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In confining lattice gauge theories in which part of the flavor group is coupled weakly to additional
gauge fields, both the dynamics of the weak gauge fields as well as lattice artifacts may have nontrivial
effects on the orientation of the vacuum in flavor space. Here we discuss this issue for lattice gauge theories
employing staggered fermions. Staggered fermions break flavor symmetries to a much smaller group on the
lattice, and orientations in flavor space that are equivalent in the continuum may be distinct on the lattice.
Assuming universality, we show that in the continuum limit the weakly gauged flavor symmetries are
always vectorlike, disproving a recent claim in the literature.
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I. INTRODUCTION

Recently, there has been a growing interest in the
nonperturbative study of gauge theories with both strong
and weak gauge interactions—with the latter being weak at
the scale where the former is strong—encompassing both
Standard Model and beyond the Standard Model physics.
An example of the first is the inclusion of electromagnetic
effects in lattice QCD [1], and an example of the second is
the study of composite Higgs models [2,3], where a
relatively light Higgs particle is assumed to arise as a
Nambu-Goldstone boson (NGB) of some new strong
dynamics. In such models, some of the flavor symmetries
of the new strong sector are weakly coupled to additional
gauge fields, turning the Higgs particle into a pseudo-NGB,
which then induces electroweak symmetry breaking
dynamically.
On the lattice, most discretizations of the fermion action

typically have a much reduced flavor symmetry in
comparison to the corresponding continuum theory.
However, for commonly used fermion discretizations
the full continuum symmetry gets restored in the con-
tinuum limit with minimal or no fine-tuning. Indeed a
large variety of lattice fermion actions gives rise to the
same theory in the continuum limit, a phenomenon known
as universality.
In order to make the discussion more concrete, we will

limit ourselves here to confining SUðNcÞ gauge theories
with Nc ≥ 3, coupled to an even number Nf of Dirac
fermions in the fundamental representation.1 Any such
theory can be formulated on the lattice using reduced
staggered fermions [4–8]. If Nf is a multiple of 4, standard

staggered fermions can be used.2 In the massless limit,
the flavor symmetry of the continuum theory is
SUðNfÞL × SUðNfÞR. The use of reduced or standard
staggered fermions leaves intact only a rather small sub-
group of the flavor symmetry, but the remaining flavor
symmetries are automatically restored in the continuum
limit [7,8].
There is a less well-known aspect of staggered fermions.

The physical role of the continuous global symmetries of
the massless lattice theory, or lattice flavor symmetries for
short, depends on the choice of lattice mass terms. The unit
cell of the staggered action is a 24 hypercube, and mass
terms coupling any two lattice sites within the unit cell can
be written down [7,8]. For the most common, same-site
mass term, some of the lattice flavor symmetries become
axial symmetries in the continuum limit. However, for mass
terms that couple pairs of lattice sites separated by an odd
number of links, all the lattice flavor symmetries become
vector symmetries in the continuum limit. Thus, even
if all fermions have equal masses, the embedding of the
lattice flavor symmetries in the continuum flavor group
SUðNfÞL × SUðNfÞR depends on the choice of lattice
mass terms.
So far, these observations were essentially just technical.

The situation changes if a subgroup of the continuum flavor
symmetry is weakly coupled to new dynamical gauge fields
(“weak gauge fields,” for short). The new dynamics will
typically distinguish between different orientations of the
mass terms, or, in the massless limit, of the fermion

1We anticipate that the generalization to other groups
and representations is relatively straightforward in many
cases.

2Large-scale numerical simulations of QCD make use of three
standard staggered fields (one for each of the up, down and
strange quarks), but the fourth root of the fermion determinant is
taken in order to reduce the number of fermion species from 12 to
3 (see, e.g., Refs. [9,10] and references therein). In this paper we
only consider local lattice theories, avoiding any fractional
powers of the staggered-fermion determinant.
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condensate. Orientations of the fermion condensate that do
not break spontaneously any of the weakly gauged sym-
metries will be energetically favorable, a phenomenon
known as vacuum alignment [11]. Away from the chiral
limit, there will be competing effects between the explicit
mass terms on the one hand, and the effective potential
induced by the weak gauge fields on the other hand. The
outcome—the orientation of the vacuum—will depend on
the details.
A third source of dynamical effects is provided by the

discretization itself. The reduced symmetry of the lattice
theory allows for the dynamical generation of an effective
potential at order a2, where a is the lattice spacing. This
effective potential, too, can give rise to a nontrivial phase
diagram. The most familiar example of this sort is the
so-called Aoki phase encountered for Wilson fermions
[12–14], where some of the lattice (vector) flavor sym-
metries undergo spontaneous breaking. An order-a2 effec-
tive potential gets generated for staggered fermions as well
[15,16], leading to the possibility of similar phases [17].
When studying composite-Higgs models, or any other

model involving the dynamical breaking of electroweak
symmetry, we have to take the combined continuum and
chiral limit. The relevant phase diagram is therefore
controlled by the dynamics of the weak gauge fields only.
However, realistic lattice simulations are carried out
away from both limits. In the lattice simulation, all three
sources—explicit mass terms, weak gauge fields, and
discretization effects—will in general compete, leading
to a potentially very complicated outcome. Both the
continuum and the chiral limits will have to be studied
with great care, in order to determine whether we have
arrived close enough to the combined limit such that the
weak gauge field dynamics has taken over.
In this paper we study these questions using chiral

Lagrangian techniques [18]. After a brief review of relevant
facts about staggered fermions in Sec. II, we turn in Sec. III
to the eight-flavor theory. This theory can be formulated on
the lattice using two standard staggered fields, or, equiv-
alently, four reduced staggered fields. Starting with the case
that none of the flavor symmetries are gauged we compare
two different choices: the same-site and the one-link mass
terms. While the continuum limit is the same for both
choices, only in the case of the same-site mass term do
some of the lattice flavor symmetries turn into axial
symmetries of the continuum theory.
We then study what happens when the lattice flavor

symmetries are weakly gauged. Using Witten’s inequality
[19] we prove that, after taking the continuum and chiral
limits, the vacuum state orients itself along the one-link
mass term. Therefore all of the weakly gauged symmetries
are vectorial, and none of them are broken spontaneously,
in agreement with the Vafa-Witten theorem [20]. This result
refutes a claim recently made in the literature [21]. In
Sec. IV we study the six-flavor theory, with the new

element that in this case the reduced staggered formalism
is indispensable, and we arrive at similar conclusions. We
conclude in Sec. V. In Appendix A we rederive the
continuum effective potential, while Appendix B contains
some simple observations which follow from the structure
of the order-a2 effective potential for the eight-flavor
theory.

II. STAGGERED-FERMIONS BASICS

In this section, we review some of the basic properties of
staggered fermions. For a comprehensive treatment, we
refer to Refs. [7,8], and to the reviews in Refs. [10,18].
The Lagrangian for a single massless staggered fermion

χðxÞ coupled to a gauge field UμðxÞ is

S ¼ 1

2

X
xμ

ημðxÞχ̄ðxÞðUμðxÞχðxþ μÞ − U†
μðx − μÞχðx − μÞÞ;

(2.1)

in which the phase factors

ημðxÞ ¼ ð−1Þx1þ���þxμ−1 ; μ ¼ 1;…; 4 (2.2)

take over the role of the Dirac matrices. Along with a
suitable pure-gauge action, the staggered-fermion action
(2.1) gives rise to a gauge theory with four massless Dirac
flavors all in the same representation of the gauge group in
the continuum limit.3 The continuum theory thus has an
SUð4ÞL × SUð4ÞR flavor symmetry.
Apart from fermion number, the lattice action (2.1) has

only one continuous symmetry, Uð1Þϵ, given by [5]

χðxÞ → eiαϵðxÞχðxÞ; χ̄ðxÞ → χ̄ðxÞeiαϵðxÞ; (2.3)

with

ϵðxÞ ¼ ð−1Þx1þx2þx3þx4 : (2.4)

This symmetry is usually interpreted as an axial symmetry,
but this interpretation actually depends on the mass terms
that are added to the lattice theory. In most applications, a
single-site mass term mχ̄ðxÞχðxÞ is chosen. This breaks
Uð1Þϵ softly, signifying that Uð1Þϵ is indeed an axial
symmetry in this case.
However, one may choose different mass terms. For

instance, another gauge-invariant mass term is given by

S1-link ¼
1

2

X
xμ

mμζμðxÞχ̄ðxÞðUμðxÞχðxþ μÞ

þ U†
μðx − μÞχðx − μÞÞ; (2.5)

3In the context of QCD, usually these four flavors are referred
to as “tastes,” but here we will choose to refer to them as flavors.
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with a new set of phase factors

ζμðxÞ ¼ ð−1Þxμþ1þ���þx4 : (2.6)

These phase factors ensure that S1-link is invariant under
hypercubic rotations if mμ is treated as a vector spurion.
Since S1-link couples fermion and antifermion fields that are
one link apart, it is invariant under Uð1Þϵ, which implies
that the Uð1Þϵ symmetry ends up as a vector symmetry in
the continuum limit [7,8]. In this limit the four flavors are
degenerate, and their common mass is proportional to

m1-link ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

μm
2
μ

q
. The one-link mass term (2.5) is par-

ticularly relevant in the case of reduced staggered fer-
mions, which we introduce next.
Let us project the field χðxÞ onto the even sites, and the

independent field χ̄ðxÞ onto the odd sites:

χþðxÞ ¼ 1

2
ð1þ ϵðxÞÞχðxÞ; χ̄−ðxÞ ¼ 1

2
ð1 − ϵðxÞÞχ̄ðxÞ;

(2.7)

thereby thinning out the number of degrees of freedom by a
factor 2. Applying this projection to the action (2.1) gives
rise to the (massless) reduced staggered fermion action

Sþ ¼ 1

2

X
xμ

ημðxÞχ̄−ðxÞðUμðxÞχþðxþ μÞ

−U†
μðx − μÞχþðx − μÞÞ: (2.8)

Instead of four, this action gives rise to two Dirac flavors in
the continuum limit, with flavor symmetry group SUð2ÞL ×
SUð2ÞR [4,7,8].
A different reduced staggered action is obtained by

reversing the projections in Eqs. (2.7) and (2.8), namely,
by choosing

χ−ðxÞ ¼ 1

2
ð1 − ϵðxÞÞχðxÞ; χ̄þðxÞ ¼ 1

2
ð1þ ϵðxÞÞχ̄ðxÞ:

(2.9)

We may take two reduced staggered fields, one of each
type, and reassemble them into a single standard staggered
fermion. The same-site mass term we have discussed for
the standard case decomposes as

m½χ̄þðxÞχþðxÞ þ χ̄−ðxÞχ−ðxÞ� ¼ mχ̄ðxÞχðxÞ; (2.10)

showing that the two reduced-staggered types defined by
the projections (2.7) and (2.9) are coupled to each other. In
contrast, the one-link mass term of Eq. (2.5) involves no
coupling between the two reduced staggered types.
Let us elaborate on this observation. Given a single

reduced staggered field, it is evidently not possible to
construct a same-site mass term. The simplest mass term is

the one-link mass term obtained from Eq. (2.5) above via
the relevant projection

S�1-link ¼
1

2

X
xμ

mμζμðxÞχ̄∓ðxÞðUμðxÞχ�ðxþ μÞ

þ U†
μðx − μÞχ�ðx − μÞÞ: (2.11)

An independent mass term can be constructed by coupling
fermion and antifermion fields that are three links apart.4

Either way, the number of links separating the reduced
fermion and antifermion fields has to be odd, and therefore
any mass term in the reduced case is invariant under Uð1Þϵ.
It follows that whenever the lattice theory does not

involve bilinear couplings between reduced staggered
fields of different types, all the lattice flavor symmetries
necessarily turn into vector symmetries in the continuum
limit. Indeed, considering the standard staggered action
(2.1) let us denote the generators of fermion number and of
Uð1Þϵ by Qs and Qϵ respectively. It is easily seen that the
linear combinations Qs þQϵ and Qs −Qϵ generate the
fermion number symmetries associated with the projections
(2.7) and (2.9), respectively. Provided that the chosen mass
terms respect the individual fermion number symmetries,
these symmetries are, therefore, vectorial.
One can construct theories with an arbitrary even number

of flavors, Nf, using Nþ ≤ Nf=2 reduced staggered fields
of type (2.7), together with N− ¼ Nf=2 − Nþ reduced
fields of type (2.9). The same set of fields can also be
regarded as consisting of Ns ¼ minðNþ; N−Þ standard
staggered fields, with the remaining reduced staggered
fields being all of the same type. In the massless case, the
lattice flavor symmetry is UðNþÞ ×UðN−Þ, generalizing
the fermion number symmetries of the individual reduced
fields. The flavor symmetry remains intact if one-link mass
terms with the same vector m�

μ are introduced for all
reduced fields of a given type, consistent with the fact that
in this case, all the lattice flavor symmetries are vectorial.
For other choices of mass terms, some of the lattice flavor
symmetries may be softly broken.
As a final comment we note that, thanks to additional

discrete symmetries, the renormalization of all mass terms
for both standard and reduced staggered fields is multipli-
cative [8]. The chiral limit is therefore well defined at
nonzero lattice spacing, and corresponds to the vanishing of
all bare mass terms.
In the next two sections, we will employ these obser-

vations in the context of the eight-flavor and six-flavor
theories. The eight-flavor theory we will consider corre-
sponds to the choice Nþ ¼ N− ¼ 2, whereas the six-flavor
theory corresponds to Nþ ¼ 2, N− ¼ 1.

4Replacing the one-link mass terms by three-link mass terms
does not change our conclusions. We will therefore limit the
discussion to one-link mass terms.
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III. EIGHT FLAVORS

In this section, we will consider an eight-flavor theory
coupled to a strong gauge field UμðxÞ. The lattice theory is
constructed using two standard staggered fields, or, equiv-
alently, four reduced staggered fields, two of each type. For
clarity, we will denote by χi, χ̄i, i ¼ 1, 2, the two reduced
staggered fields of type (2.7), and by λi, λ̄i, i ¼ 1, 2, the two
reduced fields of type (2.9). According to the discussion in
the previous section, if we disregard Uð1Þ factors, the non-
Abelian global symmetry of the massless lattice theory is
SUð2Þχ × SUð2Þλ. In the continuum limit, the flavor
symmetry enlarges to SUð8ÞL × SUð8ÞR, which we will
assume to be spontaneously broken to the diagonal SUð8ÞV
subgroup.
We will consider two choices for the lattice mass term, as

well as the corresponding orientations of the fermion
condensate in the chiral limit. While both choices give
rise to the same continuum limit, the embedding of the
lattice flavor symmetries inside the continuum symmetry
group is different. For one of these choices, some of the
lattice flavor symmetries become spontaneously broken
axial symmetries in the continuum limit; for the other
choice, all the lattice flavor symmetries are vectorial in the
continuum limit. We will then weakly couple all the (non-
Abelian) lattice flavor symmetries to additional gauge
fields, and prove that in this case all of them become
unbroken vectorial symmetries of the continuum theory.
In the continuum limit, each reduced staggered field

gives rise to two Dirac fields, according to

χ1 → ψ1;ψ2; χ2 → ψ3;ψ4;

λ1 → ψ5;ψ6; λ2 → ψ7;ψ8: (3.1)

Alternatively, viewing the fermion content as two standard
staggered fields χi þ λi, the continuum flavors ψ1, ψ2, ψ5

and ψ6 emerge from χ1 þ λ1, while ψ3, ψ4, ψ7 and ψ8

emerge from χ2 þ λ2.
Our first choice for the mass terms is to use the one-link

mass term (2.11) for each reduced staggered fermion,
always with the same parameters mμ. In the continuum
theory, the resulting mass term is

X2
i¼1

S1-linkðχi; λi;mμÞ → m
Z

d4x
X8
k¼1

ψ̄kψk; (3.2)

where m ≥ 0 is given by5

m2 ¼
X
μ

m2
μ: (3.3)

If we arrange the continuum Dirac fields into a vector, the
continuummass matrix is proportional to the identity matrix,

M1 ¼ mI8; (3.4)

where In denotes the n × n identity matrix.6

Alternatively, we can use the single-site mass term
(2.10), obtaining

m
X
x

ðλ̄1χ1 þ λ̄2χ2 þ χ̄1λ1 þ χ̄2λ2Þ

→ m
Z

d4xðψ̄5ψ1 þ ψ̄6ψ2 þ ψ̄7ψ3 þ ψ̄8ψ4 þ ψ̄1ψ5

þ ψ̄2ψ6 þ ψ̄3ψ7 þ ψ̄4ψ8Þ: (3.5)

The corresponding mass matrix can be written in the form

M0 ¼ mτ1 ⊗ I2 ⊗ I2 ¼ mτ1 ⊗ I4: (3.6)

In this notation, any 8 × 8 matrix is expressed as a sum of
tensor products. Each tensor product consists of three
terms, each of which can be one of the Pauli matrices
τa, a ¼ 1, 2, 3, or the identity matrix I2. The index of the
first 2 × 2 matrix in the tensor product identifies the
reduced staggered type (χ or λ) from which the continuum
flavor originates, and the associated projectors are

Pχ ¼
1

2
ðI2 þ τ3Þ ⊗ I4 ≡ ~Pχ ⊗ I4;

Pλ ¼
1

2
ðI2 − τ3Þ ⊗ I4 ≡ ~Pλ ⊗ I4: (3.7)

The index of the second factor in the tensor product is the
flavor index of the corresponding reduced staggered type,
while the index of the last factor runs over the two
continuum flavors that emerge from a given reduced
staggered field.
In the continuum limit, the two choices for the mass

term are equivalent. Indeed, one can rotate M0 to the
standard form (3.4) by a nonanomalous transformation
U ∈ SUð8ÞL × SUð8ÞR, under which

ψ → Uψ ; ψ̄ → ψ̄γ0U†γ0: (3.8)

To this end, we first apply the purely vectorial
transformation

P ¼ 1ffiffiffi
2

p ðI2 − iτ2Þ ⊗ I4; (3.9)

so that now

5We disregard the (multiplicative) renormalization of the mass
parameters.

6In the continuum limit, a basis can always be chosen for the
two Dirac fields originating from a given reduced staggered field
such that the mass matrix takes the form (3.4) by construction
[7,8].
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P†M0P ¼ mτ3 ⊗ I4 ¼ m

�
I4 0

0 −I4

�
: (3.10)

In order to rotate the lower-right block from −I4 into þI4
we apply the nonanomalous axial rotation

Q ¼ Pχ þ iγ5 ~Pλ ⊗ τ3 ⊗ I2 ¼
�
I4 0

0 iγ5τ3 ⊗ I2

�
:

(3.11)

Using Eq. (3.8) we arrive at

QP†M0PQ ¼ mI8; (3.12)

thereby reproducing Eq. (3.4), but now for the same-site
mass term.

A. Global lattice flavor symmetry

Let us now discuss the interplay of the SUð2Þχ × SUð2Þλ
lattice flavor symmetry and the two mass terms. We are
interested in the fate of these symmetries after taking the
continuum limit, followed by the chiral limit where the
mass term is turned off (after the infinite-volume limit has
been taken).
The one-link mass term (3.2) respects the full lattice

flavor symmetry. On the basis of continuum fields intro-
duced in Eq. (3.1), the resulting mass matrix (3.4) is
proportional to the identity matrix, whereas the SUð2Þχ ×
SUð2Þλ generators take the form

Tχ
a ¼ ~Pχ ⊗ τa ⊗ I2; (3.13a)

Tλ
a ¼ ~Pλ ⊗ τa ⊗ I2: (3.13b)

All six generators are vectorial in this case, as they are
proportional to the identity matrix in Dirac space.
We next turn to the same-site mass term (3.5). The

diagonal subgroup generated by Tχ
a þ Tλ

a commutes with
this mass term. The other three generators, Tχ

a − Tλ
a, are

proportional to the phase factor ϵðxÞ of Eq. (2.4), and are
broken by the same-site mass term. On the same continuum
basis, these linear combinations take the form

Tþ
a ¼ Tχ

a þ Tλ
a ¼ I2 ⊗ τa ⊗ I2; (3.14a)

T−
a ¼ Tχ

a − Tλ
a ¼ τ3 ⊗ τa ⊗ I2: (3.14b)

As on the lattice, the Tþ
a commute with the mass matrix

(3.6), whereas the T−
a do not. Applying the basis trans-

formation that brings the mass matrix (3.6) to the diagonal
form (3.12), the generators become

Q†P†Tþ
a PQ ¼ ð ~Pχ ⊗ τa þ ~Pλ ⊗ τ0aÞ ⊗ I2; (3.15a)

Q†P†T−
aPQ ¼ γ5ðϵab3τ1 ⊗ τb − δa3τ2 ⊗ I2Þ ⊗ I2;

(3.15b)

where τ0a ¼ τ3τaτ3. While the Tþ
a still generate a vectorial

symmetry, the T−
a now generate an axial symmetry.

The fact that we can rotate the mass matrix (3.6) to the
diagonal form (3.12) using an SUð8ÞL × SUð8ÞR trans-
formation implies that the two mass matrices are equiv-
alent. So are the corresponding orientations of the fermion
condensate in the chiral limit. Indeed, with the restriction to
a degenerate mass for all eight flavors, all possible choices
for the lattice mass terms are equivalent in that, in the
continuum limit, the resulting symmetry-breaking pattern is
always SUð8ÞL × SUð8ÞR → SUð8ÞV , with the unbroken
SUð8ÞV commuting with the mass matrix. Any violation of
this observation would constitute a violation of universality.
But the fate of the lattice flavor symmetries is not the

same. In the case of the one-link mass term (3.2), all of
them become unbroken vectorial symmetries of the con-
tinuum theory, whereas in the case of the same-site mass
term (3.6), this is true only for half of the lattice sym-
metries, while the other half turn into axial symmetries,
which are spontaneously broken in the chiral limit.

B. Gauging SUð2Þχ × SUð2Þλ
We now introduce a new element, by promoting the

lattice global symmetry group SUð2Þχ × SUð2Þλ to a local
symmetry. We introduce a dynamical gauge field Vμa
minimally coupled to the conserved currents of SUð2Þχ
with coupling constant gχ , and, similarly, a gauge field
Wμa with coupling gλ for SUð2Þλ. We will assume that
both of the new couplings are weak at the scale Λ where
the original strong dynamics of the gauge field Uμ is
confining.7

The effective low-energy theory depends on a nonlinear
field ΣðxÞ ∈ SUð8Þ. We may think of ΣklðxÞ as represent-
ing the composite operator trðð1 − γ5ÞψkðxÞψ̄lðxÞÞ, where
the trace is over Dirac and strong gauge group indices. The
interaction with the dynamical weak gauge fields induces
an effective potential for the continuum theory. To lowest
nontrivial order in the weak gauge couplings, the effective
potential is [11]

VweakðΣÞ ¼ −g2χC
X
a

trðΣTχ
aΣ†Tχ

aÞ − g2λC
X
a

trðΣTλ
aΣ†Tλ

aÞ:

(3.16)

We have restricted the nonlinear field to a constant value
ΣðxÞ ¼ Σ representing the vacuum. In the chiral limit of the

7For Nc ¼ 3 it is not clear whether or not the eight-flavor
theory is confining [22]. The eight-flavor theory confines in the
large Nc limit, and we will assume that Nc is large enough that
this is the case.

VACUUM ALIGNMENT AND LATTICE ARTIFACTS: … PHYSICAL REVIEW D 89, 074502 (2014)

074502-5



continuum theory there are no other effects of similar
magnitude, and the vacuum state is determined by mini-
mizing VweakðΣÞ.
Let us now compare the vacua Σ0, defined by the

orientation of the same-site mass matrix (3.6), and Σ1,
defined by the orientation of the one-link mass matrix (3.4).
On the continuum basis introduced in Eq. (3.1), these
vacua are

Σ0 ¼ τ1 ⊗ I4; Σ1 ¼ I8: (3.17)

We find that

VweakðΣ0Þ ¼ 0; (3.18a)

VweakðΣ1Þ ¼ −12ðg2χ þ g2λÞC: (3.18b)

A key observation is that the low-energy constant C is
positive [19]. The Σ1 vacuum wins, and, in fact, since
Eq. (3.18b) is the minimum value Vweak can take, Σ1 is the
correct vacuum of the continuum theory. The full vacuum
manifold consists of all Σ ∈ SUð8Þ where Vweak retains the
value (3.18b), and therefore any representative of the true
vacuum must commute with all Tχ;λ

a .
In accordance with Ref. [11], the weak gauge-field

dynamics aligns the vacuum such that the corresponding
gauge fields remain massless, and the subgroup SUð2Þχ ×
SUð2Þλ is unbroken; no dynamical Higgs mechanism is
taking place. This disproves recent claims in the litera-
ture [21].
The inequality of Ref. [19], which guarantees that C > 0

in the broken phase, makes this a rigorous result. We stress
that the eight-flavor theory can be regularized such that all
the conditions of Ref. [19] are fulfilled. According to uni-
versality, the resulting effective potential, Eq. (3.16), must
be independent of all details of the lattice regularization.
In order to keep this paper self-contained we have

included a rederivation of the most general order-g2

continuum effective potential in Appendix A (for a recent
review, see Ref. [3]). As explained in the Appendix, when
applying the master formula (A3) we have to treat differ-
ently those generators that are proportional to γ5 on the
basis we are using, and those that are not. In the Appendix
we illustrate this by working out explicitly the case where
an Abelian gauge field is weakly coupled to the generator
T−
3 . We show that, even though this generator is axial with

respect to the basis that diagonalizes the same-site mass
matrix [see Eq. (3.15b)], the true vacuum realigns itself
along the one-link mass term, and the Abelian symmetry
ends up being vectorial and unbroken.

C. Comments on the lattice theory

The result of the previous subsection was derived after
taking the continuum and chiral limits. In a numerical lattice
computation, there are usually practical considerations

dictating the use of nonvanishing mass terms. In addition,
discretization effects are unavoidable.
Let us momentarily turn off the weak gauge couplings gχ

and gλ and thus the associated continuum effective potential
(3.16), as well as any mass terms. In other words, let us
consider the chiral limit at nonzero lattice spacing, with
SUð2Þχ × SUð2Þλ a global symmetry group. The order-a2

staggered effective potential corresponding to this situation
is recorded in Appendix B.8 It should be clear from the
complicated form of this effective potential that many
orientations of the vacuum will be inequivalent on the
lattice, even if they become equivalent in the massless
continuum theory for gχ ¼ gλ ¼ 0. As discussed in
Appendix B, one can easily envisage values for the
order-a2 low-energy constants (LECs) that would
prefer the vacuum Σ0, and others that would prefer the
vacuum Σ1.

9

We do not know the actual values of the LECs of the
eight-flavor staggered theory for a given number of colors.
There is a clear message, however, that does not require this
knowledge. In general, the vacuum of the theory will be
influenced by all sources: discretization effects, explicit
mass terms, and weak gauge fields. In the region where
they are comparable,

m=Λ ∼ a2Λ2 ∼ g2χ ∼ g2λ ; (3.19)

one would expect a complicated phase diagram. In the
previous subsection we considered the limiting case where

m=Λ; a2Λ2 ≪ g2χ ; g2λ : (3.20)

By contrast, the opposite limit

m=Λ; a2Λ2 ≫ g2χ ; g2λ (3.21)

will be dominated by discretization effects that in general
will have nothing to do with the continuum physics we are
after. According to one example we give in Appendix B, the
discretization effects prefer the Σ0 vacuum associated with
the same-site mass term. Close enough to the continuum
limit, we would then expect a crossover from the vacuum
Σ ∼ Σ0 to the true continuum vacuum Σ1 of the weakly
gauged theory. Thus, ensuring that a lattice study is
conducted with the correct parameter hierarchy (3.20), as
opposed to the hierarchy (3.21), may not be an easy task.

IV. SIX FLAVORS

In this section we consider a six-flavor theory. As before,
the fermion fields reside in the fundamental representation

8The symmetries of staggered fermions forbid order-a terms in
the effective potential.

9Note the change of basis of the Σ field performed in
Appendix B.
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of a strongly interacting SUðNcÞ gauge group with Nc ≥ 3,
that confines at a scale Λ. In the absence of additional weak
gauge fields, the massless continuum theory has an
SUð6ÞL × SUð6ÞR flavor symmetry, which is spontane-
ously broken to the diagonal, vectorial subgroup SUð6ÞV .
The lattice theory is constructed using three reduced

staggered fields, with two fields χi, i ¼ 1, 2, defined by the
projection (2.7), and a single field λ defined by the
alternative projection (2.9). The non-Abelian flavor sym-
metry is therefore SUð2Þ ¼ SUð2Þχ . Notice that the same
lattice theory can also be viewed as composed of one
standard staggered fermion, say χ2 þ λ, and a single
reduced staggered fermion, χ1.
Our interest in this particular discretization arises

because the model with Nc ¼ 3 was recently investigated
numerically in Ref. [21]. As in the eight-flavor case we will
first study two choices for the mass matrix, while keeping
the SUð2Þ flavor symmetry global. We will then study the
weak coupling of SUð2Þ to an additional gauge field, again
finding that the vacuum aligns such that this symmetry is
unbroken.
The six Dirac flavors of the continuum theory emerge

from the lattice fields according to

χ1 → ψ1;ψ2; χ2 → ψ3;ψ4; λ → ψ5;ψ6: (4.1)

We first choose one-link mass terms (2.11) for all reduced
staggered fields. On the continuum basis above the result-
ing mass term will be proportional to the 2 × 2 identity
matrix for each reduced staggered field. However, we will
now allow the Dirac fields originating from χ1 to have a
different mass from the rest, namely,

Z
d4xðm0ðψ̄1ψ1 þ ψ̄2ψ2Þ þmðψ̄3ψ3 þ ψ̄4ψ4

þ ψ̄5ψ5 þ ψ̄6ψ6ÞÞ: (4.2)

Alternatively, we may introduce a single-site mass
term (2.10) for the standard staggered field χ2 þ λ, and a
one-link mass term only for the remaining reduced
staggered fermion χ1. In the continuum limit, the mass
term is now

Z
d4xðm0ðψ̄1ψ1 þ ψ̄2ψ2Þ þmðψ̄5ψ3 þ ψ̄6ψ4

þ ψ̄3ψ5 þ ψ̄4ψ6ÞÞ; (4.3)

which corresponds to the mass matrix

M0 ¼ m

�
ξ 0

0 τ1

�
⊗ I2 ¼ m

0
BBBBBBBBB@

ξ 0 0 0 0 0

0 ξ 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

1
CCCCCCCCCA
:

(4.4)

In the block form in the middle, τ1 is the first Pauli
matrix, the upper-left entry is ξ ¼ m0=m, and the off-
diagonal entries represent 1 × 2 and 2 × 1 blocks
of zeros.
The mass matrix (4.4) can be rotated to a positive

diagonal matrix by a nonanomalous SUð6ÞL × SUð6ÞR
basis transformation. Using the vectorial SUð2Þ trans-
formation

P ¼
�
1 0

0 1ffiffi
2

p ðI2 − iτ2Þ
�

⊗ I2; (4.5)

which rotates ψ3 and ψ4 into ψ5 and ψ6, the mass matrix is
first brought to the form

P†M0P ¼ m

�
ξ 0

0 τ3

�
⊗ I2 ¼ m diagðξ; ξ; 1; 1;−1;−1Þ:

(4.6)

We then apply the nonanomalous chiral rotation

Q ¼ diagð1; 1; 1; 1; iγ5;−iγ5Þ (4.7)

arriving, analogous to the eight-flavor case, at

QP†M0PQ ¼ m diagðξ; ξ; 1; 1; 1; 1Þ: (4.8)

A. Global lattice flavor symmetry

The lattice SUð2Þ flavor symmetry that rotates χ1 into χ2
will, in the continuum limit, rotate ψ1 into ψ3 and ψ2 into
ψ4. Using the basis introduced in Eq. (4.1), the SUð2Þ
generators are

Ta ¼
�
τa 0

0 0

�
⊗ I2: (4.9)

We see that relative to the continuum basis where the one-
link mass term takes the form (4.2), the SUð2Þ transforma-
tions are vectorial, and unbroken provided that m0 ¼ m.
In contrast, the mass term (4.3) softly breaks the SUð2Þ

symmetry. We may recast the SUð2Þ generators Ta of
Eq. (4.9) on the basis in which the mass matrix (4.4) takes
the form (4.8), obtaining
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T 0
1 ¼ Q†P†T1PQ ¼ 1ffiffiffi

2
p

0
BB@

0 I2 −iγ5τ3
I2 0 0

iγ5τ3 0 0

1
CCA; (4.10a)

T 0
2 ¼Q†P†T2PQ¼ 1ffiffiffi

2
p

0
BB@

0 −iI2 −γ5τ3
iI2 0 0

−γ5τ3 0 0

1
CCA; (4.10b)

T 0
3 ¼ Q†P†T3PQ ¼ 1

2

0
BB@

2I2 0 0

0 −I2 iγ5τ3
0 −iγ5τ3 −I2

1
CCA: (4.10c)

We see that, relative to the “canonical” basis defined by the
mass matrix (4.8), the SUð2Þ group of Eq. (4.9) has turned
into an admixture of vectorial and axial transformations.

B. Gauging SUð2Þ
As was done in Ref. [21], one may promote the SUð2Þ

lattice flavor symmetry to a local symmetry by introducing
a new gauge field Vμa, with a coupling g that is weak at the
confinement scale Λ. Integrating out the weak gauge field
gives rise to the continuum effective potential

VweakðΣÞ ¼ −g2C
X
a

trðΣTaΣ†TaÞ; (4.11)

with, now, Σ ∈ SUð6Þ. Again C is a positive low-energy
constant [19].
Let us now compare the vacua Σ0 and Σ1 defined by

taking the chiral limit with the mass terms (4.3) and (4.2),
respectively. Explicitly, these vacua are

Σ0 ¼
�
1 0

0 τ1

�
⊗ I2; Σ1 ¼ I6: (4.12)

Notice that these vacua have a larger symmetry than themass
terms from which they have emerged, because the chiral
limit does not depend on the ratio ξ ¼ m0=m. We find that

VweakðΣ0Þ ¼ −2g2C; (4.13a)

VweakðΣ1Þ ¼ −12g2C: (4.13b)

The conclusion is analogous to the previous section. The true
vacuum is Σ1. It is the orientation that was selected by
choosing one-link mass terms for all reduced staggered
fields. Once again the vacuum aligns such that the gauged
SUð2Þ flavor group is unbroken. In terms of the continuum
theory, we have therefore gauged a subgroup of the
unbroken diagonal SUð6ÞV flavor symmetry group.

It follows that the apparent “Higgsing” of the weak
gauge fields claimed in Ref. [21] must be a lattice artifact,
caused by contributions to the effective potential that
vanish in the continuum limit.

V. CONCLUSION

A strongly coupled theory with multiple standard or
reduced staggered fermions has a lattice flavor symmetry
group which is smaller than the flavor symmetry group of
its continuum limit. If all fermions are massless, some of
the lattice flavor symmetries will have generators of the
form Tϵ

a ¼ TaϵðxÞ, where Ta is an element of some Lie
algebra, and ϵðxÞ is defined in Eq. (2.4). Whether such a
symmetry should be interpreted as a vector or an axial
symmetry in the continuum limit depends on the mass
terms that may be added to the theory, as explained in
Sec. II. If the massless limit is taken after the continuum
limit, the embedding of the flavor symmetry of the lattice
theory into the larger flavor symmetry of the continuum
theory will depend on the mass terms originally chosen on
the lattice. Of course, in the continuum limit this is
irrelevant, because the flavor symmetry emerging in that
limit will always be the same. In both concrete examples
considered in this article, the emerging symmetry is
SUðNfÞL × SUðNfÞR, with Nf ¼ 8 or Nf ¼ 6, spontane-
ously broken to the diagonal subgroup SUðNfÞ in the
massless limit.
The situation changes if one chooses to gauge the lattice

flavor symmetry group, or a subgroup of it. With staggered
fermions, global symmetries with generators Tϵ

a may also
be gauged. Since it is customary to interpret these sym-
metries as axial symmetries, this raises the intriguing
prospect of obtaining an exact chiral gauge group from
the lattice. Moreover, since the strong dynamics sponta-
neously breaks axial symmetries in the massless limit,
naturally a Higgs mechanism would take place, with the
weak gauge fields coupled to the Tϵ

a acquiring a mass.10

Reference [21] claims to find evidence for this mechanism
from numerical studies of the six-flavor and eight-flavor
theories we discussed in this article.
However, the analysis of Ref. [11] of the effective

potential generated by the weak gauge fields, combined
with the rigorous inequality of Ref. [19], implies that this
cannot happen in the continuum limit. In making this
statement we are, of course, invoking universality in that
we assume that the form of the continuum effective
potential must be independent of all details of the lattice
regularization.
It is the dynamics of the weak gauge fields themselves

that gives rise to vacuum alignment. The true vacuum
aligns such that all the lattice flavor symmetries that have

10Undoing this Higgs mechanism by simply turning off the
strong interactions would then lead to a genuine chiral gauge
theory with unbroken gauge symmetry on the lattice.
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been weakly gauged, including those generated by the Tϵ
a,

become unbroken vector symmetries in the continuum
limit. Indeed, as we have explained in detail, it is always
possible to choose mass terms for the staggered fields such
that all fermions will be massive while none of the lattice
flavor symmetries are broken by these mass terms. It
follows that none of these symmetries will be spontane-
ously broken when these mass terms are taken to zero. In
other words, the flavor structure of the lattice theory will
always make it possible for “complete” vacuum alignment
to take place, so that all the gauge fields that were coupled
weakly to lattice flavor currents remain massless.
It follows that the numerical evidence presented in

Ref. [21] must be the consequence of lattice artifacts.
Indeed, away from the continuum limit, lattice artifact
contributions to the effective potential for the vacuum may
compete with the contribution generated by the dynamical
flavor gauge fields. A more detailed study of the effective
potential along the lines of Ref. [17] is possible, but outside
the scope of this article.
A competition between lattice artifacts and the dynamics

of weak gauge fields may arise for other fermion for-
mulations as well. For a study of these effects with Wilson
fermions, we refer to Ref. [23].
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APPENDIX A: THE CONTINUUM
EFFECTIVE POTENTIAL

In this Appendix we rederive the continuum effective
potential for the nonlinear Σ field induced by a single weak
gauge-boson exchange in the underlying theory. This can
be done via an elegant spurion trick [24].11

As usual we will take the strong sector to be an SUðNcÞ
gauge theory withNc ≥ 3, coupled to Nf Dirac fields in the
fundamental representation.12 The global symmetry of the
massless theory is SUðNfÞL × SUðNfÞR. We introduce
global flavor spurions QL ¼ QL

aTa, QR ¼ QR
aTa, where

a ¼ 1; 2;…; N2
f − 1. Under gL;R ∈ SUðNfÞL;R they trans-

form as QL;R → gL;RQL;Rg†L;R. The partition function is

ZðQL;QRÞ ¼
Z

d½A�d½W�d½ψ �d½ψ̄ � exp½−SSðAμ;ψ i; ψ̄ iÞ

− SWðWμ;ψ i; ψ̄ i; QL;QRÞ�; (A1)

where SS is the action for the strong dynamics, with Aμ the
SUðNcÞ gauge field, and ψ i, ψ̄ i, i ¼ 1; 2;…; Nf, the quark
fields. The weakly coupled dynamics is accounted for by

SW ¼ 1

4
ð∂μWν − ∂νWμÞ2 þ gWμðQL

aJLμa þQR
aJRμaÞ;

JRμa ¼
1

2
ψ̄ iγμð1þ γ5ÞTaijψ j;

JLμa ¼
1

2
ψ̄ iγμð1 − γ5ÞTaijψ j: (A2)

The partition function ZðQL;QRÞ is invariant under global
SUðNfÞL × SUðNfÞR transformations. The flavor indices
are carried by the spurionsQL,QR, while theWμ is a single
gauge field, inert under the flavor transformations. We get
away with not having a full set of flavored gauge fields
because we are only aiming to extract the effect of a single
weak gauge-boson exchange.
To order g2, the most general effective potential

consistent with the flavor symmetry is

VeffðΣÞ ¼ g2CRRtrðQRQRÞ þ g2CLLtrðQLQLÞ
− g2CLRtrðQLΣQRΣ†Þ: (A3)

The only part that depends on the nonlinear field is the
last term. The corresponding LEC, CLR, may be isolated
by assuming that the vacuum state is the identity matrix INf

,
so that13

∂
∂QL

a

∂
∂QR

b
VeffðINf

Þ ¼ −
g2

2
δabCLR: (A4)

In order to relate CLR to the microscopic theory we
apply the same differentiations to the partition function
ZðQL;QRÞ, finding

CLR ¼ 1

16π2

Z
∞

0

dq2q2ΠLRðq2Þ; (A5)

where (P⊥
μν is the transverse projector)

1

2
δabq2P⊥

μνΠLRðq2Þ ¼ −
Z

d4xeiqxhJLμaðxÞJRνbð0Þi: (A6)

According to Ref. [19], ΠLRðq2Þ ≥ 0, and so is CLR ≥ 0.
We next explain how to use the master formula (A3)

when various subgroups of the flavor symmetry group are

11For early discussions of the continuum effective potential,
see for example Ref. [25].

12The derivation in this Appendix applies to any Nf ≥ 2.

13Here we assume the standard orthogonality relation
trðTaTbÞ ¼ 1

2
δab. Notice that the generators discussed in the

main text are normalized differently.
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weakly gauged. As a first example, let us weakly gauge the
SUð2Þχ of Sec. III. We obtain the contributions of the weak
gauge fields Vμa, a ¼ 1, 2, 3, to the effective potential of
Eq. (3.16), one at a time, as follows. On the continuum
basis (3.1), the weak gauge field Vμa couples to a vector
current JLμa þ JRμa, with a generator given explicitly in
Eq. (3.13a). We therefore set QL

a ¼ QR
a ¼ 1 for the left

and right spurions associated with this particular generator,
while setting to zero all other spurions. With the obvious
identification g2CLR → g2χC, after summing over the three
generators, we obtain the first term on the right-hand side of
Eq. (3.16). The same argument applies to the second term.
As another example, suppose that we weakly gauge only

the Uð1Þ symmetry generated by T−
3 of Eq. (3.14b), with

coupling constant e. We will work out the vacuum energies
for the two vacua Σ0;1 of Sec. III. We first do the calculation
using, as before, the basis (3.1). On this basis, the Abelian
gauge field couples to a vector current whose associated
generator is given explicitly in Eq. (3.14b). Following the
same steps, the effective potential is

Vweak ¼ −e2CLRtrðΣT−
3Σ†T−

3 Þ; one-link basis: (A7)

The vacuum energies are

VweakðΣ0Þ ¼ þ8e2CLR; (A8a)

VweakðΣ1Þ ¼ −8e2CLR: (A8b)

As expected, the vacuum aligns with Σ1, so that the Uð1Þ
symmetry is vectorial and unbroken.
Let us repeat the calculation, but now using the basis in

which the same-site mass term is diagonal, Eq. (3.12).
According to Eq. (3.15b), on this basis the generator T−

3 is
axial, which implies that we now have QL ¼ −QR ≡ ~T−

3 in
Eq. (A3). Therefore, this time we find

Vweak ¼ þe2CLRtrðΣ ~T−
3Σ† ~T−

3 Þ; same-site basis:

(A9)

The actual value ~T−
3 of the spurions can be read off from the

flavor matrix that multiplies γ5 in Eq. (3.15b) for a ¼ 3,
leading to

~T−
3 ¼ τ2 ⊗ I4: (A10)

We next reevaluate Vweak on the two vacua. Now we must
use the expressions for Σ0;1 appropriate for the basis (3.12).
The vacuum oriented along the same-site mass term is
Σ0 ¼ I8, and plugging this into Eq. (A9) reproduces
Eq. (A8a). Analogous to Eq. (3.12), the vacuum oriented
along the one-link mass term is now

Σ1 ¼ QP†I8PQ ¼ Q2 ¼ τ3 ⊗ I4; (A11)

and plugging this into Eq. (A9) reproduces Eq. (A8b).

As it must be, the vacuum energies are independent of
the basis we choose. This example demonstrates explicitly
that, even if the weakly gauged (Abelian) generator looks
axial on some basis, the true vacuum will reorient itself
such that, relative to it, that generator is vectorial and
unbroken.

APPENDIX B: STAGGERED EFFECTIVE
POTENTIAL AT ORDER a2

When writing down the staggered low-energy effective
theory it is customary to use a basis for the Σ field in which
the same-site mass term is diagonal in flavor (or taste)
space. Applying the change of basis Σ → QP†ΣPQ to the
nonlinear field introduced in Sec. III B [cf. Eq. (3.12)], the
order-a2 staggered effective potential for the eight-flavor
theory is [15–17]

V ¼ U þ U 0; (B1)

where

−U ¼ C1trðξð2Þ5 Σξð2Þ5 Σ†Þ

þ C3

2

X
ν

½trðξð2Þν Σξð2Þν ΣÞ þ H:c:�

þ C4

2

X
ν

½trðξð2Þν5 Σξ
ð2Þ
5ν ΣÞ þ H:c:�

þ C6

X
μ<ν

trðξð2Þμν Σξð2Þνμ Σ†Þ; (B2)

−U 0 ¼ C2V

4

X
ν

½trðξð2Þν ΣÞtrðξð2Þν ΣÞ þ H:c:�

þ C2A

4

X
ν

½trðξð2Þν5 ΣÞtrðξð2Þ5ν ΣÞ þ H:c:�

þ C5V

2

X
ν

½trðξð2Þν ΣÞtrðξð2Þν Σ†Þ�

þ C5A

2

X
ν

½trðξð2Þν5 ΣÞtrðξð2Þ5ν Σ
†Þ�: (B3)

Here

ξð2ÞB ¼
�
ξB 0

0 ξB

�
; (B4)

and

fξBg ¼ fI; ξμ; ξμ<ν; ξμ5; ξ5g (B5)

is a basis for 4 × 4 Hermitian matrices in flavor space,
constructed in the usual way from the matrices ξμ satisfying
the Dirac algebra.
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Depending on the actual values of the LECs, the vacuum
state will have different orientations. A sufficient condition
that the vacuum be oriented along the same-site mass
term (in the basis used here, this is the identity matrix I8)

is that C1, C3, C4 and C6 are all positive, while
C2A;V ¼ C5A;V ¼ 0. A different parameter range, where
the vacuum is oriented with the one-link mass term, is when
C2V and C5V are positive, and the remaining LECs vanish.
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