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We explore the use of twisted boundary conditions in extracting the nucleon mass and the binding energy
of two-baryon systems, such as the deuteron, from lattice QCD calculations. Averaging the results of
calculations performed with periodic and antiperiodic boundary conditions imposed upon the light-quark
fields, or other pairwise averages, improves the volume dependence of the deuteron binding energy from
∼e−κL=L to ∼e−

ffiffi
2

p
κL=L. However, a twist angle of π=2 in each of the spatial directions improves the

volume dependence from ∼e−κL=L to ∼e−2κL=L. Twist averaging the binding energy with a random
sampling of twist angles improves the volume dependence from ∼e−κL=L to ∼e−2κL=L, but with a standard
deviation of ∼e−κL=L, introducing a signal-to-noise issue in modest lattice volumes. Using the
experimentally determined phase shifts and mixing angles, we determine the expected energies of the
deuteron states over a range of cubic lattice volumes for a selection of twisted boundary conditions.
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I. INTRODUCTION

Lattice quantum chromodynamics (LQCD) is evolving
into a quantitative tool with which to describe the low-
energy dynamics of few-body hadronic systems. After fully
quantifying both the statistical and systematic uncertainties
that are inherent in LQCD calculations, the masses of the
lowest-lying hadrons are found to be in impressive agree-
ment with those of nature [1,2]. Recently, the ground-state
energies of the s-shell nuclei and hypernuclei have been
determined at a small number of light-quark masses [3–10].
Through algorithmic improvements, along with the growth
in available computational resources, such calculations
are moving toward the physical values of quark masses,
and to calculations of nuclear properties such as magnetic
moments. It is exciting to realize that within the next few
years, LQCD calculations will provide a firm foundation
for the forces between nucleons directly from QCD, e.g.
Ref. [11]. One of the few systematic uncertainties present
in the results of LQCD calculations arises in the infinite-
volume extrapolation from finite-spacetime lattices, which,
in fact, can be quantified by performing calculations in a
range of lattice volumes. For simple systems such as πþπþ
[12,13], using effective field theory (EFT)methods, or direct
knowledge of the S matrix, the functional volume depend-
ence of observables is available to provide well-defined
predictions in infinite volume.

The finite-volume (FV) corrections to the mass of
hadrons are dominated by the pion mass, mπ , and for a
cubic volume with the spatial extent L the leading order
(LO) corrections scale as e−mπL=L [14]. For two-body
bound states, the size of the bound state provides a second
scale responsible for volume modifications. These scale as
e−κL=L at LO in the volume expansion [15,16], where κ is
the binding momentum of the bound state composed of two
particles of masses m1 and m2 with a binding energy of
B ¼ −ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−κ2 þm2

1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−κ2 þm2
2

p −m1 −m2Þ. For the
deuteron, which is the only two-nucleon bound state in
nature and is bound by only B∞

d ¼ 2.224644ð34Þ MeV,
these latter volume corrections can be large even in a
modest lattice volume for generic boundary conditions
(BCs) imposed upon the quark fields. As an example, an
extraction of the deuteron binding energy that is accurate
at the percent level from quark fields subject to periodic
boundary conditions (PBCs) requires volumes with
L≳ 17 fm. However, this is the worst-case scenario as,
for instance, also producing correlation functions corre-
sponding to a nonzero center-of-mass (CM) momentum
allows for an exponential reduction in the volume depend-
ence [17,18]. Such calculations will permit single-volume
determinations of the deuteron binding energy with percent-
level accuracy in significantly smaller volumes.
LQCD calculations are commonly performed with PBCs

imposed upon the quark fields in the spatial directions,
constraining the quark momentum modes in the volume to
satisfy p ¼ 2π

L n with n being an integer triplet. PBCs are a
subset of a larger class of BCs called twisted BCs (TBCs).
TBCs [19] are those that require the quark fields to acquire
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a phase θ at the boundary, ψðxþ nLÞ ¼ eiθ·nψðxÞ, where
0 < θi < 2π is the twist angle in the ith Cartesian direction.
Bedaque [20] introduced this idea to the LQCD commu-
nity, and showed that TBCs are equivalent to having aUð1Þ
background gauge field in the QCD Lagrangian with the
quarks subject to PBCs. An arbitrary momentum can be
selected for a (noninteracting) hadron by a judicious choice
of the twist angles of its valence quarks, p ¼ 2π

L nþ ϕ
L,

where ϕ is the sum of the twists of the valence quarks,
again with 0 < ϕi < 2π, and n is an integer triplet. TBCs
have been shown to be useful in LQCD calculations of the
low-momentum transfer behavior of form factors required
in determining hadron radii and moments, circumventing
the need for large-volume lattices [21–28]. They have also
been speculated to be helpful in calculations of K → ππ
decays by bringing the initial and final FV states closer in
energy [29,30].
In addition to performing calculations with a particular

twist, by averaging the results of calculations over twist
angles, the discrete sum over momentum modes becomes
an integral over momenta,

Z
d3ϕ
ð2πÞ3

1

L3

X
n∈Z3

≡
Z

d3p
ð2πÞ3 : (1)

Although the volume dependence of most quantities is
nonlinear due to interactions, such averaging can eliminate
significant FVeffects. This was first examined in the context
of condensed-matter physics where, for example, the finite-
size effects in the finite-cluster calculations of correlated
electron systems are shown to be reduced by the boundary
condition integration technique [31,32]. This technique is
implemented in quantumMonte Carlo (QMC) algorithms of
many-body systems, and results in faster convergence of
energies to the thermodynamic limit [33].
In this paper, we discuss the advantages of using TBCs to

reduce the FV modifications to the mass of hadrons and to
the binding energy of two-hadron bound states, such as the
deuteron. In particular, we consider the FVeffects resulting
from averaging the results obtained from PBC and anti-
PBCs (APBCs), from a specific choice of the twist angle,
i-PBCs, and from averaging over twist angles. For the two-
nucleon systems, the volume improvement is explored both
analytically and numerically with the use of the recently
developed FV formalism for nucleon-nucleon (NN) systems
that is generalized to systems with TBCs. As was first noted
by Bedaque and Chen [34], the need to generate new gauge
field configurations with fully twisted BCs can be circum-
vented by imposingTBCs on the valence quarks only, which
defines partial twisting. Partial twisting gives rise to cor-
rections beyond full twisting that scale as e−mπL=L, and can
be neglected for sufficiently large volumes compared to the
FV effects from the size of weakly bound states. Although
the validity of partial twistingmakes it feasible to achieve an
approximate twist-averaged result in LQCD calculations,

this remains a computationally expensive technique. We
demonstrate that certain hadronic twist angles can result in
an exponentially improved convergence to the infinite-
volume limit of certain quantities, with an accuracy that
is comparable to the twist-averaged mean. Further, we
speculate that similar improvements are also present in
arbitrary n-body systems.
In some situations it is desirable to keep the volume finite

as the extraction of physical quantities relies on nonvanish-
ing FVeffects. This is thewell-knownLüschermethodology
[15,35], where the 2 → 2 elastic scattering amplitude can be
obtained from the discrete energy eigenvalues of the two
particles in a FV (see also Refs. [16–18,36–55] for various
extensions of the Lüscher formula). A prominent example,
as discussed in Refs. [18,56], is the FVanalysis of the two-
nucleon system in the 3S1-3D1 coupled channels. The ability
to extract the S-D mixing parameter, ϵ1, and consequently
the D/S ratio of the deuteron, depends upon the FV
modifications to the binding energy when the deuteron is
boosted in particular directions within the lattice volume
[18]. The use of TBCs will further enhance the effectiveness
of such calculations. By appropriate choices of the twist
angles of each hadron, different CM energies can be
accessed in a single lattice volume, further constraining
the scattering parameters with the use of Lüscher’s method
(see e.g. Refs. [57–60] for demonstrations of this technique
in studying hadronic resonances). Because of the possibility
of partial twisting in NN scattering, these extra energy levels
can be obtained without having to generate additional
ensembles of gauge-field configurations, in analogy with
the boosted calculations (this technique has recently been
used to calculate J=ψ-ϕ scattering [60]). Of course, the
spectra of energy eigenvalues determined with a range of
twist angles allow for fits to parametrizations of the S-matrix
elements, which can then be used to predict infinite-volume
quantities, such as binding energies [61,62]. TBCs provide a
way to reduce the systematic uncertainties that are currently
present in analyses of coupled-channels systems by provid-
ing the ability to control, at some level, the location of
eigenstates.

II. THE NUCLEON

If the up and down quarks have distinct twist angles, the
charged pions, the proton and the neutron will acquire net
twist angles denoted as ϕπþ ¼ −ϕπ− , ϕp and ϕn, respec-
tively, while the flavor-singlet mesons, such as π0, will
remain untwisted, ϕπ0 ¼ 0. The optimal set of quark twists
depends upon the desired observable, and an appropriate
choice can yield a relation between the twists of different
hadrons, or leave a hadron untwisted.
The FV corrections to the mass of nucleon MN , in a

cubic volume with PBCs imposed on the quark fields, have
been calculated at one-loop order in two-flavor baryon
chiral perturbation theory (χPT) [63,64] (the three-flavor
result can be found in Ref. [65]). Including Δ resonance as
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a degree of freedom, these corrections are obtained from the
diagrams in Fig. 1, and take the form [64]1

δLMN≡MNðLÞ−MNð∞Þ¼ 3g2A
8π2f2π

Kð0Þþ g2ΔN
3π2f2π

KðΔÞ; (2)

where

Kð0Þ ¼ π

2
m2

π

X
n≠0

e−jnjmπL

jnjL (3)

and

KðΔÞ¼
Z

∞

0

dλβΔ
X
n≠0

�
βΔK0ðβΔjnjLÞ− 1

jnjLK1ðβΔjnjLÞ
�
:

(4)

mπ and fπ are the pion mass and decay constant, and gA and
gΔN denote the nucleon axial charge and the Δ-nucleon
coupling constant, respectively. KnðzÞ is the modified
Bessel function of the second kind. βΔ ¼ λ2 þ 2λΔþm2

π

where Δ denotes the nucleon-Δ mass splitting. When
expanded in the limit of large L, Eq. (2) scales as
e−mπL=L at LO.
Heavy baryon χPT (HBχPT) has been used to calculate

the masses of the proton and neutron in a FVat the one-loop
level with TBCs [66]2 The Poisson resummation formula
makes it possible to factor the dependences on the twist
angles as pure phases, allowing the expressions for the
masses to be put into a simple form. The proton mass is
found to be3

δLMp ¼ 3g2A
8π2f2π

Kpð0;ϕπÞ þ g2ΔN
3π2f2π

KpðΔ;ϕπÞ; (5)

where

Kpð0;ϕπÞ ¼ π

3
m2

π

X
n≠0

e−jnjmπL

jnjL
�
1

2
þ e−in·ϕπþ

�
(6)

and

KpðΔ;ϕπÞ¼1

2

Z
∞

0

dλβΔ
X
n≠0

h
βΔK0ðβΔjnjLÞ

− 1

jnjLK1ðβΔjnjLÞ
i�

e−in·ϕπ− þ2

3
þ1

3
e−in·ϕπþ

�
;

(7)

and the neutron mass can be found from these expressions
by the substitutions p → n and πþ↔π−. It is convenient to
consider the periodic images associated with the nucleon
having their contributions modified by the appropriate
phase factor due to the TBCs.
After twist averaging (over the twists of the pion field; see

AppendixA), the leading FV corrections to the mass of both
the proton and the neutron arising from Eq. (5) are 1=3 of
their value when calculated with PBCs [see Eq. (2)].4 Of
course, calculations at multiple twist angles need not be
performed to estimate the twist-averaged value, and special
twist angles can be selected based upon the symmetries of
the integer sums in Eqs. (6) and (7).5 In particular, it is
notable that the leading volume effects of the form e−mπL=L,
e−

ffiffi
2

p
mπL=L and e−

ffiffi
3

p
mπL=L can be reduced by a factor of

three with i-PBCs, by setting the pion twist angle to
ϕπþ ¼ ðπ

2
; π
2
; π
2
Þ. Averaging the masses calculated with

PBCs and APBCs also reduces the leading contribution
by a factor of 3. The leading volume dependence can be
eliminated completely by choosingϕπþ ¼ ð4π

3
; 4π
3
; 4π
3
Þ, leav-

ing volume corrections to the nucleon mass of the form
∼e−

ffiffi
2

p
mπL=L. It is likely that optimal twists exist for other

single nucleon properties, such as matrix elements of the
isovector axial current, gA.
For arbitrary quark twists, the proton and neutron have,

in general, different phase spaces as the momentum modes
that exist in the FV differ. As an example, while quark
twists can be chosen to keep the proton at rest in the volume
and allow for averaging over the charged pion twists,
ϕðdÞ ¼ −2ϕðuÞ, in general the neutron will have nonzero
momentum.6

III. TWO BARYONS

The positive-energy eigenvalues of two hadrons in a FV
subject to PBCs in the spatial directions exhibit power-law

FIG. 1. Leading loop contributions to the mass of the nucleon.
The solid line, solid-double line and dashed line denote a
nucleon, a Δ resonance and a pion, respectively. The black disks
denote axial couplings.

1Note that we have chosen to define the KðΔÞ function with
a negative sign compared to Ref. [64].

2The FV corrections to meson masses, decay constants and
semileptonic form factors with both the TBCs and the partially
TBCs have been calculated at LO in χPT in Ref. [30].

3Since nucleons with nonzero twists are not at rest, these
expressions represent the corrections to their rest energy. The
kinetic energy, EpðnÞ

K ¼ ðϕpðnÞÞ2=2MNL2, is, however, subleading
at this order in HBχPT, and these expressions can be considered
as corrections to the mass of the nucleons.

4If the twist of the up and down quarks is the same, ϕπ�

vanishes and no volume improvement will be obtained by
averaging.

5This technique is used to reduce the finite-size effects in QMC
many-body calculations (commonly known as “special k
points”), as explored in Refs. [67–70].

6Such nontrivial phase spaces somewhat complicate the
analysis of LQCD calculations of multibaryon systems.
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volume dependences, while the negative-energy eigenval-
ues deviate exponentially from their infinite-volume values.
These energy eigenvalues can be related to the infinite-
volume scattering amplitude below the inelastic threshold,
with corrections that scale as ∼e−mπL=L [15,35] (see also
Refs. [16,45,56,71]). The S-wave NN energy quantization
condition (QC) was generalized to systems with TBCs at
rest in Ref. [20], and to more general two-hadron systems in
Ref. [72]. Lüscher’s energy QC [15,35], which determines
the form of the FV corrections, is dictated by the on-shell
two-particle states within the volume. Once the kinematic
constraints on the momentum modes of the two-particle
states in the FV are determined, the corresponding QC can
be determined in a straightforward manner. Explicitly, the
QC is of the form

det½ðM∞Þ−1 þ δGV � ¼ 0; (8)

where M∞ is the infinite-volume scattering amplitude
matrix evaluated at the on-shell momentum of each particle
in the CM frame, p�. For nonrelativistic systems, it is
convenient to express the QC in the jJMJðLSÞi basis,
where J is the total angular momentum, MJ is the
eigenvalue of the Ĵz operator, and L and S are the orbital
angular momentum and the total spin of the system,
respectively. The matrix elements of δGV in this basis are7

½δGV �JMJ;LS;J0MJ
0;L0S0

¼ iη
p�

8πE�δSS0
�
δJJ0δMJM0

J
δLL0 þi

X
l;m

ð4πÞ3=2
p�lþ1

cd;ϕ1;ϕ2

lm ðp�2;LÞ

×
X

ML;ML
0;MS

hJMJjLML;SMSihL0M0
L;SMSjJ0M0

Ji

×
Z

dΩY�
LML

Y�
lmYL0M0

L

�
; (9)

where η ¼ 1=2 for identical particles and η ¼ 1 otherwise,
and hJMJjLML; SMSi are Clebsch-Gordan coefficients. E�

is the total CM energy of the system, E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�2 þm2

1

p
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p�2 þm2
2

p
where m1 and m2 are the masses of the

particles, and ϕ1 and ϕ2 are their respective twist angles.
The total momentum of the system is P ¼ 2π

L dþ ϕ1þϕ2

L with
d ∈ Z3. The volume dependence and the dependence on
the BCs are in the kinematic functions cd;ϕ1;ϕ2

lm ðp�2;LÞ,
defined as

cd;ϕ1;ϕ2

lm ðp�2;LÞ ¼
ffiffiffiffiffiffi
4π

p

γL3

�
2π

L

�
l−2

Zd;ϕ1;ϕ2

lm ½1; ðp�L=2πÞ2�;

(10)

with

Zd;ϕ1;ϕ2

lm ½s; x2� ¼
X

r∈Pd;ϕ1 ;ϕ2

jrjlYlmðrÞ
ðr2 − x2Þs : (11)

γ ¼ E=E� where E is the total energy of the system in the
rest frame of the volume (the lab frame), E2 ¼ P2 þ E�2.
The sum in Eq. (11) is performed over the momentum
vectors r that belong to the setPd;ϕ1;ϕ2

, which remains to be
determined.
Consider the two-hadron wave function in the lab frame

[17,36] that is subject to the TBCs,

ψLabðx1 þ Ln1;x2 þ Ln2Þ ¼ eiϕ1·n1þiϕ2·n2ψLabðx1;x2Þ;
(12)

where x1 and x2 denote the position of the hadrons, and n1,
n2 ∈ Z3. As the total momentum of the system is con-
served, the wave function can be written as an eigenfunc-
tion of the total momentum P ¼ ðE;PÞ. In the lab frame,
the equal-time wave function of the system is

ψLabðx1; x2Þ ¼ e−iEX0þiP·XφLabð0;x1 − x2Þ; (13)

where the position of the CM is X, and

X ¼ αx1 þ ð1 − αÞx2; α ¼ 1

2

�
1þm2

1 −m2
2

E�2

�
; (14)

for systems with unequal masses [17]. Since the CM wave
function is independent of the relative time coordinate [36],
φLabð0;x1 − x2Þ ¼ φCMðγ̂ðx1 − x2ÞÞ, where the boosted
relative position vector is γ̂x ¼ γx∥ þ x⊥, with x∥ (x⊥)
the component of x that is parallel (perpendicular) to P. By
expressing ψLab in Eq. (12) in terms of φCM, it straight-
forwardly follows that

eiαP·ðn1−n2ÞLþiP·n2LφCMðy� þ γ̂ðn1 − n2ÞLÞ
¼ eiϕ1·n1þiϕ2·n2φCMðy�Þ; (15)

where y� ¼ x�
1 − x�

2 is the relative coordinate of two
hadrons in the CM frame. By Fourier transforming this
relation, and using the form of the total momentum P from
above, the relative momenta allowed in the FV energy QC
are constrained to be

r¼ 1

L
γ̂−1

�
2πðn−αdÞ−

�
α−1

2

�
ðϕ1þϕ2Þþ

1

2
ðϕ1−ϕ2Þ

�
;

(16)

7This relation has been derived in Ref. [18] for two nucleons
subject to PBCs. It reduces to the QC for meson-nucleon
scattering [43] and to meson-meson scattering [15,36,39,40].
For an alternate derivation, see Ref. [45].
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where n ∈ Z3 is summed over in Eq. (11). These results
encapsulate those of Refs. [17,36,46,47,50] when the PBCs
are imposed, i.e., when ϕ1 ¼ ϕ2 ¼ 0. It also recovers two
limiting cases that are considered in Ref. [72] for the use of
TBCs in the scalar sector of QCD. It should be noted that
for particles with equal masses, α ¼ 1=2, the set of allowed
momentum vectors reduces to

r ¼ 1

L
γ̂−1

�
2π

�
n − 1

2
d

�
þ 1

2
ðϕ1 − ϕ2Þ

�
: (17)

It is important to note that for two identical hadrons, when
ϕ1 ¼ ϕ2 ¼ ϕ, the FV spectra show no nontrivial depend-
ence on the twist other than a shift in the total energy of the
system, E2 ¼ ð2πL dþ ϕ

LÞ2 þ E�2. As a result, twisting will
not provide additional constraints on the scattering ampli-
tude in, for instance, the 1S0 nn or pp channels. This is also
the case for the FV studies of NN scattering in the 3S1-3D1

coupled channels if the same twist is imposed on the up and
down quarks.8

A. The deuteron

The energy spectra of two nucleons with spin S ¼ 1
in a FV subject to PBCs and with a range of CM
momenta have been determined from the experimentally
measured phase shifts and mixing angles [18]. In
particular, the dependence of the bound-state spectra
on the nonzero mixing angle between S and D waves,
ϵ1, has been determined. As seen from Eq. (17), the
effects of the twist angles 1

2π ðϕ1 − ϕ2Þ ¼ ð0; 0; 1Þ;
ð1; 1; 0Þ; ð1; 1; 1Þ on the CM spectra are the same as
those of (untwisted) boost vectors, d, considered in
Ref. [18]. Therefore, different TBCs can provide addi-
tional CM energies in a single volume, similar to
boosted calculations, which can be used to better
constrain scattering parameters and the S matrix.
However, twisting may be a more powerful tool as it
provides access to a continuum of momenta.
If imposing TBCs on the quark fields would require

the generation of new ensembles of gauge-field configu-
rations, it would likely not be optimal to expend large
computational resources on multiple twisted calculations.
However, PBCs can be retained on the sea quarks and
TBCs can be imposed only in the valence sector [34].
The reason for this is that there are no disconnected
diagrams associated with the NN interactions.9 At the
level of the low-energy EFT, this indicates that there are

no intermediate s-channel diagrams in which a nucleon
or meson containing a sea quark can go on-shell. Such
off-mass-shell hadrons modify the NN interactions by
∼e−mπL=L, and do not invalidate the use of the QC in
Eq. (8) with the partially TBCs as long as the calcu-
lations are performed in sufficiently large vol-
umes, L≳ 9 fm.
One significant advantage of imposing TBCs is the

improvement in the volume dependence of the deuteron
binding energy. Although the formalism presented in the
previous section can be used to fit to various scattering
parameters [18] (and consequently determine the deuteron
binding energy), we will show that with a judicious choice
of twist angles, the extracted energies in future LQCD
calculations should be close to the infinite-volume values,
even in volumes as small as ∼ð9 fmÞ3.
As discussed in the previous section, the CM energy of

the np system is sensitive to TBCs only if different twists
are imposed upon the up and down quarks. This means
that, even if exact isospin symmetry is assumed, the
proton and the neutron will have different phase spaces
due to the different BCs. By relaxing the interchange-
ability constraint on the np state, as required by the
different phase spaces, the NN positive-parity channels
will mix with the negative-parity channels. This admixture
of parity eigenstates is entirely a FV effect induced by the
boundary conditions, and does not require parity violation
in the interactions, manifesting itself in nonvanishing
cd;ϕ1;ϕ2

lm functions for odd values of l. As such, the spin
of the NN system is preserved.
The QC in Eq. (8) depends on S-matrix elements in all

partial waves; however, it can be truncated to include only
channels with L ≤ 2 (requiring J ≤ 3) because of the
reducing size of the low-energy phase shifts in the higher
channels. For arbitrary twist angles, the truncated QC can
be represented by a 27 × 27matrix in the jJMJðLSÞi basis,
the eigenvalues of which dictate the energy eigenvalues.
Fits to the experimentally known phase shifts and mixing
parameters [73–77] are used to extrapolate to negative
energies [18] to provide the inputs into the truncated QC,
from which the deuteron spectra in a cubic volume
with TBCs are predicted. The scattering parameters enter-
ing the analysis are δ1α, ϵ1, δ1β, δð

3P0Þ, δð3P1Þ, δð3P2Þ, δð3D2Þ

and δð3D3Þ, where the Blatt-Biedenharn parametriza-
tion [78] is used in the J ¼ 1 sector. The twist angles
explored in this work are ϕp ¼ −ϕn ≡ ϕ ¼ ð0; 0; 0Þ
(PBCs), ðπ; π; πÞ (APBCs) and ðπ

2
; π
2
; π
2
Þ (i-PBCs). At the

level of the quarks, this implies that the twist angles of the
(valence) up and down quarks are ϕu ¼ −ϕd ¼ ϕ. We also
set d ¼ 0 in Eq. (16) so that the np system is at rest in
the lab frame. The reason for this choice of twist angles is
that they (directly or indirectly) give rise to a significant
cancellation of the leading FV corrections to the masses of
the nucleons, as shown in Sec. II. The number of eigen-
values of ðM∞Þ−1 þ δGV , and their degeneracies, reflect

8This result differs somewhat from the conclusion of
Ref. [20].

9As recently demonstrated, disconnected diagrams will not
hinder the use of partially TBCs in studies of the scalar sector of
QCD either [72]. The graded symmetry of “partially quenched”
QCD results in cancellations among contributions from inter-
mediate nonvalence mesons.
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the spatial-symmetry group of the FV. Calculations with
ϕ ¼ 0 respect the cubic (Oh) symmetry, while for ϕ ¼
ðπ
2
; π
2
; π
2
Þ the symmetry group is reduced to the C3v point

group.10 However, for ϕ ¼ ðπ; π; πÞ the system has inver-
sion symmetry, and respects the D3h point symmetry [79].
By examining the transformation properties of the cd;ϕ1;ϕ2

lm
functions under the symmetry operations of these groups,
certain relations are found for any given l. These relations,
as well as the eigenvectors of the FV matrices, which are
tabulated elsewhere [13,15,36,56,80,81], can be used to
block diagonalize the 27 × 27 matrix representation of the
QCs, where each block corresponds to an irrep of the point-
group symmetry of the system. For the selected twist
angles, the QCs of the irreps of the corresponding point
groups that have overlap with the deuteron are given in
Appendix B.
For i-PBCs, there are two irreps of the C3v group,

namely the one-dimensional irrep A1 and the two-
dimensional irrep E, that have overlap with the 3S1-3D1

coupled channels. Figure 2 shows the binding energy (the
CM energy minus the rest masses of the nucleons),
−Bd ¼ E� −Mp −Mn, as a function of L corresponding
to A2 irrep (blue curve) and E irrep (red curve), obtained
from the QCs in Eqs. (B5) and (B6). Even at L ∼ 9 fm, the

deuteron binding energies extracted from both irreps are
close to the infinite-volume value. In particular, calculations
in the E irrep of the C3v group provide a few percent-level
accurate determination of the deuteron binding energy in
this volume. The black solid curve in Fig. 2 represents the
S-wave limit of the interactions, when the S-D mixing
parameter and all phase shifts except that in the S-wave
are set equal to zero. The M0

J-averaged binding energy,

− 1
3
ð2BðEÞ

d þ BðA2Þ
d Þ, converges to this S-wave limit, as

shown in Fig. 2 (the A2 irrep contains the M0
J ¼ 0 state

while E contains the M0
J ¼ �1 states, where M0

J is the
projection of total angular momentum along the twist
direction). To appreciate the significance of calculations
performedwith theϕ ¼ ðπ

2
; π
2
; π
2
Þ twist angles, it is helpful to

recall the deuteron binding energy obtained in calculations
with PBCs. For PBCs, the only irrep of the cubic group that
has overlap with the 3S1-3D1 coupled channels is the three-
dimensional irrep T1 [see Eq. (B4)], and the corresponding
binding energy is shown in Fig. 3(a) (green curve). As is
well known, the binding energy deviates significantly from
its infinite-volume value, such that the FV deuteron is
approximately twice as bound as the infinite-volume
deuteron at L ¼ 9 fm. For APBCs, two irreps of the D3h
group overlap with the deuteron channel, A2 and E
[Eqs. (B7) and (B8)], and yield degenerate binding energies
as shown in Fig. 3(a) (purple curves). As seen in Fig. 3(a),
the deuteron becomes unbound over a range of volumes and
asymptotes slowly to the infinite-volume limit. However, in
analogy with the nucleon masses, the volume dependence
of the deuteron binding energy is significantly reduced by
averaging the results obtained with PBCs and APBCs, as
shown in Fig. 3(a) (black solid curve). Figure 3(b) provides
a magnified view of this averaged quantity (black solid
curve), where the two energy levels associated with
i-PBCs are shown for comparison.
To understand the observed volume improvements,

consider the volume scaling of the full QC assuming that
the phase shifts beyond the α-wave are small. In this limit,
for a general set of twist angles and boosts, the QC
collapses to

det

2
64ðp� cot δ1α − 4πc00Þ

0
B@

1 0 0

0 1 0

0 0 1

1
CA

− 2πffiffiffi
5

p
p�2 ð

ffiffiffi
2

p
sin 2ϵ1 − sin2ϵ1Þ

×

0
B@

c20
ffiffiffi
3

p
c21

ffiffiffi
6

p
c22

− ffiffiffi
3

p
c2−1 −2c20 − ffiffiffi

3
p

c21ffiffiffi
6

p
c2−2

ffiffiffi
3

p
c2−1 c20

1
CA
3
75 ¼ 0; (18)

which depends upon the α-wave phase shift and the
mixing parameter, ϵ1. Shorthand notation has been used

2.3

2.2

2.1

2.0

1.9

FIG. 2 (color online). The deuteron binding energy as a
function of L using i-PBCs [ϕp ¼ −ϕn ≡ ϕ ¼ ðπ

2
; π
2
; π
2
Þ]. The

blue curve corresponds to the A2 irrep of the C3v group, while the
red curve corresponds to the E irrep. The brown dashed curve
corresponds to the weighted average of the A2 and E irreps,

− 1
3
ð2BðEÞ

d þ BðA2Þ
d Þ, while the black solid curve corresponds to

the S-wave limit. The infinite-volume deuteron binding energy is
shown by the black dotted line.

10There is a correspondence between the FV spatial symmetry
in twisted calculations with arbitrary twists ϕp ≠ ϕn and the FV
symmetry in (boosted) NN calculations with PBCs when isospin
breaking is considered. For example, the point symmetry group
corresponding to twisted calculations with ϕp ¼ −ϕn ¼ ð0; 0; π

2
Þ

and that of the physical np system with P ¼ 2π
L ð0; 0; 1Þ with

PBCs are both C4v.
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for convenience, clm ¼ cd;ϕ1;ϕ2

lm ðp�2;LÞ. For generic twist
angles, deviations between the energy eigenvalues resulting
from this truncated QC and the full QC scale as
∼ tan δie−2κL=ðκL2Þ, where δi denotes phase shifts beyond
the α wave (see Appendix C for expansions of the cd;ϕ1;ϕ2

lm
functions). For i-PBCs, the leading corrections are from the
P waves, as can be seen from the expansions of the clm in
Appendix C. By neglecting the small mixing between the S
wave and D waves in Eq. (18), the QC dictated by S wave
interactions is11

p� cot δð3S1Þjp�¼iκ þ κ

¼
X
n≠0

eiðα−1
2
Þn·ðϕpþϕnÞe−i12n·ðϕp−ϕnÞei2παn·d

e−jγ̂njκL
jγ̂njL : (19)

The volume dependence of the deuteron binding momen-
tum, κ, originates from the right-hand side of this equation.
For d ¼ 0, the c2m functions vanish for both PBCs and
APBCs, leading to Eq. (19) without further approximation.
For the twist angles ϕp ¼ −ϕn ≡ ϕ ¼ ðπ

2
; π
2
; π
2
Þ and

boost d ¼ 0, the first few terms in the summation on the
right-hand side of Eq. (19) (n2 ≤ 3) vanish, leaving the
leading volume corrections to scale as ∼e−2κL=L. A lesser
cancellation occurs in the average of binding energies
obtained with PBCs and APBCs, giving rise to deviations
from the infinite-volume energy by terms that scale
as ∼e−

ffiffi
2

p
κL=L.

The result of Monte Carlo twist averaging of the
deuteron binding energy can be ascertained from the

behavior of the two extreme contributions, the PBC and
APBC results. While the average binding energy obtained
from N randomly selected sets of twist angles scales as
Bð∞Þ
d þOðe−2κL=LÞ, the standard deviation of the mean

scales as ∼e−κL=ð ffiffiffiffi
N

p
LÞ, giving rise to a signal-to-noise

ratio in the binding energy that scales as ∼
ffiffiffiffi
N

p
Bð∞Þ
d LeκL,

which even for L ∼ 14 fm allows only for a poor
extraction, as can be deduced from Fig. 3(a). It is clear
that such a method is inferior to that of pairwise
averaging, such as from PBCs and APBCs, or choosing
special twists, such as i-PBCs.
We have restricted ourselves to the scenarios where the

net twist angles in each Cartesian direction (the lattice
axes) are the same. One reason for this is that systems
with arbitrary twists give rise to three distinct, but nearby,
energy eigenvalues associated with combinations of each
of the three MJ states of the deuteron—a suboptimal
system to analyze in LQCD calculations. Another reason
is that a twist of π

2
in each direction is optimal in

minimizing the FV effects in both the two-body binding
energies and the single-baryon masses. Further, averaging
the results of calculations with PBCs and APBCs also
eliminates the leading FV corrections to both quantities.
We reemphasize that ultimately, one wants to extract as
many scattering parameters as feasible from calculations
in a single volume, requiring calculations with multiple
boosts of the CM as well as multiple arbitrary twists,
in order to maximize the inputs to the energy QCs. In
general, with arbitrary twist angles, ϕ ¼ ðϕx;ϕy;ϕzÞ, the
27 × 27 matrix representation of the QC matrix cannot be
block diagonalized, and it has 27 distinct eigenvalues.
The truncation to the 3 × 3 matrices given in Eq. (18)
remains valid, as do the estimates of the truncation errors,
but this truncated QC will provide three distinct energy
eigenvalues.

9 10 11 12

(a) (b)

13 14 15

5

4

3

2

1

0

1

10 11 12 13 14 15
2.4

2.3

2.2

2.1

2.0

1.9

FIG. 3 (color online). (a) The deuteron binding energy as a function of L from PBCs (green curve) and from APBCs (purple curve).
The black solid curve represents the average of these energies. (b) A closer look at the average in part (a) compared with energies
obtained with i-PBCs, A2 (blue curve) and E (red curve).

11In the limit where ϵ1 ¼ 0, the J ¼ 1 α wave is entirely S
wave, while the β wave is entirely D wave. This approximation
neglects FV effects of the form ϵ1e−κL=L.
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While not the focus of this work, it is worth reminding
ourselves about the behavior of the positive-energy states
in the FV, such as the higher states associated with the
3S1-3D1 coupled channel or those associated with the 1S0
np channel, as described in Eq. (8). For an arbitrary
twist, the noninteracting energy levels in the FV are
determined by integer triplets and the twist angles.
Interactions will produce deviations from these noninter-
acting levels that become smaller as the lattice volume
increases, scaling with ∼ tan δðp�Þ=ðML2Þ. As discussed
previously, as there is no underlying symmetry for
arbitrary twists, the eigenstates will, in general, be
nondegenerate.

IV. SUMMARY AND CONCLUSIONS

Twisted boundary conditions have been successfully
used in numerical calculations of important observables,
in both nuclear and particle physics with lattice
QCD, as well as in other areas such as condensed-
matter physics. They provide a means with which to
select the phase space of particles in a given finite
volume, beyond that allowed by periodic or antiperiodic
boundary conditions. In LQCD calculations, TBCs have
been used to resolve the threshold region required in the
evaluation of transition matrix elements without requir-
ing large lattice volumes [21–28,82]. They can also be
used in calculations of elastic 2 → 2 processes by
providing a better sampling of CM kinematics in a
single volume, allowing for better constraints on scatter-
ing parameters [57–60]. In this paper, we have explored
the use of TBCs in calculating the mass of single
baryons, and in determining the binding of two-hadron
systems in a FV, with a focus on the deuteron. In
particular, we have used experimentally known scatter-
ing data to determine the location of the lowest-lying FV
states that have overlap with the deuteron for a selection
of twist angles, and combinations thereof. We have
found that twisting provides an effective way of expo-
nentially reducing the impact of the finite lattice volume
on the calculation of two-body binding energies.
Pairwise combining results obtained with particular
twists, such as PBCs and APBCs, can eliminate the
leading volume dependence. The same is true for twist
averaging, but the uncertainty resulting from a finite
number of randomly selected twists can be large.
Importantly, we have determined that the i-PBCs, with
ϕ ¼ ðπ

2
; π
2
; π
2
Þ, eliminate the first three FV corrections to

the dominant S-wave contribution to the two-hadron
binding energies, suppressing such effects from
Oðe−κL=LÞ to Oðe−2κL=LÞ, while also reducing the FV
modifications to the nucleon mass, of the form
Oðe−mπL=LÞ, by a factor of 3. This translates into at
least an order of magnitude improvement in the
accuracy of the deuteron binding energy extracted from

LQCD correlation functions in volumes as small as
∼ð9 fmÞ3. As partially TBCs modify the nuclear forces
by terms of order Oðe−mπL=LÞ, such calculations of the
deuteron and other bound states can be performed
without the need for multiple ensembles of gauge-field
configurations, significantly reducing the required com-
putational resources.
Given the generalized Lüscher FV formalism for NN

systems [56] with TBCs, not only can the binding energy of
the deuteron be obtained from the upcoming LQCD
calculations, but the relevant scattering parameters, includ-
ing the S-D mixing parameter, can be well constrained.
While giving different twists to the up and down quarks
modifies the neutron and proton phase space in different
ways that allows for a parametric reduction in volume
effects to the deuteron binding energy, and control on the
location of the positive-energy scattering states, it does
not change the CM phase space in the neutron-neutron or
proton-proton systems. Therefore, it is not a useful tool in
refining calculations of scattering parameters in these
channels.
Inspired by the volume improvement seen in the

QMC calculations of few and many-body systems with
twist-averaged BCs [33,67–70], and studies of Dirichlet
BCs and PBCs in QMC and density-functional theory,
e.g. Refs. [83,84], and considering the twist-phase mod-
ifications to the images associated with a given system,
we speculate that the FV modifications to the spectrum of
three-nucleon and multinucleon systems can be reduced
by TBCs. The magnitude of the improvement will depend
upon the interparticle forces being short ranged compared
to the extent of the system. Because of the complexity
of such systems, particularly in a FV [53–55], a definitive
conclusion can only be arrived at upon further
investigation.
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APPENDIX A: TWISTED IMAGES

It is helpful to make explicit the sums over the twist
phases. Consider the sum
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SðϕÞ ¼
X
n≠0

e−jnjmπL

jnj e−in·ϕ; (A1)

of which the first few terms are

SðϕÞ ¼ 2e−mπLðcosϕx þ cosϕy þ cosϕzÞ
þ 2

ffiffiffi
2

p
e−

ffiffi
2

p
mπLðcosϕx cosϕy þ cosϕx cosϕz

þ cosϕy cosϕzÞ þ
8ffiffiffi
3

p e−
ffiffi
3

p
mπL cosϕx cosϕy cosϕz

þ e−2mπLðcos 2ϕx þ cos 2ϕy þ cos 2ϕzÞ þ � � � :
(A2)

For PBCs, with ϕ ¼ ð0; 0; 0Þ, the first few terms in the sum
in Eqs. (A1) and (A4) are

Sð0Þ ¼ 6e−mπL þ 6
ffiffiffi
2

p
e−

ffiffi
2

p
mπL þ 8ffiffiffi

3
p e−

ffiffi
3

p
mπL

þ 3e−2mπL þ � � � ; (A3)

while for APBCs, with ϕ ¼ ðπ; π; πÞ, the sum becomes

SðπÞ ¼ −6e−mπL þ 6
ffiffiffi
2

p
e−

ffiffi
2

p
mπL − 8ffiffiffi

3
p e−

ffiffi
3

p
mπL

þ 3e−2mπL − � � � : (A4)

It is obvious that the leading terms vanish in the
average, with ðSð0Þ þ SðπÞÞ=2 ¼ 6

ffiffiffi
2

p
e−

ffiffi
2

p
mπL þ � � �. A

particularly interesting twist is ϕ ¼ ðπ
2
; π
2
; π
2
Þ, induced by

i-PBCs, for which the first three terms in the sum vanish,
leaving

S

�
π
2

�
¼ −3e−2mπL þ � � � : (A5)

Finally, twist averaging this function gives

hSðϕÞiϕ ¼
Z

d3ϕ
ð2πÞ3 SðϕÞ ¼ 0: (A6)

APPENDIX B: QUANTIZATION CONDITIONS

The NN FV QCs in the channels that have an
overlap with the 3S1-3D1 coupled channels are listed in
this appendix for a selection of twist angles. With
the notation of Ref. [56], the QC for the irrep Γi can be
written as

det

�
MðΓiÞ þ i

p�

8πE� − F ðΓiÞ;d;ϕ1;ϕ2

�
¼ 0; (B1)

where

F ðΓiÞ;d;ϕ1;ϕ2ðp�2;LÞ ¼ 1

2E�
X
l;m

1

p�l F
ðΓiÞ
lm cd;ϕ1;ϕ2

lm ðp�2;LÞ;

MðΓiÞ ¼ ðM−1ÞΓi
: (B2)

where cd;ϕ1;ϕ2

lm ðp�2;LÞ functions are defined in Eqs. (10),
(11), and (16), E� is NN CM energy and p� is the on-
shell momentum of each nucleon in the CM frame.12 In

the summation over “m” in Eq. (B2), only the F ðΓiÞ
lm listed

below are included as the other contributions have
already been summed using the symmetries of the
systems. In the following we set ϕ1 ¼ −ϕ2 ¼ ϕ. It is
straightforward to decompose M−1 into ðM−1ÞΓi

using
the eigenvectors of the FV functions [13,81]. For nota-
tional convenience, MJ;L denotes the scattering ampli-
tude in the channel with total angular momentum J and
orbital angular momentum L. M1;SD is the amplitude
between S and D partial waves in the J ¼ 1 channel, and
detM1 is the determinant of the J ¼ 1 sector of the
scattering-amplitude matrix,

detM1 ¼ det

�
M1;S M1;SD

M1;DS M1;D

�
: (B3)

1. ϕ ¼ ð0;0;0Þ

T1∶F
ðT1Þ
00 ¼ I3; F ðT1Þ

40 ¼

0
BB@

0 0 0

0 0 2
ffiffi
6

p
7

0 2
ffiffi
6

p
7

2
7

1
CCA;

MðT1Þ ¼

0
BB@

M1;D

detM1
− M1;SD

detM1
0

− M1;SD

detM1

M1;S

detM1
0

0 0 M−1
3;D

1
CCA: (B4)

12The relativistic normalization of states has been used such
that for a single S-wave channel with phase shift δ, the scattering
amplitude is M ¼ 8πE�

p�
ðe2iδ−1Þ

2i .
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2. ϕ ¼ ðπ2 ; π2 ; π2Þ
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3. ϕ ¼ ðπ;π;πÞ
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APPENDIX C: TWISTED cd;ϕ1;ϕ2
lm FUNCTIONS

FOR SYSTEMS AT REST

To understand the relative contributions of phase shifts
beyond the α wave to the deuteron binding energy, it is
helpful to consider the expansions of the cd;ϕ1;ϕ2

lm functions.
As i-PBCs, with the twist angles ϕ ¼ ðπ

2
; π
2
; π
2
Þ, lead to the

most significant reduction in the FV corrections, we focus
on these angles in the expansions, restricting ourselves to
systems at rest. The general form of the cd;ϕ1;ϕ2

lm functions
for d ¼ 0 and ϕ1 ¼ −ϕ2 ¼ ϕ is

c0;ϕ;−ϕlm ð−κ2;LÞ ¼ il

π3=2

X
n≠0

e−in·ϕYlmðn̂Þ

×
Z

∞

0

dk
klþ2

k2 þ κ2
jlðnkLÞ; (C1)

where n ¼ jnj. By direct evaluation of the integral, it is
straightforward to show that

c0;ϕ;−ϕ00 ð−κ2;LÞ ¼ − κ

4π
þ

ffiffiffiffiffiffi
4π

p

×
X
n≠0

e−in·ϕY00ðn̂Þ
e−nκL
4πnL

; (C2)

c0;ϕ;−ϕ1m ð−κ2;LÞ ¼ ðiκÞ
ffiffiffiffiffiffi
4π

p X
n≠0

e−in·ϕY1mðn̂Þ
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�
1þ 1

nκL

�
e−nκL
4πnL

; (C3)
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4πnL

; (C4)
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These functions are of the form

Flm ¼
X
n≠0

e−in·ϕY1mðn̂ÞfðnÞ

¼ αð1Þlm fð1Þ þ αð
ffiffi
2

p Þ
lm fð

ffiffiffi
2

p
Þ þ αð

ffiffi
3

p Þ
lm fð

ffiffiffi
3

p
Þ

þ αð2Þlm fð2Þ þ � � � : (C7)

The independent and nonvanishing coefficients αðnÞ are
presented in Table I for the twist angles ϕ ¼ ðπ

2
; π
2
; π
2
Þ.
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The remaining coefficients are dictated by symmetry,

F1�1 ¼ ∓e�iπ=4F10;

F2þ2 ¼ −F2−2 ¼ − 1ffiffiffi
2

p e�iπ=4F2�1;

F30 ¼ ∓ 4ffiffiffiffiffi
10

p e�iπ=4F3�3 ¼ � 4ffiffiffi
6

p e∓iπ=4F3�1;

F3−2 ¼ −F3þ2; F4þ2 ¼ −F4−2 ¼ − 2ffiffiffi
7

p e∓iπ=4

F4�3 ¼ 2e�iπ=4F4�1; F40 ¼
ffiffiffiffiffi
14

5

r
F4�4: (C8)

The coefficients presented in Table I and Eq. (C8) show that
the leading volume dependences of the c0;ϕ;−ϕlm functions
for i-PBCs are c00¼− κ

4πþOðe−2κL=LÞ, c10¼Oðe−κL=LÞ,
c22¼Oðe−

ffiffi
2

p
κL=LÞ, c30¼Oðe−κL=LÞ, c32¼Oðe−

ffiffi
3

p
κL=LÞ,

c40 ¼ Oðe−2κL=LÞ and c42 ¼ Oðe−
ffiffi
2

p
κL=LÞ. As the P-wave

contribution to the FV spectra is due to nonzero c1m and

c3m functions, they provide the dominant corrections to the
approximate QC in Eq. (18).
A numerical comparison between these expansions and

an exact evaluation of the cd;ϕ1;ϕ2

lm functions reveals that the
expansions are only slowly convergent [18]. Precision
extractions of the energy eigenvalues require the use of
the exact evaluations, even in modest volumes.
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