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We apply the eigenvectors from a variational analysis to successfully extract the three-quark color-
singlet wave functions of even-parity excited states of the nucleon. We explore the first four states in the
spectrum excited by the standard nucleon interpolating field. We find that the states exhibit a structure
qualitatively consistent with a constituent quark model, where the ground, first, second, and third excited
states have 0, 1, 2, and 3 nodes in the radial wave function of the d quark about two u quarks at the origin.
Moreover, the radial amplitude of the probability distribution is similar to that predicted by constituent
quark models. We present a detailed examination of the quark-mass dependence of the probability
distributions for these states, searching for a nontrivial role for the multiparticle components mixed in the
finite-volume QCD eigenstates. Finally we examine the dependence of the d-quark probability distribution
on the positions of the two u quarks. The results are fascinating, with the underlying S-wave orbitals
governing the distributions even at rather large u-quark separations.
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I. INTRODUCTION

An examination of the three-quark color-singlet wave
functions of quarks bound within a hadron provides deep
insights into the underlying dynamics of the many-body
theory of QCD. It enables a few-body projection of the
underlying physics that can be connected with models,
shedding light on the essential effective phenomena emerg-
ing from the complex dynamics of QCD.
The hadron spectrum is the manifestation of the highly

complex dynamics of QCD. It is an observable that is
readily accessible in collider experiments. While the
quantum numbers of the states can be ascertained, proper-
ties providing more insight into the structure of the
resonances often remain elusive to experiment. We aim
to provide some insight into the underlying dynamics
governing the structure of these states.
In quantum field theory, a Schrödinger-like proba-

bility distribution can be constructed for bound states by
taking a simplified view of the full quantum field theory
wave functional in the form of the Bethe-Salpeter wave
function [1], herein referred to as simply the “wave
function.” Recent advances in the isolation of nucleon
excited states through correlation-matrix-based varia-
tional techniques in lattice QCD now enable the explo-
ration of the structure of these states and how these
properties emerge from the fundamental interactions
of QCD.
All QCD eigenstates in the finite-volume lattice are

superpositions of single and multiparticle states. Their
Fock-space structure is complicated, containing the three
valence quarks and any number of quark-antiquark pairs,
the latter providing overlap with multiparticle components.
In calculating a three-quark color-singlet wave function, we

are projecting out a single-particle component of this
otherwise complicated QCD eigenstate.
In this paper, we extend earlier results [2] focusing on the

wave function of the Roper excitation [3] to the four lowest
lying even-parity states excited by the standard χ1 inter-
polating field which incorporates a scalar diquark con-
struction. Our use of the label Roper for the first even-parity
excitation of the nucleon observed in our lattice QCD
simulations has a historical context. In constituent quark
models, the Roper is identified as the first even-parity
excitation of the nucleon. It involves a 2S excitation of a
quark and displays one node. As we observe this wave
function in our lattice simulations, we refer to it as the
Roper in the same spirit. However, the large mass of
this state observed on the finite-volume lattice makes this
reference somewhat controversial, and we discuss this
further in the context of our findings.
We begin by examining the quark-mass dependence of

the probability distributions for the even-parity states. Here
we search for a signature of multiparticle components
mixed in the finite-volume QCD eigenstates at the two
largest quark masses where the states sit close to the
multiparticle thresholds. We also explore the dependence of
the d-quark probability distribution on the positions of the
two u quarks along an axis through the center of the
distribution.
In presenting our results we make extensive use of

isovolume and surface plots of the probability distributions
for the quarks. Such visualizations have already been used
to illustrate physical effects such as Lorentz contraction
[4,5], the effect of external magnetic fields [6] and finite
volume effects [2,7], for example.
Early explorations of these states were based on

nonrelativistic constituent quark models. The probability
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distributions of quarks within hadrons were determined
using a one-gluon-exchange potential augmented with a
confining form [8,9]. These models have been the corner-
stone of intuition of hadronic probability distributions for
many decades. In this investigation, we confront these early
predictions for quark probability distributions in excited
states directly via lattice QCD.
In a relativistic gauge theory, the concept of a hadronic

wave function is not unique, and the Bethe-Salpeter wave
function underlying the probability distributions can be
defined in several different forms. For example, the
gauge-invariant Bethe-Salpeter amplitude exploits a string
of flux to connect the quarks annihilated at different spatial
positions in a gauge-invariant manner. As this leads to an
explicit path dependence, an average over the paths is
desirable. Another approach considers Bethe-Salpeter ampli-
tudes in which the gauge degree of freedom is fixed to a
specific gauge. In lattice field theory, Coulomb and Landau
gauges are most common due to their local gauge-fixing
procedure. The Landau gauge provides distributions that
compare favorably with constituent quark model predictions
[2], and therefore, we select the Landau gauge herein.

II. LATTICE TECHNIQUES

Robust methods have been developed that allow the
isolation and study of the states associated with these
resonances in lattice QCD [2,10–20]. In this study, we
apply the variational method [21,22] to extract the ground
state and first three P11 excited states of the proton
associated with the Roper [3] and other higher energy
P11 states. We then combine this with lattice wave-function
techniques to calculate the probability distributions of these
states at several quark masses and quark positions. We use
the 2þ 1 flavor 323 × 64 PACS-CS configurations [23] at a
pion mass as low as 156 MeV.
The wave function of a hadron is proportional to the

parity-projected [24] two-point Green’s function,

G�
ijð~p; tÞ ¼

X
~x

e−i~p·~xtrðγ0 � 1ÞhΩjTfχið~x; tÞχ̄jð~0; 0ÞgjΩi;

(1)

where χi are the hadronic interpolating fields. In the case of
the proton, the most commonly used interpolator is given
by

χ1ðxÞ ¼ ϵabcðuTaðxÞCγ5dbðxÞÞucðxÞ; (2)

with the corresponding adjoint given by

χ̄1ð0Þ ¼ ϵabcðd̄bð0ÞCγ5ūTað0ÞÞūcð0Þ: (3)

In order to construct the wave function, the quark fields
in the annihilation operator are each given a spatial
dependence,

χ1ð~x; ~y; ~z; ~wÞ ¼ ϵabcðuTað~xþ ~yÞCγ5dbð~xþ ~zÞÞucð~xþ ~wÞ;
(4)

while the creation operator remains local. This generalizes
Gð~p; tÞ to a wave function proportional to Gð~p; t; ~y; ~z; ~wÞ.
In principle, we could allow each of these coordinates, ~y, ~z,
~w, to vary across the entire lattice; however, we can reduce
the computational cost by taking advantage of the hyper-
cubic rotational and translational symmetries of the lattice.
A near-complete description of the probability distribution
of a particular quark within the proton can be formed by
separating two of the quarks along a fixed axis and
calculating the third quark’s wave function for every lattice
site. For this study, we focus on the probability distribution
of the d quark from Eq. (4) with the u quarks being
separated along the x axis through the center of the
distribution, i.e.,

χ1ð~x; ~d1; ~z; ~d2; tÞ ¼ ϵabcðuTað~xþ ~d1; tÞ
× Cγ5dbð~xþ ~z; tÞÞucð~xþ ~d2; tÞ: (5)

where ~di ¼ ðdi; 0; 0Þ, d1 > 0, d2 ¼ −d1 for separations
across an even number of lattice sites and d2 ¼ −ðd1 − 1Þ
for an odd separation. A symmetrized wave function is
presented by averaging the wave functions calculated
with the interpolating field in Eq. (5) combined with the
wave functions produced by the same interpolating field
where d1↔d2.
Landau gauge is a smooth gauge that preserves the

Lorentz invariance of the theory. While the size and shape
of the wave function are gauge dependent, our selection of
Landau gauge is supported by our results. For example, the
ground-state wave function of the d quark in the proton is
described accurately by the nonrelativistic quark model
using standard values for the constituent quark masses and
string tension of the confining potential [2]. Therefore, this
gauge provides a foundation for a more comprehensive
wave-function examination.
To isolate energy eigenstates, we use the correlation

matrix or variational method [21,22]. As we are interested
in the wave functions for states at rest, we select ~p ¼ 0
in Eq. (1). To ensure that the matrix elements are all
∼Oð1Þ, each element of GijðtÞ is normalized by the

diagonal elements of Gð0Þ as GijðtÞ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Giið0Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gjjð0Þ

p Þ
(no sum on i or j). Using an average of fUg þ fU�g
configurations which have equal weight in the QCD action,
our construction of the two-point functions is real [25,26].
A linear superposition of interpolators ϕ̄α ¼ P

jχ̄ju
α
j

creating state α provides the following recurrence relation:

Gijðt0 þ ΔtÞuαj ¼ e−mαΔtGijðt0Þuαj ; (6)

from which right and left eigenvalue equations are obtained
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½ðGðt0ÞÞ−1Gðt0 þ ΔtÞ�ijuαj ¼ cαuαi ; (7)

vαi ½Gðt0 þ ΔtÞðGðt0ÞÞ−1�ij ¼ cαvαj ; (8)

with cα ¼ e−mαΔt. The eigenvectors for state α, uαj and vαi
provide the eigenstate-projected correlation function

Gα
�ðtÞ≡ vαi G

�
ijðtÞuαj ; (9)

with parity �. The effective mass can then be calculated
from the projected two-point functions by mðtÞ ¼
log ðGðtÞ=Gðtþ 1ÞÞ. While the effective mass is insensi-
tive to a wide range of parameters [19], we follow Ref. [19]
and select t0 to be two time slices after the source
with Δt ¼ 2.
Different interpolators exhibit different couplings to the

proton ground and excited states and hence can be used to
construct a variational basis. The limited number of local
interpolators restricts the size of the operator basis [10]. To
remedy this, we exploit the smearing dependence of the
coupling of states to one or more standard interpolating
operators in order to construct a larger variational basis
where the χi and χ̄j from Eq. (1) contain a smearing
dependence. This method has been shown to allow access
to states associated with resonances such as the Roper
[2,19] and the Λð1405Þ [27].
Our approach contrasts alternative approaches where

the smearing extent of the fermion sources is fixed at a
single level, either through the use of a single source
smearing or through a fixed number of Laplacian eigen-
vectors used in the distillation approach. In this case, a
variety of covariant derivative operators are drawn upon to
form an effective basis.
Instead, our approach focuses on differences in the

smearing extents of the fermion sources and includes
unconventionally large smearings. Originally, the motiva-
tion was to obtain differing overlaps of excited states with
the smeared sources. For example, Fig. 1 of Ref. [19]
illustrates the differences in excited-state superpositions
obtained with this approach. However, the results presented
herein establish that the ability to set up the node structure
of these states is key to isolating highly excited states. The
results also explain why all but the highest states are robust
against variations in the correlation-matrix basis [19].
The nonlocal sink operator used to construct the wave

function is unable to be smeared, and hence the standard
technique of Eq. (9) cannot be applied. However, Eq. (7)
illustrates that it is sufficient to isolate the state at the source
using the right eigenvector. Thus, the probability distribu-
tions are calculated with each smeared source operator, and
the right eigenvectors calculated from the standard varia-
tional analysis are then applied in order to extract the
individual states of interest.
Our focus on χ1 in this investigation follows from the

results of Ref. [28], where the lowest lying excitation of the

nucleon was shown to be predominantly associated with
the χ1 interpolating field. The results from their 8 × 8
correlation matrix of χ1 and χ2 ¼ ϵabcðuTaðxÞCdbðxÞÞ ×
γ5ucðxÞ revealed that χ2 plays a marginal role in exciting
the Roper. The coefficients of the Roper source eigenvector
multiplying χ̄2 are near zero. Further comparison with
Ref. [28] identifies the third state extracted herein as the
fifth state of the 12 states identified and the fourth state
herein as the tenth state.
The insensitivity to the size of the correlation matrix

when the operators χ1 and χ2 are not strongly mixed is
illustrated in Fig. 1 presenting the quark-mass dependence
of these four states which are examined in detail herein.
Results from the 4 × 4 correlation matrix of χ1 alone agree
with previous results from Ref. [28] obtained from an 8 × 8
correlation matrix with χ1 and χ2.
The quark-mass flow of these states tracked by their

associated eigenvectors [28] is not smooth and suggests
the presence of avoided level crossings as one transi-
tions from the heaviest two quark masses to lightest
three quark masses. At the two heaviest quark masses, it
is seems likely these states are dominated by multi-
particle Nπ components, whereas at the lighter three
quark masses, single-particle components are more
dominant. We search for evidence of this in the wave
functions of these states.
In summary, the wave function ψð~zÞ for the d quark

in state number α having momentum ~p observed at
Euclidean time t with the u quarks at positions ~d1 and
~d2 is

FIG. 1 (color online). The mass dependence of the four lowest
lying even-parity eigenstates excited by the χ1 interpolating field.
Results from the 4 × 4 correlation matrix of χ1 alone (small
symbols offset to the right) are compared with previous results
from Ref. [28] obtained from an 8 × 8 correlation matrix with χ1
and χ2 (large symbols offset to the left). These lattice results are
compared with the S- and P-wave noninteracting multiparticle
energy thresholds on the finite-volume lattice. Plot symbols track
the eigenvector associated with each state.
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ψα
dð~p; t; ~d1; ~d2; ~zÞ ¼

X
~x

e−i~p·~xtrðγ0 þ 1Þ

× hΩjTfχ1ð~x; ~d1; ~z; ~d2; tÞ
× χ̄jð~0; ~0; ~0; ~0; ~0ÞgjΩiuαj ; (10)

where χ1ð~x; ~d1; ~z; ~d2; tÞ is given by Eq. (5).
As discussed above, χ1 has the spin-flavor construct that

is most relevant to the excitation of the Roper from the
QCD vacuum. As such, it is an ideal choice for revealing
the spatial distribution of quarks within the Roper.
However, the selection of χ1 in Eq. (10) is not unique,
and other choices are possible. For example, the selection
of χ2 would reveal small contributions to the Roper wave
function where vector diquark degrees of freedom are
manifest. Similarly, D-wave contributions could be
resolved through the consideration of a spin-3=2 isospin-
1=2 interpolating field at the sink. Research exploring these
aspects of the wave functions is in progress.

III. SIMULATION RESULTS

A. Lattice parameters

We use the 2þ 1 flavor 323 × 64 configurations created
by the PACS-CS Collaboration [23] constructed with the
Iwasaki gauge action [29] and the OðaÞ-improved Wilson
action [30] with β ¼ 1.90, giving a lattice spacing of
0.0907ð13Þ fm. The hopping parameters are 0.13700,
0.13727, 0.13754, 0.13770, and 0.13781 giving pion
masses of 702, 570, 411, 296, and 156 MeV, respectively.
For each quark mass we consider 398, 391, 447, 395, and
198 gauge field configurations, respectively, and at the
lightest quark mass, we increase statistics through the
consideration of four sources per configuration distributed
evenly along the time axis.
To isolate the QCD eigenstates, a 4 × 4 variational basis

is constructed using the χ1 operator with four smearing
levels: 16, 35, 100, and 200 sweeps [19] of gauge-invariant
Gaussian smearing [31]. These smearing levels correspond
to smearing radii of 2.37, 3.50, 5.92, and 8.55 lattice units
or 0.215, 0.317, 0.537, and 0.775 fm, respectively.
The choice of variational parameters t0 ¼ 2, Δt ¼ 2

relative to the source position is ideal, resulting in the
effective mass plateaus of the states commencing at t ¼
t0 ¼ 2 as desired [2]. This indicates that the number of
states contributing significantly to the correlation functions
of the correlation matrix at t0 ¼ 2 equals the dimension of
the correlation matrix. As such, we examine the wave
functions of all four states with the caution that the fourth
state is most susceptible to excited state contamination. In
reporting the wave functions, we select the mid point of the
correlation matrix analysis at t ¼ 3. The wave functions
observed for all our states show an approximate symmetry
over the eight octants surrounding the origin. To improve
our statistics, we average over these eight octants when

d1 ¼ d2 ¼ 0 and an average over the four quadrants
sharing an axis with the u-quark separation at all other
values of d1 and d2.
We fix to Landau gauge by maximizing the Oða2Þ-

improved gauge-fixing functional [32]

F Imp ¼
X
x;μ

Retr

�
4

3
UμðxÞ

−
1

12u0
ðUμðxÞUðxþ μ̂Þ þ h:c:Þ

�
(11)

using a Fourier transform accelerated algorithm [33].
In carrying out our calculations, we average over the

equally weighted fUg and fU�g link configurations as an
improved unbiased estimator [25]. The two-point function
is then perfectly real, and the probability density is propor-
tional to the square of the wave function. In this analysis,
we choose to look at the zero-momentum probability
distributions.

B. Wave functions and constituent quark
model predictions

Figure 2 presents the wave functions for the first three
states at our lightest quark mass providingmπ ¼ 156 MeV.
In the excited states, the wave function changes sign
revealing a node structure consistent with 2S and 3S
excited state wave functions. To further explore the details
of these wave functions, we construct a probability density
from the square of the wave function and plot it on a
logarithmic scale in Fig. 3.
Our point of comparison with previous models of quark

probability distributions comes from a nonrelativistic
constituent quark model with a one-gluon-exchange moti-
vated Coulomb-plus-ramp potential. The spin dependence
of the model is given in Ref. [9], and the radial Schrödinger
equation is solved with boundary conditions relevant to the
lattice data obtained in a finite volume with periodic
boundary conditions; i.e., the derivative of the wave
function is set to vanish at a distance Lx=2 from the origin.
We consider standard values of the string tension

ffiffiffi
σ

p ¼
440� 40 MeV and optimize the constituent quark mass to
minimize the logarithmic difference between the quark
model and lattice QCD ground-state probability distribu-
tions illustrated in the left-hand column of Fig. 3. We find
best-fit results for

ffiffiffi
σ

p ¼ 400 MeV, and the optimal con-
stituent quark masses range from 340 to 350 MeVover the
range of PACS-CS quark masses available. The quark-mass
dependence is more subtle than expected and may be
associated with the finite volume of the lattice suppressing
changes in the wave function as the quark mass is varied. At
the lightest quark mass, just above those of nature, the value
of 340 MeV is in accord with those traditionally used to
describe the hadron spectrum or baryon magnetic moments.
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The lattice data for the first three states and all five quark
masses are compared with the constituent quark model in
Fig. 3. The wave functions are normalized to one at the
origin. As the quark model parameters are determined

using only the ground state probability distribution, the
probability densities illustrated for the excited states are
predictions.
An examination of the left-hand column of Fig. 3 reveals

the subtle changes associated with the quark mass. The
probability distribution of the heaviest ensemble falls off
faster and requires a slightly heavier constituent quark mass
to fit the lattice results. This subtle mass dependence is
consistent with early, quenched wave-function studies [34].
By comparing the lattice probability distribution for the

d quark in the first excited state to that predicted by the
constituent quark model in the middle column of Fig. 3, we
see a qualitative similarity but with important differences.
The quark model predicts the behavior of the lattice wave
function very well within the node and predicts the position
of the node rather well, particularly at the lightest quark
mass. However, the shape of the wave-function tail is very
poorly predicted, suggesting an important role for degrees
of freedom not contained within the quark model. For
example, the long-range pion tail of multiparticle compo-
nents could alter the distribution of quarks within the state
on the lattice. The poorest agreement is for the heaviest
ensembles, where the baryon mass is in close proximity to
the πN scattering threshold.
Similar comments apply to the second excited state

illustrated in the right-hand column of Fig. 3. While the
positions of the nodes are predicted approximately, the
amplitudes of the wave function between the nodes are very
accurately predicted by the quark model. Again, the largest
discrepancies are for the heaviest states where the baryon
mass is in close proximity to the ππN scattering threshold.

C. Quark-mass dependence of the
probability distributions

1. Ground-state distribution

The mass dependence of the ground-state probability
distribution for the d quark about the two u quarks fixed at
the origin is illustrated in the two left-hand columns of
Fig. 4. The plots are arranged from heaviest to lightest
ensembles, with quark mass decreasing down the page.
Although a Gaussian distribution is used to excite the

ground state from the vacuum, the well-known sharp-
peaked shape associated with the Coulomb potential is
reproduced in the probability density for all quark masses.
This is best observed in the left-most column where a
surface plot reports the probability-density values in the
plane containing the two u quarks at the origin.
Because the total probability density is normalized to

unity in the spatial volume, the height of the peak drops as
the d quark becomes light and moves to larger distances
from the u quarks. The surface plot provides the clearest
representation of the mass dependence of the ground state.
This gentle broadening of the distribution is also

reflected in the isovolume rendering of the projected

FIG. 2. The wave function of the d quark in the proton about the
two u quarks fixed at the origin for the lightest quark-mass
ensemble providing mπ ¼ 156 MeV. From the top down, the
plots correspond to the ground, first, and second excited states
observed in our lattice simulation. The wave function changes
sign in the excited states and reveals a node structure consistent
with 1s, 2S, and 3S states.
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FIG. 3. The probability distributions for the d quark about two u quarks fixed at the origin obtained in our lattice QCD calculations
(crosses) are compared with the quark model prediction (solid curve) for the ground (left column), first (middle column), and second
(right column) excited states. Quark masses range from the heaviest (top row) through to the lightest (bottom row). The ground state
probability distribution of the quark model closely resembles the lattice data for all masses considered. The first excited states matches
the lattice data well at small distances, but the node is placed further from the center of mass in the quark model, after which the lattice
data show a distinct second peak, whereas the quark model rises to the boundary. It is interesting that the most significant difference is
observed where long-distance physics associated with pion-cloud effects not included in the quark model are significant. For the third
state, the amplitudes of the shells between the nodes of the wave function are predicted well.
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FIG. 4 (color online). The dependence of the d-quark probability distribution on the masses of the quarks in the proton (two left-hand
columns) and its first excited state (two right-hand columns). The u quarks are fixed at the origin at the center of the plot. The quark mass
decreases from heaviest (top row) to lightest (bottom row). For each mass and state, the probability density is normalized to unity over
the spatial volume of the lattice. The isovolume threshold for rendering the probability distribution in the second and fourth columns is
3.0 × 10−5. The three-dimensional axis grid provides an indication of the positions of the 323 lattice sites for the isovolume. The bottom
plane of the grid indicates the ðz1; z2Þ coordinates of the lattice sites for the surface plots. The PACS-CS scheme for determining the
lattice spacing provides a constant lattice spacing for all masses considered with a ¼ 0.0907ð13Þ fm.
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ground-state probability density in the second column of
Fig. 4. The isovolume has been cut into the plane
containing the u quarks at the origin. The threshold for
rendering the probability distribution is 3.0 × 10−5,
revealing a smooth sphere for the surface of the probability
distribution. The flow of probability-density values is
depicted by a color map similar to that used for the surface
plot. The colors in the surface and isovolume plots illustrate
the flow of data values from the maximum value, rendered
in red, to the minimum value, rendered in blue.
Rendering the probability density down to the threshold

value of 3.0 × 10−5 does not reveal any significant finite
volume effects in the probability densities of the ground
state at any of the quark masses considered. This is in spite
of the fact that the lightest ensemble has mπL ¼ 2.23. As
we see, this absence of finite-volume effects is in sharp
contrast to all of the excited states examined, and this
indicates a nontrivial role for the finite volume in the
nucleon mass spectrum.
It is well known that ensembles with mπL ∼ 2 display

significant finite volume effects in the ground-state hadron
mass spectrum. These effects can be revealed in the ground-
state wave functions by dropping the rendering threshold to
lower values. These finite volume effects are examined
further in Sec. III D 3.

2. First excited state

Lattice results for the d-quark probability distribution
about the two u quarks at the origin in the first excited state
of the proton are illustrated in the third and fourth columns
of Fig. 4. In the light quark-mass regime, this first excited
state is associated with the Roper resonance. The darkened
ring around the peak in the surface plot indicates a node in
the probability distribution, consistent with a 2S radial
excitation of the d quark. The node is better illustrated in
the isovolume renderings where the probability density
drops below the rendering cutoff of 3.0 × 10−5 and leaves a
void between the inner and outer shells of the state.
It is interesting that the narrowest distribution is seen at

the heaviest quark masses, even though these states have
energies coincident with the πN scattering threshold.
Enforcing a color-singlet structure in annihilating the
three spatially separated quarks prevents a direct observa-
tion of the two-particle components contained in the
dynamics governing the energy of the state. In this case,
the multiparticle components only modify the three-quark
distributions.
The outer edge of the isovolume reveals interesting

boundary effects which may be associated with the neces-
sary finite-volume effects of multiparticle components
mixed in the state. The deviation from spherical symmetry
in the outer shell is reflected in the energy of the excited
state observed in the finite-volume lattice simulation. At the
lightest two quark masses, the distortion of the probability
distribution is significant and correspondingly influences

the eigenenergy. Even with mπL ¼ 4.4 at the second
lightest quark mass, finite volume effects distort the wave
function in a significant manner. Of course, this interplay
between the finite volume and the energy of the state is key
to extracting resonance parameters from lattice simulation
results.
The nodal structure of the first excited state also indicates

that the ideal combination of operators to access this state
on the lattice is a superposition of Gaussian distributions of
different widths and opposite signs [19,28]. Figure 5
presents the eigenvectors uαi describing the contributions
of each of the source smearing levels to the states α for the
lightest quark-mass ensemble considered.
For the ground state, all smeared sources contribute

positively to the state. There is significant interplay
between the smeared sources over the jackknife suben-
sembles giving rise to larger uncertainties for the preferred
operators. This is not the case for the excited states where
particular superpositions of interpolating fields are required
to isolate the states.
For the first excited state, a single large-width Gaussian

contributes with a sign opposite to that of a narrower
Gaussian, reflecting the wave function illustrated in the
second plot of Fig. 2. The combination of sources creating
the second excited state has a similar pattern, with a narrow
Gaussian contributing positively, an intermediate Gaussian
contributing negatively, and a wide Gaussian contributing
positively, again reflecting the wave function illustrated in
Fig. 2 for this state. This sign-alternating structure is also
apparent for the fourth state, suggesting a 3S excitation for
this state. We examine this state further in the following.

FIG. 5 (color online). The eigenvectors uαi describing the
contributions of each of the source smearing levels to the states
α for the lightest quark-mass ensemble considered. Indices i ¼ 1
to 4 correspond to 16, 35, 100, and 200 sweeps of gauge-invariant
Gaussian smearing. The superposition of positive and negative
Gaussian smearing levels is consistent with the nodal structure
recovered in the wave functions.
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Turning our attention to the mass dependence of the node
we note that the movement is somewhat unusual. While
there is a general trend of the node in the wave function
moving outward as the quark mass decreases, there is
negligible movement in the node between the third and
second lightest quark masses. We also note how the width
of the void in the probability density increases as the quarks
become lighter.

3. Second excitation

The probability distributions for the second excitation of
the proton observed in this study are illustrated in the two
left-hand columns of Fig. 6. Two nodes are evident at all
quark masses, consistent with a 3S radial excitation for the
d quark. The first inner node is thin at the heavier masses
and difficult to see in the isovolume renderings. Finite
volume effects are readily observed in the outermost shell.
For the heaviest mass, finite volume effects at the nodes

are minimal. The nodes are spherical in shape and are
largely unaffected by the boundary. Again there is a trend of
the nodes moving further from the center as the quarks
become light.
However, it is the middle quark mass considered that has

the broadest distribution. The quark-mass flow of the
eigenstate energies suggests that avoided level crossings
are important between the third and fourth heaviest quark
masses. It may be a strong mixing with multiparticle states
that is giving rise to the broad distribution of quarks at the
middle quark mass.
For the lightest two quark masses the outer node has

taken on a squared-off shape, having been distorted by the
boundary of the lattice. Again, this is an indication that,
even though the ground-state wave function presents as
spherical for this quark mass, this excited state is showing
clear finite volume effects. Even at relatively modest quark
masses, the wave functions of states above the decay
thresholds show an important relationship with the finite
volume of the lattice.

4. Third excitation

The two right-hand columns of Fig. 6 illustrate the mass
dependence of the d-quark probability distribution for the
highest excitation of the proton observed in our analysis.
As the fourth state of a 4 × 4 correlation matrix, this state is
highly susceptible to contamination from excited states.
However, the sign-altering behavior of the interpolator
strengths illustrated in Fig. 5 suggests that the correlation
matrix has set up the node structure of a 3S excitation.
Moreover, Fig. 1 of Ref. [19] illustrates how the mass of
this state displays only minor sensitivity to the variation of
the basis, suggesting that any basis offering a well-spaced
range of smearing extents is able to access this state. As one
might anticipate, Fig. 6 reveals that the basis is more
effective at some quark masses than others. The presence of

three nodes in the wave function is best observed at the
heaviest and second lightest quarks masses.
The innermost node is easily observed in the surface

plots. However, it is very sharp and does not render in an
obvious manner in the isovolume illustrations. The second
node is easily rendered, and the third node is very broad. To
illustrate this node structure, the outermost shell has
become fragmented in the isovolume plots. The fragments
reveal the strong finite volume effects on this state.
What is interesting is the manner in which the finite

volume effects on the outer shell change as a function of
quark mass. At the heaviest quark mass, the outer shell is
strongest along the sides of the lattice. By the time one
encounters the lightest ensemble, the outer shell has moved
to the corners as if there is no longer room for the outer
shell along the sides of the 2.9-fm lattice.

D. Discussion

1. Correlation matrix basis

Our correlation matrix basis is founded on the utilization
of a variety of smearing extents in constructing the basis.
The reason that this approach is effective has now become
clear. The smearing extent of the interpolating fields used in
constructing a basis can be exploited to set up the node
structure of the QCD eigenstates.
As highlighted in Sec. II, the utility of the smearing

approach to constructing a correlation matrix basis was
originally based on the observation that very different
superpositions of excited states are observed in smeared-
local correlation functions as the smearing extent of the
source is changed. This effect is illustrated in Fig. 1 of
Ref. [19]. However, the results presented herein establish
that the correlation matrix resolves the QCD eigenstates by
setting up the node structure of the wave functions of these
states. This is done by superposing Gaussian distributions
of increasing widths with a sign-alternating structure, as
illustrated in Fig. 5. It will be interesting to complement
covariant derivative-based approaches with a variety of
smearing extents in constructing larger correlation
matrices.

2. The Roper excitation

Turning to our examination of the Roper wave function,
we note the large value of 1.8(1) GeVobserved for the first
even-parity excited state on our finite-volume lattice makes
our use of the term Roper somewhat controversial. There
are speculations that the Roper is very exotic and that it will
not be revealed until the full multiparticle spectrum is
understood. In this case, one believes that we have missed
the Roper on the lattice and a more comprehensive set of
interpolating fields is required to form a basis having strong
overlap with the Roper state on the lattice.
An alternative concern is that the large mass of the first

excited state observed in our calculation is due to an
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FIG. 6 (color online). The dependence of the d-quark probability distribution on the masses of the quarks in the proton for the second
(two left-hand columns) and third (two right-hand columns) S-wave excited states of the proton observed herein. The u quarks are fixed
at the origin at the center of the plot. The quark mass decreases from heaviest (top row) to lightest (bottom row). For each mass and state,
the probability density is normalized to unity over the spatial volume of the lattice. The isovolume threshold for rendering the probability
distribution in the second and fourth columns is 2.0 × 10−5 and 3.1 × 10−5, respectively. While the former renders the outer shell
coherently, the latter better reveals the node structure of the 3S distribution. The three-dimensional axis grid provides an indication of the
positions of the 323 lattice sites for the isovolume. The bottom plane of the grid indicates the ðz1; z2Þ coordinates of the lattice sites for
the surface plots. The PACS-CS scheme for determining the lattice spacing provides a constant lattice spacing for all masses considered
with a ¼ 0.0907ð13Þ fm.
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undetected superposition of states in the projected corre-
lation function that leads to an erroneous mass and wave-
function determination. The idea here is that two-particle
pion-nucleon interpolators are key to resolving a single
eigenstate in the lattice correlation functions projected in
the correlation matrix approach.
Clearly the exploration of multiparticle interpolating

fields is central to resolving these issues in an unambiguous
manner. However, there is already some evidence sug-
gesting that an alternative explanation of the observed large
mass is required.
By carefully monitoring the χ2 per degree of freedom of

the eigenstate-projected correlation functions from the
correlation matrix, one can assess the possibility that a
second low-lying state is contaminating the projected
correlator [35]. In the one case where a second state could
be observed in the negative-parity sector, its contribution
was suppressed by 2 orders of magnitude and spoiled the
single-state-hypothesis energy determination by an amount
similar to the statistical uncertainty [35]. For the first even-
parity excitation under examination here, the case for
extracting a low-lying scattering state is less favorable.
An examination of the logarithmic correlation function
shows that any contribution from a low-lying scattering
state is suppressed by more than 2 orders of magnitude.
While we do not have evidence of a second state

contaminating our projected correlators, we do have
evidence indicating the dominance of a single state in
our first and second excited-state correlators. Our ability to
observe a node structure in the first and second excited-
state wave functions suggests the dominance of a single
state. A superposition with other states would act to hide
the node structure.
The same cannot be said for the highest third excited state

explored in our analysis. As the highest state extracted from
our correlation matrix, this state is the most susceptible to
excited-state contamination. The basis we have considered
does appear to be effective at the heaviest and second lightest
quark masses considered. However, as illustrated in Fig. 6,
the node structure is not as apparent at the other quark
masses, and this is most likely due to a superposition of
states in the correlator masking the node structure.

3. Finite volume effects and the Roper

The large mass for the first even-parity excited state of the
nucleon observed at light quark masses herein has a natural
explanation as a finite volume effect. As the ensemble with
lowest pion mass of 156MeV hasmπL ¼ 2.23, such a small
volume is known to have significant finite-volume effects
even for the ground state [36].
This can be seen in our wave functions by plotting the

tail of the probability density. In Fig. 4 we rendered the
density for values above the threshold of 3.0 × 10−5.
Dropping the threshold by an order of magnitude to 3.0 ×
10−6 provides the isovolume illustrated in Fig. 7. Here the

deformation of the probability density over all surfaces of
the lattice volume is manifest.
Indeed, all of our wave functions for excited states at

light quark masses reveal substantial probability density at
the spatial boundary with clear boundary effects. This is
illustrated in Figs. 4 and 6. This is in accord with the pion-
nucleon components of the states gaining amplitude in the
light quark-mass regime and the range of the pion cloud
increasing as the pion becomes light.
From a finite-volume chiral effective field theory per-

spective, the main effect of the finite volume is to suppress
otherwise important pion self-energy contributions. From
the point of view of an effective field theory Hamiltonian
approach [37], the excitation spectrum displays a robust
volume dependence associated with nonperturbative
avoided level crossings and changes in the compositions
of the state.
Resolving the nature of this state requires lattice simu-

lations on different and larger volumes with various
boundary conditions and multiparticle interpolating fields.
By combining these results with the techniques of effective
field theory, the evolution of the mass spectrum will be
resolved, and the link to nature will be made.

IV. QUARK SEPARATION

In order to investigate a more complete picture of the
wave functions of the states isolated herein, we choose to
focus on the second-lightest quark-mass ensemble

FIG. 7 (color online). The effect of the finite volume of the
lattice on the d-quark probability distribution in the proton at
the lightest quark mass considered. The u quarks are fixed at the
origin at the center of the plot. The isovolume threshold for
rendering the probability distribution is an order of magnitude
smaller than in Fig. 4 at 3.0 × 10−6.
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providing mπ ¼ 293 MeV and examine the dependence of
the d-quark probability distribution on the positions of the
two u quarks composing the states. This mass provides the
best compromise between finite-volume effects, quark
mass and the ensemble size governing the signal quality
and associated uncertainties.
In continuing to investigate the wave function of the d

quark, we consider the separation of the u quarks along the
x axis, as described in Eq. (5). All integer separations,
d ¼ d1 − d2, between zero and half the lattice extent in the
x direction (i.e., 16 lattice units) are considered.
Figure 8 illustrates the probability distribution of the d

quark for u quarks separated by 0, 1, 2, and 3 lattice steps in
the first excited state associated with the Roper resonance.
The most notable feature is the rapid reduction in the
overlap of the interpolator with the state as the two u quarks
are moved away from the origin. While some broadening of
the distribution peak is apparent, it is clear that using a
normalization suitable for zero u-quark separation is not
effective for illustrating the probability distribution at large
u-quark separations.
To better illustrate the underlying shape of the wave

functions, the probability distributions are normalized to
keep the maximum value of the probability density constant.
For small u-quark separations, the center peak height of the
distribution is held constant, but for larger separations, the
maximum value can be elsewhere in the distribution.
Figure 9 presents the d-quark probability distributions for

u-quark separations of d ¼ 0, 2, 4, 6, and 8 times the lattice
spacing a ¼ 0.0907 fm and Fig. 10 completes the study,
illustrating u-quark separations of 10, 12, 14, and 16 times
the lattice spacing. Each column corresponds to a different
state with the ground, first, second, and third excitations
illustrated from left to right. The two small spheres above the
surface indicate the positions of the two u quarks.

A. Ground-state distribution

Focusing first on the ground state, on separation of the u
quarks, the probability distribution of the d quark forms a

single broad peak. The structure is slightly rounded until
d ¼ d1 − d2 ¼ 12a ¼ 1.09 fm, with small peaks at the u-
quark positions. At a separation of d ¼ 13a ¼ 1.18 fm, the
wave function takes on a double-peak structure associated
with scalar-diquark clustering similar to that illustrated in
the third row of Fig. 10 for d=a ¼ 14. These results are
similar to the earlier quenched wave function results of
Refs. [6,34].

B. First excited-state distribution

As the u quarks are separated in the first excited state
associated with the Roper, the central peak of the d-quark
distribution broadens in a manner similar to that for the
ground state. However, by d ¼ 4a ¼ 0.36 fm, strength in
the wave function is seen to move from the center into the
outer shell of the 2S state. This transition continues to d ¼
10a ¼ 0.91 fm where the u quarks are still well inside the
original node position of the 2S distribution. At this point,
the central peak has been suppressed, entirely leaving a
hole inside the ring or shell in three dimensions. In other
words, the node of the wave function has shrunk to the
origin. It is interesting how the ringlike probability density
is enhanced in the direction perpendicular to the separation
of the u quarks.
At d ¼ 11a ¼ 1.00 fm, small peaks form in the prob-

ability distributions at the positions of the u quarks,
revealing the first onset of scalar diquark clustering
similar to that in the second row of Fig. 10. At
d ¼ 12a ¼ 1.09 fm, the u quarks are still within the
node of the original wave function, but the radius of
the outer shell of the wave function illustrated by the ring
in the probability density has reduced slightly. At
d ¼ 14a ¼ 1.27 fm, the u quarks sit in the node of the
original wave function, and there is little memory of
the original 2S structure. Only a slight swelling at the
center of the distribution remains. The central probability
density reduces at d ¼ 15a ¼ 1.36 fm such that scalar-
diquark clustering dominates the probability distribution
at d ¼ 16a ¼ 1.45 fm.

FIG. 8 (color online). The dependence of the d-quark probability distribution on the positions of the u quarks in the first even-parity
excited state of the proton at the second lightest quark mass considered. The u quarks are fixed on the x axis running from back right
through front left through the center of the plot. The u quarks are fixed a distance of d1 and d2 from the origin located at the center. From
left to right, the distance d ¼ d1 − d2 increases, taking values 0, 1, 2, and 3 times the lattice spacing a ¼ 0.0907 fm.
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FIG. 9 (color online). The dependence of the d-quark probability distribution on the positions of the u quarks in the proton and its
excited states. From left to right, the columns correspond to the ground, first, second, and third S-wave excitations. The u quarks are
fixed on the x axis running from back right through front left through the center of the plot. The u quarks are fixed a distance of d1 and
d2 ¼ −d1 from the origin located at the center. The distance between the quarks, d ¼ d1 − d2, increases from the top row through to the
bottom row, taking values 0, 2, 4, 6, and 8 times the lattice spacing a ¼ 0.0907 fm.

NUCLEON EXCITED STATE WAVE FUNCTIONS FROM … PHYSICAL REVIEW D 89, 074501 (2014)

074501-13



C. Second excitation

For the second excited state observed herein, we again
see a shift of the probability density from the central peak to
the next shell of the original 3S-like wave function. At
d ¼ 6a ¼ 0.54 fm in the fourth row of Fig. 9, a similar
enhancement in the first shell is observed as for the Roper at
d ¼ 8a ¼ 0.73 fm with strength in the probability density
enhanced in the direction perpendicular to the separation of
the u quarks.

The radius of the first shell about the central peak of
the original distribution shrinks as the u quarks are
pulled apart, and at d ¼ 8a ¼ 0.73 fm corresponding to
the bottom row of Fig. 9, the u quarks are now in the
first shell where four peaks are apparent. The original
first node has shrunk to the center and may have
emerged, centered about each of the u quarks.
Further evidence of this process is discussed in the
analysis of the third excitation below. The second node

FIG. 10 (color online). The dependence of the d-quark probability distribution on the positions of the u quarks in the proton and its
excited states. From left to right, the columns correspond to the ground, first, second, and third S-wave excitations. The u quarks are
fixed on the x axis running from back right through front left through the center of the plot. The u quarks are fixed a distance of d1 and
d2 ¼ −d1 from the origin located at the center. The distance between the quarks, d ¼ d1 − d2, increases from the top row through to the
bottom row, taking values 10, 12, 14, and 16 times the lattice spacing a ¼ 0.0907 fm.
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of the original wave function now surrounds the
four peaks.
The u quarks approach the position of the second node

of the wave function at d ¼ 10a ¼ .91 fm. The node is
still apparent in the front and back of the distribution,
orthogonal to the u-quark separation axis. The peaks in
the probability distribution are still associated with the
first shell surrounding the central peak of the original
distribution with zero u-quark separation.
By d ¼ 12a ¼ 1.09 fm, the quarks have moved beyond

the second node. The radius of node has reduced and can be
seen in the dark-blue regions at the center of the plot. At
d ¼ 13a ¼ 1.18 fm, the second node has collapsed to the
origin and explains the strong separation of the two peaks
observed at d ¼ 14a ¼ 1.27 fm in the third row of Fig. 10.
Even at the largest quark separations examined, the node
structure of this state is apparent, suppressing the proba-
bility density between the two peaks once again governed
by scalar-diquark dynamics.

D. Third excitation

The third excitation displays a wonderfully complex
structure that mirrors the transitions observed for the first
and second excitations for the first few separations. For
example, at d ¼ 4a ¼ 0.36 fm, one can see the enhance-
ment of the first shell in a direction orthogonal to the u-
quark separation axis.
At d ¼ 6a ¼ 0.54 fm, a four-peak structure emerges as

the u quarks enter the first shell of the wave function.
Remarkably, a new nodal structure has emerged. Upon
shrinking to the origin, the original first node emerged
surrounding each of the peaks at the u-quark positions. This
node now cuts through the first shell strength of the
underlying 4S configuration and divides what would
normally be a ring shape into four peaks.
By d ¼ 10a ¼ 0.91 fm, the third node surrounds all

significant structure in the distribution. The second node
has shrunk to surround the small peak in the center, and the
first surrounds the u-quark peaks.
At d ¼ 12a ¼ 1.09 fm, the third node now surrounds

both of the major peaks and the fore and aft humps near the
center. The first node continues to surround each of the
peaks at the u-quark positions. The emergence of a second
node around each of the u quarks is becoming apparent at
the left- and right-hand edges of the plot.
At d ¼ 14a ¼ 1.27 fm, the third node maintains a

circular structure centered about the origin and cuts through
the ringlike structures forming around each of the u quarks.
The rings clearly reveal the shifting of the first and second
nodes to surround each of the u quarks.
At the largest u-quark separation of d ¼ 16a ¼ 1.45 fm,

the third node has shrunk further to just touch the inside
edges of the rings which have formed though the first and
second nodes shrinking to the origin and emerging around
the two u quarks.

V. CONCLUSIONS

We have examined the three-quark color-singlet single-
particle wave functions of even-parity nucleon excitations
created in 2þ 1 flavor lattice QCD simulations. In this first
study of the quark probability distribution within excited
states of the nucleon, we have shown that all of the states
accessed in our correlation matrix analysis display the node
structure associated with radial excitations of the quarks.
For example, the first excited state associated with the
Roper resonance displays a node in the d-quark wave
function consistent with a radial excitation of the d quark.
The second and third excitations display two and three
nodes, respectively.
It is beautiful to observe the emergence of these corner

stones of quantum mechanics from the complex many-
body theory of quantum field theory. The few-body
projection of the underlying physics can be connected
with models, shedding light on the essential effective
phenomena emerging from the complex dynamics of QCD.
On comparing these probability distributions to those

predicted by the constituent quark model, we find good
qualitative similarity with interesting differences. The
core of the states is described very well by the model,
and the amplitudes of the S-wave shells between the nodes
are predicted very accurately by the constituent quark
model. The discovery of a node structure provides a deep
understanding of the success of the smeared-source/sink
correlation matrix methods of Ref. [19].
Finite-volume effects are shown to be particularly

significant for the excited states explored herein at rela-
tively light quark mass. As these excited states have a
multiparticle component, the interplay between the lattice
volume, the wave function, and the associated energy are
key to extracting the resonance parameters of the states.
Fascinating structure in the d-quark probability distri-

butions of the nucleon excited states is revealed when
separating the u quarks from the origin. As the u quarks are
separated, the original node structure of the wave function
shrinks in size. For example, the Roper reveals a ringed
structure in the surface plots corresponding to an empty
shell in three dimensions as the node collapses to the origin.
The second excited state reveals a four-peaked structure at
midrange quark separations. At large separations, these
states all display diquark clustering with the d quark most
likely found near one of the u quarks. The third state reveals
the most exotic structure with new nodes centered about the
u quarks appearing after the original nodes collapsed to the
origin.
Future calculations explore the structure of these states in

more detail, examining the effect of the introduction of
isospin-1=2 spin-3=2 interpolating fields [38,39] to reveal
the role of D-wave contributions. While our use of
improved actions suppresses lattice discretization errors,
ultimately simulations will be done at a variety of lattice
spacings directly at the physical quark masses. An analysis
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of finite-volume effects will also be interesting to further
reveal the interplay between the finite volume of the lattice,
the structure of the states and the associated energy of the
states, thus connecting the lattice QCD simulation results to
the resonance physics of nature.
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