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In this paper we study a new class of supersymmetric models that can explain a 125 GeV Higgs without
fine-tuning. These models contain additional “auxiliary Higgs” fields with large tree-level quartic
interaction terms (from either D terms or F terms) but no Yukawa couplings. These have electroweak-
breaking vacuum expectation values (VEVs), and they contribute to the VEVs of the Minimal Super-
symmetric Standard Model Higgs via an induced tadpole in most of the parameter space. The tadpole
mechanism has been previously studied in strongly coupled models with large D terms, referred to as
“superconformal technicolor.” The perturbative models studied here preserve gauge coupling unification in
the simplest possible way, namely that all new fields are in complete SUð5Þ multiplets. The models are
consistent with the observed properties of the 125 GeV Higgs-like boson, as well as precision electroweak
constraints, and predict a rich phenomenology of new Higgs states at the weak scale. The tuning is less than
10% in most of the phenomenologically allowed parameter space. If electroweak symmetry is broken by an
induced tadpole, the cubic and quartic Higgs self-couplings are significantly smaller than in the standard
model.
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I. INTRODUCTION

The discovery of a Higgs-like particle with mass near
125 GeV at the LHC represents a major advance in our
understanding of electroweak symmetry breaking [1,2].
The couplings of this state to the W and Z are close to that
of a standard-model (SM) Higgs, providing direct evidence
that this state is the dominant excitation of the condensate
that breaks electroweak symmetry. Even though the cou-
plings of this state are compatible with those of a SM
Higgs, there is still room for significant mixing with other
Higgs states and/or compositeness of the Higgs at higher
scales [3,4].
The 125 GeV Higgs-like particle is a mixed blessing for

supersymmetry (SUSY). A light Higgs is a hallmark of
SUSY, but supersymmetric models generally predict a Higgs
lighter than 125 GeV. In the Minimal Supersymmetric
Standard Model (MSSM), SUSY relates the maximal
tree-level Higgs quartic coupling to the electroweak gauge
couplings via λ ¼ 1

8
ðg2 þ g02Þ. This leads to the tree-level

Higgs mass bound mh < mZ, which was already ruled out
by LEP. Explanations for the observed mass of the Higgs in
SUSY have focused on additional contributions to the
quartic term in the Higgs potential:

(i) MSSM: Top/stop loops can generate a large quartic
[5–10]. However, the same loops also generate a
large Higgs quadratic term, resulting in tuning at the
level of at least 1%.

(ii) NMSSM: The superpotential coupling λSHuHd
gives an additional contribution to the Higgs quartic

that can alleviate the naturalness problem [11–14].
Taking λ as large as possible consistent with per-
turbativity below the GUT scale improves natural-
ness relative to the MSSM, but improved naturalness
is obtained for larger λ [15–19].1 See Refs. [21,22]
for discussions in light of the Higgs discovery.

(iii) Nondecoupling D terms: New gauge interac-
tions broken at the weak scale can give addi-
tional contributions to the Higgs quartic without
tuning [23,24].

(iv) Fat Higgs: Compositeness of the NMSSM Higgs
fields above the weak scale can explain why cou-
plings like the λ coupling of the NMSSM are large at
the weak scale without Landau poles below the GUT
scale [25,26].

Overall, there seems to be a tradeoff between naturalness and
simplicity, leading a number of authors to investigate the
possibility that SUSY is not natural [27–32].
There is also pressure on supersymmetric naturalness

coming now from the experimental side, with LHC
collaborations placing increasingly stringent lower bounds
on masses of the particles that would be required for
stabilizing the weak scale. The Higgs mass parameter
receives its most substantial one-loop correction from
top quarks, leading to an expectation of stops appearing
with masses ≲700 GeV—which in turn requires a gluino

1Improved naturalness for large λmay be true only to a limited
extent when considering the full range of tan β once the physical
Higgs mass is constrained [20].
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mass ≲1400 GeV—unless a tuning of parameters to
greater than 10% accuracy is invoked [33]. Experimental
results have, however, pushed the bulk of the allowed
parameter spaces to these limits or beyond [34] when
framed in terms of certain simplified models, giving bounds
which would indicate an irreducible tuning at the few-
percent level or worse. These bounds are not free of
caveats, however, and indeed exceptional scenarios
allowing for light superpartners even in light of null results
from the first run of the LHC remain viable. The issue of
theoretical naturalness is thus still open, and it is reasonable
to address it independently from current experimental
exclusions given the relative limitations of the latter.
Following this reasoning, we will assume the existence
of light superpartners—they are required in our setup if
full naturalness is to be retained—that have evaded detec-
tion for reasons other than simple kinematic accessibility
(due, for instance, to complicated or nonstandard decay
patterns). Our focus here is on the remaining question of the
observed Higgs boson’s mass and its compatibility with
natural SUSY.
In this paper, we consider a new approach to Higgs

naturalness, illustrated schematically in Fig. 1. Such
scenarios need not rely on new physics that dramatically
alters the self-interaction of the physical Higgs boson,
thereby allowing an appropriate physical mass for this state
without requiring effective hard breaking terms to be
generated below the superpartner mass scale. The idea is
that there is an additional sector containing “auxiliary
Higgs” doublet fields Σ with large quartic self-interactions,
but no Yukawa couplings to quarks and leptons. The
auxiliary Higgs doublets couple to the usual MSSM
Higgs fields Hu;d via superpotential couplings and soft
SUSY-breaking terms, and therefore contribute to the
Higgs potential. Furthermore, the auxiliary Higgs fields
have vacuum expectation values (VEVs) that break electro-
weak symmetry, so the observed light Higgs is a mixture of
the MSSM Higgs and auxiliary Higgs fields. In order to
have an acceptable Higgs phenomenology, the auxiliary

Higgs VEV must be smaller than the VEV of the MSSM

Higgs fields
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2u þ v2d

q
, and the mass eigenstates with a

dominant admixture of auxiliary Higgs fields must be
heavier than the 125 GeV Higgs. Integrating out the
auxiliary Higgs fields gives rise to an effective theory
where in most of the parameter space, electroweak sym-
metry is nonlinearly realized, and electroweak symmetry
breaking of the light Higgs is dominated by a tadpole in the
effective potential. In this “induced tadpole” regime, there
is no large correction required to the Higgs quartic, and
naturalness suggests that it is near its tree-level MSSM
value. Therefore, these models predict that the cubic
coupling of the observed 125 GeV Higgs field is signifi-
cantly smaller than the standard-model value. This is a
direct consequence of the induced tadpole mechanism and
distinguishes this model from all of the other mechanisms
that increase the Higgs quartic.
The induced tadpole mechanism was proposed

in Refs. [35,36], which considered models where the
auxiliary Higgs fields were composites arising from a
strong superconformal sector. The mechanism was there-
fore called “superconformal technicolor” (see also related
work in Refs. [37–39]). In this paper, we construct
perturbative models of this mechanism, which we call
“induced EWSB.”
The large quartic interactions for the auxiliary Higgs

fields can arise from new gauge interactions (D terms) and/
or new superpotential interactions (F terms). In the case of
D terms, this requires that the auxiliary Higgs fields be
charged under a new gauge group that is broken at the TeV
scale. The new gauge couplings can easily be stronger than
the electroweak gauge couplings at the TeV scale, so the
tree-level auxiliary Higgs quartic can be significantly larger
than the tree-level Higgs quartic in the MSSM. In the
F-term models, the auxiliary Higgs quartic arises from a
superpotential coupling λSΣuΣd between a singlet S and
auxiliary Higgs doublets Σu;d. This can be somewhat larger
than the analogous coupling in the NMSSM, because Σu;d
do not have Yukawa couplings.
Precision gauge coupling unification can be incorporated

in these models in a very simple way: all fields beyond
the MSSM can come in complete SUð5Þmultiplets. For the
D-term models, VEVs of the auxiliary Higgs fields give
rise to mixing between the gauge bosons of the new gauge
interactions and those of the electroweak group. This is
naturally small if the breaking scale of the new gauge group
is sufficiently large, which is in any case required by
precision electroweak constraints.
We now describe how the auxiliary Higgs fields improve

the naturalness of electroweak symmetry breaking. There
are two different limits that can be simply understood by
integrating out a heavy Higgs multiplet. In the “induced
quartic” limit, the dominant effect is a contribution to the
quartic of the light Higgs. In the “induced tadpole” limit, it
is a tadpole for the light Higgs.

FIG. 1. Schematic structure of the models. The auxiliary Higgs
sector contains electroweak doublets Σ and electroweak singlets
Φ. These interact with the Higgs fields H of the MSSM via
superpotential couplings and A terms of the form ΦΣH.
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We can exhibit these limits in a simplified model with
two Higgs doublets Σ andH, where Σ is the auxiliary Higgs
with a large quartic and H is the MSSM Higgs field. The
potential is

V ¼ m2
HjHj2 þm2

ΣjΣj2 − κ2ðΣ†H þ H:c:Þ þ λΣjΣj4: (1.1)

We first consider the decoupling limit where one linear
combination of H and Σ has a large positive mass squared.
In this limit, the light mass eigenstate is

H1 ¼ sin γH þ cos γΣ; (1.2)

where γ is the mixing angle that diagonalizes the quadratic
terms. The effective potential is then

Veff ¼ m2
1jH1j2 þ λΣcos4γjH1j4; (1.3)

wherem2
1 is the light mass-squared eigenvalue. In this limit,

the potential has induced a quartic interaction for the light
Higgs. In the case where m2

2 ≫ m2
1, this limit generally

requires a tuning proportional to m2
1=m

2
2, but we do not

need such an extreme hierarchy in a realistic theory.
The other limit we are interested in occurs when λΣ is

large and κ2 is treated as a perturbation. We focus on the
CP-even Higgs bosons and write

Σ ¼ 1ffiffiffi
2

p
�
0

σ

�
; H ¼ 1ffiffiffi

2
p
�
0

h

�
: (1.4)

For κ2 ¼ 0, Σ and H decouple, and we have

hσi ¼ f; f2 ¼ −
m2

Σ
λΣ

: (1.5)

The heavy mass eigenstate has mass m2
σ ¼ 2λΣf2. If this

mass is sufficiently heavy, we can integrate it out to get an
effective potential for the light state h rather than for the
entire doublet H (i.e. the Goldstone states are not fully
contained in H):

Veff ¼
1

2
m2

Hh
2 − κ2fhþOðκ4Þ: (1.6)

Note that a tadpole for h has been generated. If m2
H > 0,

this gives a stable VEV for h,

vh ¼ hhi ¼ κ2f
m2

H
: (1.7)

We see that electroweak symmetry breaking is dominated
by a tadpole induced by the heavy Higgs.
Let us understand the approximation in the induced

tadpole limit more systematically. Including higher-
order terms, the potential obtained by integrating out Σ
has the form

Veff ∼m2
Hh

2−κ2fh

�
1þ κ2

λΣf3
hþ

�
κ2

λΣf3
h

�
2

þ���
�
: (1.8)

From this we see that the higher-order terms can be
neglected if ϵ ≪ 1, where

ϵ ¼ κ2vh
λΣf3

∼
m2

h

m2
σ

v2h
f2

: (1.9)

In the last step, we used m2
h ∼m2

H, m2
σ ∼ λΣf2, and

Eq. (1.7). We see that for f ∼ vh, the expansion is valid
when mσ ≫ mh. Since m2

σ ∼ λΣf2, this requires a relatively
large quartic interaction for Σ.
A tadpole interaction violates electroweak gauge sym-

metry explicitly and might thus be cause for some suspi-
cion. However, the point is that such an interaction is
allowed because the VEV of the heavy Higgs breaks
electroweak gauge symmetry. In the low-energy effective
theory, electroweak gauge symmetry is nonlinearly realized
by Nambu-Goldstone bosons. For small κ2, the Nambu-
Goldstone fields are contained in Σ:

Σ ¼ 1ffiffiffi
2

p eiΠ=f
�
0

f

�
þ � � � ; (1.10)

where Π ¼ 1
2
τaΠaðxÞ. This transforms correctly under

electroweak gauge transformations, provided that Π trans-
forms nonlinearly in the standard way. The fields Π are
light, and the effective potential forH can then be written as

Veff ¼m2
HjHj2− κ2ffiffiffi

2
p
��

0

f

�T

e−iΠ=fHþH:c:

�
þ��� : (1.11)

The nonlinear transformation of the Π fields ensures that
the tadpole term is formally invariant under electroweak
gauge symmetry. The Π-dependent terms in Eq. (1.11)
contain important mixing terms between the CP-odd fields,
but they do not change the results above for the CP-even
fields. It is straightforward to check that the results above
reproduce the results of minimizing the full potential.
Even away from the limits discussed above, the VEVof

H in our simplified model can be thought of as being
“induced” by Σ, in the following sense: The mass matrix of
the CP-even fields σ and h is

M2 ¼
 
2λΣf2 þm2

Hv
2
h=f

2 −m2
Hvh=f

−m2
Hvh=f m2

H

!
; (1.12)

where we have eliminated m2
Σ and κ2 in favor of vh and f

using the potential minimization conditions. We have
detðM2Þ ¼ 2λΣf2m2

H, so vacuum stability requires
m2

H > 0. Thus, electroweak symmetry would be unbroken
if the Σ fields were not present.
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In the body of the paper, we will consider the phenom-
enology of induced EWSB in detail. We will find that the
simplified model presented above gives a good description
of the underlying physics of realistic cases, and that
roughly half of the phenomenologically allowed parameter
space can be thought of as having an induced quartic, and
half an induced tadpole. Note that in the decoupling limit,
all Higgs couplings approach that of the standard model
and are therefore consistent with observations. However,
significant deviations from this limit are allowed by the
present data. If we get too close to the decoupling limit, the
model becomes tuned, but the existence of this limit makes
it clear why there is a region where the Higgs has SM-like
couplings. This is conceptually similar to models of Higgs
as a Nambu-Goldstone boson, where a similar tuned limit
determines the phenomenology [40–44].
The induced EWSB mechanism allows the construction

of simple SUSY models that explain the observed 125 GeV
Higgs without fine-tuning. These models are compatible
with gauge coupling constant unification in the simplest
possible way, namely that all new fields come in complete
SUð5Þ muliplets. The models are also naturally compatible
with precision electroweak constraints.
The simplest D-term model is in fact a minor extension

of the “sister Higgs” model described in Ref. [45], where
the auxiliary Higgs are the same as sister Higgs fields.
However, we focus on a very different regime of parameters
where the new SUð2ÞS gauge group is broken at a scale
∼3 TeV, naturally suppressing the corrections to precision
electroweak observables as well as gauge coupling uni-
fication. Reference [45] instead considered a regime where
this breaking scale is low and focused on the effects of a
large F term generating the quartic jΣHj2. In this regime,
there is tension between naturalness and precision electro-
weak constraints, as we will explain below.
The paper is organized as follows: In Sec. II, we study

further the simplified model of induced EWSB introduced
above. In Sec. III, we discuss models where the auxiliary
Higgs quartic arises from the D term of a new non-Abelian
gauge group. In Sec. IV, we discuss models where the
auxiliary Higgs quartic arises from an F term and consider
a “hybrid” model involving both F and D terms. Our
conclusions are in Sec. V. Certain details of the behavior of
these models under the renormalization group are reserved
for the Appendix.

II. A SIMPLIFIED MODEL

We now discuss in more detail the simplified model of
EWSB defined in the Introduction above. We remind the
reader that this model consists of two doublets H and Σ,
with a potential given in Eq. (1.1). The fully realistic
models that we discuss later will have additional Higgs
fields at low energies, but we will see that many aspects of
the models are similar to the simplified model consid-
ered here.

This model has four parameters. Fixing the scale of
electroweak symmetry breaking at v ¼ 246 GeV and the
mass of the lightest CP-even Higgs boson mh ¼ 125 GeV,
we have two remaining parameters, which we take to be the
quartic coupling λΣ and the VEV f of the auxiliary Higgs
field

hΣi ¼ 1ffiffiffi
2

p
�
0

f

�
: (2.1)

The qualitative features of this parameter space can be
understood from the two limits of this model discussed in
the introduction, and this is what we turn to next.

A. Decoupling limit

In the decoupling limit, one linear combination of Higgs
fields has a large positive mass-squared term and therefore
no VEV. We can analyze this limit by diagonalizing the
quadratic terms in the potential [Eq. (1.1)] by writing

�
H

Σ

�
¼
�
sγ cγ
cγ −sγ

��
H1

H2

�
; (2.2)

where sγ ¼ sin γ, cγ ¼ cos γ. The potential in terms of these
fields is

V ¼ m2
1jH1j2 þm2

2jH2j2 þ λΣc4γ jH1j4 þ � � � ; (2.3)

where we assume m2
2 ≫ jm2

1j is the large positive mass-
squared eigenvalue. Integrating out H2, we then obtain the
effective potential for the light Higgs doublet H1. The light
CP-even Higgs mass is therefore

m2
h ¼ 2λΣc4γv2: (2.4)

The mixing angle γ is determined by the VEVs from the
requirement that H2 have a vanishing VEV:

tan γ ¼ vh
f
; (2.5)

so we have

λΣ ¼ m2
hv

2

2f4
: (2.6)

This explains the minimum value of λΣ in Fig. 2. The
decoupling limit is approached as λΣ approaches the value
Eq. (2.6) from above. In this limit, the soft masses m2

H and
m2

Σ both grow arbitrarily large as is shown in Fig. 3, though
with a ratio that allows one eigenstate to remain light.
Equation (2.6) in fact represents a phenomenological lower
bound on the quartic: for values just below the decoupling
value the Higgs soft mass, Eq. (2.9) changes sign and the
vacuum is consequently destabilized, while for very small
values of the quartic, the Higgs becomes the heavier
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eigenstate of the mass matrix, Eq. (1.12), indicating the
presence of scalars lighter than the 125 GeV Higgs.
In the decoupling limit, the effective theory of electro-

weak symmetry breaking is that of a single Higgs doublet,
and it is clear that all Higgs couplings approach those of the
standard model. Because the current data favors a SM-like
Higgs, this limit is compatible with the Higgs data.
Approaching this limit asymptotically, the model becomes
fine-tuned, because the heavy mass eigenstate contributes
to the mass of the light mass eigenstate:

Δm2
1 ∼

λΣs2γc2γ
16π2

m2
2: (2.7)

However, the fine-tuning decreases rapidly away from this
limit, and the experimental constraints on the Higgs
couplings do not require the model to be tuned. This will
be made quantitative below. However, this limit makes it
clear that the model can approximate the standard model,
and therefore account for the current data, which are
consistent with a SM Higgs.

B. Higgs phenomenology

The results above allow us to easily understand the
phenomenologically allowed parameter range of this model
shown in Fig. 2. The red and gold regions indicate regions
of vacuum instability and light scalars, respectively. The
grey region is excluded by the measured Higgs couplings at
a 95% confidence level.2 For large values of f, significant
Higgs mixing is unavoidable and the model becomes
incompatible with measured Higgs couplings.
The red boundary represents the decoupling limit

m2
Σ → ∞, where all couplings are SM-like. We emphasize

that the light Higgs can still have a finite admixture of the Σ
fields in this limit. This should be contrasted to models like
the NMSSM, where the Higgs gets a quartic by mixing
with a singlet; in these models, large mixing necessarily
implies suppression of the Higgs couplings to gauge
bosons and fermions, which is disfavored by LHC and
LEP data.
The model becomes fine-tuned as we approach the

decoupling limit, but we do not need to be very close
to this limit to satisfy the phenomenological constraints.

VACUUM
STABILITY

mh 125 INDUCED QUARTIC INDUCED
TADPOLE

Contours:

mHu

2

m2

mh
2

decoupling

m2 0
see text

0 1 2

2002

0

2002

3002

m
2

G
eV

2

INDUCED EWSB f 150 GeV

FIG. 3 (color online). Higgs mass parameters as a function of
the auxiliary Higgs quartic λΣ for f ¼ 150 GeV. The decoupling
limit occurs near λΣ ¼ 1. m2

Σ crosses 0 near λΣ ¼ 2, indicating a
clear transition between induced quartic and induced tadpole
regimes.

.85.95

1.1 1.3

Contours:
ghVV SM
ghtt SM
decoupling

m2 0
see text
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3.0

f GeV
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Contours:
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see text
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TREE LEVEL TUNING Simplified Model

FIG. 2 (color online). Parameter space of the simplified two-Higgs-doublet model describing the mechanism of induced EWSB and
exclusions on the space coming from LHC Higgs data. Left: Couplings of light Higgs couplings to weak gauge bosons and top quarks.
Right: Tree-level tuning of the simplified model, as described in text.

2Including information from searches for additional heavy
Higgs-like scalar states in the exclusions amounts to a negligible
change of the allowed region in the full models discussed below.
We thus show exclusions based on a global likelihood con-
structed from the data on the 125 GeV Higgs only.
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We illustrate this in the right panel of Fig. 2 by plotting a
standard measure of tuning [33], namely the inverse of the
function

FT ¼ max

�∂ logfv; f;mhg
∂ logm2

input

�
; (2.8)

where minput stands for any of the dimensionful parameters
defining the potential of Eq. (1.1). Explicitly, the relevant
relations are

m2
H ¼ m2

h

�
1þ m2

hv
2
h

2λΣf4 −m2
hv

2

�
; (2.9)

m2
Σ ¼ m2

hv
2
h

2λΣf2 −m2
h

2λΣf4 −m2
hv

2
− λΣf2; (2.10)

κ2 ¼ m2
hvhf

2λΣf2 −m2
h

2λΣf4 −m2
hv

2
: (2.11)

These become singular in the decoupling limit
2λΣf4 → m2

hv
2, accounting for the large tuning there.

When we construct explicit models, there will be other
potential sources of tuning arising from loops involving
heavier superpartners, and we will include these as well.
As we move away from the minimum value of λΣ, the

mass of the heavy CP-even mass eigenstate first decreases,
but then it begins to increase as we enter the regime where
the VEVof the light Higgs field is induced by an effective
tadpole. Because we do not want to tune near the
decoupling limit, and we do not want to take λΣ non-
perturbatively large, we are not really close to either limit. It
is nonetheless interesting to ask whether we are “closer” to
one limit or the other for phenomenologically allowed
parameters.
There is no sharp boundary between the two regimes.

The decoupling limit requires m2
Σ ≫ 0, while the induced

tadpole limit requires m2
Σ < 0. A useful definition of the

boundary is thus where m2
Σ ¼ 0: as can be seen in Fig. 3,

the Higgs soft mass beyond this point nearly coincides with
its asymptotic value m2

H ¼ m2
h, indicating a strongly

induced tadpole. We illustrate this also in Fig. 2, and there
we see that in roughly half of the allowed parameter space
an induced tadpole is playing an important role. In these
regions, a physical characteristic of interest is that the Higgs
quartic coupling is drastically suppressed relative to its SM
value by powers of the small parameter ϵ [see Eqs. (1.8) and
(1.9)]. The simplified model omits the tree-level contribu-
tion to the quartic from the SUð2ÞW ×Uð1ÞY D terms, so
the quartic in the simplified model can be viewed as a
correction to the tree-level mass. The quartic coupling, as a
“smoking gun” of the induced tadpole, will be subject to
experimental scrutiny only with significantly more Higgs
data than are presently available, but we find it illustrative
to emphasize this feature in the models we describe below.

Thus, in realistic cases, we will find it convenient to
indicate the importance of the induced tadpole by focusing
on regions of the parameter space where the Higgs quartic
coupling is smaller than a benchmark value which we will
take to be its tree-level value in the MSSM (corresponding
to approximately half of the SM value).
We now proceed to a discussion of two separate

complete models that can realize the mechanism of induced
EWSB with perturbative dynamics.

III. A D-TERM MODEL

In this section, we consider the case where the large
quartic for the auxiliary Higgs fields arises from the D
terms of a new gauge interaction. We will see that the
simplest versions of this model have a phenomenology very
similar to the simplified model discussed in Sec. II. New D
terms have been previously considered as a way to generate
large quartics for the Higgs by embedding the Higgs into a
multiplet charged under the new gauge group [23,24].
However, these models do not preserve gauge coupling
unification without significant additional structure, because
the Higgs fields are not part of a complete SUð5Þ multiplet.
On the other hand, we preserve gauge coupling unification
in our approach simply by taking the auxiliary Higgs fields
to be part of a complete SUð5Þ multiplet.

A. The model

We assume the existence of a new gauge interaction with
gauge group SUð2ÞS, with additional matter fields given in
Table I. Color triplets T and T̄ are included so that the
model consists of complete SUð5Þ multiplets and therefore
preserves gauge coupling unification. There are six “fla-
vors” of SUð2ÞS, and therefore it has a vanishing one-loop
beta function. This naturally allows a large range of SUð2ÞS
gauge coupling constants at the weak scale. We will discuss
the RG behavior in more detail below.
The SUð2ÞS gauge symmetry will be broken at the weak

scale by VEVs of the fieldsΦ and Φ̄, as well as the auxiliary
Higgs fields Σu;d. The Σu;d VEVs break custodial sym-
metry, and therefore contribute to the electroweak T
parameter. We will see below that in order for this to be
sufficiently small, we will need u ∼ hΦi; hΦ̄i ≫ f ∼ hΣu;di.
Because we require f ∼ 100 GeV, we must have u≳ TeV

TABLE I. Field content of the D-term model.

SUð2ÞS SUð3ÞC SUð2ÞW Uð1ÞY
Φ □ 1 1 0
Φ̄ □ 1 1 0
Σu □ 1 □

1
2

Σd □ 1 □ − 1
2

T □ □ 1 − 1
3

T̄ □ □̄ 1 1
3
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to satisfy precision electroweak constraints. [This also
suppresses the mixing between SUð2ÞW and SUð2ÞS that
would otherwise ruin the unification prediction of the
gauge couplings.] This creates a potential tuning problem,
because the SUð2ÞS D-term quartic generally gives a tree-
level contribution to the Σ quadratic of order g2Su

2 ∼ TeV2.
We can avoid this problem by assuming that SUð2ÞS is
broken along an approximately D-flat direction.3 We are
thus led to introduce the superpotential

ΔW ¼ λΦSðΦΦ̄ − w2Þ (3.1)

and to impose a Z2 symmetry ensuring approximately
equal soft masses forΦ and Φ̄. The potential for these fields
then has the form

VΦ ¼ m2
ΦðΦ†Φþ Φ̄†Φ̄Þ þ λ2ΦðΦΦ̄ − w2Þ2

þ BΦðΦΦ̄þ H:c:Þ þ VD; (3.2)

with VD being the potential arising from D terms of
SUð2ÞS. A nonzero VEV is then established provided
BΦ > m2

Φ − λ2w2:

hΦi ¼ 1ffiffiffi
2

p
�
0

u

�
; hΦ̄i ¼ 1ffiffiffi

2
p
�

~u

0

�
; (3.3)

with

u ¼ ~u ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BΦ − 2ðm2

Φ þ λ2Φw
2Þ

λ2Φ

s
: (3.4)

The quartic for Σ induced from SUð2ÞS D terms vanishes
in the SUSY limit, so we must have m2

Φ ∼ g2Su
2 to avoid a

cancellation. Integrating out the scalar fields in Φ and Φ̄
gives the quartic

λΣ ≃ g2S
8

�
1þ g2Sðu2 þ ~u2Þ

8m2
Φ

�−1
: (3.5)

This requires λΦ ∼ gS, as can be seen from Eq. (3.4). This
mechanism therefore requires the existence of two new
order-1 dimensionless couplings at the weak scale (gS and
λΦ). This raises the issue of Landau poles and perturbative
unification, which will be discussed below.

B. A simple low-energy limit

This model can have up to six Higgs doublets: two from
the MSSM fields Hu;d, and four more from Σu;d. To
illustrate the phenomenology, we will focus on a simple
limit where only one of the new Higgs doublets gets a VEV.
The effective theory below the SUð2ÞS breaking scale

is then a three-Higgs-doublet model. Specifically, we
assume that

hΣdi ¼
1ffiffiffi
2

p
�
0 0

0 f

�
; hΣui ¼ 0: (3.6)

For this limit to be exact requires that “Bμ terms” of the
forms ΣuΣd and ΣuHd vanish, which is not natural.
However, a mild hierarchy among the SUSY-breaking
terms can easily make the simplified limit we study a
good first approximation. In any case, the parameter space
of the full model is too large to study, and we must make
some simplifying assumptions to proceed.
With these simplifying assumptions, the only terms that

are relevant are those that mix Σd and the MSSM Higgs
fields. These are the superpotential terms

ΔW ¼ μHuHd þ λuHuΣdΦþ λ̄uHuΣdΦ̄ (3.7)

and the soft SUSY-breaking terms in the Higgs potential

V ¼ m2
Hu
jHuj2 þm2

Hd
jHdj2 þm2

Σd
jΣdj2 þ BμHuHd

þ BuHuΣd: (3.8)

In addition, the theory has the D-term quartic from the
SUð2ÞS × SUð2ÞW ×Uð1ÞY gauge interactions.
The couplings λu and λ̄u contribute the mass terms

ΔV ¼ ðjλuj2 þ jλ̄uj2Þu2ðjHuj2 þ jΣdj2Þ: (3.9)

Precision electroweak tests and unification require
u≳ TeV, so in order for these mass terms not to be
unnaturally large, we must take λu; λ̄u ≲ v=u ∼ 0.1. This
is sufficiently small that λu, λ̄u do not contribute signifi-
cantly to the quartic. Reference [45] analyzed exactly
the same model, focusing on the Higgs quartic generated
by λu. However, as discussed here, this is fine-tuned at the
percent level if u ∼ TeV. Reference [45] uses a less
stringent bound on the T parameter than we do, allowing
smaller values of u.
The couplings λu; λ̄u are, however, relevant, because we

require Bu ∼ ð100 GeVÞ2, and we expect Bu to be λuu
times a SUSY-breaking mass. This is consistent with taking
λu; λ̄u ∼ 0.1, which we will assume in the following. We
now define

tan β ¼ vu
vd

; tan γ ¼ vh
f
; vh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2u þ v2d

q
: (3.10)

The minimization conditions are as follows, dropping the
now unnecessary subscript from Σd:

m2
Hd

¼ Bμ tan β −
1

2
m2

Zðs2γ cos 2β þ c2γÞ; (3.11)
3This mechanism is also used in models where the Higgs gets a

contribution to its quartic from new D terms [23,24].
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m2
Hu

¼ Bμ cot β þ Bu
cot γ
sβ

þ 1

2
m2

Zðs2γ cos 2β þ c2γÞ

−
1

2
λ2uv2c2γ ; (3.12)

m2
Σ ¼ Busβ tan γ −

1

2
m2

Zðs2γ cos 2β þ c2γÞ −
1

2
g2Sv

2c2γ

−
1

2
λ2uv2s2βs

2
γ : (3.13)

The MSSM formulas are recovered in the limit sγ → 1,
Bu → 0. In practice, we solve these for ðBμ; Bu;m2

ΣÞ,
respectively.
The SUð2ÞW ×Uð1ÞY D-term quartics necessarily give a

small contribution to a 125 GeV Higgs mass, so it is a good
approximation toneglect them.Wealso assume that stop loops
do not contribute a large quartic. In our final numerical results
we include these effects, but we can obtain a good analytic
approximation by dropping them. In this approximation, the
mass matrix for the CP-even neutral Higgs bosons is

M2 ¼

0
BBB@

m2
Hu

− vd
vu
m2

Hd
− 1

vuf
ðm2

Hu
v2u −m2

Hd
v2dÞ

− vd
vu
m2

Hd
m2

Hd
0

− 1
vuf

ðm2
Hu
v2u −m2

Hd
v2dÞ 0 1

f2 ðm2
Hu
v2u −m2

Hd
v2dÞ þ 1

4
g2Sf

2

1
CCCA: (3.14)

We have set λu; λ̄u ≃ 0 as explained above. Assuming large
tan β (vd ≪ vu; f), we obtain an illustrative upper bound on
the lowest eigenvalue:

m2
h < m2

Zcos
22γ þ 1

4
g2Sv

2cos4γ: (3.15)

This result is similar to what is obtained in models where
new D terms modify the Higgs quartic, but in this case the
effect comes from contributions to the auxiliary Higgs
quartic while allowing the physical Higgs quartic to remain
suppressed.
Below the SUð2ÞS breaking scale, this simplified limit

has six parameters:

m2
Hu
; m2

Hd
; Bμ; m2

Σd
; Bu; λΣ: (3.16)

We write

λΣ ¼ g2Seff
8

; (3.17)

where gSeff and the SUð2ÞS gauge coupling coincide in the
limit m2

Φ → ∞ [see Eq. (3.5)]. After fixing v and the mass
of the lightest CP-even mass eigenstate, there are four free
parameters. We take two of these to be f and gSeff and scan
over the rest. We will see that the parameter space in
the plane of f and gSeff reproduces the main features of the
simplified model discussed in Sec. II. In particular, the
lower bound on gSeff corresponds to the limit where one
linear combination of Higgs doublets decouples, and this
line is determined to a good approximation by Eq. (2.6) for
the simplified model.
The couplings of the light Higgs to the W=Z, the top

quark, and the bottom quark relative to their SM values are
given by

cV ¼ hΣdjhi cos γ þ ðhH0
ujhi sin β þ hHdjhi cos βÞ sin γ;

(3.18)

ct ¼
hH0

ujhi
sin γ sin β

; (3.19)

cb ¼
hH0

djhi
sin γ cos β

: (3.20)

We show the allowed region for a benchmark case tan β ¼
5 in Fig. 4, now including the subleading SM quartic
contributions. As in the simplified model, the lower

mh 125 GeV
LIGHT HIGGS
COUPLINGS

95 CL

Scan Points
mh 126 GeV
ci 95 CL

h SM 2
decoupling

GeV

g S
ef

f

2 S COUPLING tan 5

120 140 160 180 200 220 240
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

FIG. 4 (color online). Scan of the parameter space for a model
where auxiliary Higgs quartics arise from nondecoupling D
terms. All points have mh ≃ 125 GeV. A blue cross is added
if the Higgs couplings are compatible with experimental values,
and a red circle is added to surviving points if the physical Higgs
has a quartic of order half its SM value, indicating regions where
the induced tadpole is important.
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boundary corresponds to the decoupling limit for the
auxiliary Higgs bosons, and near this limit, the light
Higgs is SM-like. The grey region is excluded by Higgs
coupling constraints, determined as in Ref. [46]. This is the
region of small sin γ, which suppresses cV and enhances ct.
Figure 4 also shows the allowed points where λh is smaller
than half of its SM value. In such theories, the Higgs cubic
and quartic self-couplings are highly suppressed compared
to the SM, which can be measurable in future experiments
or with large integrated luminosity via enhanced di-Higgs
production at the high-energy LHC [47–49]. This also has
conceptual importance, since it corresponds to the regime
where an induced tadpole is important, as discussed in
Sec. II. The tree-level MSSM gives a quartic that is about
half of the SM value (for large tan β), so these points are
also very far from the usual SUSY solutions, all of which
strive to obtain a Higgs quartic close to SM value.

C. Electroweak precision tests

We turn now to the issue of corrections to electroweak
precision tests. The strongest constraints are oblique
radiative corrections, which we treat using the formalism
of Refs. [50,51].
There are two main effects. The first comes from the

SUð2ÞS breaking threshold at the scale gSu. The VEVs of
the auxiliary Higgs fields break both SUð2ÞS and the
electroweak group. This breaks custodial symmetry and
therefore gives a positive tree-level contribution to the T
parameter. The other main effect comes from loops of the
auxiliary Higgs fields. As we explain below, for large gS,
the auxiliary Higgs fields contribute positively to the S
parameter like a heavy Higgs doublet, while giving a
negligible contribution to the T parameter.
These two effects partially offset each other, in the sense

that a positive S parameter allows a larger positive T
parameter, allowing lower values of the SUð2ÞS breaking
scale than would be allowed if only one of these effects
were present. This in turn reduces the leading source of
fine-tuning in this model.
SUð2ÞS breaking: The SUð2ÞS gauge bosons mix with

the electroweak gauge bosons due to VEVs of the auxiliary
Higgs bosons. A T parameter arises because theW1;2

S gauge
bosons do not mix with the W�, while the W3

S does mix
with the neutral SM gauge bosons.
The mixing of the neutral gauge bosons arises from the

VEVs of the auxiliary Higgs fields via the kinetic term. For
illustration, we will focus on the case of a single auxiliary
Higgs, but the generalization to additional Higgs bosons is
straightforward. We have

ΔL ¼
���� − ig

τ3
2
W3

μΣd þ ig0Bμ
1

2
Σd − igSW3

SμΣdτ3

����2 (3.21)

and a mass matrix for the neutral gauge bosons in the basis
ðW3

μ; Bμ;W3
SμÞ given by

M2¼ 1

4

0
B@

g2v2 −gg0v2 −ggSf2

−gg0v2 g02v2 g0gSf2

−ggSf2 g0gSf2 g2Sðf2þu2þ ~u2Þ

1
CA: (3.22)

Integrating out the heavy neutral gauge boson, the leading
correction to the effective theory is given by

ΔLeff ¼ −
1

8

ðg2 þ g02Þf4
u2 þ ~u2

ZμZμ; (3.23)

where Zμ ¼ ðgW3
μ − g0BμÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
. This is a correction

to the Z mass without a corresponding correction to the W
mass, which gives

ΔT ¼ −
1

α

δm2
Z

m2
Z
¼ 1

α

f4

ðu2 þ ~u2Þv2 : (3.24)

The leading-order contribution to the S parameter comes
from mixing betweenW3

μ and Bμ generated by mixing with
an intermediate SUð2ÞS boson W3

Sμ. From the tree-level
diagram in Fig. 5, we can integrate out W3

S with m2
W3

S
¼

g2Sðu2 þ ~u2 þ f2Þ=4 to arrive at the form factor

Π3Bðp2Þ¼−
ðggSf2Þðg0gSf2Þ
4ðp2−m2

W3
S
Þ

¼ gg0f4

u2þ ~u2þf2

�
1þ 4p2

g2Sðu2þ ~u2þf2ÞþOðp4Þ
�
:

(3.25)

Thus, for the S parameter,

S ¼ 16π

gg0
Π0

3Bð0Þ≃ 64π
f4

g2Sðu2 þ ~u2 þ f2Þ2 : (3.26)

Taking conservative values (see below) gS ¼ 1, tan γ ¼ 2,
and u; ~u≃ TeV, we find a completely negligible S param-
eter, S≃ 5 × 10−3.
Auxiliary Higgs bosons: In the limit where gS is large,

the auxiliary Higgs fields act as a heavy electroweak
breaking sector, and there is a danger of a large contribution
to the S and T parameters. In this limit, we can integrate out
the auxiliary Higgs fields and write an effective theory
where electroweak symmetry is nonlinearly realized. This
effective theory will contain explicit W and Z mass terms
proportional to f. This effective Lagrangian will also

FIG. 5. Tree-level diagram contributing to the S parameter.
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contain a four-derivative operator corresponding to the S
parameter. This is dimensionless, and hence depends only
logarithmically on the mass of the heavy states:

ΔS≃ 1

12π
ln
m2

σ

m2
h

; (3.27)

where mσ is the mass of the heavy auxiliary Higgs bosons.
This expression is correct only in an approximation where
the logarithm dominates, but this is the only limit where
such a contribution is large. The low-energy effective
theory also contains vector boson mass terms that violate
custodial symmetry, but these are proportional to f2, and
hence the T parameter is given by

ΔT ≃ −
3

16πc2W
ln
m2

σ

m2
h

×
f2

v2
: (3.28)

This gives a small contribution to the T parameter
unless f ≃ v.
The other limit that is easy to understand is the

decoupling limit, which corresponds to taking gS as small
as possible. In this limit, the auxiliary Higgs fields are again
heavy, but their masses are nearly electroweak preserving.
Therefore, there is a contribution to the S and T parameter
that vanishes as we approach this limit. Explicitly for the S
parameter, we have

ΔS ¼ g2S
96m2

σ

f2v2h
v2

: (3.29)

The corrections are therefore negligible in the decou-
pling limit.
To include these effects, we include the full perturbative

contribution from the Higgs sector using the results of
Ref. [52]. We impose the 95% confidence level S-T
constraint from Ref. [53] with U ¼ 0. We find that the
S-parameter contribution from the auxiliary Higgs bosons
is never so large that it cannot be offset by a positive T
contribution. The result can therefore be given as a
constraint on the SUð2ÞS breaking scale u, and it is shown
in Fig. 6. We see that this scale must be at least 2–3 TeV in
most of the parameter space.

D. Naturalness

We now discuss the question of naturalness in this
model. We have seen above that the SUð2ÞS breaking
scale is required to be in the TeV range, while the auxiliary
Higgs fields [which are also charged under SUð2ÞS] must
have VEVs near the 100 GeV scale. Loop corrections can
potentially destabilize this little hierarchy and give rise to
fine-tuning. From Eq. (3.5), we know that the mass squared
of Φ must be large, of order g2Su

2, in order to have an
unsuppressed quartic coupling for the Σ fields. The only
large coupling between the Φ and Σ fields is the SUð2ÞS

gauge coupling, and so the leading correction to the Σmass
arises at two loops. We have [54]

δm2
Σ ¼ 3g4S

ð16π2Þ2m
2
Φ log

�
Λ2

m2
Φ

�
; (3.30)

with Λ being the mediation scale. We illustrate the size of
the resulting tuning within the context of the simplified
model (i.e. treating SM quartics as negligible) in Fig. 7. We
set Λ ¼ 50 TeV and choosem2

Φ ¼ g2Su
2=4 so as to consider

only parameters where the auxiliary Higgs quartic is unsup-
pressed. We also enforce the precision electroweak con-
straints as described above. This puts a lower bound onu and
therefore drives the fine-tuning. We see that the tuning
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FIG. 6 (color online). Bounds on the SUð2ÞS breaking scale u
from precision electroweak constraints.
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FIG. 7 (color online). Fine tuning in the simplified model with
nondecoupling D terms. Tree-level contributions dominate near
the decoupling (bold red) contour; two-loop contributions from
the heavy scalar Φ dominate at increased values of f; gS where
u; ~u ≫ v and m2
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Σ. Excluded regions correspond to those

described in Fig. 2.
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becomes large in the decoupling limit, as well as the limit of
large gS, where the two-loop effect [Eq. (3.30)] is enhanced.
The tuning is less than 10% over most of the allowed
parameter space. This is a significant difference between this
mechanism and other proposed solutions to theHiggs tuning
problem, which have locally small tuning only in a very
specific range of parameters. In this model, the only
requirement is that the SUð2ÞS breaking scale be close to
the smallest phenomenologically allowed value. There are
no other large mass hierarchies required in this model, and
we conclude that there is no significant tuning in this model
subject to only very mild restrictions of the parameters.

E. Unification and Landau poles

The fact that the strong and electroweak guage couplings
unify at high scales in the MSSM is a possible hint for the
existence of SUSY in nature, and it is important to know to
what extent unification is naturally incorporated into
extensions of the MSSM such as the one we are consid-
ering. The extra fields in our model come in complete
SUð5Þ multiplets, but this by itself is not sufficient to
ensure unification.
One issue is that the VEVs of the auxiliary Higgs fields

break both SUð2ÞS and SUð2ÞW , and therefore mix the
gauge bosons from these groups and change the value of the
measured weak gauge coupling. However, the correction is
suppressed because of the large SUð2ÞS breaking from the
VEVs of the fieldsΦ and Φ̄. The correction to the measured
low-energy gauge coupling is of order f4=u4, which is
negligibly small once we impose the T-paramter constraint.
Another issue is that this model requires that the

couplings gS and λΦ be of order unity at the TeV scale.
Neither coupling is asymptotically free, so there is a danger
that the running couplings become large below the GUT
scale, potentially ruining gauge coupling unification. Also,
large values of f require a larger value of yt at the weak
scale, so there is the danger of a Landau pole for this
coupling as well. The maximum scale of perturbativity as a
function of the parameters is indicated in Fig. 8. As we
expect, we find that a Landau pole appears at lower scales
when either gS or f gets large.
There is a Landau pole well below the GUT scale for all

allowed parameters, and therefore this theory requires UV
completion below that scale. Such UV completions can
naturally preserve unification if the new physics comes in
complete SUð5Þ multiplets. An important point in the
present model is that all fields with the large gS coupling
satisfy exactly this GUT criterion. This makes it simple to
have new physics that avoids the Landau pole in gS while
preserving gauge coupling unification. As a simple illus-
trative example of this point, we consider a model where
SUð2ÞS is embedded into a larger gauge group SUð3ÞS0 at a
higher scale M. The particle content is given in Table II. In
order to break SUð3ÞS0 → SUð2ÞS, we need the additional
superpotential terms

ΔW ∼ λ0S0ðΦ̄0Φ0 −M2Þ þ FðΔ̄Φ0Þ þ F̄ðΔΦ̄0Þ; (3.31)

where S0 is a singlet. We assume that the scale M is above
the TeV scale, so the theory is approximately supersym-
metric at the scale M. The F- and D-flat conditions fix the
VEVs

hS0i ¼ 0; hΦ0i ¼ hΦ̄0i ¼

0
B@

0

0

M

1
CA: (3.32)

The second and third terms in Eq. (3.31) generate masses of
the forms F̄Δ3 and FΔ̄3, with the additional components
of the Δ fields matching onto Σu;d. The theory has an
accidental Uð1Þ global symmetry under which Φ0 and Φ̄0
have opposite charges, and there is therefore a massless
singlet Goldstone chiral multiplet. All other fields get
masses of order M, and the low-energy theory is the model
discussed above. The additional Goldstonemultiplet can get
masses from higher-dimension operators and is harmless.
Above the scale M, the SUð3ÞS0 gauge group has seven

flavors, and it is therefore asymptotically free. In fact, it is
in the conformal window [55–57], and we expect that there
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FIG. 8 (color online). Landau poles in the parameter space of
the D-term model. The unshaded area is the allowed region,
as in Fig. 2.

TABLE II. Field content of the extended D-term model. The
fields are in complete multiplets of SUð5ÞSM ⊃ SUð3ÞC×
SUð2ÞW × Uð1ÞY .

SUð3ÞS0 SUð5ÞSM
Φ;Φ0 □ 1
Φ̄; Φ̄0 □̄ 1
Δ □ □

Δ̄ □̄ □̄

F 1 □

F̄ 1 □
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is an IR-stable fixed point for the gauge coupling and
Yukawa coupling λΦ. It is therefore simple to find an RG
trajectory where gS and λΦ are perturbative at the GUT scale
and run toward the fixed point in the IR. One possibility is
that the scale M is near but above the scale ΛS0 where the
SUð3ÞS0 coupling becomes strong. This requires a coinci-
dence of scales. We can avoid this coincidence if the
SUð3ÞS0 coupling becomes strong and flows to its fixed
point above the scale M. The operator Φ̄0Φ0 has dimension
12
7
, and the coupling λ0 in Eq. (3.31) therefore has a large

anomalous dimension and becomes strong at a scale

Λλ0 ∼ ΛS0

�
λ0ðΛS0 Þ
4π

�
7=2

: (3.33)

For λ0ðΛS0 Þ ∼ 0.1, we obtain Λλ0=ΛS0 ∼ 10−7, so the cou-
pling λ0 can naturally remain perturbative at scales far
below the scale where the SUð3ÞS0 fixed point is reached;
the FðΔ̄Φ0Þ and F̄ðΔΦ̄0Þ couplings behave in the same way.
We therefore consider the case where the superpotential
couplings break the SUð3ÞS0 at scales below ΛS0 but above
the scale where λ0 gets strong. In this regime, the S0 term in
the superpotential does not have a large anomalous dimen-
sion, and the SUð3ÞS0 breaking scale is given by

~M ∼M7=6Λ−1=6
S0 : (3.34)

This is very insensitive to the scale ΛS0 , so the breaking
scale is still essentially set by M. The bottom line is that
there is a large regime of parameters where the RG
trajectory reaches the strong SUð3ÞS0 fixed point, and the
theory breaks to the SUð2ÞS theory at a scale set by the
parameter M. This theory is strongly coupled, so we can
naturally obtain a large value of the SUð2ÞS gauge coupling
at the weak scale. The salient features of this scenario are
sketched in Fig. 9.
Above the scale M, the gauge group has four additional

5 ⊕ 5̄ compared to the MSSM, and the SM gauge
couplings remain perturbative up to the GUT scale. In
the range of scales where the SUð3ÞS0 gauge coupling is at a
strong fixed point, the beta functions of the SM gauge
couplings are reduced compared to the tree-level ones,
making the couplings even more perturbative: each of the
three strongly coupled flavors counts as 5

7
flavors in the RG

equations for the SM gauge couplings.
We must take f ≲ 160 GeV in order to avoid a Landau

pole for yt, which requires gS ≳ 2.5 at the weak scale (see
Fig. 2). This is perfectly natural in this model if the SUð3ÞS0
coupling is at its fixed point down to scales of order
100 TeV. We note that this puts the model in an interesting
parameter regime that favors an induced tadpole, and
therefore a small value of the Higgs cubic coupling.
This model is only an example. We can imagine other

kinds of new physics that replace the Landau pole of this
coupling, such as compositeness or extra dimensions. Such

a UV completion preserves unification as long as all new
fields are in complete SUð5Þ multiplets and there are not
too many of them. It is also possible to have larger values of
f if the top quark is composite, as in the models of
Ref. [58]. These models generate complete composite GUT
multiplets, and therefore also preserve unification.

F. Discussion

The essential ingredient in this model is the presence of
additional “auxiliary”Higgs fields charged under a newnon-
Abelian gauge group SUð2ÞS. The new gauge coupling can
easily be larger than the electroweak gauge couplings at the
TeV scale, so these Higgs fields naturally have a large
quartic coupling. Thismodel can be viewed as a perturbative
(and hence calculable) version of the mechanism of “super-
conformal technicolor” proposed in Refs. [35,36]. In those
models, the auxiliary Higgs fields are composites arising
from strong confining dynamics at the TeV scale, similar to
technicolor. The presence of strong dynamics at the same
scale as the SUSY-breaking scale is not a coincidence if the
strong dynamics is conformal above the TeV scale, and
confinement and electroweak symmetry breaking are trig-
gered by soft SUSY breaking. Precision electroweak cor-
rections are not precisely calculable in this model, but using
“naïve dimensional analysis” estimates place them near the
edge of the 95% confidence level constraints.
The present perturbative models are fully calculable, so

we can check all experimental constraints without large
theoretical uncertainties. But it is not at all clear that nature
cares about whether we can calculate. One sense in which
the present models are an improvement over the strongly
coupled models is that they are compatible with perturba-
tive unification. This comes at a price, however, since
putting the auxiliary Higgs fields in a 5 ⊕ 5̄ of SUð5Þ

g1
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SU 2 S SU 3 S'
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FIG. 9 (color online). Running couplings and their matching at
the scale M ∼ 105 GeV, where SUð3ÞS0 is broken to SUð2ÞS. We
take f ¼ 160 GeV, such that the top coupling remains perturba-
tive and the tuning required is Oð15%Þ.
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means that their VEVs break custodial symmetry.4 This
necessitates a little hierarchy between the SUð2ÞS breaking
scale (∼TeV) and the Higgs mass scale (∼100 GeV). If we
did not require gauge coupling unification, we could make
a simpler model, where the auxiliary Higgs fields are
SUð2ÞW triplets, but we will not pursue this here.
In our discussion, we have been agnostic about the

superpartner spectrum. In order to have a natural model,
this spectrum must have a relatively light stop and gluino,
and this is compatible with experimental limits only for
special spectra, such as a somewhat compressed spectrum.
We do not address how this arises, since the phenomeno-
logical issues essentially factorize: our model is compatible
with any “natural” spectrum that is not ruled out by
the data.

IV. F-TERM MODELS

Next, we consider the possibility that the quartic cou-
pling of Σ is generated by F terms via an NMSSM-like
superpotential interaction

ΔW ¼ λSSΣuΣd; (4.1)

where S is a singlet and Σu;d are Higgs doublets. If we
require perturbativity up to a high scale such as the GUT
scale, the coupling λS can be somewhat larger than the
corresponding coupling in the NMSSM, because the top
Yukawa coupling does not contribute to the leading-order
RG running of λS. The largest value of the singlet coupling
compatible with perturbativity up to the GUT scale is
approximately λS ¼ 0.92. We will see that this is not large
enough to make a realistic model of induced EWSB, so we
will also discuss a hybrid model with both D- and F-term
contributions to the auxiliary Higgs quartic that satisfies all
phenomenological constraints and is perturbative up to the
GUT scale.
The F-term model is interesting also because it is has

different phenomenology than the D-term models. One
important difference is that it requires a nonvanishing VEV
for both Σu and Σd in order for the quartic [Eq. (4.1)] to play
a role in EWSB. We consider the case where the VEVs are
given by

hΣui ¼
1ffiffiffi
2

p
�

0 0

fu 0

�
; hΣdi ¼

1ffiffiffi
2

p
�
0 fd
0 0

�
: (4.2)

We will make the simplifying assumption that hSi ¼ 0.
Imposing this exactly is unnatural, since gaugino loops will
generate a nonzero A term of the form SΣuΣd, and this will

give a tadpole for S. However, hSi can be suppressed if the
S mass squared is somewhat larger than the other soft
masses, so this can be a good approximation. This can be
motivated phenomenologically from the fact that a large
VEV for S correlates with large mixing between H and S,
which is constrained by the measured Higgs couplings. We
stress, however, that we are making this assumption mainly
for simplicity. We believe that allowing hSi ≠ 0 will not
significantly change the main conclusions below.
With this assumption, the potentially relevant terms in

the superpotential are

ΔW ¼ μHuHd þ λuHuΣdΦþ λdHdΣuΦþ λ̄uHuΣdΦ̄

þ λ̄dHdΣuΦ̄; (4.3)

as well as the soft SUSY-breaking terms

ΔV ¼ m2
Hu
jHuj2 þm2

Hd
jHdj2 þmΣu

jΣuj2 þmΣd
jΣdj2

þ BμHuHd þ BSΣuΣd þ BuHuΣd þ BdHdΣu

þ H:c:þ A terms: (4.4)

The fact that we need an explicit μ term is due to our
simplifying assumption that hSi ¼ 0. We further neglect
the couplings λu;d and λ̄u;d and the corresponding A terms,
also for simplicity. For completeness, we quote the result-
ing minimization conditions:

m2
Hd

¼ Bμ tan β − Bd
sβΣ
cβ

cot γ −
1

2
m2

Zðs2γ · cos 2β

þ c2γ · cos 2βΣÞ; (4.5)

m2
Hu

¼ Bμ cot β þ Bu
cβΣ
sβ

cot γ þ 1

2
m2

Zðs2γ · cos 2β

þ c2γ · cos 2βΣÞ; (4.6)

m2
Σd

¼ Bs tan βΣ þ Bu
sβ
cβΣ

tan γ −
1

2
m2

Zðs2γ · cos 2β

þ c2γ · cos 2βΣÞ −
1

2
λ2Sv

2c2βΣc
2
γ ; (4.7)

m2
Σu

¼ Bs cot βΣ − Bd
cβ
sβΣ

tan γ þ 1

2
m2

Zðs2γ · cos 2β

þ c2γ · cos 2βΣÞ −
1

2
λ2Sv

2c2βΣc
2
γ ; (4.8)

where

tan βΣ ¼ fu
fd

: (4.9)

As in Sec. III, we consider a simplified case where

vd≪vu;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2uþf2d

q
, (i.e. large tan β). We have a mass matrix

in the basis ðH0
u;Σ0

u; ~Σ0
dÞ given by (denoting λS ¼ λ)

4The order parameter used in the superconformal technicolor
models in Refs. [35,36] was a (2,2) of SUð2ÞL × SUð2ÞR, which
preserves custodial symmetry but does not have a simple
embedding into a complete GUT multiplet.
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M2 ¼

0
BBBB@

m2
Hu

0 −
m2

Hu
vu

fd

0 1
2
λ2f2d þ

m2
Σd
f2d

f2u
−

m2
Hu

v2u
f2u

1
2
λ2fufd −

m2
Σd
fd

fu
þ m2

Hu
v2u

fufd

−
m2

Hu
vu

fd
1
2
λ2fufd −

m2
Σd
fd

fu
þ m2

Hu
v2u

fufd
1
2
λ2f2u þm2

Σd

1
CCCCA: (4.10)

This simplified model has nine parameters, given by the
mass terms in Eq. (4.4) and the superpotential coupling λS.
We trade five of these parameters for the VEVs vu;d and
fu;d and the lightest Higgs mass and scan over the
remaining parameters. We display the results in the plane

of λS and f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2u þ f2d

q
in Fig. 10. As we expect, the

results are qualitatively similar to both the simplified model
and the D-term model. In particular, the Higgs VEV is
dominated by an induced tadpole for roughly half of the
allowed parameter space. The Landau poles generally
occur at lower scales in this model than in the D-term
model. One important difference is that the λS coupling
runs at one loop, while the gauge coupling gS in theD-term
model runs only at two loops. For yt, there are two effects.
First, yt must typically be larger in the F-term models
because both fu;d are nonzero. Second, there are two
additional 5 ⊕ 5̄ in the D-term model, and only one in
the F-term model. This makes the SUð3ÞC gauge coupling
larger at high scales in the D-term model, slowing the
running of yt. We could, of course, add additional 5 ⊕ 5̄ to
the F-term model, but we will not explore this here.
To get a model compatible with perturbative unification,

we turn to a “hybrid” model where both F and D terms
contribute to the auxiliary Higgs quartic. In the model we
consider, we choose an intermediate ratio of auxiliary
VEVs, tan βΣ ¼ 2.5, which allows the singlet coupling
λS to contribute significantly to the auxiliary quartic. The
weak scale value of λS can be larger than in the pure F-term

model because gS gives a negative contribution to the λS
beta function. The resulting picture is shown in Fig. 11. We
see that we get a model that is perturbative up to the GUT
scale only if the model is close to the decoupling limit. This
may be regarded as a kind of tuning, but see the discussion
below. Models with additional structure below the GUT
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FIG. 10 (color online). Parameter space of the model with nondecoupling F terms. Left:Numerical scan of parameter space; the points
are labeled as in Fig. 4. Right: Position of Landau poles (compare Fig. 8).
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FIG. 11 (color online). Allowed region and Landau poles
(corresponding to a given point’s cutoff) for a hybrid model
with F and D terms. The unshaded area corresponds to the
allowed space, and cutoff values are quoted in GeV. The position
of the Landau poles is determined by optimizing the values of the
couplings gSðμ ¼ mWÞ and λΦðμ ¼ mWÞ at each point.
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scale may be a more attractive possibility to combine
naturalness with unification. As in the D-term models, the
auxiliary Higgs fields naturally come in complete SUð5Þ
multiplets, so UV-completing these models in a manner that
preserves gauge coupling unification should be possible,
but we will not attempt to address that here.
We conclude by commenting on the naturalness of the

F-term models discussed above. Models withD terms have
a tree-level violation of custodial symmetry from the Σ
VEVs. This is absent in the pure F-term model, and so this
model requires no little hierarchy among the masses, and
therefore there is no danger of fine-tuning. This is certainly
a very attractive feature of this model. In the hybrid model,
we must have a little hierarchy to avoid large T-parameter
corrections, but the value of gS is smaller, so the tuning is
reduced compared to the pure D-term model.

V. CONCLUSIONS

We have presented SUSY models that address the Higgs
naturalness problem. In these models, the dominant source
of electroweak symmetry breaking is due to the VEVs of
the MSSM Higgs fields Hu;d, but there is a subleading
contribution to electroweak symmetry breaking from addi-
tional “auxiliary” Higgs fields. That is, we have

m2
W ¼ 1

4
g2ðv2u þ v2d þ f2Þ; (5.1)

where f arises from the auxiliary Higgs sector. A typical

value is f¼ 150GeV, which gives
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2u þ v2d

q
¼ 195 GeV.

The auxiliary Higgs fields have no Yukawa couplings,
which allows them to have a large quartic coupling, either
from additional gauge interactions or superpotential inter-
actions. The masses of the auxiliary Higgs bosons are
therefore above 125 GeV, even though their contribution to
electroweak symmetry breaking is subleading. One simple
limit of this model is the decoupling limit, where the heavy
mass eigenstate has a very small VEV. In this limit,
integrating out the auxiliary Higgs fields generates an
induced quartic for the MSSMHiggs fields that can explain
the observed 125 GeV Higgs particle. The light Higgs has
standard model-like couplings in the decoupling limit, so
this limit is compatible with all the current Higgs data.
However, the data allows significant deviations from the

decoupling limit. In fact, we can access another limit where
the heavy auxiliary Higgs mass eigenstate has a significant
VEV. In this case, electroweak symmetry is nonlinearly
realized in the effective theory below the auxiliary Higgs
mass. This allows the effective theory to contain relevant
electroweak breaking terms such as tadpole terms for the
light Higgs fields. If this tadpole is sufficiently large,
the light Higgs VEVs and masses are very insensitive to
the quartic coupling of the light Higgs. This means that the
quartic (and cubic) coupling of the Higgs can be much

smaller than those of the standard-model Higgs. This is a
smoking-gun signal of this mechanism.
Between these two limits, there is a large and phenom-

enologically interesting parameter space. Importantly,
the tuning is less than 10% in almost all of the allowed
parameter space, making this solution to the tuning
problem more robust than many others considered in the
literature.
These models have rich phenomenology at the LHC and

beyond. First, the Higgs couplings can have significant
deviation from their standard-model values away from the
decoupling limit. Away from this limit, the auxiliary Higgs
particles can be light and mix significantly with the light
Higgs fields. The auxiliary Higgs fields have suppressed
couplings to fermions and gauge bosons, but they can have
appreciable production cross sections. They can decay to
electroweak gauge bosons and/or the 125 GeV Higgs.
Current standard Higgs searches in the heavy-mass region,
however, do not yet have sufficient sensitivity to constrain
the multi-Higgs models presented here: considering a
benchmark mass of 350 GeV for the heavy state and
assuming all final states are the same as those of the light
Higgs, the current exclusions reach no lower than
μ ¼ Γ=ΓSM ≃ 0.2, combining all H → VV channels cor-
responding to H couplings of order 45% or less of the
corresponding couplings of the light Higgs [59]. This is
easily compatible with light Higgs couplings that are within
10% of the SM, so both direct and indirect probes of the
heavy states still allow for their (undetected) existence.
Moreover, there can be a significant branching fraction for
heavy Higgs to decay to lighter Higgs states, such as H →
hh if the heavy states are not decoupled [60], which further
weaken direct search bounds. The detailed bounds depend
on the full parameter space of the model, not just the two-
parameter subspace emphasized here, and they go beyond
the scope of this study.
Another important point for Higgs phenomenology is

that the light Higgs quartic (and hence cubic) coupling can
easily be highly suppressed compared to the standard
model. Because of the destructive interference with direct
double Higgs production, this gives an increased rate for
double Higgs production compared to the standard model,
which may be observable at the 14 TeV LHC with 300 fb−1

[47–49] and may provide additional evidence for the class
of models studied here.
Finally, there is the rest of the superpartner spectrum.

The present model is motivated by naturalness, so the stops
cannot be too heavy in this model. Minimal predictive
models of SUSY breaking (such as gauge mediation,
gaugino mediation, or anomaly mediation) do not give a
natural allowed SUSY spectrum, so we simply treat the soft
SUSY-breaking terms as phenomenological parameters.
The superpartner spectrum is constrained by the absence
of a signal in SUSY searches so far. There are a number of
ways that this could happen, including (but not limited to)
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m~t ∼mt, a compressed spectrum, R-parity violation, or
decays through a hidden sector [61]. Searches at the 14 TeV
LHC will have a large reach in these scenarios, and we
fervently hope for a signal there.
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APPENDIX: RENORMALIZATION GROUP FOR
AUXILIARY HIGGS MODELS

Various order-1 couplings are required in each of the
models presented. In practice, we run couplings, including
SM gauge couplings, at two loops, with results that have
been verified using the package SARAH [62,63]. However,
we summarize here the leading RG equations for three
separate cases to facilitate simple checks of the results:
i) auxiliary quartics arising from D terms alone; ii) quartics
from F terms alone; and iii) quartics from both F and D
terms (i.e. the “hybrid” model). We have the following:

D-term model :

(
bð2ÞgS ¼ 2g3Sðg21 þ 3g22 þ 8g23 þ 9g2S − λ2ΦÞ;
bð1ÞλΦ

¼ λΦð4λ2Φ − 3g2SÞ;
(A1)

F-term model:
�
bð1ÞλS

¼ λSð4λ2S − 3
5
g21 − 3g22Þ; (A2)

Hybridmodel:

8>>><
>>>:
bð2ÞgS ¼2g3Sðg21þ3g22þ8g23þ9g2S−λ2Φ−2λ2SÞ;
bð1ÞλΦ

¼λΦð4λ2Φ−3g2SÞ;
bð1ÞλS

¼λSð6λ2S−3
5
g21−3g22−3g2SÞ;

(A3)

with βg ≡ dg=d ln μ ¼Plb
ðlÞ
g =ð16π2Þl. In the case of the

extended D-term model where SUð2ÞS is embedded
into the larger SUð3ÞS0 at an intermediate scale M, we
have leading RG running in the (weakly coupled) UV
governed by

bð1ÞλΦ1;2
¼ λΦ1;2

�
5λ2Φ1;2

þ 3λ2Φ2;1
−
16

3
g2S0

�
; (A4)

bð1ÞgS ¼ −2g3S; (A5)

bð2ÞgS ¼g3S0
�
2g21þ6g22þ16g23þ

76

3
g2S0 −2ðλ2Φ1

þλ2Φ2
Þ
	
: (A6)

Here the superpotential couplings are given by
W ¼ λΦ1

SΦ̄0Φ0 þ λΦ2
SΦ̄Φ. When using these equations,

it is important to take into account the fact that there are
extra multiplets on the running of the standard-model gauge
couplings, which also affects the running of the top-quark
Yukawa coupling.
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