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We determine the curvature of the (pseudo)critical line of QCD with nf ¼ 2 þ 1 staggered fermions at
nonzero temperature and quark density by analytic continuation from imaginary chemical potentials.
Monte Carlo simulations are performed by adopting the highly improved staggered quarks /tree action
discretization, as implemented in the code by the MILC Collaboration, suitably modified to include a
nonzero imaginary baryon chemical potential. We work on a line of constant physics, as determined in
Ref. [1], adjusting the couplings so as to keep the strange quark mass ms fixed at its physical value, with a
light to strange mass ratio of ml=ms ¼ 1=20. In the present investigation, we set the chemical potential at
the same value for the three quark species, μl ¼ μs ≡ μ. We explore lattices of different spatial extensions,
163 × 6 and 243 × 6, to check for finite size effects, and present results on a 323 × 8 lattice, to check for
finite cutoff effects. We discuss our results for the curvature κ of the (pseudo)critical line at μ ¼ 0, which
indicate κ ¼ 0.018ð4Þ, and compare them with previous lattice determinations by alternative methods and
with experimental determinations of the freeze-out curve.
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I. INTRODUCTION

It is now well established that quantum chromodynamics
(QCD) is the theory underlying strong interactions.
As such, it must be able to account for the different phases
of strongly interacting matter under usual or unusual
(extreme) conditions. In particular, a transition or rapid
crossover is thought to exist from a low-temperature
hadronic phase to a high-temperature quark-gluon plasma
(QGP) phase; the line separating these two phases in the
temperature-baryon density plane is called the QCD
(pseudo)critical line and has been the subject of many
theoretical investigations.
Determining the exact location of this line and the nature

of the transition across it has many important theoretical
and phenomenological implications, which go from the
physics of the early Universe, corresponding to the high
T and low baryon density region of the phase diagram, to
the physics of the interior of some compact astrophysical
objects, corresponding to the low T and high baryon
density region. Moreover, various experiments have been
devised or have been planned in order to study this
transition under controlled conditions in a laboratory, via
heavy-ion collisions at ultrarelativistic energies.

Depending on the beam energy, different conditions of
temperature and baryon density can be realized in the
fireball produced after the collision, such that the QGP
phase appears as a transient state, before the system freezes
out and partons recombine into hadrons. For a given
collision energy, the particle yields are found to be well
described by a thermal-statistical model assuming approxi-
mate chemical equilibrium, as realized at the chemical
freeze-out point, in terms of only two parameters: the
freeze-out temperature T and the baryon chemical potential
μB. The set of freeze-out parameters determined in experi-
ments with different collision energies lies on a curve in the
ðT; μBÞ plane, extending up to μB ≲ 800 MeV (see Fig. 1
of Ref. [2], or Ref. [3] for a recent reanalysis of exper-
imental data).
There is no compelling reason for the chemical freeze-

out curve and the QCD (pseudo)critical line to coincide.
Chemical freeze-out is reached as the fireball cools
down, subsequently to rehadronization. Hence, the only
assumption that can be made a priori is that the freeze-out
curve lies below the (pseudo)critical line in the μB-T plane.
However, a reasonable guess is that chemical freeze-out is
reached shortly after hadronization, so that the two curves
lie close to each other. In general, the QCD (pseudo)critical
line, as well as the freeze-out curve, can be parametrized, at
low baryon densities, by a lowest order Taylor expansion in
the baryon chemical potential, as follows:
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TðμBÞ
Tcð0Þ

¼ 1 − κ

�
μB

TðμBÞ
�

2

; (1)

where Tcð0Þ is the (pseudo)critical temperature at vanish-
ing baryon density.
Within QCD, a first-principle approach aimed at locating

the (pseudo)critical line by means of numerical simulations
on a space-time lattice is unfeasible at nonzero baryon
density, due to the well-known “sign problem”: the QCD
fermion determinant becomes complex and the probability
interpretation of the measure of the Euclidean path integral,
which is necessary for the application of standard Monte
Carlo importance sampling, is lost.
Several methods have been invented to attack this

problem at an algorithmic level or to circumvent it (for a
review, see Ref. [4]): reweighting from the ensemble at
μB ¼ 0 [5], the Taylor expansion method [6], the canonical
approach [7–9], the density of states method [10] and the
method of analytic continuation from an imaginary chemi-
cal potential [11–22].
A comparison among different approaches has been

possible only in a few cases. QCD with nf ¼ 4 in the
standard staggered formulation, discretized on Nt ¼ 4 lat-
tices with a bare quark mass am ¼ 0.05, has been the
laboratory for many investigations: in that case, the transition
is first order all the way along the critical line, and all
methods agree in the range μB=ð3TÞ ≲ 1 (see Refs. [9,23]
and Fig. 8 of Ref. [15]). No such direct comparisons exist
for nf ¼ 2 QCD; however, different discretizations with
unphysical quark masses lead to compatible results (see, e.g.,
the discussion in Sec. 3 of Ref. [17]).
The situation in QCD with nf ¼ 2þ 1 and physical or

almost-physical quark masses deserves a more detailed
discussion. It is now widely accepted that the transition at
μB ¼ 0 is a smooth crossover [24], thus implying that
the determination of the transition temperature Tc and the
curvature of the (pseudo)critical line depend on the
observable adopted to probe the transition. Indeed, with
particular reference to the curvature κ defined in Eq. (1), the
Budapest-Wuppertal Collaboration [25], using a Symanzik
improved gauge action and stout-link improved staggered
fermions on lattices with temporal size Nt ¼ 6; 8; 10 and
aspect ratios equal to three and four, finds, after continuum
extrapolation, κ ¼ 0.0089ð14Þ by the Taylor expansion
method with the strange quark number susceptibility as
probe observable and κ ¼ 0.0066ð20Þ when, instead, the
renormalized chiral condensate is used. The Bielefeld-BNL
Collaboration [26], using the p4 action on lattices with
Nt ¼ 4 and 8, and aspect ratios up to four, finds κ ¼
0.0066ð7Þ again with the Taylor expansion method and the
light-quark susceptibility as a probe observable. Another
collaboration [27] adopted improved staggered fermions in
the p4fat3 version, on lattices with Nt ¼ 4 and aspect ratio
four with physical strange quark mass and pion mass at
220 MeV, getting κ ¼ 0.0100ð2Þ by the method of analytic
continuation, with the Polyakov loop phase as a probe.

The comparison of these results for the curvature κ with
those obtained for the freeze-out curve and coming from the
experiments with heavy-ion collisions is far from satisfac-
tory. According to the analysis of Ref. [2], the curvature κ of
the freeze-out curve is a factor 2 to 3 higher than the above
lattice determinations, even if a recent reanalysis [3], which
includes the effects of inelastic collisions taking place after
freeze-out, seems to reduce the value of κ, bringing it into
better agreement with existing lattice results.
In such a situation, a new, independent lattice determi-

nation of the QCD (pseudo)critical line at small baryon
densities could provide us with useful additional informa-
tion and help us identify possible sources of systematic
uncertainties in the theoretical determination of the
(pseudo)critical line. Indeed, while systematic effects
within each single method trying to circumvent the sign
problem may seem to be well under control, it is only the
comparison between different independent methods which
could provide a clear final picture.
The aim of this work is to have a first estimate of the

QCD (pseudo)critical line by the method of analytic
continuation, using the HISQ/tree action of the MILC
Collaboration with 2þ 1 staggered fermions, properly
modified to be endowed with an imaginary chemical
potential that is common to each fermion. The strange
mass is set at the physical value, and simulations are
performed on the line of constant physics (LCP) with the
light-quark mass fixed at ml ¼ ms=20, as determined in
Ref. [1]. As for quark chemical potentials, in the present
study we assign the same value to the three quark species,
μl ¼ μs ≡ μ. This choice is certainly the most convenient
for studying the theory at imaginary chemical potentials,
since it leads to a simpler structure of the phase diagram for
negative values of μ2. For the comparison with the freeze-
out curve, settings with μs ≠ μl should also be taken into
account. We plan to consider this issue in forthcoming
studies. We explore lattices of different spatial extensions,
163 × 6 and 243 × 6, to check for finite size effects, and
present results on a 323 × 8 lattice, to check for finite cutoff
effects.

II. SIMULATION DETAILS AND
NUMERICAL RESULTS

We perform simulations of lattice QCD with 2þ 1
flavors of rooted staggered quarks at imaginary quark
chemical potential. We have made use of the HISQ/tree
action [28,29] as implemented in the publicly available
MILC code [30], which has been suitably modified by us in
order to introduce an imaginary quark chemical potential,
μ ¼ μB=3. That has been done by multiplying all forward
and backward temporal links entering the discretized
Dirac operator by expðiaμÞ and expð−iaμÞ, respectively:
in this way, the fermion determinant is still real and
positive, so that standard Monte Carlo methods can be
applied. As mentioned above, in the present study we have
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μ ¼ μl ¼ μs. All simulations make use of the rational
hybrid Monte Carlo (RHMC) algorithm. The length of
each RHMC trajectory has been set to 1.0 in molecular
dynamics time units.
We have simulated QCD at finite temperature and

imaginary quark chemical potential on lattices of size
163 × 6, 243 × 6, and 323 × 8. In particular, most simu-
lations have been performed on the smallest lattice, while
for μ=ðπTÞ ¼ 0.2iwe have also considered a 243 × 6 lattice
and a 323 × 8 lattice, in order to check for finite size and
for finite cutoff effects. We have typically discarded not
less than 1000 trajectories for each run and have collected
from 4000 to 8000 trajectories for measurements.
The (pseudo)critical line βcðμ2Þ has been determined as

the value for which the disconnected susceptibility of the
light-quark chiral condensate exhibits a peak. To precisely
localize the peak, a Lorentzian fit has been used. For the
243 × 6 and 323 × 8 lattices, the values of the susceptibility
at μ=ðπTÞ ¼ 0 have been taken from Table X and Table XI
of Ref. [1], respectively. For the reader’s convenience,
we summarize in Table I the (pseudo)critical couplings
obtained by the Lorentzian fit for the different values of the
chemical potential and lattice size used in this work. For
illustrative purposes, in Fig. 1 we display our determination
of the (pseudo)critical couplings at μ=ðπTÞ ¼ 0.2i for
163 × 6, 243 × 6, and 323 × 8 lattices. We notice that the
discrepancy in the determination of βc on the 163 × 6 and
the 243 × 6 lattices, which may indicate the presence of
finite size effects, will be strongly suppressed when
considering the ratio of temperatures, TcðμÞ=Tcð0Þ.
To determine the ratio TcðμÞ=Tcð0Þ, we need to set the

lattice spacing. This is done following the discussion in
Appendix B of Ref. [1], where, for this particular value of
ml=ms, the spacing is given in terms of the r1 parameter:

a
r1
ðβÞml¼0.05ms

¼ c0fðβÞ þ c2ð10=βÞf3ðβÞ
1þ d2ð10=βÞf2ðβÞ

; (2)

with c0 ¼ 44:06, c2 ¼ 272102, d2 ¼ 4281, r1 ¼
0.3106ð20Þ fm [31], and

fðβÞ ¼ ðb0ð10=βÞÞ−b1=ð2b20Þ expð−β=ð20b0ÞÞ; (3)

where b0 and b1 are the universal coefficients of the
two-loop beta function.
From aðβÞ we determine, separately for each explored

lattice size, TcðμÞ=Tcð0Þ ¼ aðβcð0ÞÞ=aðβcðμÞÞ. Data for

TABLE I. Summary of the values of the (pseudo)critical
couplings βc for the imaginary quark chemical potentials μ
considered in this work. The data for μ ¼ 0 on the 243 × 6
lattice and on the 323 × 6 lattice have been estimated from the
disconnected chiral susceptibilities reported, respectively, on
Table X and Table XI of Ref. [1].

Lattice μ=ðπTÞ βc TcðμÞ=Tcð0Þ
163 × 6 0. 6.102(8) 1.000

0.15i 6.147(10) 1.045(13)
0.2i 6.171(12) 1.070(15)
0.25i 6.193(14) 1.093(17)

243 × 6 0. 6.148(8) 1.000
0.2i 6.208(5) 1.060(10)

323 × 8 0. 6.392(5) 1.000
0.2i 6.459(9) 1.068(11)
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FIG. 1 (color online). The real part of the disconnected
susceptibility of the light-quark chiral condensate for 163 × 6
and 243 × 6 (full circles and full squares, respectively) and for
323 × 8 (full triangles) at μ=ðπTÞ ¼ 0.2i. Full lines are the fits to
the peaks using a Lorentzian.
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FIG. 2 (color online). TcðμÞ=Tcð0Þ versus ððiμÞ=ðπTÞÞ2 ob-
tained on a 163 × 6 lattice (full circles), on a 243 × 6 lattice (full
square), and on a 323 × 8 lattice (full triangle). For the sake of
readability, the abscissae at ððiμÞ=ðπTÞÞ2 ¼ −0.04 for 243 × 6
and 323 × 8 data have been slightly shifted. The full line is a
linear fit to the data on the 163 × 6 lattice.
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TcðμÞ=Tcð0Þ versus μ=ðπTÞ are reported in Fig. 2. For the
163 × 6 lattice, where the determination at three different
values of μ is available, we have tried a linear fit in μ2:

TcðμÞ
Tcð0Þ

¼ 1þ Rq

�
iμ

πTcðμÞ
�

2

; (4)

which works well over the whole explored range
(χ2=d:o:f: ¼ 0.39) and gives us access to the curvature
Rq. On the other lattices, assuming that linearity in μ2 still
holds, we can extract Rq from the determination at
μ=ðπTÞ ¼ 0.2i; we notice that such an assumption, for
the given value of μ, is consistent with all previous studies
on the systematics of analytic continuation [15–17]. Our
results are

Rqð163 × 6Þ ¼ −1.63ð22Þ; κ ¼ 0.0183ð24Þ;
Rqð243 × 6Þ ¼ −1.51ð25Þ; κ ¼ 0.0170ð28Þ;
Rqð323 × 8Þ ¼ −1.70ð29Þ; κ ¼ 0.0190ð32Þ; (5)

where κ ¼ −Rq=ð9π2Þ is the curvature parameter intro-
duced in Eq. (1). The results provide evidence that finite
size and finite cutoff systematic effects are within our
present statistical uncertainties. We cannot yet try an
extrapolation to the continuum limit of our results;
however, taking into account the statistical errors and the
observed variations of the results with the lattice size and
the ultraviolet cutoff, our present estimate for kappa is

κ ¼ 0.018ð4Þ: (6)

III. CONCLUSIONS AND DISCUSSION

We have presented the first results of our study of QCD
with nf ¼ 2þ 1 flavors discretized in the HISQ/tree rooted
staggered fermion formulation and in the presence of an
imaginary baryon chemical potential, with a physical
strange quark mass and a light to strange mass ratio of
ml=ms ¼ 1=20 and μ ¼ μl ¼ μs.
Our main result is an estimate of the curvature of the

(pseudo)critical line in the temperature–baryon chemical
potential, defined in Eq. (1), which has been obtained by
the method of analytic continuation.
It is interesting to compare our estimate with previous

lattice results, which have been mostly obtained by the
Taylor expansion method, and with the estimates of the
freeze-out curve. Such a comparison is performed in
Fig. 3. We stress once again that our investigation has
been performed with μl ¼ μs, as in the numerical setup of
Ref. [27], while the other results in Fig. 3 have been
obtained for μs ¼ 0.
Regarding the freeze-out curve, we report two different

estimates. The first is from the analysis of Ref. [2], which is

based on the standard statistical hadronization model; there,
the authors parametrize the freeze-out curve as

TcðμBÞ ¼ a − bμ2B − cμ4B; (7)

with a ¼ 0.166ð2Þ GeV, b ¼ 0.139ð16Þ GeV−1, and c ¼
0.053ð21Þ GeV−3, from which we have derived the κ value
reported in the figure. The second estimate is based on the
estimates for the freeze-out points which are reported in
Table I of Ref. [3] and are based on a modified statistical
reanalysis of the experimental data which includes the
effects of inelastic collisions taking place after freeze-out.
We also report, in Fig. 4, an estimate of the (pseudo)

critical line, which is based on our determination of the
curvature. Regarding the value of Tc at μB ¼ 0, which is
affected by larger finite size and finite cutoff effects than κ,
we refer directly to the presently accepted continuum
extrapolated value, Tc ∼ 155 [1,32], and in particular to
the one obtained in Ref. [1] with the same action adopted in
our study, Tcð0Þ ¼ 154ð9Þ MeV. From that and from κ ¼
0.018ð4Þ we obtain b ¼ 0.117ð27Þ GeV−1 [see Eq. (7)].
Freeze-out determinations from Refs. [2,3] are reported
as well.
Our result for the curvature is typically between 2

and 3 standard deviations larger than previous lattice
determinations and seems to be in better agreement with
the freeze-out curvature based on the standard statistical
hadronization model.
Possible reasons for the disagreement with previous

lattice determinations can lie in the different methods
adopted to avoid the sign problem, in the different lattice

0
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κ

This study

arXiv:1011.3130

arXiv:1102.1356

arXiv:1102.1356

arXiv:1012.4694

hep-ph/0511094

arXiv:1212.2431

FIG. 3 (color online). Comparison of different determinations
of the curvature of the chemical freeze-out curve and of the
(pseudo)critical line for QCD with nf ¼ 2þ 1. From left to right:
(i) analytic continuation, disconnected chiral susceptibility, this
study; (ii) Taylor expansion, chiral susceptibility, Ref. [26];
(iii) Taylor expansion, chiral condensate, Ref. [25]; (iv) Taylor
expansion, strange quark number susceptibility, Ref. [25]; (v) ana-
lytic continuation, Polyakov loop, Ref. [27]; (vi) freeze-out
curvature, standard analysis, Ref. [2]; (vii) freeze-out curvature,
revised analysis of Ref. [3].
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discretizations—as well as in the different observables used
to locate the transition point—and in the setup of quark
chemical potentials. In this respect, it would be very
interesting in the future to redetermine the curvature κ
using different combinations of methods and lattice dis-
cretizations, such as implementing the Taylor expansion
method with the HISQ/tree discretization, or the method of

imaginary chemical potential with lattice discretizations
adopting stout smearing improvement.
Let us conclude by discussing the possible sources of

systematic effects in our estimate. One of them is related to
the extrapolation from imaginary to real chemical poten-
tials: in the case of the 163 × 6 lattice, we have performed
simulations at different values of imaginary μ, thus veri-
fying that a linear interpolation (in μ2) of data works well.
For the other two lattices, we have instead considered only
one value of imaginary μ (μ=ðπTÞ ¼ 0.2i), and the linear
behavior has been assumed. Our previous studies based on
analytic continuation, however, indicate that the chosen
value of μ should lie well inside the region of linearity.
Nevertheless, we plan to perform a more systematic study
of this issue. Finally, we have verified that finite size and
cutoff effects are under control, within the present statistical
accuracy. Still, the extrapolation to the continuum limit, as
well as the extension to the physical value of the light to
strange mass ratio, ml=ms ∼ 1=28, and the possible effect
of varying the strange quark chemical potential deserve
further investigations and will be the subject of forth-
coming works.
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