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The axial magnetic effect is the generation of an equilibrium dissipationless energy flow of chiral
fermions in the direction of the axial (chiral) magnetic field. At finite temperature the dissipationless energy
transfer may be realized in the absence of any chemical potentials. We numerically study the temperature
behavior of the axial magnetic effect in quenched SUð2Þ lattice gauge theory. We show that in the
confinement (hadron) phase the effect is absent. In the deconfinement transition region the conductivity
quickly increases, reaching the asymptotic T2 behavior in a deep deconfinement (plasma) phase. Apart
from an overall proportionality factor, our results qualitatively agree with theoretical predictions for the
behavior of the energy flow as a function of temperature and strength of the axial magnetic field.
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One of the cornerstones of modern quantum field theory
is the concept of anomalies. A symmetry present at the
classical level gets broken by the effects of quantum
mechanics. Anomalies are responsible for quantum proc-
esses that would not occur in their absence, e.g. the decay
of the neutral pion into two photons.
In the recent years it has become increasingly clear that

anomalies have also important consequences in the trans-
port properties of a gas or liquid whose constituents have
chiral fermions amongst them. These effects consist of the
generation of dissipationless currents in the presence of a
magnetic field or a vortex. They are called the chiral
magnetic effect [1] and the chiral vortical effect [2]. The
currents can either be global (anomalous) currents such as
the axial current or (conserved) gauge currents such as the
electric current or the energy current. These transport
phenomena are conveniently described by a set of transport
coefficients, the chiral conductivities. They depend on the
chemical potentials and the temperature. While the depend-
ence on the chemical potentials is related to the conven-
tional chiral anomalies the temperature dependence enters
via the gravitational contribution to the anomalies [3]. On
the level of Feynman diagrams the conventional anomalies

appear in triangle diagrams of currents whereas the
gravitational anomaly appears in triangles with one current
and two energy momentum tensors.
A form of these transport laws has been derived many

years ago in the context of neutrino physics [4]. Their
universal character and the deeper relation to anomalies have
been realized only recently. The relation to anomalies is most
striking in the framework of hydrodynamics. It was shown
that the hydrodynamic constitutive relations for an anoma-
lous current necessarily have to include the chiral magnetic
and chiral vortical effects and that the dependence of the
chiral conductivities on the chemical potentials are com-
pletely fixed with this framework [5]. The temperature
dependence is fixed via a combination of hydrodynamic
and geometric reasoning [6]. In essence this result constitutes
nonrenormalization theorems for the chiral conductivities.
However, in Ref. [7] it was shown that gauge interactions

do give rise to a nonvanishing two loop contribution to the
temperature dependence of the chiral conductivities. In our
previous (limited) lattice study [8] a large suppression of
the temperature dependence compared to the weak cou-
pling result was found. Further higher loop corrections to
chiral conductivities have been shown to appear in Ref. [9].
In all these cases dynamical gauge fields are present. We

can distinguish anomalies as “quantum” or “classical”
whether the divergence of the current is given by an
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expression containing only classical fields or by a quantum
operator. More explicitly, in the anomalous nonconservation
law ∂μJμ ¼ cF ~F, F might be the field strength of a purely
external, nondynamical field Aμ whose purpose is to act as a
source for the quantum operator Jμ in the effective action. In
this case we can speak of a c-number anomaly. The current J
can in this case be incorporated in a hydrodynamic formu-
lation and the nonrenormalization theorems of [5,6] apply. If
we are interested however in the axial current in QCD the
field strength appearing in the anomaly equation is the
gluonic one and we also need to take the quantum dynamics
of the gluon fields into account. In that case the anomaly is a
q-number, i.e. an operator. For the axial current in QCD it is
given by the topological charge density. Now the axial
charge is bound to undergo quantum fluctuations.1 In this
case the values of the anomalous conductivities can and do
suffer renormalization from interactions via dynamical
gauge fields. From these considerations it becomes clear
that in order to understand the role anomalous transport
plays in heavy ion collisions it is of utmost importance to
know how much the values of the anomalous conductivities
can be modified in the strong coupling regime.
Anomalous conductivities describe the presence of

dissipationless equilibrium currents. Therefore they are
in principle accessible to inherently Euclidean lattice gauge
theory. Most of the chiral conductivities do depend
however crucially on chemical potentials whose lattice
implementation is notoriously difficult. Luckily there is
however one chiral conductivity that is nonvanishing even
at zero chemical potential if only the system is at finite
temperature. This is the chiral vortical conductivity in the
axial current

~J5 ¼ σCVE;5 ~ω; (1)

where ~ω ¼ ~∇ × ~v is the vorticity. This equation would still
be difficult to handle on the lattice since it describes the
response of the system to rotation. Another, closely related
effect is the so-called axial magnetic effect (AME). It
describes the generation of an energy current Jiϵ ¼ T0i in
the background of an axial magnetic field, i.e. a magnetic
field that couples with opposite signs to left-handed and
right-handed fermions,

~Jϵ ¼ σAME
~B5: (2)

The Kubo formulas for these two chiral conducti-
vities imply σCVE;5 ¼ σAME. At weak coupling and for
a collection of left-handed fermions with charges qL and
right-handed fermions with charges qR the axial magnetic
conductivity is given by

σAME ¼ 1

24

�X
R

qR −
X
L

qL

�
T2: (3)

It is relatively simple to check the AME transport law (2)
in Euclidean lattice simulations because the AME may be
realized in the pure thermal vacuum with all chemical
potentials set to zero, μ ¼ μ5 ¼ 0. On the other hand, the
lattice implementation of the axial magnetic field ~B5 is a
straightforward procedure [8,10].
According to Eq. (2) the axial magnetic field should

induce a dissipationless energy flow of the quarks along
the axis of the field. In our previous paper we have
confirmed the emergence of the axial magnetic effect using
lattice simulations in quenched SUð2Þ QCD [8] for a
certain temperature in the deconfinement phase. The same
effect has been demonstrated for a system of free lattice
fermions [10].
In the deconfinement phase the energy flow turned out to

be proportional to the strength of the axial magnetic field in
a qualitative agreement with the analytical prediction (2).
Theoretically, the transport AME law (2) was derived in a
linear response theory so that Eq. (2) should in principle be
valid only in a weak field limit. Surprisingly, the numerical
results of Ref. [8] have shown that the linear behavior in B5

persists up to very high magnetic fields eB5 ≈ 1.2 GeV2.
The simulations confirm with a high accuracy the linear
behavior of the AME law (2) in the whole range of studied
axial magnetic fields.
In the confinement phase T < Tc, and in the region close

to the phase transition, T ∼ Tc, the dissipationless energy
transfer ceases to exist. The disappearance of the effect in
the low-temperature region is a natural consequence of
the fact that the AME law is essentially based on properties
of the quarks, which are absent in the spectrum of the
theory at low temperatures due to the quark confinement
phenomenon.
In order to illustrate the existence of the effect it was

sufficient to consider one fermion species, Nf ¼ 1, with a
unit charge:

qL5 ¼ −qR5 ¼ þe: (4)

According to Eq. (3), in QCD with two colors Nc ¼ 2 and
one flavor Nf ¼ 1 the prefactor σ in the AME law (2) has
the following form:

σthðTÞ ¼ Cth
AMET

2; Cth
AME ¼ 2NfNc

24
≡ 1

6
: (5)

The temperature behavior (5) of the conductivity coeffi-
cient σ is assumed to be valid in a deep deconfinement
phase, far from the low-temperature confining region.
In Ref. [8] the AME law (2) was studied numerically at

the single temperature T ¼ 480 MeV≃ 1.58Tc in the
deconfinement phase where Tc ¼ 303 MeV is the critical

1It is precisely these quantum fluctuations that are thought to
be responsible for the chiral magnetic effect in heavy ion
collisions [1].
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temperature of the deconfinement phase transition of the
lattice SUð2Þ gauge theory in the continuum limit [11].
We have found that the proportionality coefficient CAME

in the AME conductivity σðTÞ ¼ CAMET2 substantially
differs from the theoretical prediction (5),

CAMEðTÞ
Cth
AME

����
T¼480 MeV

≃ 0.058: (6)

The large difference between the theoretical and numerical
results (6) could be a result of a peculiar temperature
behavior of the proportionality coefficient CAMEðTÞ, so that
the asymptotic regime (5) may not have been reached at the
studied temperature T ¼ 480 MeV.
The aim of this paper is to find the temperature behavior

of the dissipationless energy transport (2) in a wide range of
temperatures. In particular, we are interested in confirma-
tion of the T2 behavior of the proportionality coefficient
predicted by the theory and verification of the validity
of the theoretical prediction (5) in a deep deconfinement
phase. To this end, we extend the calculations of Ref. [8] to
a larger set of temperatures and increase statistics of
numerical simulations. Below we briefly overview our
numerical techniques for the sake of completeness.
We consider the following Lagrangian:

L5 ¼ ψ̄ð∂μ − igAa
μta − iγ5eA5;μÞγμψ ≡ ψ̄D5ðA5Þψ ; (7)

where the axial field A5;μ acts as a classical background
field superimposed over the dynamical non-Abelian
field Aa

μ is a gauge field. In Eq. (7) ta, a ¼ 1, 2, 3 are
the generators of the corresponding SUð2Þ gauge group.
The gauge field Aa

μ is generated in lattice Monte Carlo
simulations of SUð2Þ lattice gauge theory.
We are working in the quenched approach so that a

backreaction of the fermions on the non-Abelian gauge
field via the vacuum fermion loops is disregarded. It is
known that the quark propagator is not strongly altered by
the quenching effects [12] therefore one may generally
expect that the quenching should give a moderate contri-
bution to the anomalous transport of quarks in Eq. (5). The
reduced number of colors (2 instead of 3) is already taken
into account in the theoretical estimate (5).
In our simulations we choose the axial gauge field in the

following form:

A5;0 ¼ A5;3 ¼ 0; A5;1 ¼ −
x2B5

2
; A5;2 ¼

x1B5

2
; (8)

which corresponds to a stationary uniform axial magnetic
field pointing in the third direction, B5;i ¼ B5 · δi;3. Here
the latin index i ¼ 1, 2, 3 labels the spatial coordinates and
μ ¼ 0 is the time direction. The axial electric field is absent.
According to Eq. (2) the axial magnetic background (8)

should induce the dissipationless energy flow of the quarks.
The latter is given by the expectation value of the T0i

component of the stress-energy tensor,

Jiϵ ¼ hT0ii≡ i
2
hψ̄ðγ0Di

5 þ γiD0
5Þψi: (9)

In addition to the fermionic part (9), the energy flow should
also contain a gluonic contribution. Although the gluons
carry no electric charge, their dynamics is affected by the
external magnetic field via interactions with quark vacuum
loops. However, in the quenched approach the quark
vacuum loops are absent so that the gluons are not sensitive
to the external magnetic field. As a result the energy flow of
gluons is vanishing in our approach.
The lattice implementation of the continuum formula (9)

is achieved via a straightforward discretization,

Cμðx; y;AÞ ¼ hψ̄ðxÞUx;yðAa
μÞγμψðyÞiA

≡ Tr

�
Ux;yðAa

μÞ
1

D5 þm
γμ

�
x;y;A

; (10)

where the expectation value is taken over the fermion field
in a fixed background of axial A5;μ and non-Abelian Aa

μ

fields. These fields enter the Dirac operator D5 which is
defined in Eq. (7). In Eq. (10) trace operation is taken over
color and spinor indices, and Ux;y is the gluon string
between the lattice points x and y which makes Eq. (10)
gauge invariant. The expectation value (10) should even-
tually be averaged over the ensemble of the dynamical
gauge fields Aa

μ.
The fermion propagator (10) is calculated using the

following identity:

tr½S5ðA5Þγμ�≡ tr½ðPR þ PLÞS5ðA5Þγμ�
¼ tr½PRSðA5Þγμ� þ tr½PLSð−A5Þγμ�; (11)

where the trace is taken over spinor indices and PR;L ¼
ð1� γ5Þ=2 are the right and left chiral projectors, respec-
tively. The identity (11) expresses the trace of the propa-
gator S5ðA5Þ in a background of the axial field A5 via the
traces of the usual propagators SðAÞ calculated in the
background of the standard Uð1Þ gauge fields A,

S5ðA5Þ ¼ ½D5ðA5Þ�−1; SðAÞ ¼ ½DðAÞ�−1: (12)

The Dirac operator for the former is defined in Eq. (7) while
the one for the latter has the usual form:

DμðAÞ ¼ ∂μ − igAa
μta − ieAμ: (13)

In Eq. (11) the axial gauge field A5 appears as the Abelian
field coupled with opposite signs to right-handed and left-
handed fermions, in agreement with the prescription for the
left- and right-handed charges (4).
The correlation functions (10) are calculated according

to the numerical setup of Refs. [13]. The quark fields are
simulated with the help of the overlap lattice Dirac operator
D with exact chiral symmetry [14]. The discretized version
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of Eq. (9) is calculated using the correlation functions (10),
which are averaged over an equilibrium finite-temperature
ensemble of non-Abelian gauge field configurations Aμ:

hOi ¼
�Z

DAa
μe−SYM½A

a
μ �
�−1 Z

DAa
μe−SYM½A

a
μ �O;

where SYMðAa
μÞ is the Yang-Mills lattice action.

We evaluate the energy flow (9) using 2700 gauge
configurations for every value of parameters (spatial Ls
and temporal Lt lattice sizes, lattice spacing a and strength
of the axial gauge field eB5). In our previous simulations
[8]—which were carried out with much smaller statistics—
we have considered the asymmetric lattices L3

sLt with three
temporal lengths Lt ¼ 4, 6, 8 and the fixed spatial length
Ls ¼ 14. In addition, we have checked the robustness of the
results with respect to variations of the volume and the
lattice spacing.
In this paper we explore the high-temperature part

of the phase diagram concentrating on a single value of
the temporal lattice extension Lt ¼ 4 and larger spatial
lattice volumes Ls ¼ 16, 18, 20. We make our simulations
for the physical lattice spacings in the interval a ¼
ð0.068…0.148Þ fm and the temperature range T ¼
ð330…720Þ MeV.
We use the improved lattice action for the gluon fields

[15]. Due to the identity (11), the axial magnetic field
shares many properties of the usual magnetic field. For
example, the strength of the axial magnetic field is
subjected to quantization due to the periodicity of the
gauge fields in a finite lattice volume:

B5 ¼ kB5;min; eB5;min ¼
2π

L2
s
: (14)

Here the integer number k ¼ 0; 1;…; L2
s=2 determines the

total number of elementary magnetic fluxes threading each
ðx1; x2Þ plane of the lattice. The quantization (14) is
consistent with the unit charges of the left- and right-
handed quarks (4). In order to avoid ultraviolet artifacts, we
simulate the lattice at relatively small values of the flux
quanta k ≤ 15 which is much smaller than the maximal
possible value of the quantized flux, kmax ¼ L2

s=2 ∼ 100.
Our typical strongest magnetic fields are of the order
eB5;max ∼ 1.GeV2 while the smallest possible fields are
of the order of eB5;min ∼ 0.1 GeV2.
We have numerically checked that the dissipationless

energy flow scales linearly with the strength of the axial
magnetic field B5 for a wide set of temperature and volumes,
in agreement with the theoretical prediction (2) and our
previous numerical calculations [8]. Thus, in order to find
the temperature behavior of the conductivity coefficient,

CAMEðTÞ ¼
JϵðT; eB5Þ
eB5T2

; (15)

it is sufficient to calculate the energy current Jϵ for a single
value of the external axial magnetic field B5 at a given
temperature T.
In Fig. 1 we show the dimensionless coefficient (15) of

the conductivity (3) as a function of temperature T. In
agreement with our previous results [8], the dissipationless
energy transfer is absent in the confinement phase. The
conductivity coefficient CAMEðTÞ raises with temperature
at phase transition region, and approaches a constant value
at T ∼ 500 MeV [T ∼ 1.5Tc for the SUð2Þ gauge theory]
implying the T2 behavior of the conductivity σðTÞ at higher
temperatures.
We find the temperature behavior of the coefficientCAME

can well be described by the following function:

Cfit
AMEðTÞ ¼ C∞

AME exp

�
−

hT0

T − T0

�
; T > T0; (16)

with the best fit parameters

C∞
AME ¼ 0.0097ð2Þ; (17)

h ¼ 0.055ð7Þ and T0 ¼ 339ð2Þ MeV. The best fit value for
the temperature scale is quite close to the pseudocritical
temperature of the deconfinement transition of the lattice
SUð2Þ gauge theory at our lattices. The quality of the fit
(16) is given by χ=d.o.f. ¼ 1.8. The fit is shown in Fig. 1 by
the dashed line.
The quantity (17) corresponds to the AME conductivity

σðTÞ ¼ C∞
AMET

2 in the high-temperature limit. For a
conformal theory with two colors of fermions and one
single flavor, the theoretical proportionality coefficient
should be an order of magnitude larger (5),
Cth
AME ¼ 1=6 ≈ 0.166. The ratio between the observed

and predicted coefficients is the same as in our previous
study (6). Notice that in lattice simulations of free fermions
the anomalous energy flow agrees very well with the
theoretical predictions [10] while we observe a large

FIG. 1 (color online). The dimensionless conductivity coeffi-
cient (15) of the dissipationless energy flow vs. temperature. The
dashed line represents the best fit by Eq. (16).
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discrepancy between theoretical and numerical results in
the lattice simulations of the interacting gauge theory.
Figure 1 also demonstrates the robustness of the result

with respect to variations of the lattice volume. For
example, the results at T ≈ 400 MeV ≈ 1.3Tc) and T ≈
720 MeV ≈ 2.37Tc stay unchanged within the error bars as
the volume changes in the range V ¼ ð8…15Þ fm3 and
V ¼ ð1.3…2.6Þ fm3, respectively. This behavior is con-
trasted with the simulations of the same effect in a theory
with free fermions, where large finite-volume corrections
were observed [10]. The energy flow is almost insensitive
to variations of the ultraviolet cutoff given by inverse lattice
spacing [8].
Concluding, we have numerically calculated the temper-

ature behavior of the dissipationless energy flow induced
by the background axial magnetic field (the axial magnetic
effect) in the quenched lattice SUð2Þ gauge theory. We
show that the energy flow is absent in the confinement
phase. In the deconfinement phase the conductivity flow is
proportional to the strength of the axial magnetic field. The
AME conductivity raises sharply in the phase transition
region at T ∼ Tc and reaches the expected T2 behavior as
the temperature increases over 1.5Tc. However, the numeri-
cally found conductivity coefficient is approximately 17

times smaller than the coefficient predicted by the linear
response theory at weak coupling.
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