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The quantization condition for two-particle systems with an arbitrary number of two-body open coupled
channels, spin, momentum, and masses in a finite volume with either periodic or twisted boundary conditions
is presented. Although emphasis is placed in cubic volumes, the result holds for asymmetric volumes. The
result is relativistic, holds for all momenta below the three- and four-particle thresholds, and is exact up to
exponential volume corrections that are governed by L=r, where L is the spatial extent of the volume and r is
the range of the interactions between the particles. For hadronic systems the range of the interaction is set by
the inverse of the pion mass, mπ , and as a result the formalism presented is suitable for mπL ≫ 1. The
condition presented is in agreement with all previous studies of two-body systems in a finite volume.
Implications of the formalism for the studies of multichannel baryon-baryon systems are discussed.
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I. INTRODUCTION

There is a wealth of experimental investigation of low-
energy scattering processes involving two hadrons. Yet to
this day, comparison of the available experimental data
with the underlying fundamental theory of the strong
interaction, QCD, has been limited. This is due to the fact
that at moderately low energies QCD is nonperturbative.
Currently the only reliable approach for studyingQCDat low
energies is lattice QCD (LQCD). LQCD calculations are
necessarily performed in a finite Euclidean spacetime.
Therefore, it is necessary to construct a formalism that
connects the finite Euclidean spacetime volume observables
determined via LQCD to the Minkowski-spacetime infinite-
volume quantities of interest. The most easily determined
quantities via LQCD are the low-energy spectra. For suffi-
ciently large volumes satisfying mπL≳ 4, where L is the
spatial extent of the finite volume and mπ is the pion mass,
finite volume effects have minimal impact in the determi-
nation of the low-lying single-particle spectrum of QCD [1].
Although it has been previously pointed out that the

Euclidean nature of the calculations imposes challenges on
the determination of few-body scattering quantities for
arbitrary momenta in the infinite volume limit [2], the fact
that LQCD calculations are performed in a finite volume
(FV) allows for the extraction of scattering parameters from
the spectrum through the Lüscher method [3–19]. This
method, which has been widely used to extract scattering
phase shifts and binding energies of two-hadron systems
from LQCD (see, for example, Refs. [20–39]), has been
generalized to multicoupled channel two-body systems
with total spin S ≤ 1=2 [40–46]. There has also been some
progress in generalizing this formalism onto three-particle
systems [47–50].
Although LQCD calculations are commonly performed

with the periodic boundary conditions (PBCs) imposed

upon the quark fields in the spatial extents, PBCs are
a subset of a more general class of boundary conditions
known as twisted boundary conditions (TBCs) [51,52].
TBCs require that fields are proportional to their images up
to an overall phase, ψðxþ nLÞ ¼ eiθ·nψðxÞ, where 0 ≤
θi < 2π is the twist angle in the ith Cartesian direction. As a
result the free finite volume momenta satisfy p ¼ 2π

L nþ θ
L,

where n is an integer triplet. PBCs are recovered when the
twist angle, θ, is set to zero. It is evident that, at least in the
one-body sector, by dialing the twist one can in principle
access a continuous set of momenta. This is advantageous
when performing calculations in a finite volume where
spectra are necessarily discretized and has been explored
extensively in the one-body sector [53–61] as well as the
two-body sector [34,46,52,62–65].
Here we remove all previous restrictions made in the

literature and present the most general, model-independent
relativistically covariant framework for determining the
FV spectrum for two-particle multichannel systems with
arbitrary spin, momenta, and twist. Although this formal-
ism is developed with LQCD calculations in mind, the
result gives a mapping between the finite volume spec-
trum and the infinite volume scattering amplitude of the
system and is independent of the details of the theory at
hand. It is suitable for studying hadronic physics as well
as atomic physics in a finite volume (see Refs. [66,67] for
examples of the Lüscher method applied on atomic
systems).
Section II reviews basic tools for constructing two-particle

states with arbitrary spin. In particular, we review details
regarding the jlS; JmJi and helicity bases.1 Section III presents
the generalization of the Lüscher formalism for two-particle
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1All throughout this work, J will denote the total angular
momentum, l is the orbital angular momentum, S will be the two-
particle spin, and mJ is the azimuthal component of J. Capital
“L” will solely refer to the spatial extent of the finite volume. The
jlS; JmJi basis will be referred to as as the lS basis.
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systems with arbitrary quantum numbers, masses, and
momenta in a periodic finite volume, and we pay close
attention to the evaluation of finite volume s-channel
loops. Section IV discusses how this result is generalized
for systems with arbitrary twist and asymmetry volumes.
The result presented, Eq. (22), is in agreement with all
previous studies of two-body systems in a finite volume
[3–5,10–19,34,40–46,63–65]. Section V reviews the impli-
cation of this formalism for a baryon-baryon system, and
we discuss its impact on future studies of hyperon-nucleon
and hyperon-hyperon scattering parameters from LQCD.
Precise determination of such interactions will impact our
understanding of the composition of dense nuclear matter.
Furthermore, although there has been a great deal of
activity at elucidating the poor signal/noise problem that
is inherent of performing the LQCD calculation with
finite baryon density and/or chemical potential [68–71],
nucleon-nucleon LQCD calculations remain more com-
putationally costly than those with higher strange con-
tent. Consequently, it is expected that LQCD calculations
will have a bigger immediate impact in disentangling
pertinent information of nuclear systems with nonzero
strangeness.

II. CONSTRUCTION OF TWO-PARTICLE
STATES WITH ARBITRARY SPIN

To understand the claim that the results presented in
Secs. III and IV are covariant and applicable for systems
with arbitrary spin, it is important to first review the basics
of the construction of two-particle states in the lS basis
as well as the helicity basis. To construct single particle
states with arbitrary helicity λ and momentum p ¼
pðsin θ cosϕ; sin θ sinϕ; cos θÞ, it is convenient to first
define a state with zero total momentum, definite spin (s),
and azimuthal component of spin (λ), j0; s; λi. By acting on
this state with a boost along the z axis, L̂zðpÞ, followed by a
rotation, R̂ϕ;θ;−ϕ

2, that takes the momentum from the z axis
to the desired direction of the momentum, one obtains the
desired state with definitive helicity [72–75]:

jp; sλi ¼ R̂ϕ;θ;−ϕL̂zðpÞj0; sλi: (1)

Two-particles states can be built out of direct product of
these,

jp1; s1λ1;p2; s2λ2i ¼ jp1; s1λ1i ⊗ jp2; s2λ2i:

When restricting oneself to the center of mass (c.m.) frame,
this simplifies to3

jq�; λ1λ2i ¼ jq�; s1λ1i ⊗ j − q�; s2λ2i
¼ R̂ϕ;θ;−ϕK̂zðq�Þj0; s1λ1i

⊗ R̂ϕ;θ;−ϕK̂−zðq�Þj0; s2λ2i; (2)

where q� is the relative momenta between the two particles
in the c.m. frame.4 Note that the explicit s1 and s2 labels
have been suppressed. From these states one can readily
construct states with definite total angular momentum
ðJ;mJÞ [72–75],

jJmJ; λ1λ2i ¼
NJ

2π

Z
dΩDJ�

mJ;λ
ðϕ; θ;−ϕÞjq�; λ1λ2i; (3)

where dΩ ¼ sin θdθdϕ, λ ¼ λ1 − λ2, DJ�
mJ;λ

ðϕ; θ;−ϕÞ is
the complex conjugate of the Wigner-D matrix defined

as DJ
mJ;λ

ðϕ; θ;−ϕÞ ¼ hJmJjR̂ϕ;θ;−ϕjJλi, and NJ ¼
ffiffiffiffiffiffiffiffi
2Jþ1
4π

q
as to ensure that the states are properly normalized. It is
straightforward to show that in fact these states transform as
states with definite angular momentum under rotations

R̂α;β;γjJmJ; λ1λ2i ¼
X
mJ0

DJ
mJ0 ;mJ

ðα; β; γÞjJmJ0 ; λ1λ2i:

Although it is customary to use the helicity basis when
considering relativistic systems, one can always perform
calculation in the lS basis, jlS; JmJi. To properly define
these states, one may first define the angular momentum
operator Ĵ as a sum of the spin and orbital angular
momentum operators, Ĵ ¼ Ŝþ l̂ [73,74]. It has been shown
that the spin operator can be written as a combination of all
the generators of the Poincaré group, i.e., Ĵ (rotations),
K̂ (boosts), and ðP̂0; P̂Þ (translations) [73,74],

Ŝ ¼ 1

M

�
P̂0Ĵ − P̂ × K̂ −

1

P̂0 þM
P̂ðP̂ · ĴÞ

�
; (4)

where M is the mass of the particle of interest. The orbital
angular momentum operator can then be defined as l̂ ¼
Ĵ − Ŝ. Having defined these two operators, one can perform
two distinct classes rotations, the first where Ŝ is used as the
generator of the rotation R̂S

α;β;γ ¼ e−iαŜze−iβŜye−iγŜz and the

second for l̂ R̂l
α;β;γ ¼ e−iαl̂ze−iβl̂ye−iγl̂z. As one would expect,

these operators can be interpreted as acting on the spin
and spatial components of the single-particle states, respec-
tively [74],

2In general a rotation can be defined by a unitary operator with
three angles as arguments R̂α;β;γ ¼ e−iαĴz e−iβĴye−iγĴz , where Ĵk is
the angular momentum operator in the kth Cartesian axis. To
define a three-dimensional vector, only two angles are needed. As
a result there is some freedom when defining the rotation
operator. In this work the operators are chosen to be R̂ϕ;θ;−ϕ,
such that when θ ¼ 0 and it acts on a state with angular
momentum quantized along the z axis the overall phase vanishes.

3In general, this describes the component of the wave function
that only depends on the relative coordinates.

4C.m. frame coordinates and functions will be given a super-
script “�” to distinguish them from the lattice frame coordinates.
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R̂S
ϕ;θ;−ϕjp; smsi ¼

X
ms0

Ds
ms0 ;ms

ðϕ; θ;−ϕÞjp; sms0 i;

R̂l
ϕ;θ;−ϕjp; smsi ¼ jp0 ¼ R̂p; smsi; (5)

where R̂ is the three-dimensional representation of the
rotation acting on p. Effectively one can conclude that the
R̂S
ϕ;θ;−ϕ operator acts on a relativistic state as if it were at

rest, while the R̂l
ϕ;θ;−ϕ operator acts on it as if it had

zero spin.
For two-particle systems, this can be generalized by

defining the two-body spin and orbital angular momentum
operators,

Ŝ ¼ Ŝ1 þ Ŝ2; l̂ ¼ l̂1 þ l̂2; (6)

where Ŝ1ðŜ2Þ and l̂1ðl̂2Þ are, respectively, the spin and
orbital angular momentum operators that act on the
“1”(“2”) particle state. By restricting oneself to the
c.m. frame, the two-particle state with total spin S can
be defined in terms of single particle states in the standard
way,

jq�; SmSi ¼
X

ms1
;ms2

jq�; s1ms1i ⊗ j − q�; s2ms2i

× hs1ms1 ; s2ms2 js1s2; SmSi;

where hs1ms1 ; s2ms2 js1s2; SmSi is the Clebsch–Gordan
coefficient. Similarly to the one-particle system,
one can show that under RS and Rl these states
transform as

R̂S
ϕ;θ;−ϕjq�; SmSi ¼

X
mS0

DS
mS0 ;mS

ðϕ; θ;−ϕÞjq�; SmS0 i;

R̂l
ϕ;θ;−ϕjq�; smSi ¼ jq�0 ¼ R̂q�; SmSi: (7)

States with definite orbital angular momentum can
be constructed by integration over all angles of the
relative momentum with the appropriate spherical
harmonic,

jlml; SmSi ¼
Z

dΩYlml
ðq̂�Þjq�; SmSi; (8)

⇒ R̂l
ϕ;θ;−ϕjlml;SmSi¼

X
ml0

Dl
ml0 ;ml

ðϕ;θ;−ϕÞjlml0 ;SmSi; (9)

where ml is the azimuthal component of the orbital
angular momentum. Using Clebsch–Gordan coefficients,
these states can be added appropriately to give a state with
total angular momentum

jlS; JmJi ¼
X
ml;mS

jlml; SmSihlml; SmSjlS; JmJi: (10)

One can show that these states can be written as a linear
combination of the states with definite helicity with an
overlap factor equal to [72]

hJmJ; λ1λ2jlS; JmJi ¼
�
2lþ 1

2J þ 1

�
1=2

hl0; SλjJλi

× hs1λ1; s2 − λ2jsλi: (11)

Since the total angular momentum is a conserved
quantity, the 2 → 2 scattering amplitude, M, is diagonal
in J. One may choose to evaluate its matrix elements in the
helicity basis using Eq. (3), in which case one finds

hq�
f; α1α2jMjq�

i ; λ1λ2i ¼
X
J;mJ

�
NJ

2π

�
2

½M�JmJ
α1α2;λ1λ2

×DJ�
mJ;αðϕf; θf;−ϕfÞ

×DJ
mJ;λ

ðϕi; θi;−ϕiÞ; (12)

where ½M�Jα1α2;λ1λ2 is the value of the scattering amplitude
for a initial state with helicity λ1; λ2 and final helicity α1; α2
and that has been projected onto total angular momentum
ðJ;mJÞ. Alternatively, one can write the scattering ampli-
tude in the lS basis using Eq. (10),

hq�
f;S

0mS0 jMjq�
i ;SmSi¼4π

X
ml;ml0
J;mJ ;l;l

0
Yl0ml0 ðq̂�

fÞY�
lml

ðq̂�
i Þ

×hlmlSmsjlS;JmJi
×hl0ml0S0ms0 jl0S0;JmJi½M�JmJ

l0S0;lS;

(13)

where ½M�JmJ
l0S0;lS is the value of the scattering amplitude for

an ingoing state with ðl; SÞ and outgoing ðl0; S0Þ and that has
been projected onto total angular momentum ðJ;mJÞ. Theffiffiffiffiffiffi
4π

p
factor for each spherical harmonic has been intro-

duced to simplify the subsequent expressions in Sec. III A.
Given that these two representations are equivalent, in the
remainder of this work, the lS basis will be used. All that
has been assumed in writing Eq. (13) is that the scattering is
diagonal in angular momentum. Therefore, Eq. (13) holds
for any quantity that is diagonal in J. When considering a
system with N open two-body channels that can couple,
one can simply upgrade the scattering amplitude to also
be a matrix in the number of the open channel. For such
cases, the matrix elements ofM get an additional subscript
associated with the incoming (“a”) and outgoing (“b”)
channel, ½M�JmJ

l0S0b;lSa.
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III. TWO-PARTICLE MULTICHANNEL
SYSTEMS WITH SPIN AND PBCS

Having reviewed the basics of relativistic two-particle
states with spin, one may proceed to determine the finite
volume spectra of such systems. To arrive at the quantiza-
tion condition for multichannel two-particle systems with
arbitrary spin, masses, and momenta, consider a system
with total energy (momentum) equal to E (P) and c.m.
energy E� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − P2

p
. Allow for the system to have

N open channels that can mix, each composed of two-
particles with masses mj;1 and mj;2 with mj;1 ≤ mj;2 and
spin sj;1 and sj;2. Each particle can be either a fermion or
a boson. The particles in the jth channel can go on shell
if the c.m. energy satisfies mj;1 þmj;2 ≲ E� ≪ E�

th, where
E�
th refers to the first few-particle threshold present in the

theory. For instance, for a systems such as ππ − KK̄ with
exact G parity, we are restricted to energies below the four-
particle threshold, while for the two-nucleon systems, the
energy is restricted below the pion production threshold.
Furthermore, it will be assumed that no single particle
states can go on shell. The c.m. relative momentum for the
jth channel satisfies5

k�2j ¼
�
E�2

4
−
ðm2

j;1 þm2
j;2Þ

2
þ ðm2

j;1 −m2
j;2Þ2

4E�2

�
: (14)

The derivation and details of the quantization condition
for systems where the total spin of the open channels is zero
has been presented in Refs. [42,43]. The remaining piece
needed to arrive at the result with nonzero spin can be
deduced from the S ¼ 1=2 and S ¼ 1 single channel results
[13,17–19]. These works concluded that the distinguishing
feature of the power law finite volume corrections of two-
particle propagators between spinless systems and nonzero
spin systems can be attributed to Clebsch–Gordan coef-
ficients, which project two-particles states with definite
spin and orbital angular momentum to a state with total J as
shown in Eq. (10). In Sec. III A the emergence of these
Clebsch–Gordan coefficients for generic spin systems will
be shown.
Arriving at the 2 → 2 QC can be done by introducing the

relativistic c.m. kernel, K�
rel, which is defined as the sum of

all the two-particle irreducible s-channel diagrams. Just like
the scattering amplitude, the kernel is a matrix over all the
open channels and is diagonal in total angular momentum.
An example of a matrix element of the kernel is illustrated in
Fig. 1(b). Having defined K�

rel, the infinite volume scattering
amplitude satisfies a self-consistent matrix, integral equation

iM ¼ −iK�
rel þ iK�

relG
∞M; (15)

where G∞ is a diagonal matrix in the number of channels,
orbital angular momentum, and spin. Its jth matrix element
in channel space is the infinite volume s-channel loop for the
jth channel. The “ab” matrix element of the second term in
the equation above can be explicitly written as an integral of
the form

i½K�
relG

∞M�ab≡
Z

d4q
ð2πÞ4 ½Krelðpf;qÞ�ajΔjðqÞ½Mðq;piÞ�jb;

(16)

where Krel denotes the functional form of the kernel in the
lattice frame, the dependence on the total four-momentum
P is left implicit, and summation over repeated indices is
implied.ΔjðqÞ denotes a relativistic two-particle propagator.
In general, this is a matrix in spin that mixes different
azimuthal components of spin. In the helicity basis, it is
diagonal and can be written as

½ΔjðqÞ�α1;α2;λ1;λ2 ¼
zj;1ðP−qÞzj;2ðqÞδα1;λ1δα2;λ2

½ðq−PÞ2−m2
j;1þ iϵ�½q2−m2

j;2þ iϵ�; (17)

where zj;i is the residue of the ith single particle, fully
dressed propagator in the jth channel.
As will become evident shortly, when interested in the

determination of the finite volume, it will not be necessary to
give an explicit expression for the infinite volume function
G∞, and all that will be necessary is to determine the
difference between this object and its finite volume counter-
part, δGV ¼ GV − G∞. In Sec. III A, δGV is derived for
systems with periodic boundary conditions, and the result is
given in Eq. (23), and the expression for systems with
arbitrary twist and asymmetry volumes is given in Sec. IV.
To define the relation between the scattering amplitude

and the S matrix, it is convenient to introduce a matrix
that is diagonal over the N open channels P ¼
diagð ffiffiffiffiffiffiffiffiffiffi

n1q�1
p

;
ffiffiffiffiffiffiffiffiffiffi
n2q�2

p
;…;

ffiffiffiffiffiffiffiffiffiffiffi
nNq�N

p Þ= ffiffiffiffiffiffiffiffiffiffiffi
4πE�p

, where nj is
the symmetry factor for the jth channel and is equal to
1=2 if the two particles are identical and 1 otherwise.
The S matrix is diagonal in the total angular momentum
basis. For a system with total angular momentum J, the
scattering amplitude MJ is related to the S matrix for that
channel via [42]

iMJ ¼ P−1ðSJ − IÞP−1: (18)

For spinless systems the orbital angular momentum is equal to
the total angular momentum. For systems with nonzero spin,
this will in general not be true. For instance, in the spin-triplet
positive parity two-nucleon channel, considered in Ref [19],
S1 would be a 6 × 6 matrix that couples the 3S1 and 3D1,

5For bound states E� < mj;1 þmj;2, which leads to the relative
momentum to be imaginary k�2j < 0. Although it may be some-
times desirable to approximate the finite volume effects asso-
ciated with the determination of a bound state energy in a finite
volume [14,15,76,77], the formalism presented here nonpertur-
batively describes such effects for bound states.
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S1 ¼
�

SS1 SSD1
SDS
1 SD1

�
: (19)

Each of the four matrix elements are 3 × 3 matrices propor-
tional to the identity.
In general, one can have an S matrix that not only

couples orbital angular momentum states but also flavor
states and/or spin state. For example, consider a spin-
singlet ΛΛ system in an S wave. The ground states of this
channel, the H dibaryon, has been observed to be a bound
state for unphysical values of mπ [22,23,78,79]. In flavor
space ΛΛ also mixes with the I ¼ 0 ΞN and ΣΣ channels.
For low energies, the positive parity J ¼ 0 S matrix can be
approximated as a 3 × 3 matrix in flavor space. The ΛΛ
ground state must be an spin-singlet state due to the Pauli-
exclusion principle, but the spin of the ΞN is not con-
strained by symmetry considerations. Therefore, the 1P1

and 3P1 ΞN states mix, and the corresponding J ¼ 1
S matrix, which can be approximated to be a 6 × 6 matrix,
has nonzero elements coupling these two channels. For
sufficiently high energies, the 3P1-3F1 mixing of the ΞN
state may in general not be neglected. Furthermore,
although the S matrix does not couple 1S0 and 1P1 ΞN
states, these may in general mix in a finite volume [80].
Even though the scattering amplitude may in general not

be diagonal in spin, spin is conserved in the infinite volume
loops, G∞. This is a consequence of the fact that the single
particle propagators are diagonal in helicity. This also
explains why spin is conserved in the finite volume loops,
GV . The only difference between GV and G∞ is that the

momenta of the intermediate particles is discretized for the
former but continuous for the latter. This results in partial
wave mixing in a finite volume. This is in agreement with
what has previously been found for systems with nonzero
spin [13,17–19] and will be reviewed in Sec. III A.
The finite volume spectrum can be obtained from the

poles of the sum of all amputated 2 → 2 finite volume
diagrams, MV ,6 which is represented in Fig. 1. This is the
analogous finite volume object to the infinite volume
scattering amplitude, and it asymptotes toM as the volume
is taken to infinity. This object satisfies the following
matrix, summation equation

iMV ¼ −iK�
rel þ iK�

relG
VMV; (20)

where GV is the finite volume s-channel loop, and in
particular the matrix elements of the second term in the
equation above can be written as

i½K�
relG

VM�ab≡
1

L3

X
q

Z
dq0

2π
½Krelðpf; qÞ�ajΔjðqÞ½Mðq; piÞ�jb: (21)

As thoroughly discussed in Ref. [12] for the spin-singlet,
single channel scenario, the only power law finite volume
corrections of GV arise from the pole structure of the

FIG. 1 (color online). (a) Shown is the self-consistent definition of MV , which is defined as the sum of all 2 → 2 finite volume
diagrams, Eq. (20). The solid lines denote two particles in the “1” channel, and dashed lines denote the particle in the “2” channel.MV is
written in terms of the c.m. kernel, K�

rel, and the fully dressed single particle propagators. (b) Shown is K
�
rel for the first channel, which is

the sum of all two-particle irreducible s-channel diagrams. Explicitly shown are examples of diagrams that are included in the kernel:
contact interactions, t- and u-channel diagrams, and possible meson exchange diagrams, if allowed by the symmetries of the system of
interest. If the two initial and final states of the kernel are baryons, these exchange diagrams are presented; otherwise, they are not
allowed by G parity. In general, all diagrams allowed by the underlying theory where the intermediate particles cannot all simultaneously
go on shell are absorbed into the kernel. As described in the text, in this study we are restricted to energies where only two-particle states
are allowed to go on shell. (c) Shown is the definition of the fully dressed one-particle propagator in terms of the the one-particle
irreducible (1PI) diagrams.

6The poles of this object satisfy the same quantization
condition as those of the finite volume correlation function
[12,42–44].
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intermediate two-particle propagator. Therefore, the differ-
ence between this loop and the infinite volume counterpart,
δGV ≡ GV − G∞, depends on the on-shell momentum. The
on-shell condition fixes the magnitude of the momentum
running through the kernels but not its direction. Therefore,
it is convenient to decompose the product of the kernels and
δGV into spherical harmonics. These depend not only on the
directionality of the intermediate momentum but also on
those of the incoming and outgoing momenta. In Refs. [42–
44] it was demonstrated that this persists to be true for
coupled channel systems with S ¼ 0 or S ¼ 1. In fact, this
observation is independent of the spin structure of the
system of interest and the number of channels. For an
arbitrary number of channels, one may simply upgrade δGV

to be not just a matrix in the spherical harmonic space but
also a matrix in the open channels. If the system has
nonzero spin, then it is convenient to represent the kernel

and δGV not as matrices in orbital angular momentum but
rather as total angular momentum. Just like the scattering
amplitude, the kernel is diagonal in the total angular
momentum. As a result, its matrix elements can be written
in the same form as the scattering amplitude, Eq. (13).
A derivation of δGV is presented in Sec. III A.
Having upgraded these objects to infinite-dimensional

matrices in J and the space of open channels, it is easy
to see that the poles of Eq. (20) satisfy

det½M−1 þ δGV � ¼ detoc½detlSJmJ
½M−1 þ δGV �� ¼ 0; (22)

where the determinant detoc is over the N open channels
and the determinant detlSJmJ

is over the jlS; JmJi basis, and
both M and δGV functions are evaluated on the on-shell
value of the momenta, Eq. (14). The matrix elements of δGV

for the jth channel are defined as

½δGV
j �JmJ;lS;J0mJ0 ;l

0S0 ¼
ik�jδSS0

8πE� nj

�
δJJ0δmJmJ0 δll0 þ i

X
l00;m00

ð4πÞ3=2
k�l

00þ1
j

cdl00m00 ðk�2j ;LÞ

×
X

ml;ml0 ;mS

hlS; JmJjlml; SmSihl0ml0 ; SmSjl0S; J0mJ0 i
Z

dΩY�
l;ml

Y�
l00;m00Yl0;ml0

�
; (23)

and the function cdlm is defined as

cdlmðk�2j ;LÞ ¼
ffiffiffiffiffiffi
4π

p

γL3

�
2π

L

�
l−2

Zd
lm½1; ðk�jL=2πÞ2�;

Zd
lm½s; x2� ¼

X
r∈Pd

jrjlYl;mðrÞ
ðr2 − x2Þs ; (24)

where γ ¼ E=E�, the sum is performed over Pd ¼
fr ∈ R3jr ¼ γ̂−1ðm − αjdÞg, m is a triplet integer, d is

the normalized boost vector d¼PL=2π, αj¼ 1
2
½1þm2

j;1−m
2
j;2

E�2 �
[15,16,80], and γ̂−1x≡ γ−1xjj þ x⊥, with xjjðx⊥Þ denoting
the x component that is parallel (perpendicular) to the total
momentum, P. Details regarding the representation of the
s-channel loops as matrices in angular momentum are
shown in Sec. III A.
In deriving the result, PBCs have been assumed on the

spatial extents of the lattice. The boundary conditions of
the system are encoded in the form of the Z functions.
References [64,81] derived these for systems with nonzero
momenta, arbitrary masses, and twisted boundary condi-
tions. For completeness, Sec. IV includes the result in the
presence of arbitrary twist and asymmetry volumes. As
discussed above, it is evident from Eq. (23) that δGV is
diagonal in spin, although the scattering amplitude may in
general not be. Because of the reduction of rotational
symmetry, δGV mixes different orbital angular momentum
states and consequently different J states, as expected.
For example, for systems with d ¼ fð0; 0; 0Þ, ð0; 0; nÞ,

ðn; n; 0Þ, ðn; n; nÞ, ðn;m; 0Þ, ðn; n;mÞ, ðn;m; pÞg, or any
cubic rotation of these, the symmetry point groups are the
double cover of the octahedral (OD

h ) and the dicyclic groups
Dic4, Dic2, Dic3, C4, C4, and C2, respectively. Table I lists
the decomposition of the irreducible representations (irreps)
of these three groups onto continuum states that have overlap
with both half-integer and integer spin systems up to J ¼ 4

[3,4,10,17,37,82–86].
As was mentioned in Sec. I, the master equation presented

here, Eq. (22), is consistent with all previous results. The
most general multichannel result for scalars was presented in
Refs. [42,43]. If one restricts the total spin of all of the
available channels to be exactly zero [S ¼ 0 in Eq. (23)],
then Clebsch–Gordan coefficients are all replaced with
Kronecker delta functions setting orbital and total angular
momenta equal to each one, and one recovers the result of
these references. If S ¼ 1=2 in Eq. (23) and furthermore
restricts there to be only a single channel, one recovers the
result of Refs. [13,17]. If one allows for arbitrary numbers of
channels with S ¼ 1=2, then one arrives at the result of
Ref. [44]. Allowing for a single channel with S ¼ 1 and
restricting the energies to be relativistic, i.e., γ ≈ 1, one arrives
at the two-nucleon result shown in Refs. [18,19,90,91].
Although what is presented here is the master equation

describing the full finite volume spectrum for arbitrary two-
body systems, in practice one needs to reduce the master
equation onto the quantization condition of the irreps of the
system of interest. For systems with PBCs, there has been a
great deal of effort in reduction of these master equations for
a wide variety of scenarios [3–5,10,13,16,17,37,83,86,92].
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References [37,83,86] demonstrate how to decompose
the master equation for integer-spin systems for the irreps

of the symmetry point groups corresponding to d ¼
fð0; 0; 0Þ, ð0;0;nÞ, ð0;n;nÞ, ðn;n;nÞ, ðn;m;0Þ, ðn; n;mÞg.
References [13,17] contain the relations of the nonvanishing
clm functions as well as the basis vectors for S ¼ 1=2
systems with d ¼ fð0; 0; 0Þ, ð0; 0; nÞ, ð0; n; nÞ, ðn; n; nÞg.

A. Relativistic finite volume loop with spin

In the absence of weak interactions, the free two-
particle propagators are diagonal in the open channels.
That is to say, in the absence of two-body interactions, the
different channels would not mix. This is depicted in
Fig. 1(a). As a consequence, it is only necessary to
investigate the structure of the s-channel loop appearing
in one of the open channels. Therefore, to alleviate some
of the strenuous notation that is necessary when discus-
sing coupled channel systems, we will momentarily drop
the j subscript that explicitly reminds the reader that the
jth channel of potentially infinitely many open channels is
being discussed.
To evaluate the sum depicted in Fig. 2, it is convenient

to upgrade the kernel onto a matrix in spin. Depending
on the nature of the the particles of interest, bosonic vs
fermionic, the dimensionality of the single particle propa-
gator will differ. Nevertheless, the single particle poles
will satisfy the relativistic dispersion relation for all
particles. Alternatively, one may always perform a field
redefinition to assure the propagator of bosonic and
fermionic field have the same dimensions, and in doing
so one can define the residues appearing in Eq. (17) to be
equal to 1 when the particles go on shell. This allows one to
write the difference between the first term of the finite
volume loop depicted in Fig. 2 and its infinite volume
counterpart in the form

iδGV ≡ n

�
1

L3
⨋
q

� Z
dq0

2π

Krelðpf; qÞKrelðq; piÞz1ðP − qÞz2ðqÞ
½ðq − PÞ2 −m2

1 þ iϵ�½q2 −m2
2 þ iϵ� ; (25)

where the kernels are being represented as matrices in
helicity and the dependence on the total four-momentum
P is being suppressed, and the following notation has been
introduced: �

1

L3
⨋
q

�
≡

�
1

L3

X
q

−
Z

dq
ð2πÞ3

�
: (26)

More explicitly, the product of the two kernels in Eq. (25)
should be interpreted as

Krelðpf; qÞKrelðq; piÞ ¼
X
λ1;λ2

K̂relðpf; qÞjq − P; s1λ1i

⊗ j − q; s2λ2ih−q; s2λ2j
⊗ hq − P; s1λ1jK̂relðq; piÞ: (27)

This is to emphasize that the single particle propagators
are diagonal in helicity. Because there is a complete set
of states between the two kernels, one can always perform
a unitary transformation to represent this product in an
alternative basis.
In general, the kernel is a function of volume, but since the

c.m. energy is restricted to satisfy mj;1 þmj;2 ≲ E� ≪ E�
th,

the intermediate particles appearing in the kernel, Fig. 1(b),
cannot all simultaneously go on shell. Therefore, one can
show using Poisson’s resummation formula,�

1

L3
⨋
q

�
fðqÞ ¼

X
n≠0

Z
dq

ð2πÞ3 fðqÞe
iLn·q;

that this leads to exponentially small deviations from the
infinite volume kernel. By neglecting these corrections, the

TABLE I. (a) The decomposition of the irreps of the SO(3)
group up to J ¼ 4 in terms of the irreps of the OD

h [3,4,87–89].
(b) The decomposition of the helicity states to the irreps of five
of the little groups of OD

h : Dic4, Dic2, Dic3, C4, and C2 [37,83–
86]. λ labels the helicity of the state and ~η ¼ Pð−1ÞJ, where P is
the parity of the state.

(a)

JP OD
h

0� A�
1

1
2
� G�

1

1� T�
1

3
2
� H�
2� E� ⊕ T�

2
5
2
� G�

2 ⊕ H�
3� A�

2 ⊕ T�
1 ⊕ T�

2
7
2
� G�

1 ⊕ G�
2 ⊕ H�

4� A�
1 ⊕ E� ⊕ T�

1 ⊕ T�
2

(b)

jλj~η Dic4 Dic2 Dic3 C4 C2

0þ A1 A1 A1 A A
0− A2 A2 A2 B A
1
2

E1 E E1 E 2B
1 E2 B1 ⊕ B2 E2 A ⊕ B 2A
3
2

E3 E B1 ⊕ B2 E 2B
2 B1 ⊕ B2 A1 ⊕ A2 E2 A ⊕ B 2A
5
2

E3 E E1 E 2B
3 E2 B1 ⊕ B2 A1 ⊕ A2 A ⊕ B 2A
7
2

E1 E E1 E 2B
4 A1 ⊕ A2 A1 ⊕ A2 E2 A ⊕ B 2A
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result discussed here holds for volumes satisfyingmπL ≫ 1.
We will also neglect terms in δGV that are exponentially
suppressed with the mass of any of the two particles in the
given channel since Oðe−miLÞ ≤ Oðe−mπLÞ. These correc-
tions have been previously determined for ππ [93] and NN

systems [94] in an S wave, as well as the ππ system in
a P wave in Refs. [95,96].
The identification of the power law volume dependence

of this function is most readily done by rewriting the
summand in terms of the c.m. of coordinates. To do this the
notation used in Ref. [12] will be used

ωq;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj2 þm2

i

q
: (28)

The lab frame coordinates, q ¼ ðqjj; q⊥Þ and ωq;i appearing
in the summand above can be transformed to c.m. coor-
dinates q� ¼ ðq�jj; q�⊥Þ and ω�

q;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�2 þm2

i

p
using the

standard Lorentz transformations

ω�
q;i ¼ γðωq;i − βqjjÞ;
q�jj ¼ γðqjj − βωq;iÞ; q�⊥ ¼ q⊥; (29)

where γ ¼ E�
E ; β ¼ P

E. Using these relations, writing the
functional form of the kernels in the c.m. frame as K�

rel, and
neglecting exponentially suppressed corrections, Eq. (25)
can be rewritten as [12,97]

iδGV ¼ −in
�
1

L3
⨋
q

�
1

2E�
ω�
q;2

ωq;2

K�
relðp�

f;q
�ÞK�

relðq�;p�
i Þz�1ðq�Þz�2ðq�Þ

k�2 − q�2 þ iϵ

�
E� þ m2

1
−m2

2

E� − 2ω�
q;2

4ω�
q;2

�
; (30)

where k� is the on shell c.m. momentum and satisfies
Eq. (14). In general the kernel will also depend on ω�

q;i, but
since this is itself a function of q�, the explicit dependence
on ω�

q;i has been suppressed.
By restricting themselves to the scalar sector, Kim,

Sachrajda, and Sharpe showed that this summation can
be represented as a product of infinite-dimensional matrices
in orbital angular momentum [12]. This result can be
recovered by decomposing the product of the two kernels
into spherical components,

K�
relðp�

f;q
�ÞK�

relðq�;p�
i Þ ¼

X
l;m

flmðq�Þ
ffiffiffiffiffiffi
4π

p
q�lYlmðq̂�Þ:

(31)

The function flm is defined so as to satisfy this equation,
and its definition in terms of the spherical decomposition of
the kernels is easy to write down. Using this function one
finds that δGV can be written as [12]

iδGV ¼ n

�
k�f00ðk�Þ
8πE� þ i

2E�
X
l;m

f�lmðk�Þcdlmðk�2Þ
�
;

where cdlm has been defined in Eq. (24). This expression holds
for arbitrary spin systems. Section II showed that one can
decompose any object that is diagonal in angular momenta,
such as the scattering amplitude and the kernel, in the lS basis

with matrix elements shown in Eq. (13). Using these ex-
pressions along with Eqs. (27) and (31), one finds7

iδGV ¼ −i½K�
rel�JmJ

lS ðδGVÞJmJ;lS;J0mJ0 ;l
0S0 ½K�

rel�J
0mJ

0
l0S0

¼ ½−iK�
rel�ðiδGVÞ½−iK�

rel�; (32)

where we have suppressed the indices of the incoming and
outgoing state in the loop, ½K�

rel�JmJ
lS denote the on-shell

kernels, and the matrix elements ðδGVÞJmJ;lS;J0mJ0 ;l
0S0 are

defined in Eq. (23). Equation (32) shows that the difference
between the finite volume and infinite volume loops can be
represented in a matrix representation of functions that only
depend on the on-shell momenta. Having shown this for a
single channel allows one to quickly derive the relation for an
arbitrary numbers of channels. In general one could have one
species, “a,” going into the loop and another one, “b,”
outgoing. By upgrading all the objects appearing in Eq. (32)
in the space of channels, one finds

iδGV
ba ¼ ½−iK�

rel�bjðiδGV
j Þ½−iK�

rel�ja; (33)

where the intermediate j index is summed over all open
channels. By utilizing this relation along with the definition
of the infinite volume scattering amplitude in terms of the

FIG. 2. Shown is the closeup of a generic finite volume loop
appearing in the determination of the quantization condition,
Eq. (22), which is determined from the poles of the MV , defined
in Eq. (20) and pictorially depicted in Fig. 1. The finite volume
loop can always be set equal to its infinite volume counterpart up
to finite volume correction. In Sec. III A, it is shown that this
correction can be written as a product of infinite-dimensional
matrices that solely depend on the on-shell momenta of the
intermediate particles in the loop.

7For further details, see Ref. [97].
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kernel, Eq. (15), and the definition of MV , Eq. (20), one
arrives at the quantization condition, Eq. (22).

IV. TWO-PARTICLE MULTICHANNEL
SYSTEMS WITH SPIN WITH TBCS

IN ASYMMETRIC VOLUMES

A. Cubic volumes

In the derivation of the master equation shown in Eq. (22),
the periodic boundary conditions on the spatial extent of the
cubic volume have been assumed. The periodicity constraint
is encoded in the expression for the Z functions shown in
Eq. (24), and this is generally true for arbitrary boundary
conditions. As discussed in Sec. I, TBCs require that fields
are proportional to their images up to an overall phase.
Therefore, particle “1” in the jth channel will have free
discretized momenta satisfying pj;1 ¼ 2πn

L þ ϕj;1

L , where ϕj;1
is the three-dimensional phase for that particle. Each particle
in each channel could have an overall different phase which,
when thinking of LQCD calculations, is dictated by the
quark content of the hadron in mind. As a consequence, the
total momentum of the systems will be shifted to P ¼
2πd
L þ ϕj;1þϕj;2

L . Although it may naively seem that the total
momentum would depend on the channel considered, it is
easy to convince oneself that for coupled channel systems
ϕj;1 þ ϕj;2 is a conserved quantity, since antiquark fields
satisfy

ψ̄ðxþ nLÞ ¼ e−iθ·nψ̄ðxÞ: (34)

Having defined the total momentum, the relationship
between the total energy and the c.m. energy remain
unchanged, and the c.m. on-shell momenta for the jth
channel still satisfies Eq. (14). The only part of the master
equation that is modified is the finite volume function,
Eq. (23). One finds that the clm and Z functions with
arbitrary twist for a cubic volume is [34,46,63–65]

c
d;ϕj;1;ϕj;2

lm ðk�2;LÞ ¼
ffiffiffiffiffiffi
4π

p

γL3

�
2π

L

�
l−2

× Z
d;ϕj;1;ϕj;2

lm ½1; ðk�L=2πÞ2�; (35)

Z
d;ϕj;1;ϕj;2

lm ½s; x2� ¼
X

r∈Pϕ1 ;ϕ2
d

jrjlYl;mðrÞ
ðr2 − x2Þs ; (36)

where Pϕ1;ϕ2

d ¼ fr ∈ R3jr ¼ γ̂−1ðm − αjdþ ΔðjÞ
2π Þg, where

m is a triplet integer, ΔðjÞ ¼ −ðαj − 1
2
Þðϕj;1 þ ϕj;2Þþ

1
2
ðϕj;1 − ϕj;2Þ. Just as before, γ̂−1x≡ γ−1xjj þ x⊥, with

xjjðx⊥Þ denoting the x component that is parallel
(perpendicular) to the total momentum, P.
With this, one arrives at the conclusion that the quantiza-

tion condition for the spectrum of a two-particle multichan-
nel system with TBCs can still be written as Eq. (22), where
the matrix elements of δGV for the jth channel can be

obtained by replacing cdl00m00 ðk�2j ;LÞ with cd;ϕj;1;ϕj;2

l00m00 ðk�2j ;LÞ in
Eq. (23). One important observation is that if the two
particles are degenerate and they have the same twist, then
twisting will have no overall impact in the c.m. spectrum.
Therefore, one may not gain any additional information for
systems like πþπþ or pp using TBCs. Furthermore, if the
isospin is exact and the twist on the up and down quarks is
the same, this will give the same pn c.m. spectrum as if it
were at rest and untwisted. Reference [64] investigated the
implication of the determination of the deuteron binding
energy when using asymmetric twists on the up and down
quarks and found that by introducing an overall twist ϕp ¼
−ϕn ¼ ðπ=2; π=2; π=2Þ finite volume artifacts of the deu-
teron binding energies can be reduced from ∼e−κL=L to
∼e−2κL=L, where κ is infinite volume binding momentum of
the deuteron.
Another important remark is that when introducing an

arbitrary twist, partial wave mixing can be a subtle matter.
This is due to the rich structure of the clm’s in Eq. (35).
For instance, for the scenario discussed in Ref. [64], the
S-wave deuteron channel not only has physical mixing with
the 3D1 but in general will have finite volume mixing with
the 3P0, 3P1, 3P2, 3D2, and 3D3 channels, as well as higher
partial waves, even when the up and down quark masses are
exactly degenerate.

B. Asymmetric volumes

References [8–10] demonstrated how the Lüscher method
can be generalized for asymmetric volumes. Adopting the
notation introduced in these references, let L be the spatial
extent of the z axis and ηi be the asymmetric factor of the ith
axis, i.e., Lx ¼ ηxL and Ly ¼ ηyL. In evaluating the finite
volume loop in the previous section, Eq. (25), one must
make the replacement

1

L3

X
q

→
1

ηxηyL3

X
q

; (37)

which leads to an overall factor of ðηxηyÞ−1 in the clm
functions, Eq. (35). Furthermore, the free particle momenta
are altered. Let χ be an arbitrary three-dimensional vector.
By introducing the notation ~χ ¼ ðχx=ηx; χy=ηy; χzÞ, one can
readily find that the “1” in the jth channel has a free

momentum of pj;1 ¼ 2π ~n
L þ ~ϕj;1

L , where n is an integer triplet
and ϕj;1 is the particle’s twist. With these pieces one may
arrive at the most general form of the clm and Z functions
with arbitrary twist for an asymmetric volume

c
d;ϕj;1;ϕj;2

lm ðk�2;L;ηx;ηyÞ¼
ffiffiffiffiffiffi
4π

p

ηxηyγL3

�
2π

L

�
l−2

×Z
d;ϕj;1;ϕj;2

lm ½1;ðk�L=2πÞ2;ηx;ηy�;
(38)
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Z
d;ϕj;1;ϕj;2

lm ½s; x2; ηx; ηy� ¼
X

r∈Pϕ1 ;ϕ2;
d;ηx;ηy

jrjlYl;mðrÞ
ðr2 − x2Þs ; (39)

wherePϕ1;ϕ2

d;ηx;ηy
¼ fr ∈ R3jr ¼ γ̂−1ð ~m − αj ~dþ ~ΔðjÞ

2π Þg, where
m is a triplet integer, ~ΔðjÞ ¼ −ðαj − 1

2
Þð ~ϕj;1 þ ~ϕj;2Þ þ

1
2
ð ~ϕj;1 − ~ϕj;2Þ. In the limit that the total momentum

and twist of the system vanishes, this result agrees with
Refs. [8–10]. The boost vector, ~d, is defined to be equal to
PL=2π. It is important to note that in the limit where the
twist angles of the two particles vanish, the boost vector for
asymmetric volumes in general is not an integer triplet.

V. IMPLICATION FOR
BARYON-BARYON SYSTEMS

As was discussed in the previous sections, the formalism
presented here is universal and gives a mapping between the
finite volume spectrum and the infinite volume scattering
amplitude for arbitrary two-particle systems. A sector of
physics where this formalism will have a clear and imme-
diate impact is on the study of light nuclei and hyper nuclei
from LQCD. This is a field that has received a great deal of
excitement in recent years [22–28,35,78,79,98]. As was
alluded to in the previous sections, these are systems with
rather rich structure and with potential partial wave mixing
in the infinite volume and/or several inelastic thresholds. For
instance, the determination of hyperon-nucleon scattering
phase shifts studied in Ref. [25] was limited by the fact that
this formalism was not known. Having the formalism in
place, future calculations of these systems will no longer be
restricted to the study of the ground state, where presumably
only S-wave phase shifts are prevalent, but also scattering
parameters will be able to be determined from excited states.
The study in Ref. [25] explicitly avoided coupled channels
systems, e.g., I ¼ 1=2 NΣ-NΛ. Although this remains a
computationally challenging problem, there is no formal
restriction for determining not only scattering phase shifts
but also mixing angles, thereby unfolding the rich structure
of these systems.
The need for performing calculations with multiple total

momenta has been extensively advocated in the literature
[5,11–13,17,80,90]. When boosting a given system, its c.m.
energy in a finite volume is altered. This is evident from the
quantization condition shown in Eq. (22). The scattering
amplitude only depends on c.m. coordinates, while the clm
functions, Eq. (24), and consequently δGV, Eq. (23),
depend on both the c.m. coordinate and total momenta
of the system. Therefore, the c.m. energies where Eq. (22)
vanishes will in general differ for different boosts. This is
extremely advantageous when trying to constrain the
scattering amplitude from the finite volume spectrum, since
it is at these energies where the scattering amplitude is
determined. For coupled channel systems, boosting is a

necessity [42,43]. For example, the J ¼ 1 S ¼ 1 matrix
shown in Eq. (19) depends on three functions of energy, the
S-wave and D-wave phase shifts and the mixing angle that
couples these two channels. Therefore, from a single
energy, one can only constrain linear combinations of
these functions. Performing calculations with multiple
boosts aids in disentangling these functions from the
spectrum. In Ref. [90] it was shown just how to do this
for the 3S1-3D1 two nucleon channel. An alternative tool for
coupled channel systems is to perform calculations with
twisted boundary conditions [34,46,63–65] or asymmetric
volumes [8–10].
Furthermore, Refs. [19,90] went into great detail in

demonstrating that the presence of partial wave mixing in
the infinite volume could lead to an unexpectedly large
effect in the boosted c.m. finite volume spectrum. For the
deuteron channel, it was demonstrated that at the physical
point these effects can lead to a ∼50% correction to the
binding energies for moderate volumes of L ∼ 9 fm. This
observation is expected to also hold for S ¼ 1 hyperon-
nucleon/hyperon-hyperon systems.
In Ref. [19] it was assumed that isospin is exact, which in

the infinite volume, where parity and total angular momen-
tum are good quantum numbers, leads to spin conservation.
For instance, thiswouldsuggest that 1P1 and 3P1 twonucleon
channels couldnotmix. In nature, up anddownquarkmasses
are not degenerate, and searches for experimental (e.g., see
Refs. [99–102]) and theoretical consequences (seeRef. [103]
for a review on the topic) in the two-body sector of this
reduction of symmetry are challenging. By performing
calculationswith nondegenerate up and down quarkmasses,
futureLQCDcalculationswill be able to further constrain the
mixing between different spin channels.
Although the discussion is focused on the baryon-baryon

sector, this formalism will also be necessary for future
studies of meson-meson or meson-baryon processes where
one or both particles have spin. An example of such
systems is the J=Ψ-ϕ scattering channel, which was
recently studied in Ref. [34] using TBCs. This benchmark
calculation determined the 1S0 and 1P1 J=Ψ-ϕ phase shifts
using configurations with a lightest pion mass of mπ ¼
156 MeV in hopes of finding evidence for the Yð4140Þ
resonance [104,105]. In obtaining their result, the authors
have made two reasonable approximations. The first
approximation refers to the fact that, although the authors
of Ref. [34] accounted for the finite volume partial wave
mixing of the 1S0 and 1P1 waves, they did not include
effects due to physical mixing between the 1P1, 3P1, and
5P1 waves in their analysis. This is expected to be a small
contribution for nonrelativistic systems, but in general the
quantization condition presented in this work can be used
to include such effects. The second approximation refers to
the unstable nature of the J=Ψð1SÞ and/or ϕð1020Þ.
Although Ref. [47] quantitatively demonstrated that
for a resonances such as the ρ, with a decay width of
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147.8(9) MeV [106], one may not use two-body formalism
presented here and used in Ref. [34], this formalism is
expected to accurately describe the spectrum of a system
including the J=Ψð1SÞ and/or the ϕð1020Þ. This is because
their respective decay widths are 92.9(2.8) keV and
4.26(4) MeV [106], and their hadronic decays are in general
suppressed by the Okubo–Zweig–Iizuka rule [107–110].

VI. CONCLUSION

This paper presents the most general two-body finite
volume formalism that gives the relationship between the
finite volume spectrum and the infinite volume 2 → 2
scattering amplitude. The result holds for an arbitrary
number of open two-body channels, with arbitrary masses,
spin, and momenta. The only restrictions are that the c.m.
energy lies below the three-body inelastic threshold and
that the spatial extent to the volume is significantly larger
than the range of the interactions. It is evident from the
result that it is consistent with all previous two-body finite
volume results [3–5,8–19,34,40–46,63–65].
Section II reviewed the basics of the construction of

helicity states and their relation with the lS basis [72–75].

Section III presented a derivation of the quantization
condition for multichannel systems with arbitrary spin,
Eq. (22), using generic aspects of relativistic quantum field
theory. Sections IVA and IV B presented the generalization
of this result for systems with arbitrary TBCs in a cubic
volume and an asymmetric volume, respectively. Although
the result is generic and independent of the nature of
the particles of interest, Sec. V discussed the implication of
this formalism for two-baryon systems. A place where this
formalism will have immediate impact in the studies of
hyperon-nucleon and hyperon-hyperon systems.
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