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By employing the perturbative QCD (pQCD) factorization approach, we calculate the branching ratios
and charge parity (CP)-violating asymmetries of the four B̄0

s → Kπ and KK decays, with the inclusion of
all known next-to-leading order (NLO) contributions. We find numerically that (a) the NLO contribution
can interfere with the leading order (LO) part constructively or destructively for different decay modes; (b)
the NLO contribution leads to a 22% decrease for the central values of the LO pQCD prediction for
BrðB̄0

s → Kþπ−Þ, but ∼50% enhancement to the other three considered B̄s decays, the agreement between
the central values of the pQCD predictions and the data are therefore improved effectively after the
inclusion of the NLO contributions; (c) for both B̄0

s → Kþπ− and B̄0
s → KþK− decays, the NLO pQCD

predictions for the direct and mixing induced CP-violating asymmetries agree well with the measured
values in both the sign and the magnitude; and (d) the theoretical errors of the pQCD predictions for decay
rates are about 35% of the cental values and larger than that of the relevant data.
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I. INTRODUCTION

The B and Bs decays are very interesting phenomeno-
logically for the precision test of the standard model (SM)
and for the searches for the signal of the new physics
beyond the SM. But the Bs decays are considerably less
studied than the well-known Bu;d decays due to the rapid
oscillations of Bs mesons and the shortage of Bs events
collected. Since the start of the LHC running, a lot of B0

s
events have been collected by the LHCb collaboration, and
some B0

s → PP decays are already observed [1,2], such as
the first observation of the direct charge parity (CP)
violation in Bs decays [1]:

ACPðB0
s → K−πþÞ ¼ ð0.27� 0.04ðstatÞ � 0.01ðsystÞÞ;

(1)

and the first measurement of the time-dependent CP
violation in B0

s → KþK− [2]:

CKK ¼ 0.14� 0.11ðstatÞ � 0.03ðsystÞ;
SKK ¼ 0.30� 0.12ðstatÞ � 0.04ðsystÞ: (2)

During the past decade, in fact, many charmless two-
body hadronic B0

s → M2M3 decays (here Mi denotes the
light mesons such as π; K; ρ, etc.) have been studied by
employing the perturbative QCD (pQCD) factorization
approach at the leading order (LO) level [3–5] or the
partial next-to-leading order (NLO) level [6]. In this paper

we calculate the branching ratios and CP-violating asym-
metries of the B̄0

s → Kπ and KK decays by employing the
pQCD factorization approach, with the inclusion of all
currently known NLO contributions. These decay modes
have also been studied, for example, by using the gener-
alized factorization in Ref. [7] or by using the QCD
factorization (QCDF) approach in Refs. [8–10].
In the pQCD factorization approach, almost all NLO

contributions to Bu;d → M2M3 decays have been calculated
up to now. And it is straightforward to extend these
calculations to the cases for the similar Bs → M2M3

decays. The NLO pQCD predictions for those considered
decay modes proved that the NLO contributions can
play an important role in understanding the very large
BrðB → Kη0Þ [11,12] or the so-called “Kπ-puzzle” [13].
Here, we focus on the studies for the possible effects of the
NLO contributions from various sources, such as the QCD
vertex corrections (VC), the quark loops (QL), and the
chromomagnetic penguins [8,14]. The newly known NLO
twist-2 contribution [15] and NLO twist-3 contribution to
the relevant form factors [16] will also be taken into
account here. This way one can improve the reliability
of the pQCD factorization approach effectively.
This paper is organized as follows. In Sec. II, we give a

brief review about the pQCD factorization approach and
present the LO decay amplitudes for the studied decay
modes. In Sec. III, the NLO contributions from different
sources are evaluated analytically. We calculate and show
the pQCD predictions for the averaged branching ratios and
CP-violating asymmetries of B̄0

s → Kπ and KK decays in
Sec. IV. The summary and some discussions are included in
the final section.*xiaozhenjun@njnu.edu.cn
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II. THEORETICAL FRAMEWORK AND LO
DECAY AMPLITUDES

A. Outlines of the pQCD approach

We consider the B0
s meson at rest for simplicity. Using

the light-cone coordinates, we define the B0
s meson with the

momentum P1, the emitted mesonM2 with the momentum
P2 moving along the direction of n ¼ ð1; 0; 0TÞ, and the
recoiled mesonM3 with the momentum P3 in the direction
of v ¼ ð0; 1; 0TÞ. Here, we also use xi to denote the
momentum fraction of a light antiquark in each meson:

P1 ¼
mBsffiffiffi
2

p ð1; 1; 0TÞ; P2 ¼
mBsffiffiffi
2

p ð1 − r23; r
2
2; 0TÞ;

P3 ¼
mBsffiffiffi
2

p ðr23; 1 − r22; 0TÞ; (3)

k1 ¼
mBsffiffiffi
2

p ðx1; 0;k1TÞ; k2 ¼
mBsffiffiffi
2

p ðx2ð1 − r23Þ; x2r22;k2TÞ;

k3 ¼
mBsffiffiffi
2

p ðx3r23; x3ð1 − r22Þ;k3TÞ; (4)

where ri ¼ mi=mBs
with mi ¼ mπ or mK here. When the

light pion and kaon are the final state mesons, r2i < 0.01
and can be neglected safely. The integration over the small
components k−1 , k

−
2 , and kþ3 will lead conceptually to the

decay amplitudes,

AðBs→M2M3Þ∼
Z
dx1dx2dx3b1db1b2db2b3db3

· Tr½CðtÞΦBs
ðx1; b1ÞΦM2

ðx2; b2Þ
× ΦM3

ðx3; b3ÞHðxi; bi; tÞStðxiÞe−SðtÞ�;
(5)

where bi is the conjugate space coordinate of kiT . In the
above equation, CðtÞ is the Wilson coefficient evaluated
at scale t. The functions ΦBs

, ΦM2
, and ΦM3

are the wave
functions of the initial Bs meson and the final state meson
M2 and M3, respectively. The hard kernel Hðk1; k2; k3; tÞ
describes the four-quark operator and the spectator quark
connected by a hard gluon whose q2 is in the order of Λ̄mBs

.
The jet function StðxiÞ in Eq. (5) is one of the two kinds of
Sudakov form factors relevant for the Bs decays considered,
which come from the threshold resummation over the large
double logarithms (ln2 xi) in the end-point region. The
function e−SðtÞ is the second kind of the Sudakov form
factors. The Sudakov form factors effectively suppress the
soft dynamics at the end-point region [17,18].
For the studied B̄0

s → Kπ; KK decays, the corresponding
weak effective Hamiltonian can be written as [19]

Heff ¼
GFffiffiffi
2

p
�
VubV�

uq½C1ðμÞOu
1ðμÞ þ C2ðμÞOu

2ðμÞ�

− VtbV�
tq

�X10

i¼3

CiðμÞOiðμÞ
��

þ H:c:; (6)

where q ¼ d; s, GF ¼ 1.16639 × 10−5 GeV−2 is the Fermi
constant, and Vij is the Cabbibo-Kobayashi-Maskawa
(CKM) matrix element, CiðμÞ are the Wilson coefficients
evaluated at the renormalization scale μ, and OiðμÞ are the
four-fermion operators.
As usual, we treat the B meson as a very good heavy-

light system, and adopt the distribution amplitude ϕBs
as in

Ref. [5]:

ϕBs
ðx; bÞ ¼ NBs

x2ð1 − xÞ2 exp
�
−
M2

Bs
x2

2ω2
b

−
1

2
ðωbbÞ2

�
; (7)

where the shape parameter ωb is a free parameter and we
take ωb ¼ 0.5� 0.05 GeV for the Bs meson based on
studies of lattice QCD and the light-cone sum rule [18], and
finally the normalization factor NBs

depends on the values
of ωb and the decay constant fBs

and is defined through the
normalization relation

R
1
0 dxϕBs

ðx; 0Þ ¼ fBs
=ð2 ffiffiffi

6
p Þ.

For the light pseudoscalar mesons π and K, their wave
functions are the same in form and can be defined as [20]

ΦðP; x; ζÞ≡ 1
ffiffiffiffiffiffiffiffiffi
2NC

p γ5½PϕAðxÞ þm0ϕ
PðxÞ

þ ζm0ðnv − 1ÞϕT
PðxÞ�; (8)

where P and x are the momentum of the light meson and the
momentum fraction of the quark (or antiquark) inside the
meson, respectively. When the momentum fraction of
the quark (antiquark) is set to be x, the parameter ζ should
be chosen as þ1 (−1). The distribution amplitudes (DAs) of
the light meson M ¼ ðπ; KÞ are adopted from Ref. [20,21]:

ϕA
MðxÞ ¼

3fMffiffiffi
6

p xð1 − xÞ½1þ aM1 C
3=2
1 ðtÞ þ aM2 C

3=2
2 ðtÞ�; (9)

ϕP
MðxÞ ¼

fM
2

ffiffiffi
6

p
�
1þ

�
30η3 −

5

2
ρ2M

�
C1=2
2 ðtÞ

�
; (10)

ϕT
MðxÞ ¼

fMð1 − 2xÞ
2

ffiffiffi
6

p
�
1þ 6

�
5η3 −

1

2
η3ω3 −

7

20
ρ2M

−
3

5
ρ2Ma

M
2

�
ð1 − 10xþ 10x2Þ

�
; (11)

with the mass ratio ρM¼ðmπ=mπ
0;mK=mK

0 Þ forM ¼ ðπ; KÞ,
respectively [11,14]. The Gegenbauer moments aMi and
other input parameters are the same as in Ref. [5]:

aπ1 ¼ 0; aπ2 ¼ 0.44þ0.10
−0.20 ;

aK1 ¼ 0.17� 0.05; aK2 ¼ 0.20� 0.06;

η3 ¼ 0.015; ω3 ¼ −3.0: (12)

The Gegenbauer polynomials Cν
nðtÞ in Eqs. (9)–(11) can be

found easily in Refs. [5,12]. For more details about recent
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progress on the wave functions of heavy and light mesons,
one can see Ref. [22] and references therein.

B. Decay amplitudes at the leading order

The four B̄0
s → ðKþπ−; K0π0; KþK−; K̄0K0Þ decays

have been studied previously in Ref. [5] by employing
the pQCD factorization approach at the leading order.
The decay amplitudes as presented in Ref. [5] are

confirmed by our independent calculations. In this
paper, we focus on the calculations of the NLO
contributions to these decays. At the leading order, the
relevant Feynman diagrams that may contribute to
the B̄0

s → Kπ; KK decays are illustrated in Fig. 1. For
the sake of completeness, however, we first show the
relevant LO decay amplitudes in this section based on
our own analytical calculations.

AðB̄0
s → Kþπ−Þ ¼ VubV�

ud · ½fπFeKa1 þMeKC1� − VtbV�
td ·

�
fπFeKða4 þ a10Þ

þ fπF
P2

eKða6 þ a8Þ þMeKðC3 þ C9Þ þ fBs
FaK

�
a4 −

1

2
a10

�

þ fBs
FP2

aK

�
a6 −

1

2
a8

�
þMaK

�
C3 −

1

2
C9

�
þMP1

aK

�
C5 −

1

2
C7

��
; (13)

ffiffiffi
2

p
AðB̄0

s → K0π0Þ ¼ VubV�
ud · ½fπFeKa2 þMeKC2� − VtbV�

td ·

�
−fBs

FaK

�
a4 −

1

2
a10

�

− ðfπFP2

eK þ fBs
FP2

aKÞ
�
a6 −

1

2
a8

�
þMeK

�
−C3 þ

3

2
C8 þ

1

2
C9 þ

3

2
C10

�

þ fπFeK

�
−a4 −

3

2
a7 þ

3

2
a9 þ

1

2
a10

�
−MaK

�
C3 −

1

2
C9

�
−MP1

aK

�
C5 −

1

2
C7

��
; (14)

AðB̄0
s → KþK−Þ ¼ VubV�

us · ½fkFeKa1 þMeKC1 þMaKC2� − VtbV�
ts ·

�
fkFeKða4 þ a10Þ

þ fkF
P2

eKða6 þ a8Þ þMeKðC3 þ C9Þ þMP1

eKðC5 þ C7Þ þ fBs
FP2

aK

�
a6 −

1

2
a8

�

þMaK

�
C3 þ C4 −

1

2
C9 −

1

2
C10

�
þMP1

aK

�
C5 −

1

2
C7

�

MP2

aK

�
C6 −

1

2
C8

�
þ ½MaKðC4 þ C10Þ þMP2

aKðC6 þ C8Þ�Kþ↔K−

�
; (15)

AðB̄0
s → K̄0K0Þ ¼ −VtbV�

ts ·

�
fkFeK

�
a4 −

1

2
a10

�
þ ðfkFP2

eK þ fBs
FP2

aKÞ
�
a6 −

1

2
a8

�

þMeK

�
C3 −

1

2
C9

�
þ ðMP1

eK þMP1

aKÞ
�
C5 −

1

2
C7

�
þMaK

�
C3 þ C4 −

1

2
C9 −

1

2
C10

�

þMaK

�
C4 −

1

2
C10

�

K0↔K̄0

þ
�
MP2

aK

�
C6 −

1

2
C8

�
þ ½K0↔K̄0�

��
; (16)

where ai is the combination of the Wilson coefficients Ci, the same as in Ref. [5]. The nine individual decay amplitudes,
such as FeK and FP2

eK that appeared in Eqs. (13)–(16), are obtained by evaluating the corresponding Feynman diagrams in
Fig. 1 analytically. One can find the expressions for all these decay amplitudes easily in Ref. [5].

III. NEXT-TO-LEADING ORDER CONTRIBUTIONS

A. NLO contributions from different sources

For the considered decay modes, one should, first, use the NLO Wilson coefficients CiðMWÞ, the NLO RG evolution
matrix Uðt; m; αÞ [19], and the αsðtÞ at the two-loop level in numerical calculations. Second, one should take all the
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Feynman diagrams that lead to the decay amplitudes to be
proportional to α2sðtÞ in the analytical evaluations. Such
Feynman diagrams can be grouped into the following
classes:
(1) The vertex corrections, as illustrated in

Figs. 2(a)–2(d), the same set as in the QCDF
approach.

(2) The NLO contributions from quark loops [14] and
the chromomagnetic penguin operator O8g [23], as
illustrated in Figs. 2(e)–2(h).

(3) The NLO twist-2 and twist-3 contributions to
the form factors of B → P (P ¼ π; K, the light
pseudoscalars) transitions [15,16], coming from the
Feynman diagrams in Fig. 3.

(4) The NLO corrections to the LO hard spectator
diagrams and annihilation diagrams, as illustrated
in Fig. 5 of Ref. [12].

At present, only the calculations for the NLO
corrections to the LO hard spectator and annihilation
diagrams have not been completed yet. But from the
comparative studies of the LO and NLO contributions
from different sources in Refs. [12,13], we believe that
those still unknown NLO contributions in the frame-
work of the pQCD factorization approach, as the high
order corrections to small LO contributions, are most
possibly very small in size and could be neglected
safely.

The vertex corrections to the factorizable emission
diagrams, as illustrated by Figs. 2(a)–2(d), were calcu-
lated years ago in the QCD factorization approach
[8,24]. For B0

s → Kπ; KK decays, the vertex corrections
can be calculated without considering the transverse
momentum effects of the quark at the end point [14],
one can use the vertex corrections as given in Ref. [8]
directly. The vertex corrections can then be absorbed
into the redefinition of the Wilson coefficients aiðμÞ by
adding a vertex function ViðMÞ to them. The expres-
sions of the vertex functions ViðMÞ can be found easily
in Refs. [8,14].
The contribution from the so-called quark loops is a kind

of penguin correction with the four quark operators
insertion, as illustrated by Figs. 2(e) and 2(f). For the
b → s transition, the effective Hamiltonian Hql

eff , which
describes the contributions from the quark loops, can be
written as [14]

HðQLÞ
eff ¼ −

X

q¼u;c;t

X

q0

GFffiffiffi
2

p VqbV�
qs
αsðμÞ
2π

× CðqÞðμ; l2Þðs̄γρð1 − γ5ÞTabÞðq̄0γρTaq0Þ; (17)

where l2 is the invariant mass of the gluon, as illustrated by
Fig. 2(e). The expressions of the functions CðqÞðμ; l2Þ for
the loop of the qðq ¼ u; d; s; c; tÞ quark can be found, for
example, in Ref. [14].
The magnetic penguin is another kind of penguin

correction induced by the insertion of the operator O8g,
as illustrated by Figs. 2(g) and 2(h). The corresponding
weak effective Hamiltonian containing the b → sg tran-
sition can be written as

HMP
eff ¼ −

GFffiffiffi
2

p VtbV�
tsCeff

8g O8g; (18)

whereO8g is the chromomagnetic penguin operator [19,23]
and Ceff

8g is the corresponding effective Wilson coefficient:
Ceff
8g ¼ C8g þ C5 [14].
In Refs. [15,16], the authors calculated the NLO

twist-2 and twist-3 contributions to the form factors
fþ;0ðq2Þ of the B → π transition. The NLO pQCD
prediction for the form factor fþðq2Þ, for example, is
of the form [16]

FIG. 3 (color online). The four typical Feynman diagrams,
which contribute to the form factors of B → M3 transitions at the
NLO level.

FIG. 2 (color online). Feynman diagrams for NLO contri
butions: the vertex corrections (a)–(d); the quark-loop contribu-
tions (e)–(f); and the chromomagnetic penguin contributions
(g)–(h).

FIG. 1 (color online). Typical Feynman diagrams that may
contribute at the leading order to B̄0

s → Kπ; KK decays.
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fþðq2ÞjNLO ¼ 8πm2
BCF

Z
dx1dx2

Z
b1db1b2db2ϕBðx1; b1Þ

×

�
rπ½ϕP

π ðx2Þ − ϕT
π ðx2Þ� · αsðt1Þ · e−SBπðt1Þ · Stðx2Þ · hðx1; x2; b1; b2Þ

þ ½ð1þ x2ηÞð1þ Fð1Þ
T2 ðxi; μ; μf; q2ÞÞϕA

π ðx2Þ þ 2rπ

�
1

η
− x2

�
ϕT
π ðx2Þ − 2x2rπϕP

π ðx2Þ�

· αsðt1Þ · e−SBπðt1Þ · Stðx2Þ · hðx1; x2; b1; b2Þ þ 2rπϕP
π ðx2Þð1þ Fð1Þ

T3 ðxi; μ; μf; q2ÞÞ

· αsðt2Þ · e−SBπðt2Þ · Stðx2Þ · hðx2; x1; b2; b1Þ
�
; (19)

where η ¼ 1 − q2=m2
B with q2 ¼ ðPB − PπÞ2, μ (μf) is

the renormalization (factorization) scale, the hard scale
t1;2 is chosen as the largest scale of the propagators in the
hard b-quark decay diagrams [15,16], the function Stðx2Þ
is the threshold resummation factor adopted from
Ref. [25], the expressions of the hard function

hðxi; bjÞ can be found in Ref. [15,16], and, finally,

the factor Fð1Þ
T2 ðxi; μ; μf; q2Þ and Fð1Þ

T3ðxi; μ; μf; q2Þ de-
scribe the NLO twist-2 and twist-3 contribution to
fþ;0ðq2Þ of the B → π transition, respectively
[15,16].

Fð1Þ
T2 ðxi; μ; μf; q2Þ ¼

αsðμfÞCF

4π

�
21

4
ln

μ2

m2
B
−
�
13

2
þ ln r1

�
ln

μ2f
m2

B
þ 7

16
ln2ðx1x2Þ þ

1

8
ln2x1

þ 1

4
ln x1 ln x2 þ

�
−
1

4
þ 2 ln r1 þ

7

8
ln η

�
ln x1 þ

�
−
3

2
þ 7

8
ln η

�
ln x2

þ 15

4
ln η −

7

16
ln2ηþ 3

2
ln2r1 − ln r1 þ

101π2

48
þ 219

16

�
; (20)

Fð1Þ
T3 ðxi; μ; μf; q2Þ ¼

αsðμfÞCF

4π

�
21

4
ln

μ2

m2
B
−
1

2
ð6þ ln r1Þ ln

μ2f
m2

B
þ 7

16
ln2x1 −

3

8
ln2x2

þ 9

8
ln x1 ln x2 þ

�
−
29

8
þ ln r1 þ

15

8
ln η

�
ln x1 þ

�
−
25

16
þ ln r2 þ

9

8
ln η

�
ln x2

þ 1

2
ln r1 −

1

4
ln2r1 þ ln r2 −

9

8
ln η −

1

8
ln2ηþ 37π2

32
þ 91

32

�
; (21)

where ri ¼ m2
B=ξ

2
i with the choice of ξ1 ¼ 25mB and

ξ2 ¼ mB [15]. According to the analytical and numerical
evaluations in Ref. [16], we get to know that the NLO
twist-2 and NLO twist-3 contribution to the form factor
of the B → π transition are similar in size but have an
opposite sign, which leads to a strong cancellation
between them and consequently results in a small total
NLO contribution, ∼7% variation to the full LO pQCD
prediction for the case of fþðq2Þ in the range of
0 ≤ q2 ≤ 12 GeV2, as illustrated explicitly in Fig. 8 of
Ref. [16].
In this paper we adopt the above NLO factors

Fð1Þ
T2 ðxi; μ; μf; q2Þ and Fð1Þ

T3 ðxi; μ; μf; q2Þ directly, and then

extend the expressions of Fð1Þ
T2 and Fð1Þ

T3 for the case of

B → π to the case for B̄0
s → K transition under the

assumption of SUð3Þ flavor symmetry, by making the
proper replacements, such as rπ¼mπ=mB→rk¼mk=mBs

,
mB → mBs

and ϕA;P;T
π → ϕA;P;T

K , for the expressions as
given in Eqs. (20) and (21).

B. NLO decay amplitudes

For the sake of comparison and convenience, we denote
all currently known NLO contributions except for those
NLO twist-2 and twist-3 contributions to the form factors
by the label “Set A,” as described in the previous sub-
section. For the four considered B̄0

s → Kπ; KK decays,
the Set-A NLO contributions will be included in a
simple way:
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AKπ → AKπ þ
X

q¼u;c;t

VqbV�
qdM

ðQLÞ
Kþπ− þ VtbV�

tdM
ðMPÞ
Kþπ− ; (22)

AKK → AKK þ
X

q¼u;c;t

VqbV�
qsM

ðQLÞ
KþK− þ VtbV�

tsM
ðMPÞ
KþK− ; (23)

where the quark-loop and magnetic penguin amplitudes MðQLÞ
XY and MðMPÞ

XY are of the form

MðQLÞ
Kþπ− ¼ −8m4

Bs

C2
Fffiffiffi
6

p
Z

1

0

dx1dx2dx3

Z
∞

0

b1db1b3db3ϕBs
ðx1Þ

× f½ð1þ x3ÞϕA
π ðx2ÞϕA

Kðx3Þ þ rKð1 − 2x3ÞϕA
π ðx2ÞðϕP

Kðx3Þ þ ϕT
Kðx3ÞÞ

þ 2rπϕP
π ðx2ÞϕA

Kðx3Þ� · α2sðtaÞ · heðx1; x3; b1; b3Þ · exp½−SabðtaÞ� · CðqÞðta; l2Þ
þ 2rKϕA

π ðx2ÞϕP
Kðx3Þ · α2sðtbÞ · heðx3; x1; b3; b1Þ exp½−SabðtbÞ� · CðqÞðtb; l02Þg; (24)

MðMPÞ
Kþπ− ¼ −16m6

Bs

C2
Fffiffiffi
6

p
Z

1

0

dx1dx2dx3

Z
∞

0

b1db1b2db2b3db3ϕBs
ðx1Þ

· f½ð1 − x3ÞϕA
π ðx2Þ½2ϕA

Kðx3Þ þ rKð3þ x3ÞϕP
Kðx3Þ þ rKð1 − x3ÞϕT

Kðx3Þ�
− rπx2ð1þ x3Þð3ϕP

π ðx2Þ − ϕT
π ðx2ÞÞϕA

Kðx3Þ�
· α2sðtaÞ · hgðxi; ; biÞ · exp½−ScdðtaÞ� · Ceff

8g ðtaÞ
þ 4rKϕA

π ðx2ÞϕP
Kðx3Þ · α2sðtbÞh0gðxi; biÞ · exp½−ScdðtbÞ� · Ceff

8g ðtbÞg; (25)

ffiffiffi
2

p
MðQLÞ

K0π0
¼ MðQLÞ

π−Kþ ;
ffiffiffi
2

p
MðMPÞ

K0π0
¼ MðMPÞ

π−Kþ ; (26)

MðQLÞ
KþK− ¼ −8m4

Bs

C2
Fffiffiffi
6

p
Z

1

0

dx1dx2dx3

Z
∞

0

b1db1b3db3ϕBs
ðx1Þ

× f½ð1þ x3ÞϕA
Kðx2ÞϕA

Kðx3Þ þ rKð1 − 2x3ÞϕA
Kðx2ÞðϕP

Kðx3Þ þ ϕT
Kðx3ÞÞ

þ 2rkϕP
Kðx2ÞϕA

Kðx3Þ� · α2sðtaÞ · heðx1; x3; b1; b3Þ · exp½−SabðtaÞ� · CðqÞðta; l2Þ
þ 2rKϕA

k ðx2ÞϕP
Kðx3Þ · α2sðtbÞ · heðx3; x1; b3; b1Þ · exp½−SabðtbÞ� · CðqÞðtb; l02Þg; (27)

MðMPÞ
KþK− ¼ −16m6

Bs

C2
Fffiffiffi
6

p
Z

1

0

dx1dx2dx3

Z
∞

0

b1db1b2db2b3db3ϕBs
ðx1Þ

· f½ð1 − x3Þ½2ϕA
Kðx3Þ þ rKð3ϕP

Kðx3Þ þ ϕT
Kðx3ÞÞ þ rKx3ðϕP

Kðx3Þ − ϕT
Kðx3ÞÞ�ϕA

Kðx2Þ
− rKx2ð1þ x3Þð3ϕP

Kðx2Þ − ϕT
Kðx2ÞÞϕA

Kðx3Þ�
· α2sðtaÞ · hgðxi; biÞ · exp½−ScdðtaÞ� · Ceff

8g ðtaÞ
þ 4rKϕA

Kðx2ÞϕP
Kðx3Þ · α2sðtbÞ · h0gðxi; biÞ · exp½−ScdðtbÞ� · Ceff

8g ðtbÞg; (28)

MðQLÞ
K̄0K0 ¼ MðQLÞ

KþK− ; MðMPÞ
K̄0K0 ¼ MðMPÞ

KþK− ; (29)

where the terms proportional to rπrK or r2K are not shown for the sake of simplicity. The functions he; hg, and h0g, the hard
scales ta and tb, as well as the Sudakov factors SabðtÞ and ScdðtÞ in Eqs. (24)–(28) will be given in Appendix A.

IV. NUMERICAL RESULTS

In the numerical calculations the following input parameters (here, the masses, decay constants, and QCD scales are in
units of GeV) will be used [26,27]:
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Λð5Þ
M̄S

¼ 0.225; fBs
¼ 0.23� 0.02; fK ¼ 0.16; fπ ¼ 0.13;

MBs
¼ 5.37; mK ¼ 0.494; mπ

0 ¼ 1.4; mK
0 ¼ 1.9;

τB0
s
¼ 1.497 ps; mb ¼ 4.8; MW ¼ 80.42: (30)

For the CKM matrix elements, we also take the same values as being used in Ref. [5], and neglect the small errors on
Vud; Vus, Vts, and Vtb:

jVudj ¼ 0.974; jVusj ¼ 0.226; jVubj ¼ ð3.68þ0.11
−0.08Þ × 10−3;

jVtdj ¼ ð8.20þ0.59
−0.27Þ × 10−3; jVtsj ¼ 40.96 × 10−3; jVtbj ¼ 1.0;

α ¼ ð99þ4
−9.4Þ°; γ ¼ ð59:0þ9.7

−3.7Þ°; arg ½−VtsV�
tb� ¼ 1°: (31)

A. Branching ratios

For the considered B0
s decays, the decay amplitude for a

given decay mode with b → d; s transitions can be gen-
erally written as

AðB̄0
s → fÞjb→d ¼ VubV�

udT − VtbV�
tdP

¼ VubV�
udT½1þ zeið−αþδÞ�; (32)

AðB̄0
s → fÞjb→s ¼ VubV�

usT 0 − VtbV�
tsP0

¼ VubV�
usT 0½1þ z0eiðγþδ0Þ�; (33)

where α and γ are the weak phase (the CKM angles),
δ ¼ arg, δ0 ¼ arg½P0=T 0� are the relative strong phases
between the tree (T) and penguin (P) diagrams, and the
parameter “z” and “z0” are the ratios of penguin to tree
contributions with the definition

z ¼
����
VtbV�

td

VubV�
ud

����

����
P
T

����; z0 ¼
����
VtbV�

ts

VubV�
us

����

����
P0

T 0

����: (34)

The ratios ðz; z0Þ and the strong phases ðδ; δ0Þ can be
calculated in the pQCD approach. The CP-averaged
branching ratio, consequently, can be defined as

BrðB̄0
s → fÞ ¼ G2

FτB0
s

32πmB

1

2
½jAðB̄0

s → fÞj2 þ jAðB0
s → f̄Þj2�;

(35)

where τB0
s
is the lifetime of the B0

s meson.
In Table I, we list the pQCD predictions for the averaged

branching ratios of the four B̄0
s → Kπ; KK decays. The

labels LO and NLO means the pQCD predictions at the
leading order only, or with the inclusion of all currently
known NLO contributions. The label Set A means the
pQCD predictions without the inclusion of the newly
known NLO twist-2 and twist-3 contributions to the form
factors of B̄0

s → K transitions. For the sake of comparison,
we also show the LO pQCD predictions as given in Ref. [5]
in the fourth column, and list the NLO theoretical pre-
dictions obtained by employing the QCD factorization
approach as given in Ref. [8] in the seventh column. The
corresponding errors of the previous LO pQCD predictions
[5] and the QCDF predictions [8] are the combined total
errors. The currently available experimental measurements
[26,27] are also shown in the eighth column of Table I.
The main theoretical errors of the NLO pQCD predic-

tions as shown in the sixth column of Table I are induced
by the uncertainties of the input parameters. The first
dominant error comes from ωb ¼ 0.50� 0.05 and fBs

¼
0.23� 0.02 GeV, added in quadrature. The second error
arises from the uncertainties of the CKM matrix elements
jVubj and jVcbj, as well as the CKM angles α and γ as given

TABLE I. The pQCD predictions for the branching ratios ( in units of 10−6) of the four B0
s → Kπ; KK decays. The label “LO” and

“NLO”means the leading order and the full next-to-leading order pQCD predictions, while “Set-A”means only NLO twist-2 and twist-
3 contributions to form factors are not taken into account. The values listed in the fourth, seventh and eighth column are the LO pQCD
predictions [5], the QCDF predictions [8], and currently available data [26,27].

Mode Class LO pQCD [5] Set A NLO QCDF [8] Data

B̄0
s → Kþπ− T 7.30 7.6þ3.3

−2.5 6.4 5.7þ2.2þ0.5þ0.2
−1.7−0.6−0.3 10:2þ6.0

−5.2 5.4� 0.6

B̄0
s → K0π0 C 0.19 0.16þ0.12

−0.07 0.30 0.28þ0.10þ0.03þ0.02
−0.06−0.02−0.01 0.49þ0.62

−0.35

B̄0
s → KþK− P 13.1 13:6þ8.6

−5.2 20.3 19:7þ6.2þ2.4þ0.2
−4.8−2.2−0.2 22:7þ27.8

−13.0 24.5� 1.8

B̄0
s → K̄0K0 P 13.3 15:6þ9.7

−6.0 21.2 20:2þ6.5þ2.4þ0.0
−4.9−2.2−0.0 24:7þ29.4

−14.0
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in Eq. (31). The third error comes from the uncertainties of
relevant Gegenbauer moments: aK1 ¼ 0.17� 0.05,
aK2 ¼ 0.20� 0.06, and aπ2 ¼ 0.44þ0.10

−0.20 , added in quadrature
again. Here, we assigned roughly a 30% uncertainty for
Gegenbauer moments to estimate the resultant errors for the
pQCD predictions of the branching ratios.
From the numerical results of the branching ratios, we

have the following observations:
(1) The LO pQCD predictions for the branching ratios as

given in Ref. [5] are confirmed by our independent
calculations. The small differences between the LO
pQCD predictions in column three and four are
mainly induced by the different choices of the scales

Λð4Þ
QCD and Λð5Þ

QCD: we take Λð5Þ
QCD ¼ 0.225 GeV and

Λð4Þ
QCD ¼ 0.287 GeV, instead of the values of Λð5Þ

QCD ¼
0.193 GeV and Λð4Þ

QCD ¼ 0.25 GeV as being used
in Ref. [5].

(2) The NLO contributions can interfere with the LO
part constructively or destructively for different
decay modes. The inclusion of NLO contributions
can lead to a better agreement between the central
values of the pQCD predictions and currently
available measured values.

(3) The B̄0
s → Kþπ− decay is a “tree” dominated decay

mode; the NLO contribution leads to a 22% decrease
in the central value of the LO pQCD prediction only.
For the other three “color-suppressed” and “QCD-
penguin” decay modes, however, the NLO contribu-
tion leads to ∼50% enhancement to the central values
of the LO ones, which in turn play an important role
in interpreting the observed large branching ratio
BrðB0

s → KþK−Þ ¼ ð24.5� 1.8Þ × 10−6 [26,27].
(4) When the theoretical errors are taken into account,

the NLO pQCD predictions for the branching ratios
(in units of 10−6) of the four considered decays are

BrðB̄0
s → Kþπ−Þ ¼ 5.7þ2.3

−1.8 ;

BrðB̄0
s → K0π0Þ ¼ 0.28þ0.12

−0.07 ;

BrðB̄0
s → KþK−Þ ¼ 19:7þ6.7

−5.3 ;

BrðB̄0
s → K̄0K0Þ ¼ 20:2þ6.9

−5.4 ; (36)

where the individual errors as shown in the sixth
column of Table I have been added in quadrature. One
can see that the theoretical errors of the NLO pQCD
predictions are a little smaller than those of the LO
ones, but still similar with them. Such a small change
of the size of the theoretical error is consistent with the
general expectation. Of course, we know that although
the agreement between the central values of the pQCD
predictions and the data are improved effectively due
to the inclusion of NLO contributions; the theoretical
errors of the pQCD predictions are roughly 35% of the

central values, and still large when compared with the
less than 10% uncertainty of the measured values.

B. CP-violating asymmetries

Now we turn to the evaluations of the CP-violating
asymmetries of the considered four B0

s decays in the pQCD
approach. For B0

s → K∓π� decays, the definition for its
direct CP-violating asymmetry is very simple [1]. For
neutral B0

s decays into a CP eigenstate f̄ ¼ ηCPf with
ηCP ¼ �1 for the CP-even and CP-odd final states, the
time-dependent CP asymmetry can be defined as [2,28]

AðtÞ ¼ ΓB̄0
s→fðtÞ − ΓB0

s→fðtÞ
ΓB̄0

s→fðtÞ þ ΓB0
s→fðtÞ

¼ Af cosðΔmstÞ þ Sf sinðΔmstÞ
cosh ðΔΓs

2
tÞ þHf sinh ðΔΓs

2
tÞ ; (37)

where Δms and ΔΓs are the mass and width differences
of the B0

s − B̄0
s system mass eigenstates. The direct

CP-violating asymmetry Af and the mixing-induced
CP-violating asymmetry Sf and Hf are defined as in
Refs. [2,28]:

Af ¼ jλfj2 − 1

1þ jλfj2
; Sf ¼ 2 Imλf

1þ jλfj2
; Hf ¼ 2Reλf

1þ jλfj2
;

(38)

where the three factors satisfy the normalization relation:
jAfj2 þ jSfj2 þ jHfj2 ¼ 1, and the CP-violating param-
eter λf is defined as

λf ¼
q
p

Āf

Af
¼ ηfe2iϵ

AðB̄s → fÞ
AðBs → fÞ ; (39)

where ϵ ¼ arg½−VtsV�
tb� is very small in size and can be

neglected safely. It is worth mentioning that the parameters
Af and Hf defined in Eqs. (37) and (38) have an opposite
sign as the parameter Cf andAΔΓ

f as defined in Ref. [2], i.e.,
Af ¼ −Cf and Hf ¼ −AΔΓ

f .
In Tables II and III, we list the pQCD predictions (in

units of 10−2) for the direct CP-violating asymmetry Af
and the mixing-induced CP-violating asymmetry Sf and
Hf of the considered B0

s decays, respectively. As a
comparison, the LO pQCD predictions as given in
Ref. [5], the QCDF predictions as given in Ref. [8], and
the measured values [1,2] are listed in Table II and Table III.
The errors of our NLO pQCD predictions for CP-violating
asymmetries are defined in the same way as those for the
branching ratios.
From the pQCD predictions and currently available data

for the CP-violating asymmetries of the considered B̄0
s

decays, we find that (a) the LO pQCD predictions obtained
in this paper agree well with those as given in Ref. [5]; (b)
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for the CP-violating asymmetries of the considered B̄0
s

decays, the effects of the NLO contributions are small or
moderate in size; and (c) for B̄0

s → K�π∓ and B̄0
s → KþK−

decays, the pQCD predictions for both Af and Sf agree
well with those measured values in both the sign and the
magnitude when still large theoretical and experimental
errors are taken into account.

V. SUMMARY

In this paper, we calculated the branching ratios and
CP-violating asymmetries of the four B̄0

s → Kπ; KK
decays, with the inclusion of all known NLO contributions,
especially the NLO twist-2 and twist-3 contributions to
the form factors to the Bs → K transition. From our
calculations and phenomenological analysis, we found
the following results:
(1) For the considered four decays, the NLO contribu-

tion can interfere with the LO part constructively or
destructively for different decay modes. The cur-
rently available data can be interpreted by the
inclusion of the NLO contribution.

(2) For BrðB̄0
s → Kþπ−Þ, the NLO contribution leads to

a 22% decrease to the central value of the LO pQCD
prediction. For the other three decay modes, how-
ever, the NLO contributions can provide ∼50%
enhancements to the central values of the LO ones
and therefore play an important role in interpreting
the observed large branching ratio BrðB̄0

s →
KþK−Þ ¼ ð24.5� 1.8Þ × 10−6.

(3) For the CP-violating asymmetries, the effects of the
NLO contributions are small or moderate in size. For

B̄0
s → Kþπ− and B̄0

s → KþK− decays, the pQCD
predictions for the direct and mixing-induced CP-
violating asymmetries agree well with the measured
values in both the sign and the magnitude.

(4) For the branching ratios of the four considered
decays, the agreement between the central values
of the pQCD predictions and the data are improved
effectively due to the inclusion of the NLO
contributions, but the theoretical errors of the
pQCD predictions are still relatively large, say
about 35% of the central values, when compared
with ∼10% uncertainty of the measured values.
The main sources of the theoretical errors come
from the uncertainties of the input parameters,
such as ωb; fBs

, aπ2 , etc. More works should be
done to improve the accuracy of the theoretical
predictions.
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APPENDIX: RELATED HARD FUNCTIONS AND
SUDAKOV FACTOR

We list here the hard function hi and the Sudakov factors
SabðtÞ and ScdðtÞ appeared in the expressions of the decay
amplitudes in Eqs. (24)–(28). The hard functions hiðxj; bjÞ
are obtained by making the Fourier transformations of the
hard kernel Hð0Þ:

TABLE III. The same format as in Table I, but for the pQCD predictions (in units of 10−2 ) for the mixing-induced CP asymmetries Sf
and Hf (the second row). The previous LO pQCD predictions [5], the QCDF predictions [9], and the measured values [1,2] are also
listed.

Mode Class LO pQCD [5] Set A NLO QCDF [9] Data [2]

B̄0
s → K0

Sπ
0 C −56.2 −61þ24

−20 −50.0 −52:9þ8.0þ4.2þ4.7
−8.2−4.3−4.4 45

−53.7 −52þ23
−17 −17.8 −17:4þ0.9þ2.0þ4.8

−0.1−1.0−4.1 −
B̄0
s → KþK− P 37.1 28þ5

−5 22.0 20:6þ1.9þ1.4þ0.8
−1.8−1.3−0.7 27 30� 13

92.0 93þ3
−3 96.0 96:5þ0.3þ0.1þ0.1

−0.4−0.2−0.2 −
B̄0
s → K̄0K0 P − 4 −0.2 −0.2 −3.5

100 ∼100 ∼100 ∼100 −

TABLE II. The same format as in Table I, but for the pQCD predictions (in unit of 10−2 ) for the direct CP asymmetries Af. The
previous LO pQCD predictions [5], the QCDF predictions [8], and the measured values [1,2] are also listed.

Mode Class LO pQCD [5] Set A NLO QCDF [8] Data

B̄0
s → Kþπ− T 27.6 24:1þ5.6

−4.8 36.2 38:7þ5.0þ2.1þ2.2
−5.0−1.8−1.8 −6.7þ15.6

−15.3 27� 4 [1]

B̄0
s → K0

Sπ
0 C 62.9 59:4þ7.9

−12.5 84.8 83:0þ5.8þ3.4þ2.3
−5.6−2.6−2.7 42þ47

−56

B̄0
s → KþK− P −13.7 −23:3þ5.0

−4.6 −17.1 −16:4þ0.3þ0.6þ0.6
−0.1−0.4−0.6 4.0þ10.6

−11.6 −14� 12[2]

B̄0
s → K̄0K0 P 0 0 −0.7 −0.7� 0.1 0.3� 0.1
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heðx1; x3; b1; b3Þ ¼ ½θðb1 − b3ÞI0ð ffiffiffiffiffi
x3

p
mBs

b3ÞK0ð ffiffiffiffiffi
x3

p
mBs

b1Þ þ θðb3 − b1ÞI0ð ffiffiffiffiffi
x3

p
mBs

b1Þ · K0ð ffiffiffiffiffi
x3

p
mBs

b3Þ�
· K0ð ffiffiffiffiffiffiffiffiffi

x1x3
p

mBs
b1ÞStðx3Þ; (A1)

hgðxi; biÞ ¼ −
iπ
2
Stðx3Þ½J0ð

ffiffiffiffiffiffiffiffiffi
x2x̄3

p
mBs

b2Þ þ iN0ð
ffiffiffiffiffiffiffiffiffi
x2x̄3

p
mBs

b2Þ� · K0ð ffiffiffiffiffiffiffiffiffi
x1x3

p
MBs

b1Þ

·
Z

π=2

0

dθ tan θ · J0ð
ffiffiffiffiffi
x3

p
mBs

b1 tan θÞJ0ð
ffiffiffiffiffi
x3

p
mBs

b2 tan θÞ · J0ð
ffiffiffiffiffi
x3

p
mBs

b3 tan θÞ; (A2)

h0gðxi; biÞ ¼ −Stðx1ÞK0ð
ffiffiffiffiffiffiffiffiffi
x1x3

p
mBs

b3Þ ·
Z

π=2

0

dθ tan θ · J0ð
ffiffiffiffiffi
x1

p
mBs

b1 tan θÞ · J0ð
ffiffiffiffiffi
x1

p
mBs

b2 tan θÞJ0ð
ffiffiffiffiffi
x1

p
mBs

b3 tan θÞ

×

� iπ
2
½J0ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 − x1
p

mBs
b2Þ þ iN0ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 − x1
p

mBs
b2Þ�; x1 < x2;

K0ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − x2

p
mBs

b2Þ; x1 > x2;
(A3)

with K0, I0, and J0 as the Bessel functions [29]. And the threshold resummation form factor StðxiÞ can be found in
Ref. [25].
The Sudakov factors that appeared in Eqs. (24)–(28) are defined as

SabðtÞ ¼ s

�
x1

mBsffiffiffi
2

p ; b1

�
þ s

�
x3

mBsffiffiffi
2

p ; b3

�
þ s

�
x̄3

mBsffiffiffi
2

p ; b3

�
þ 5

3

Z
t

1=b1

dμ
γqðαsðμÞÞ

μ
þ 2

Z
t

1=b3

dμ
γqðαsðμÞÞ

μ
; (A4)

ScdðtÞ ¼ s

�
x1

mBsffiffiffi
2

p ; b1

�
þ s

�
x2

mBsffiffiffi
2

p ; b2

�
þ s

�
x̄2

mBsffiffiffi
2

p ; b2

�
þ s

�
x3

mBsffiffiffi
2

p ; b1

�
þ s

�
x̄3

mBsffiffiffi
2

p ; b1

�

þ 11

3

Z
t

1=b1

dμ
γqðαsðμÞÞ

μ
þ 2

Z
t

1=b2

dμ
γqðαsðμÞÞ

μ
; (A5)

where x̄i ¼ 1 − xi; the function sðQ; bÞ can be found in Refs. [30,31]. The hard scales ta and tb that appeared in
Eqs. (24)–(28) take the form of

ta ¼ max f ffiffiffiffiffiffiffiffiffi
x1x3

p
mBs

;
ffiffiffiffiffi
x3

p
mBs

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1 − x3Þ

p
mBs

; 1=b1; 1=b3g;
tb ¼ max f ffiffiffiffiffiffiffiffiffi

x1x3
p

mBs
;

ffiffiffiffiffi
x1

p
mBs

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx1 − x2j

p
mBs

; 1=b1; 1=b3g; (A6)

where the energy scale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1 − x3Þ

p
mBs

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijx1 − x2j

p
mBs

come from the invariant mass of the gluon l2 ¼ x2ð1 − x3Þm2
Bs

and l02 ¼ ðx1 − x2Þm2
Bs
. They are chosen as the maximum energy scale appearing in each diagram to kill the large

logarithmic radiative corrections.
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