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We show that in the McLerran-Venugopalan model an axial asymmetrical valence quark distributions in
the transverse plane of a transversely polarized proton can give rise to a spin-dependent odderon. Such
polarized odderon is responsible for the transverse single spin asymmetries for jet production in the
backward region of pp collisions and open charm production in the semi-inclusive deep inelastic scattering
process.
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I. INTRODUCTION

The exploration of transverse single spin asymmetries
(SSAs) in high-energy scattering experiments has a long
history, starting from the mid 1970s [1]. The large size of
the observed SSAs for single inclusive hadron production
came as a big surprise and, a priori, posed a challenge for
QCD, as the naive parton model predicts the asymmetries
are proportional to the quark mass [2,3] and thus very
small. During the past few decades, the remarkable
theoretical progress has been achieved by going beyond
the naive parton model and following mainly two
approaches: one approach is based on transverse momen-
tum dependent (TMD) factorization [4,5] and the other on
collinear twist-3 factorization [6–10]. In TMD factoriza-
tion, naive time reversal odd TMD distributions and the
fragmentation function, known as the quark/gluon Sivers
functions [4] and the Collins fragmentation function [5],
can account for the large SSAs, while in the collinear twist-
3 approach, the SSAs arise from twist-3 quark gluon
correlator so-called Efremov-Teryaev-Qiu-Sterman func-
tion (ETQS) [6,7], tri-gluon correlation functions [8,9], and
twist-3 collinear fragmentation functions [10].
Beyond TMD factorization and collinear twist-3 formal-

ism, some alternative mechanisms underlying the large
SSAs have been proposed, such as the soft coherent
dynamics [11], QCD instanton mechanism [12,13], and
QCD odderon interaction [14,15]. The authors of Refs. [14]
investigated the odderon’s contribution to SSAs in the
context of a heavy fermion model. A later calculation
formulated in the saturation/color glass condensate
(CGC) framework suggests that SSAs can be generated
by the interaction of spin-dependent light-cone wave func-
tion of the projectile with the target gluon field via C-odd
odderon exchange [15]. The odderon excitation considered
in Ref. [15] comes from the unpolarized proton/nucleus and
is spin independent. In this paper, however, we focus on
studying SSAs generated by a spin-dependent odderon that
comes from the transversely polarized proton. Such a
polarized odderon is responsible for SSAs for jet production

in the backward region of a polarized proton in pp collisions
and open charm production in the semi-inclusive deep
inelastic scattering (SIDIS) process at small x.
In recent years, the interplay between spin physics and

saturation physics has been forming into an active field of
research. The early work includes the study of small x
evolution of spin-dependent structure function g1 [16]. It
was pointed out that the spin asymmetries could also be
generated by the pomeron-odderon interference effect [17].
SSAs at forward rapidity in pA collisions were investigated
in Refs. [15,18]. More recently, the quark/gluon Boer-
Mulders distributions inside a large nucleus were studied in
Refs. [19].
In this paper, we explore SSA phenomena at small x and

identify a spin-dependent odderon as the main source of
SSAs. The paper is organized as follows. In Sec. II, we
show that, in the Mclerran-Venugopalan (MV) model, a
nonvanishing contribution to the spin-dependent odderon
amplitude arises from the left-right asymmetrical color
source distribution in the transverse plane of a transversely
polarized proton. In Sec. III, we present compact expres-
sions for SSAs in jet production in the backward region of
pp collisions and open charm production in SIDIS at small
x. Both asymmetries are generated by the polarized odd-
eron. We summarize our paper in Sec. IV.

II. SPIN-DEPENDENT CLASSICAL ODDERON

In perturbative QCD, the odderon is a color-singlet
exchange and can be formed by three gluons in a symmetric
color state. It has negative C-parity and therefore dominates
the differences between particle-particle and particle-
antiparticle scatterings at high energy. The energy depend-
ence of the odderon exchange is described by the
Bartels-Kwiecinski-Praszalowicz (BKP) equation [20].
Within the CGC formalism, one can identify the following
operator as the dipole odderon operator [21],

ÔðR⊥; r⊥Þ ¼
1

2i
½D̂ðR⊥; r⊥Þ − D̂ðR⊥;−r⊥Þ�; (1)
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where

D̂ðR⊥; r⊥Þ ¼
1

Nc
Tr

�
U

�
R⊥ þ r⊥

2

�
U†

�
R⊥ −

r⊥
2

��
; (2)

with the Wilson line being defined as

Uðx⊥Þ ¼ Peig
R þ∞
−∞

dx−Aþðx−;x⊥Þ: (3)

The small x evolution equation of this odderon operator
was constructed using the dipole model [22] and the

general JalilianMarian-Iancu-McLerran-Weigert-Leonidov-
Kovner (JIMWLK) equation [21]. In the low parton
densities region, the Bartels-Lipatov-Vacca (BLV) solution
[23] to the BKP equation can be recovered from both the
dipole model calculation and the JIMWLK equation with
C-odd initial conditions.
The odderon is absent in the original MV model [24] in

which the distribution of the large x color source is assumed
to take a Gaussian form. However, it has been shown that a
classical odderon can be generated by an additional cubic
term in the modified weight function W½ρ�, which is given
by Ref. [25],

W½ρ� ¼ exp

�
−
Z

d2x⊥
�
ρaðx⊥Þρaðx⊥Þ

2μðx⊥Þ
−
gdabcρaðx⊥Þρbðx⊥Þρcðx⊥Þ

4Ncμ
2ðx⊥Þ

��
; (4)

where μðx⊥Þ is the density of color sources per unit
transverse area and related to the valence quark distribution
in the transverse plane,

R
dxqfqðxq; x⊥Þ ¼ 6μðx⊥Þ=g2, with

xq being the longitudinal momentum fraction carried by
valence quark, and dbca is the symmetric structure constant
of the color SU(3) group. Using the above weight function
to compute the expectation value of the odderon operator,
one obtains [25]

Z
d2R⊥θðR0 − jR⊥jÞhÔðR⊥; r⊥Þi

¼ c0α3s

Z
d2R⊥θðR0 − jR⊥jÞ

×
Z

d2z⊥ln3
jR⊥ þ r⊥=2 − z⊥j
jR⊥ − r⊥=2 − z⊥j

e−
1
4
r2⊥Q2

s

×
1

3

Z
dxqfqðxq; z⊥Þ; (5)

where R0 is the radius of the proton and the transverse
center of the parton longitudinal momentum is chosen to
be as the origin. The color coefficient c0 is defined as

c0 ¼ ðN2
c−1ÞðN2

c−4Þ
4N3

c
. Q2

s ¼ αsCFμðR⊥Þ ln 1
r2⊥Λ2

QCD
is the quark

saturation momentum. Here, we insert a theta function
because we have assumed that the dipole must hit the
proton directly in order to be able to interact with quarks
inside of it.
To proceed further, we first neglect the dependence ofQ2

s
on R⊥ and r⊥. To integrate out R⊥, we use a mathematical
trick introduced in Ref. [15]. One notices that

Z
d2R⊥ln3

jR⊥ þ r⊥=2 − z⊥j
jR⊥ − r⊥=2 − z⊥j

¼ 0 (6)

if the integration carries over the whole transverse plane.
This result implies

Z
d2R⊥ln3

jR⊥ þ r⊥=2 − z⊥j
jR⊥ − r⊥=2 − z⊥j

θðR0 − jR⊥jÞ

¼ −
Z

d2R⊥ln3
jR⊥ þ r⊥=2 − z⊥j
jR⊥ − r⊥=2 − z⊥j

θðjR⊥j − R0Þ: (7)

The fact that jr⊥j is much smaller than R0 for a perturbative
dipole allows us to expand the integrand on the right-hand
side of the above equation in powers of jr⊥j=j2R⊥j as well
as jz⊥j=jR⊥j. To the first nontrivial order, one has

Z
d2R⊥ln3

jR⊥ þ r⊥=2 − z⊥j
jR⊥ − r⊥=2 − z⊥j

θðR0 − jR⊥jÞ

≈ −
3π

4R2
0

r2⊥ðr⊥ · z⊥Þ: (8)

Substituting Eq. (8) back into Eq. (5), we obtainZ
d2R⊥θðR0 − jR⊥jÞhÔðR⊥; r⊥Þi

≈ −
c0α3sπ
4R2

0

r2⊥e−
1
4
r2⊥Q2

s

Z
dxqd2z⊥ðr⊥ · z⊥Þfqðxq; z⊥Þ:

(9)

For a transversely polarized proton, impact-parameter-
dependent valence quark distribution can be parameterized
as [26]

fqðxq; z⊥Þ ¼
X
u;d

�
Hðxq; z2⊥Þ −

1

2M
ϵij⊥S⊥i

∂Eðxq; z2⊥Þ
∂zj⊥

�
;

(10)

where S⊥ is the proton transverse spin vector and M is the
proton mass. The generalized parton distributions (GPDs)
Hðxq; z2⊥Þ and Eðxq; z2⊥Þ are the Fourier transformed GPDs
H and E with zero skewedness, respectively. Inserting
Eq. (10) into Eq. (9), one immediately obtains
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Z
d2R⊥θðR0 − jR⊥jÞhÔðR⊥; r⊥Þi

¼ −
c0α3sπ
8MR2

0

e−
1
4
r2⊥Q2

s r2⊥ϵ
ij
⊥S⊥ir⊥j

Z
dxqd2z⊥

X
u;d

Eðxq; z2⊥Þ

¼ −
c0α3sπ
8MR2

0

e−
1
4
r2⊥Q2

s r2⊥ϵ
ij
⊥S⊥ir⊥jðκup þ κdpÞ; (11)

where κup and κdp are the contributions from up and down
quarks to the anomalous magnetic moment of the proton,
respectively. An earlier attempt to connect SSA phenomena
to GPD E was made in paper [27].
A few comments are in order on the above analytic

result:
(i) First, the odderon exchange under our consideration

is clearly spin dependent.
(ii) The polarized odderon originates from the transverse

distortion of the impact-parameter-dependent parton
distribution function inside a transversely polarized
proton. Such transverse distortion has been clearly
seen in a lattice QCD calculation [28].

(iii) Given the nucleon’s magnetic moment κp ¼ 1.793
and κn ¼ −1.913, κup and κdp can be roughly esti-
mated as κup ¼ 1.673 and κdp ¼ −2.033 by using the
isospin symmetry. Obviously, the contributions from
u and d quarks to the polarized odderon largely
cancel out.

We conclude this section by making a final remark on
our result. The MV model is expected to work better for a
large nucleus. However, its application to a proton target
turns out to be quite successful phenomenologically [29].
Therefore, qualitatively speaking, our analysis presented
here might be relevant in phenomenological studies as well.

III. OBSERVABLES

As discussed in the introduction, the spin-dependent
odderon is responsible for the transverse single spin
asymmetry for jet production in the backward region of
the polarized proton in pp collisions. The leading-order
result for jet production was first derived in Ref. [30].
Recently, the next-to-leading-order correction to the cross
section was also calculated in Refs. [31].
At leading order, for the quark-initiated subprocess, the

cross section reads

dσpA⟶qX

d2k⊥dY
¼

X
f

xqfðxÞ
Z

d2r⊥
ð2πÞ2 e

−ik⊥·r⊥

×
Z

d2R⊥hD̂ðR⊥; r⊥Þixg ; (12)

where x ¼ jk⊥jffiffi
s

p e−Y and xg ¼ jk⊥jffiffi
s

p eY , with Y being the

rapidity. qfðxÞ is the normal integrated quark distribution
from the unpolarized proton. Note that we have neglected

the elastic scattering contribution to the cross section in the
above expression. The dipole S matrix can be decomposed
into the even and odd pieces under the exchange of the
transverse coordinates

D̂ðR⊥; r⊥Þ ¼ ŜðR⊥; r⊥Þ þ iÔðR⊥; r⊥Þ; (13)

with the symmetric part being defined as

ŜðR⊥; r⊥Þ ¼
1

2
½D̂ðR⊥; r⊥Þ þ D̂ðR⊥;−r⊥Þ�; (14)

The cross section then can be reexpressed as

dσpA⟶qX

d2k⊥dY

¼
X
f

xqfðxÞ
Z

d2r⊥
ð2πÞ2 e

−ik⊥·r⊥

×
Z

d2R⊥hŜðR⊥; r⊥Þ þ iÔðR⊥; r⊥Þixg

¼
X
f

xqfðxÞ
�
Fxgðk2⊥Þ þ

1

M
ϵij⊥S⊥ik⊥jO⊥

1T;xg
ðk2⊥Þ

�
:

(15)

Here, we introduce a spin-dependent odderon in momen-
tum space: O⊥

1T;xg
ðk2⊥Þ. To some extent, O⊥

1T;xg
ðk2⊥Þ can be

considered as a C-odd partner of the gluon Sivers function.
In the MV model, the unpolarized gluon distribution is
given by

Fxgðk2⊥Þ ¼ πR2
0

Z
d2r⊥
ð2πÞ2 e

−ik⊥·r⊥e−
1
4
r2⊥Q2

s : (16)

Using Eq. (11), it is easy to derive

O⊥
1T;xg

ðk2⊥Þ ¼
−c0α3sðκup þ κdpÞ

4R4
0

� ∂
∂k2⊥

∂
∂ki⊥

∂
∂k⊥i

Fxgðk2⊥Þ
�
:

(17)

A few comments are in order on the above analytic result:
(i) We note that

R
d2k⊥k2⊥O⊥

1T;xg
ðk2⊥Þ ¼ 0. This relation

implies that O⊥
1T;xg

ðk2⊥Þ has a node in k2⊥, and the ki⊥
weighted cross section

R
d2k⊥hki⊥dσi is zero.

(ii) The single spin asymmetry is determined by the ratio
k⊥O⊥

1T;xg
=Fxg . From Eqs. (16) and (17), one finds

that this ratio scales as k⊥ at low transverse mo-
mentum, while it scales as 1=k3⊥ at high transverse
momentum.

(iii) The ratio k⊥O⊥
1T;xg

=Fxg should drop with decreasing
xg as the power of ðxgÞ0.3 since the leading high-
energy odderon intercept is equal to 1 according to
the BLV solution.
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For the gluon-initiated channel, the cross section reads

dσpA⟶gX

d2k⊥dY
¼ xgðxÞ

Z
d2r⊥
ð2πÞ2 e

−ik⊥·r⊥
Z

d2R⊥h ~̂DðR⊥; r⊥Þixg ;
(18)

where gðxÞ is the normal integrated gluon distribution from

the unpolarized proton and ~̂Dðr⊥Þ is given by

~̂DðR⊥; r⊥Þ ¼
1

N2
c − 1

Tr
�
~U
�
R⊥ þ r⊥

2

�
~U†
�
R⊥ −

r⊥
2

��
;

(19)

with ~U being the Wilson line in the adjoint representation.
In the large Nc limit, the cross section is approximated as

dσpA⟶gX

d2k⊥dY
≈ xgðxÞ

Z
d2r⊥
ð2πÞ2 e

−ik⊥·r⊥

×
Z

d2R⊥hf½ŜðR⊥; r⊥Þ�2 þ ½ÔðR⊥; r⊥Þ�2gixg ;
(20)

where all antisymmetric interference terms
ŜðR⊥; r⊥ÞÔðR⊥; r⊥Þ completely cancel out. We are only
left with the symmetric terms that do not contribute to the
spin asymmetry. Since SSA vanishes in the gluon-initiated
jet production process, one might expect that the spin
asymmetry rises with the increasing jxFj in the backward
region of pp collisions.
Recently, the single spin asymmetry in inclusive jet

production has been measured in both forward and back-
ward regions at the AnDY experiment at the RHIC [32].
There is at least one experimental data point in the
backward region that is inconsistent with zero within the
error bar. The possible two sources of the spin asymmetry
in the backward region are the polarized odderon and the
gluon Sivers function. However, we have shown that the
gluon Sivers function dies out very quickly with decreasing
xg [33]. Therefore, this measurement likely indicates that
the polarized odderon indeed exists.
Let us now turn to discuss the SSA in open charm

production in the SIDIS process. The differential cross
section for this process has been calculated in the dipole
model [34] and in the CGC formalism [35]. The next-to-
leading order correction to this process is also available in
Refs. [36,37]. At leading order, the cross section in
momentum space reads

dσ
dxBdzdQ2dyd2l⊥

¼ α2eme2c
2π4xBQ2

�
1 − yþ y2

2

�
½z2 þ ð1 − zÞ2�

Z
d2p⊥
ð2πÞ2

d2k⊥
ð2πÞ2

d2k⊥0

ð2πÞ2
ðl⊥ − k⊥Þ · ðl⊥ − k0⊥Þ

½ρþ ðl⊥ − k⊥Þ2�½ρþ ðl⊥ − k0⊥Þ2�
× hTrf½Uðk⊥ÞU†ðk⊥ − p⊥Þ − ð2πÞ4δ2ðk⊥Þδ2ðk⊥ − p⊥Þ�
× ½Uðk0⊥ − p⊥ÞU†ðk0⊥Þ − ð2πÞ4δ2ðk0⊥Þδ2ðk0⊥ − p⊥Þ�gixg : (21)

Here, the common kinematical variables in the SIDIS process
are defined asQ2 ¼ −q · q, xB ¼ Q2=2P · q, y ¼ q · P=Pe ·
P and z ¼ l · P=P · q, where l, Pe, P, and q are momenta for
produced charm quark, incoming lepton and proton, and
virtual photon, respectively. ρ is defined as ρ ¼ zð1 − zÞQ2.
Uðk⊥Þ is the Fourier transform of Uðx⊥Þ. For simplicity,
we have neglected charm quark mass and only taken into
account the transverse polarized virtual photon contribution
to the differential cross section. The above formula can be
reorganized and expressed in a more compact form,

dσ
dxBdzdQ2dyd2l⊥

¼ α2eme2c
2π4xBQ2

Z
d2k⊥
ð2πÞ2 Hðk⊥; l⊥; Q2ÞhTr½Uðk⊥ÞU†ðk⊥Þ�ixg

¼ α2eme2cNc

2π4xBQ2

Z
d2k⊥Hðk⊥; l⊥; Q2Þ

×

�
Fxgðk2⊥Þ þ

1

M
ϵij⊥S⊥ik⊥jO⊥

1T;xg
ðk2⊥Þ

�
; (22)

where the first term recovers the known unpolarized differ-
ential cross section, whereas the second term is the spin-
dependent contribution. For anticharm quark production,
Uðk⊥ÞU†ðk⊥Þ that appears in the first line of the above
equation should be replaced with U†ðk⊥ÞUðk⊥Þ, leading to
the exactly opposite SSA as compared to that in charm quark
production. The hard part Hðk⊥; l⊥; Q2Þ is given by

Hðk⊥; l⊥; Q2Þ ¼
�
1 − yþ y2

2

�
½z2 þ ð1 − zÞ2�

×

�
l⊥ − k⊥

ρþ ðl⊥ − k⊥Þ2
−

l⊥
ρþ l2⊥

�
2

: (23)

The SSA in open charm production in the SIDIS process
has also been calculated using the collinear twist-3
approach [9] (for earlier work, see Ref. [38]). In the
framework of the collinear factorization, a C-odd trigluon
correlation that gives rise to SSA is defined as [8,9]
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Oαβγðx1; x2Þ ¼ −gi3
Z

dy−dz−

ð2πÞ2Pþ eiy
−x1Pþ

eiz
−ðx2−x1ÞPþ

× hpSjdbcaFβþ
b ð0ÞFγþ

c ðz−ÞFαþ
a ðy−ÞjpSi;

(24)

where we regard all the free Lorentz indices α, β, and γ
to be transverse in three dimension. One can also define
a C-even trigluon correlation Nαβγðx1; x2Þ by replacing
dbca with the antisymmetric tensor ifbca in the above
equation [8,9]. Both the C-even and C-odd trigluon
correlations contribute to SSAs. However, only the C-odd
trigluon correlation is the relevant one at small x as shown
in Ref. [33].
It is known that the k⊥ moment of the gluon Sivers

function can be related to the gluonic pole C-even trigluon
correlation Nαβγðxg; xgÞ. A similar relation between the k⊥
moment of the polarized odderon and the C-odd trigluon
correlation can be established. At small x, exponentials that
appear in Eq. (24) can be approximated as eiy

−x1Pþ ≈ 1 and
eiz

−ðx2−x1ÞPþ ≈ 1. In this approximation, one has

Z
d2k⊥kα⊥k

β
⊥k

γ
⊥
1

M
ϵij⊥S⊥ik⊥jO⊥

1T;xg
ðk2⊥Þ ¼

−ig2π2

2Nc
OαβγðxgÞ;

(25)

where OαβγðxgÞ≡Oαβγðx1; x2Þ with xg being the total
momentum transfer carried by gluons, which can be
conveniently chosen to be xg ≡Maxfx1; x2g. With this
derived relation, one is able to compare the full polarized
cross section computed in the CGC framework and the
collinear twist-3 approach in an overlap kinematical region

l⊥ ≪ Qs where both formalisms apply. However, we find
that the hard parts calculated in the different approaches
differ by a factor 2. The reason for this disagreement is not
yet clear. The extra investigation of the hard parts is thus
needed.

IV. SUMMARY

In this paper, we have shown that an axial asymmetric
color source distribution in the transverse plane of a
transversely polarized proton can give rise to a spin-
dependent odderon in the MV model. Such a polarized
odderon is responsible for SSA in jet production in the
backward region of pp collisions and SSA in open charm
production in the SIDIS process. As a result, the BLV
odderon solution can be tested by studying the x depend-
ence of SSAs. A relation between the k⊥ momentum of the
odderon and the collinear twist-3 C-odd trigluon correla-
tion has been established. It is straightforward to extend our
formalism to study SSAs in open charm production in pp
collisions and in Drell-Yan/direct photon processes, which
already have been calculated in the collinear twist-3
framework [39,40] (for earlier work, see Ref. [41]). It is
our plan to further explore the possible difference/relation
between the CGC formalism and the collinear twist-3
approach in computing SSAs at small x.
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