2i → −2g2i Mi; y†xyx → 2y†xĀx; y�xyTx → 2y�xĀT
x :

(A13)

e. B terms

Similarly, the RGEs for the B terms are obtained
from those for the corresponding μ terms in Eq. (A11),
but with a further contribution due to the field redefinition
of S as

_̄Bf ¼ _μfjμ→B̄ þ _μfjγ→~γ þ λfSJS: (A14)

Here, λfS is the Yukawa coupling among the relevant
vectorlike pair and the singlet S, and the quantity JS is
built from γS in Eq. (A10) with the replacement

jλfSj2 → 2λ�fSB̄f: (A15)

f. Scalar tadpole

The RGE for the scalar tadpole of S is written by

_ξ ¼ γSξþ ~J�S þ JSμS; (A16)

with ~JS built from γS in Eq. (A10) with the replacement

jλfSj2 → 2ðλ†fSð ~m2
f þ ~m2

f̄
Þμf þ Ā�

fSB̄fÞ; (A17)

where ~m2
f and ~m2

f̄
are the masses squared of the relevant

vectorlike pair.

3. Scalar soft squared masses

It is convenient to define a function F as

F ðy†x; f1; f2; f3; Ā†
xÞ ¼ y†xyx ~m2

f1
þ ~m2

f1
y†xyx

þ 2ðy†x ~m2�
f2
yx þ ~m2

f3
y†xyx þ Ā†

xĀxÞ;
(A18)

where yx is any of the Yukawa couplings in the super-
potential, ~m2

f1
is the mass squared for which the RGE in

question is derived, ~m2
f2
and ~m2

f3
are the masses squared of

the particles exchanged in the loops that induce the RGE.
Since the order of f1; f2; f3 is not important when yx is
some of λ, the order may be changed below.
Using the function F , the RGEs for the soft squared

masses are written as

_~m2
q ¼ −8

�
4

3
g23M

2
3 þ

3

4
g22M

2
2 þ

1

60
g21M

2
1

�
1þ F ðY†

u; q; u;Hu; Ā
†
uÞ þ F ðY†

d; q; d;Hd; Ā
†
dÞ;

_~m2
u ¼ −8

�
4

3
g23M

2
3 þ

4

15
g21M

2
1

�
1þ 2F ðYu; u; q;Hu; ĀuÞ;

_~m2
d ¼ −8

�
4

3
g23M

2
3 þ

1

15
g21M

2
1

�
1þ 2F ðYd; d; q;Hd; ĀdÞ;

_~m2
l ¼ −8

�
3

4
g22M

2
2 þ

3

20
g21M

2
1

�
1þ F ðY†

e;l; e; Hd; Ā
†
eÞ;

_~m2
e ¼ −8

�
3

5
g21M

2
1

�
1þ 2F ðYe; e;l; Hd; ĀeÞ; (A19)

_~m2
Hd

¼ −8
�
3

4
g22M

2
2 þ

3

20
g21M

2
1

�

þ 3TrF ðY†
d; Hd; d; q; Ā

†
dÞ þ TrF ðY†

e; Hd; e;l; Ā
†
eÞ þ δ _~m2

H;

_~m2
Hu

¼ −8
�
3

4
g22M

2
2 þ

3

20
g21M

2
1

�
þ 3TrF ðY†

u; Hu; u; q; Ā
†
uÞ þ δ _~m2

H;

δ _~m2
H ¼ F ðλS; Hu;Hd; S; ĀSÞ þ

3

4
F ðλΔ; Hu;Hd;Δ; ĀΔÞ; (A20)
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_~m2
S ¼ 2F ðλS; S;Hu;Hd; ĀSÞ þ

X
j

2F ðλLjS; S; Lj; L̄j; ĀLjSÞ þ
16

3
F ðλUS; S; U; Ū; ĀUSÞ þ 4F ðλES; S; E; Ē; ĀESÞ;

_~m2
Δ ¼ −8ð2g22M2

2Þ þ
1

2
F ðλΔ;Δ; Hu;Hd; ĀΔÞ þ

X
j

1

2
F ðλLjΔ;Δ; Lj; L̄j; ĀLjΔÞ;

_~m2
G ¼ −8ð3g23M2

3Þ þ
1

2
F ðλUG;G;U; Ū; ĀUGÞ;

_~m2
Lj

¼ _~m2
L̄j

¼ −8
�
3

4
g22M

2
2 þ

3

20
g21M

2
1

�
þ F ðλLjS; Lj; L̄j; S; ĀLjSÞ þ

3

4
F ðλLjΔ; Lj; L̄j;Δ; ĀLjΔÞ;

_~m2
U ¼ _~m2

Ū ¼ −8
�
4

3
g23M

2
3 þ

4

15
g21M

2
1

�
þ 16

9
F ðλUS; U; Ū; S; ĀUSÞ þ

4

3
F ðλUG;U; Ū; G; ĀUGÞ;

_~m2
E ¼ _~m2

Ē ¼ −8
�
3

5
g21M

2
1

�
þ 4F ðλES; E; Ē; S; ĀESÞ: (A21)

Here, we omit the corrections due to theD-term interactions
of the hypercharge,

6

5
yfg21trðyf0 ~m2

f0 Þ;

since they vanish when we take the (semi)universal
boundary condition.

4. Input parameters at the GUT scale

In this analysis, we assume a certain universality among
the SUSY breaking parameters at the GUT scale, for
simplicity. The gaugino masses M1=2 should be common
since our model is a kind of the grand unified theory. The A
terms and soft squared masses for the MSSMmatter (quark
and lepton) multiplets are set to a common value as A0

(with the notation in the main text) and ~m2
0, respectively. We

treat the soft squared masses for the doublet Higgs
multiplets, ~m2

Hu
and ~m2

Hd
, as independent parameters not

necessarily equal to ~m2
0. Their μ term and the B term are

also free parameters.
Since the adjoint chiral multiplets originate from the

unified gauge multiplet, their parameters should be
common at the cutoff scale, and one of two real scalar
fields in each adjoint multiplet should be massless while its
SUSY partners, the other scalar and the Majorana fermion,
can be massive. This fact allows us to introduce a μ
parameter, μΣ, for the mass of the fermionic component,
a soft squared mass, ~m2

Σ, and a B parameter, B̄Σ, for the
adjoint multiplets that satisfy a relation jB̄Σj ¼ j ~m2

Σ þ μ2Σj.
In addition, the A terms for the adjoint Yukawa couplings
are forbidden. Although the scalar tadpole term for the
massive scalar in the singlet multiplet is not forbidden, we
do not introduce it for simplicity.
As for the additional vectorlike pairs, we take common

parameters for the pairs ðŪ; UÞ and ðĒ; EÞ since they are
assumed to be unified into a single 10 multiplet. The
parameters for the two pairs ðL̄i; LiÞ could depend on the

“flavor” i, but we take common parameters here. For these,
we have the μ parameters, μ10 and μ5, the B parameters, B10

and B5, and the soft squared masses, ~m2
10 and ~m2

5.
In summary, our parameters at the GUT scale are one

gaugino mass, one A parameter, four μ parameters, four B
parameters, and six soft squared masses, with one condition
for a massless adjoint scalar.
Among these parameters, the μ and B parameters of the

additional vectorlike pairs do not affect the running of the
parameters in the Higgs sector, and we fix them as μ10 ¼
−20 TeV and μ5 ¼ 5 TeV so that they are decoupled from
the sub-TeV physics, and B10 ¼ B5 ¼ 0 for simplicity.

APPENDIX B: MASSES AND MIXINGS OF THE
HIGGS BOSONS

Here we detail computations of the masses and mixings
of the Higgs bosons.

1. Higgs potential

The Higgs superpotential and soft SUSY breaking terms
are given by Eqs. (4) and (5), respectively. The scalar
components of the MSSM Higgs superfields are expanded
around their VEVs as

Hu¼
�

hþu
vu=

ffiffiffi
2

p þh0u

�
; Hd¼

�
vd=

ffiffiffi
2

p þh0d
h−d

�
; (B1)

and those of triplet and singlet as

Δ ¼
� ðvΔ þ Δ0Þ=2 Δ̄þ=

ffiffiffi
2

p

Δ−=
ffiffiffi
2

p
−ðvΔ þ Δ0Þ=2

�
;

S ¼ ðvS þ S0Þ=
ffiffiffi
2

p
: (B2)

The minimum of the tree-level Higgs potential is obtained
by using the tadpole conditions,
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∂V
∂vu ¼ vd

�
~m2
Hd

þ μ2eff þ
λ2Δv

2
u

8
þ λ2Sv

2
u

2
þ g22 þ g21

8
ðv2d − v2uÞ

�
− vum̂2

3 ¼ 0;

∂V
∂vd ¼ vu

�
~m2
Hu

þ μ2eff þ
λ2Δv

2
d

8
þ λ2Sv

2
d

2
þ g22 þ g21

8
ðv2u − v2dÞ

�
− vdm̂2

3 ¼ 0;

∂V
∂vΔ ¼ vΔð ~m2

Δ þm2
3Δ þ μ2ΔÞ −

λΔ
2

ffiffiffi
2

p ½ðμΔ þ AΔÞvuvd − μeffðv2u þ v2dÞ� ¼ 0;

∂V
∂vS ¼ vSð ~m2

S þm2
3S þ μ2SÞ −

λSffiffiffi
2

p ½ðμS þ ASÞvdvu − μeffðv2d þ v2uÞ� þ
ffiffiffi
2

p
ξ ¼ 0; (B3)

where we have replaced μ and m2
3 by

μeff ≡ μþ λΔvΔ
2

ffiffiffi
2

p þ λSvSffiffiffi
2

p ;

m̂2
3 ≡m2

3 þ
λΔvΔ
2

ffiffiffi
2

p ðμΔ þ AΔÞ þ
λSvSffiffiffi

2
p ðμS þ ASÞ; (B4)

respectively. These parameters play roles similar to μ and
m2

3 in the MSSM and are derived from the tadpole
conditions as

μ2eff ¼ −
g22 þ g21

8
v2 −

t2β
t2β − 1

~m2
Hu

þ 1

t2β − 1
~m2
Hd
;

m̂2
3

cβsβ
¼ ~m2

Hu
þ ~m2

Hd
þ 2μ2eff þ

λ2Δv
2

8
þ λ2Sv

2

2
; (B5)

where we have defined

tan β ¼ vu
vd

; v2 ¼ v2u þ v2d; (B6)

and used the abbreviations sβ ¼ sin β, cβ ¼ cos β, and
tβ ¼ tan β.
Data of electroweak precision measurements show that

the rho parameter is very close to one: the VEV of the
neutral component of the Higgs triplet field is much smaller
than v. Therefore, the mass matrices of the Higgs bosons
can be expanded with respect to vΔ=v. Hereafter, we keep
only the leading term in each Higgs mass matrix, taking the
limit of vΔ=v → 0.

2. Higgs mass matrices

On the basis of w−
i ¼ ðh−d ; h−u ; Δ̄−;Δ−Þ, the mass squared

matrix of the charged Higgs bosons is given by

M2
� ¼

0
BBBBBBB@

M̂2
Cs

2
β M̂2

Csβcβ − λΔ
2
vsβðμefftβ − μΔÞ λΔ

2
vsβðμeff=tβ − μΔÞ

� � � M̂2
Cc

2
β − λΔ

2
vcβðμefftβ − μΔÞ λΔ

2
vcβðμeff=tβ − μΔÞ

� � � � � � μ2Δ þ ~m2
Δ þ g2

2

4
v2c2β þ λ2Δ

4
v2s2β m2

3Δ

� � � � � � � � � μ2Δ þ ~m2
Δ − g2

2

4
v2c2β þ λ2Δ

4
v2c2β

1
CCCCCCCA
; (B7)

where

M̂2
C ¼ m̂2

3

sβcβ
þ
�
g22
4
þ λ2Δ

8
−
λ2S
2

�
v2: (B8)

The mass eigenstates of the charged Higgs bosons h−i are
obtained by a unitary matrix UC as

h−i ¼ UC
ijw

−
j : (B9)

In the limit of heavy triplet and singlet components, the
mass squared of the MSSM-like charged Higgs boson is
approximately given by

m2
H� ≃ M̂2

C ¼ m̂2
3

sβcβ
þ
�
g22
4
þ λ2Δ

8
−
λ2S
2

�
v2: (B10)

On the basis of Pi ¼ ðImðh0dÞ=
ffiffiffi
2

p
; Imðh0uÞ=ffiffiffi

2
p

; ImðS0Þ= ffiffiffi
2

p
; ImðΔ0Þ= ffiffiffi

2
p Þ, the mass squared matrix

of the CP-odd Higgs bosons is given by
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M2
A ¼

0
BBBBBBB@

m̂2
3tβ m̂2

3 − λSffiffi
2

p vsβðμS − ASÞ λΔ
2
ffiffi
2

p v
cβ
ðμeff − μΔs2βÞ

� � � m̂2
3=tβ − λSffiffi

2
p vcβðμS − ASÞ λΔ

2
ffiffi
2

p v
sβ
ðμeff − μΔs2βÞ

� � � � � � μ2S þ ~m2
S −m2

3S þ λ2S
2
v2 λΔλS

4
v2

� � � � � � � � � μ2Δ þ ~m2
Δ −m2

3Δ þ λ2Δ
8
v2

1
CCCCCCCA
: (B11)

The mass eigenstates of the CP-odd Higgs bosons ai are
obtained by an orthogonal matrix RP as

ai ¼ RP
ijPj: (B12)

In the limit of heavy triplet and singlet components, the mass
squaredof theMSSM-likeCP-oddHiggsbosonareobtainedby

m2
A ≃ m̂2

3

sβcβ
: (B13)

Therefore, the mass squared difference between the
MSSM-like charged and CP-odd Higgs bosons is

m2
H� −m2

A ≃
�
g22
4
þ λ2Δ

8
−
λ2S
2

�
v2: (B14)

Given the above charged (CP-odd) Higgs boson mass
matrix, the eigenstate whose mass eigenvalue vanishes
corresponds to the Nambu-Goldstone boson absorbed by
the W (Z) boson.
On the basis of Si ¼ ðReðh0dÞ=

ffiffiffi
2

p
;Reðh0uÞ=

ffiffiffi
2

p
;

ReðS0Þ= ffiffiffi
2

p Þ;ReðΔ0Þ= ffiffiffi
2

p Þ, the mass squared matrix of
the CP-even Higgs bosons is given by

M2
S¼

0
BBBBBBB@

m̂2
3tβþm2

Zc
2
β −m̂2

3−M̂2sβcβ
λSffiffi
2

p vð2μeffcβ−ðμSþASÞsβÞ λΔ
2
ffiffi
2

p μeffv
c2β
cβ

��� m̂2
3

tβ
þm2

Zs
2
β

λSffiffi
2

p vð2μeffsβ−ðμSþASÞcβÞ − λΔ
2
ffiffi
2

p μeffv
c2β
sβ

��� ��� μ2Sþ ~m2
Sþm2

3Sþ λ2S
2
v2 λΔλS

4
v2

��� ��� ��� μ2Δþ ~m2
Δþm2

3Δþ λ2Δ
8
v2

1
CCCCCCCA
; (B15)

where

M̂2 ¼
�
1

4
g21 þ

1

4
g22 −

1

4
λ2Δ − λ2S

�
v2: (B16)

The mass eigenstates of the CP-even Higgs bosons hi are
obtained by an orthogonal matrix RS as

hi ¼ RS
ijSj: (B17)

At the tree level, the mass eigenvalues of the MSSM-like
CP-even Higgs bosons are approximately given by

m2
h ≃m2

Zcos
22β þ

�
λ2Δ
8
þ λ2S

2

�
v2sin22β;

m2
H ≃ m̂2

3

sβcβ
þm2

Zsin
22β −

�
λ2Δ
8
þ λ2S

2

�
v2sin22β; (B18)

respectively.

3. Neutralino and chargino mass matrices

The fermionic components of the triplet and singlet super-
fields mix with the MSSM neutralinos and charginos, and
influence loop corrections to the mass of the Higgs boson.
On the basis of ψ0 ¼ ð ~B; ~W0; ~h0d; ~h

0
u; ~S

0; ~Δ0Þ, the neu-
tralino mass matrix is given by

M ~N ¼

0
BBBBBBBBBB@

M1 0 − gY
2
vd

gY
2
vu 0 0

0 M2
g2
2
vd − g2

2
vu 0 0

− gY
2
vd

g2
2
vd 0 −μeff − λSffiffi

2
p vu

λΔ
2
ffiffi
2

p vu
gY
2
vu − g2

2
vu −μeff 0 − λSffiffi

2
p vd

λΔ
2
ffiffi
2

p vd
0 0 − λsffiffi

2
p vu − λsffiffi

2
p vd μs 0

0 0 λΔ
2
ffiffi
2

p vu
λΔ
2
ffiffi
2

p vd 0 μΔ

1
CCCCCCCCCCA
; (B19)
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where M1 and M2 denote the bino and wino masses,
respectively.
On the basis of ψþ ¼ ð ~Wþ; ~hþu ; ~ΔþÞ and ψ− ¼

ð ~W−; ~h−d ; ~Δ−Þ, the chargino mass terms are given by

L ¼ −
1

2
ðψ−ÞTM ~Cψ

þ −
1

2
ðψþÞTMT

~C
ψ−; (B20)

with

M ~C ¼

0
B@

M2
gffiffi
2

p vu 0
gffiffi
2

p vd μeff
λΔ
2
vu

0 − λΔ
2
vd μΔ

1
CA: (B21)

This matrix is diagonalized by a biunitary transformation

diagðmχþi
Þ ¼ U�M ~CV

†; (B22)

where the unitary matrices U and V rotate ψ− and ψþ, their
corresponding mass eigenstates, as

χ−i ¼ Uijψ
−
j ; χþi ¼ Vijψ

þ
j : (B23)

4. One loop corrections to the SM-like Higgs boson mass

Here we discuss radiative corrections to the mass of the
SM-like Higgs boson at the one loop level. We follow the
formalism described in Refs. [31,32], which takes the DR
scheme. The one loop corrected mass squared matrix for
the CP-even Higgs bosons in the gauge basis Si is given by

ðM2
SÞ1 loop

ij ¼ ðM2
SÞTree þ

Ti

vi
δij − Πsisjðp2Þ; (B24)

where Ti represent the finite part of the one loop tadpole
diagrams, and Πsisjðp2Þ are the finite parts of the one loop
self-energy diagrams for external momentum p. The form
of the expressions for contributions to the scalar self-
energies and tadpoles are similar to those of the MSSM and
NMSSM. In our computation, we include all contributions
from MSSM particles to Πs1s1 , Πs2s2 , Πs1s2 , T1, and T2, and
then add extra contributions from extra Higgs, neutralino,
and chargino to Πs2s2 and T2.
The contributions to the scalar self-energies from the

Higgs bosons loop diagrams are given by

16π2ΠH
sisjðp2Þ ¼

X4
k

2λsisjhkhkAðmhkÞ þ
X4
k;l

2λsihkhlλsjhkhlB0ðmhk; mhlÞ

þ
X4
k

2λsisjakakAðmakÞ þ
X4
k;l

2λsiakalλsjakalB0ðmak; malÞ

þ
X4
k

2λsisjhþk h−k Aðmh�k
Þ þ

X4
k;l

λsihþk h−l λsjh
þ
k h

−
l
B0ðmh�k

; mh�l
Þ: (B25)

The contributions to the scalar self-energies from neutralino and chargino loop diagrams are given by

16π2Πχ
sisjðp2Þ ¼ 4

X6
k;l¼1

Reðλsiχ0kχ0lλ�sjχ0kχ0lÞ½ðp
2 −m2

χ0k
−m2

χ0l
− 2mχ0k

mχ0l
ÞB0ðmχ0k

; mχ0l
Þ−Aðmχ0k

Þ − Aðmχ0l
Þ�

þ 2
X3
k;l¼1

Reðλsiχþk χ−l λ�sjχþk χ−l Þ½ðp
2 −m2

χ�k
−m2

χ�l
− 2mχ�k

mχ�l
ÞB0ðmχ�k

; mχ�l
Þ−Aðmχ�k

Þ − Aðmχ�l
Þ�: (B26)

The contributions to the tadpoles from Higgs boson loop
diagrams are given by

16π2Tϕ
i ¼

X
ϕ¼h;a;h�

Xnϕ
k¼1

λsiϕkϕk
Aðmϕk

Þ; (B27)

where nh ¼ na ¼ nh� ¼ 4. The contributions to the tad-
poles from neutralino or chargino loop diagrams are given
by

16π2Tχ
i ¼−4

X6
k¼1

λsiχkχkmχkAðmχkÞ−4
X3
k¼1

λsiχþk χ−k mχ�k
Aðmχ�k

Þ:

(B28)

Here, A and B0 are the Passarino-Veltman functions [33].
The tadpole and self-energy diagrams from SM fermions,
gauge bosons and fermions are similar to those of the
MSSM, and we refer the reader to [31,32].
Definitions of the couplings λ are given below. Although

we compute loop diagrams that contribute to the mass shift
in the top left 2 × 2 submatrix, we list all CP-even Higgs
couplings for completeness.

a. Higgs self-couplings

The trilinear self-couplings of the neutral Higgs bosons
are given by
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λs1s1s1 ¼ λs1p1p1
¼ 1

8
ðg22 þ g2YÞvd; λs2s2s2 ¼ λs2p2p2

¼ 1

8
ðg22 þ g2YÞvu;

λs1p2p2
¼ 3λs1s2s2 ¼ −

1

8
ðg22 þ g2Y − 4λ2S − λ2ΔÞvd;

λs2p1p1
¼ 3λs1s1s2 ¼ −

1

8
ðg22 þ g2Y − 4λ2S − λ2ΔÞvu;

λs1s1s3 ¼ λs2s2s3 ¼
λS
3

ffiffiffi
2

p μeff ; λs1s1s4 ¼ λs2s2s4 ¼
λΔ
6

ffiffiffi
2

p μeff ;

λs1p3p3
¼ 3λs1s3s3 ¼

λ2S
2
vd; λs2p3p3

¼ 3λs2s3s3 ¼
λ2S
2
vu;

λs1p3p4
¼ 3λs1s3s4 ¼

λSλΔ
4

vd; λs2p3p4
¼ 3λs2s3s4 ¼

λSλΔ
4

vu;

λs1p4p4
¼ 3λs1s4s4 ¼

λ2Δ
8
vd; λs2p4p4

¼ 3λs2s4s4 ¼
λ2Δ
8
vu;

λs3p1p1
¼ λs3p2p2

¼ λSffiffiffi
2

p μeff ; λs4p1p1
¼ λs4p2p2

¼ λΔ
2

ffiffiffi
2

p μeff ;

λs1s2s3 ¼ −
λS
6

ffiffiffi
2

p ðAS þ μSÞ; λs3p1p2
¼ λS

2
ffiffiffi
2

p ðAS þ μSÞ; λs1p2p3
¼ λs2p1p3

¼ λS
2

ffiffiffi
2

p ðAS − μSÞ;

λs1s2s4 ¼ −
λΔ

12
ffiffiffi
2

p ðAΔ þ μΔÞ; λs4p1p2
¼ λΔ

4
ffiffiffi
2

p ðAΔ þ μΔÞ; λs1p2p4
¼ λs2p1p4

¼ λΔ
4

ffiffiffi
2

p ðAΔ − μΔÞ: (B29)

The quartic self-couplings of the neutral Higgs bosons are given by

λs1s1s1s1 ¼ λs2s2s2s2 ¼
1

32
ðg22 þ g2YÞ; λs1s1p1p1

¼ λs2s2p2p2
¼ 1

16
ðg22 þ g2YÞ;

λs1s1s2s2 ¼ −
1

96
ðg22 þ g2Y − 4λ2S − λ2ΔÞ; λs2s2p1p1

¼ λs1s1p2p2
¼ −

1

16
ðg22 þ g2Y − 4λ2S − λ2ΔÞ;

λs1s1s3s3 ¼ λs2s2s3s3 ¼
λ2S
24

; λs1s1p3p3
¼ λs2s2p3p3

¼ λs3s3p1p1
¼ λs3s3p2p2

¼ λ2S
4
;

λs1s1s3s4 ¼ λs2s2s3s4 ¼
λSλΔ
48

; λs1s1p3p4
¼ λs2s2p3p4

¼ λSλΔ
4

;

λs1s1s4s4 ¼ λs2s2s4s4 ¼
λ2Δ
96

; λs1s1p4p4
¼ λs2s2p4p4

¼ λs4s4p1p1
¼ λs4s4p2p2

¼ λ2Δ
16

: (B30)

The trilinear couplings between the neutral and charged Higgs bosons are written by

λs1wþ
1
w−
1
¼ 1

4
ðg22 þ g2YÞvd; λs1wþ

2
w−
2
¼ 1

4
ðg22 − g2Y þ 2λ2ΔÞvd; λs1wþ

3
w−
3
¼ g22

2
vd; λs1wþ

4
w−
4
¼ −

1

2
ðg22 − λ2ΔÞvd;

λs2wþ
1
w−
1
¼ 1

4
ðg22 − g2Y þ 2λ2ΔÞvu; λs2wþ

2
w−
2
¼ 1

4
ðg22 þ g2YÞvu; λs2wþ

3
w−
3
¼ −

1

2
ðg22 − λ2ΔÞvu; λs2wþ

4
w−
4
¼ g22

2
vu;

λs3wþ
1
w−
1
¼ λs3wþ

2
w−
2
¼

ffiffiffi
2

p
λSμeff ; λs4wþ

1
w−
1
¼ λs4wþ

2
w−
2
¼ −

λΔffiffiffi
2

p μeff ; λs1wþ
1
w−
2
¼ 1

8
ð2g22 − 4λ2S þ λ2ΔÞvu; λs1wþ

1
w−
3
¼ 1

2
λΔμeff ;

λs1wþ
1
w−
4
¼ λΔ

2
μeff ; λs1wþ

2
w−
3
¼ λΔ

2
μΔ; λs1wþ

2
w−
4
¼ λΔ

2
AΔ; λs2wþ

1
w−
2
¼ 1

8
ð2g22 − 4λ2S þ λ2ΔÞvd; λs2wþ

1
w−
3
¼ −

λΔ
2
AΔ;

λs2wþ
1
w−
4
¼ −

λΔ
2
μΔ; λs2wþ

2
w−
3
¼ −

λΔ
2
μeff ; λs2wþ

2
w−
4
¼ −

1

2
λΔμeff ; λs3wþ

1
w−
2
¼ λSffiffiffi

2
p ðAS þ μSÞ;

λs3wþ
1
w−
3
¼ λs3wþ

1
w−
4
¼ λSλΔ

2
ffiffiffi
2

p vd; λs3wþ
2
w−
3
¼ λs3wþ

2
w−
4
¼ −

λSλΔ
2

ffiffiffi
2

p vu; λs4wþ
1
w−
2
¼ −

λΔ
2

ffiffiffi
2

p ðAΔ þ μΔÞ;

λs4wþ
1
w−
3
¼ −λs4wþ

1
w−
4
¼ −

1

4
ffiffiffi
2

p ð2g22 − λ2ΔÞvd; λs4wþ
2
w−
3
¼ −λs4wþ

2
w−
4
¼ −

1

4
ffiffiffi
2

p ð2g22 − λ2ΔÞvu: (B31)

HIGGS SECTOR AS A PROBE OF SUPERSYMMETRIC … PHYSICAL REVIEW D 89, 075013 (2014)

075013-17



The quartic couplings between the neutral and charged Higgs bosons are given by

λs1s1wþ
1
w−
1
¼ 1

8
ðg22 þ g2YÞ; λs1s1wþ

2
w−
2
¼ 1

8
ðg22 − g2Y þ 2λ2ΔÞ;

λs1s1wþ
3
w−
3
¼ g22

4
; λs1s1wþ

4
w−
4
¼ −

1

4
ðg22 − λ2ΔÞ;

λs1s2wþ
1
w−
2
¼ 1

8
ð2g22 − 4λ2S þ λ2ΔÞ;

λs1s3wþ
1
w−
3
¼ λs1s3wþ

1
w−
4
¼ λSλΔ

2
ffiffiffi
2

p ; λs1s4wþ
1
w−
3
¼ −λs1s4wþ

1
w−
4
¼ −

1

4
ffiffiffi
2

p ð2g22 − λ2ΔÞ;

λs2s2wþ
1
w−
1
¼ 1

8
ðg22 − g2Y þ 2λ2ΔÞ; λs2s2wþ

2
w−
2
¼ 1

8
ðg22 þ g2YÞ;

λs2s2wþ
3
w−
3
¼ −

1

4
ðg22 − λ2ΔÞ; λs2s2wþ

4
w−
4
¼ g22

4
;

λs2s3wþ
2
w−
3
¼ λs2s3wþ

2
w−
4
¼ −

λSλΔ
2

ffiffiffi
2

p ; λs2s4wþ
2
w−
3
¼ −λs2s3wþ

2
w−
4
¼ −

1

4
ffiffiffi
2

p ð2g22 − λ2ΔÞ;

λs3s3wþ
1
w−
1
¼ λs3s3wþ

2
w−
2
¼ λ2S

2
; λs3s4wþ

1
w−
1
¼ λs3s4wþ

2
w−
2
¼ −

λSλΔ
2

;

λs4s4wþ
1
w−
1
¼ λs4s4wþ

2
w−
2
¼ λ2Δ

8
; λs4s4wþ

3
w−
3
¼ −λs4s4wþ

3
w−
4
¼ λs4s4wþ

4
w−
4
¼ g22

2
: (B32)

b. Higgs couplings with neutralinos

The couplings between CP-even Higgs bosons and
neutralinos are given by

L ⊃ −
X
i;k;l

λsi;ψ0
k;ψ

0
l
Siψ0

kψ
0
l þ H:c:; (B33)

in terms of two component spinor notation. The Higgs
couplings with neutralinos are given by

λs1ψ1ψ3
¼ −

gY
4
; λs1ψ2ψ3

¼ þ g2
4
;

λs1ψ4ψ5
¼ þ λS

2
ffiffiffi
2

p ; λs1ψ4ψ6
¼ þ λΔ

4
ffiffiffi
2

p ;

λs2ψ1ψ4
¼ þ gY

4
; λs2ψ2ψ4

¼ −
g2
4
;

λs2ψ3ψ5
¼ −

λS
2

ffiffiffi
2

p ; λs2ψ3ψ6
¼ þ λΔ

4
ffiffiffi
2

p ;

λs3ψ3ψ4
¼ −

λS
2

ffiffiffi
2

p ; λs4ψ3ψ4
¼ þ λΔ

4
ffiffiffi
2

p :

(B34)

In the neutralino mass eigenstates χ0i , their couplings to the
CP-even Higgs boson si are given by

λsiχ0kχ0l ¼ N�
kaN

�
lbλsiψ0

aψ
0
b
; (B35)

where N is the diagonalization matrix for the neutralino
mass matrix.

c. Higgs couplings with charginos

The couplings between the CP-even Higgs bosons and
charginos are given by

L ⊃ −
X
i;k;l

λsiψþ
k ψ

−
l
Siψ

þ
k ψ

−
l þ H:c:; (B36)

where ψþ
i ¼ ð ~Wþ; ~hþu ; ~ΔþÞ and ψ−

i ¼ ð ~W−; ~h−d ; ~Δ−Þ. The
Higgs couplings with charginos are given by

λs1ψþ
1
ψ−
2
¼ g2ffiffiffi

2
p ; λs1ψþ

2
ψ−
3
¼ λΔ

2
;

λs2ψþ
3
ψ−
2
¼ λΔ

2
; λs2ψþ

2
ψ−
1
¼ g2ffiffiffi

2
p ;

λs3ψþ
2
ψ−
2
¼ λSffiffiffi

2
p ; λs4ψþ

1
ψ−
3
¼ g2

4
;

λs4ψþ
2
ψ−
2
¼ λΔ

2
ffiffiffi
2

p ; λs4ψþ
3
ψ−
1
¼ −

g2
4
: (B37)
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