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A relativistic world-line Hamiltonian for strongly interacting 3q systems in a magnetic field is derived
from the path integral for the corresponding Green’s function. The neutral baryon Hamiltonian in the
magnetic field obeys the pseudomomentum conservation and allows a factorization of the c.m. and internal
motion. The resulting expression for the baryon mass in the magnetic field is written explicitly with the
account of hyperfine, one pion exchange, and one gluon exchange (color Coulomb) interaction. The
neutron mass is fast decreasing with the magnetic field, losing 1=2 of its value at eB ∼ 0.25 GeV2 and is
nearly zero at eB ∼ 0.5 GeV2. Possible physical consequences of the calculated mass trajectory of the
neutron, MnðBÞ, are presented and discussed.
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I. INTRODUCTION

The properties of strongly interacting matter under
extreme conditions are challenging to study both from
experimental and theoretical sides. Currently a great
interest attracts the response of baryon and quark matter
to intense magnetic fields (MFs) [1]. The outbreak of
interest in this subject is caused by the fact that MFs of
the order of eB ∼ Λ2

QCD ∼ 1019 G (GeV2 ≃ 5.12 × 1019 G)
became a physical reality. Such a MF is created (for a short
time) in peripheral heavy ion collisions at the RHIC and
LHC [2]. The field of about 4 orders of magnitude less
exists on the surface of magnetars and it may be of the order
of 1017 G in its interior [3]. MFs, as high as ð100 MeVÞ2,
can change the internal structure of baryons and affect the
possible neutron matter → quark matter transition, since
MFs can influence the phase structure of the QCD vacuum
[4]. Prior to analyzing the behavior of bulk neutron matter
embedded in MFs, one should understand what happens to
a neutron in MFs. What are the changes that occur to its
mass, shape, and decay properties? Similar questions were
raised before in regard to the hydrogen atom and posi-
tronium [5]. In the case of the hydrogen atom it was shown
that in superstrong MFs, radiative corrections screen the
Coulomb potential, thus preventing the “fall to the center”
phenomenon. As for the positronium, the collapse was
predicted at superhigh MF eB≳ 1040 G [6].
The situation with hadron masses in the presence of

strong MFs demands an analysis at the quark level based on
the fundamental QCD principles. Quark structure comes
into play when the Landau radius rH ¼ ðeBÞ−1=2 becomes

equal or smaller than the size of the hadron. For example,
the value of MF which corresponds to rH ¼ 0.6 fm is
eB≃ 5 × 1018 G. The first results obtained at the quark
level have been acquired in two different approaches: on
the lattice [7,8] and analytically [9–13]. Analytical results
[9–12] were obtained using the QCD path integral tech-
nique and the relativistic world-line Hamiltonian [14,15].
Our results presented in [10] are in agreement with the
lattice data [7,8], in the region eB ≤ 5 GeV2, where lattice
calculations in MFs are reliable.
It is important, that in our formalism we have the only

(nonfitting) parameters: the current quark massesmq, string
tension σ, which we take independent of MF (to the lowest
order in αs), while αsðμÞ in one gluon exchange (OGE) is
modified by the MFs as discussed below. In this sense the
situation is different from the standard approach with the
constituent masses and subtraction constant, which should
effectively depend on MFs.
Performing the analytic calculations of meson spectra

without quark loop corrections in the gluon exchange in
[9], we observed that meson mass tends to zero due to
enhanced color Coulomb interaction. This phenomenon,
which may be called “the magnetic collapse in QCD,”
occurs in the large Nc limit, when the contribution of quark
loops is negligible. Below, we show that the same situation
is encountered in the neutron, again in the absence of
quark loops. However, the inclusion of quark loop effects,
done in [11], eliminates the problem of “magnetic collapse”
in the meson, and as we show below, the same is true for
baryons. Instead, one encounters in mesons the problem of
the strong enhancement of the wave function at small
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distances, which in turn leads to the amplification of
the hyperfine (hf) interaction—the “magnetic focusing”
effect, first found in hydrogen [16] and in any system in
MFs which contain oppositely charged components [17].
This makes the π0 mass at large eB rather small, as it was
found on the lattice [7] and in the Nambu-Goldstone-type
of analysis in [12]. We show below that the neutron mass
also becomes small in strong MF due to color Coulomb
and hf interactions. Moreover, the first order hf contribution
produces zero neutron mass at some Bcrit; and even the
smearing of the hf term, which makes meson masses
nonvanishing [10], does not prevent the vanishing of the
neutron mass. However, the theorem of [18] forbids the
vanishing of the mass due to MF, which implies that higher
orders make this mass finite, however small.
The main result of the paper is the fast decrease of the

neutron mass, which poses some questions to the dynamics
of the neutron stars in strong MFs and their possible
transitions into quark stars.
To evaluate the baryon spectra, one has to overcome

several difficulties. The first problem is to develop the
relativistic formalism for three particles with nonperturba-
tive interaction. The formalism of this kind is the three-
body world-line Hamiltonian [19,20], obtained for zero
MFs from the Fock-Feynman-Schwinger path integral [14]
and used in [18,21,22] for the baryon spectrum. We
consider this formalism in the case of three quarks in
Sec. 2. We also show there, that in the neutral 3q system
one can introduce pseudomomentum and exactly factorize
the center of mass (c.m.) and relative motion, as it was done
in the neutral two-body system [23]. In this way the
classical factorization problem in MFs, studied for decades
for the neutral two-body system, is solved here for the
neutral three-body system with arbitrary masses and
charges both in the nonrelativistic and relativistic context.
In Sec. 3 we treat confinement, using for it a simplified
quadratic form, which allows us to find the wave function
analytically with 5% accuracy for eigenvalues and write
down the spin-flavor part of the wave function. In Sec. 4 we
estimate the contribution of OGE (color Coulomb) inter-
action hVCouli for three quarks with obtained wave func-
tions, first using the gluon loop (asymptotic freedom) form
and then the quark loop contribution. In Sec. 5 we study the
spin structure of the wave function and spin splitting in
MFs. The situation here is similar to the spectrum of the
hydrogen atom or meson with the hyperfine and magnetic
moment interaction included. The subtle point is that the
use of hf interaction (which is proportional to the δ function
in the first order perturbation theory) results in the vanish-
ing of the neutron mass at large MFs. In addition to the
observed, spin splitting in baryons is much stronger than in
mesons, and one must introduce additional sources of the
spin-spin interaction, the one pion exchange (OPE) forces,
which are also subject to MFs. In Sec. 6 all pieces of the
baryon mass are collected and the results of the numerical

calculations for the total mass are presented as a function of
MFs. Section 7 is devoted to the discussion of the results
and their physical significance. Concluding remarks are in
Sec. 8 together with future prospects. Three Appendices
contain the details of the calculations.

II. BARYONS IN MAGNETIC FIELDS

Our approach to the problem of neutron properties in
MFs is based on a recently developed theory of a quark-
antiquark system in MFs [10]. The starting point is the
Feynman-Schwinger (world-line) representation of the
quark Green’s function. The same formalism for baryons
in absence of MFs was developed in [19,20,22] and
successfully used in [24]. Here we accommodate the
treatment of MFs from [10] to the three-body relativistic
Hamiltonian of [19,20,22]. Consider a neutron as a three-
quark system with d quarks at positions zð1Þ and zð2Þ, and u
quark at zð3Þ. The relativistic free motion Hamiltonian has
the form

H0 ¼
1

2ωþ
P2 þ 1

2ω
π2 þ 1

2ω
q2 þ

X3
i¼1

m2
i þ ω2

i

2ωi
: (1)

Here the momenta P, π and q correspond to the Jacobi
coordinates

P ¼ −i
∂
∂R ; π ¼ −i

∂
∂η ; q ¼ −i

∂
∂ξ ; (2)

where

8>>><
>>>:

R ¼ 1
ωþ

P
ωizðiÞ;

η ¼ zð2Þ−zð1Þffiffi
2

p ;

ξ ¼
ffiffiffiffiffiffiffi
ω3

2ωþ

q
ðzð1Þ þ zð2Þ − 2zð3ÞÞ:

(3)

The ith quark current mass is mi, the quantities ωi play the
role of constituent masses, and we denote ω1 ¼ ω2 ≡ ω,
ωu ¼ ω3, ωþ ¼ 2ωþ ω3. The momenta P, π and q are
related to the momenta of individual quarks by

pðiÞ
k ¼ αiPk þ βiqk þ γiπk; (4)

pð1Þ
k ¼ ω

ωþ
Pk þ

ffiffiffiffiffiffiffiffiffi
ω3

2ωþ

r
qk −

1ffiffiffi
2

p πk; (5)

pð2Þ
k ¼ ω

ωþ
Pk þ

ffiffiffiffiffiffiffiffiffi
ω3

2ωþ

r
qk þ

1ffiffiffi
2

p πk; (6)

pð3Þ
k ¼ ω3

ωþ
Pk −

ffiffiffiffiffiffiffiffi
2ω3

ωþ

s
qk: (7)
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In (1) the center-of-mass motion decouples and can be
removed from the Hamiltonian.
For a neutral three-body and in general for a neutral

N-body nonrelativistic system embedded in the MF
factorization of the center of mass motion is possible using
the conserved pseudomomentum [23,26]. The realization
of the factorization procedure depends on the relation
between the masses and charges of the three particles
forming the system. For the neutron m1 ¼ m2 ¼ md,
m3 ¼ mu, e1 ¼ e2 ¼ −e=2, e3 ¼ e. In strong MFs we
shall consider for simplicity the case of the symmetrical
spin configuration, when both d quarks have the same
spin orientation, opposite to that of a u quark. As will be

seen, these states provide the highest and the lowest energy
eigenvalues at large B. For such a configuration, the
problem was solved in [25] both in the nonrelativistic
and relativistic case. Below we follow the results obtained
there. With MFs included, the Hamiltonian has the
form

H0 ¼
X3
i¼1

ðpðiÞ
k − eiAkÞ2 þm2

i þ ω2
i

2ωi
; (8)

choosing the gauge A ¼ 1
2
ðB × zÞ and passing to the

Jacobi coordinates (3) and momenta (2) we have

H0 ¼
1

2ω

�
ω

ωþ
Pþ

ffiffiffiffiffiffiffiffiffi
ω3

2ωþ

r
q −

πffiffiffi
2

p þ e
4

�
B ×

�
Rþ

ffiffiffiffiffiffiffiffiffi
ω3

2ωþ

r
ξ −

ηffiffiffi
2

p
���

2

þ 1

2ω

�
ω

ωþ
Pþ

ffiffiffiffiffiffiffiffiffi
ω3

2ωþ

r
qþ πffiffiffi

2
p þ e

4

�
B ×

�
Rþ

ffiffiffiffiffiffiffiffiffi
ω3

2ωþ

r
ξ þ ηffiffiffi

2
p
���

2

þ 1

2ω3

"
ω3

ωþ
P −

ffiffiffiffiffiffiffiffi
2ω3

ωþ

s
q −

e
2

 
B ×

 
R −

ffiffiffiffiffiffiffiffiffiffiffiffi
2ω2

ωþω3

s
ξ

!!#2
þ
X3
i¼1

m2
i þ ω2

i

2ωi

≡ 1

2ω
ððJð1ÞÞ2 þ ðJð2ÞÞ2Þ þ 1

2ω3

ðJð3ÞÞ2 þ
X3
i−1

m2
i þ ω2

i

2ωi
: (9)

The conserved pseudomomentum for this system reads

F̂ ¼ P −
e
2

ffiffiffiffiffiffiffiffi
ωþ
2ω3

r
ðB × ξÞ: (10)

The neutron wave function in MFs is an eigenfunction of F̂
with the eigenvalue F

F̂ΨðR; ξ; ηÞ ¼ FΨðR; ξ; ηÞ: (11)

The existence of the conserved pseudomomentum allows
us to represent the wave function in the form ΨðR; ξ; ηÞ ¼
eiνRφðξ; ηÞ and to find the phase ν from the eigenvalue
equation (11). We obtain

ΨðR; ξ; ηÞ ¼ exp

�
i

�
Fþ e

2

ffiffiffiffiffiffiffiffi
ωþ
2ω3

r
ðB × ξÞ

�
R

�
φðξ; ηÞ:

(12)

Applying JðiÞk Ψ to the wave function (12) one gets

ðJð1ÞÞ2eiνRφ ¼ eiνR
� ffiffiffiffiffiffiffiffiffi

ω3

2ωþ

r �
−i

∂
∂ξ
�
þ Cð1Þ

�
2

φ; (13)

ðJð2ÞÞ2eiνRφ ¼ eiνR
� ffiffiffiffiffiffiffiffiffi

ω3

2ωþ

r �
−i

∂
∂ξ
�
þ Cð2Þ

�
2

φ; (14)

ðJð3ÞÞ2eiνRφ ¼ eiνR
" ffiffiffiffiffiffiffiffi

2ω3

ωþ

s �
−i

∂
∂ξ
�
− Cð3Þ

#
2

φ; (15)

where

Cð1Þ ¼ ω

ωþ
Fþ e

4

ffiffiffiffiffiffiffiffi
ωþ
2ω3

r
ðB × ξÞ − πffiffiffi

2
p −

e

4
ffiffiffi
2

p ðB × ηÞ;

(16)

Cð2Þ ¼ Cð1Þðπ → −π; η → −ηÞ; (17)

Cð3Þ ¼ ω3

ωþ
Fþ e

4

ffiffiffiffiffiffiffiffiffi
2ωþ
ω3

s
ðB × ξÞ: (18)

In (13)–(15) the following combinations appear:

ðB × ξÞk
∂φ
i∂ξk ¼ BkL

ðξÞ
k φ; LðξÞ

k ¼ eklmξl
∂

i∂ξm ; (19)

ðB × ηÞk
∂φ
i∂ηk ¼ BkL

ðηÞ
k φ; LðηÞ

k ¼ eklmηl
∂

i∂ηm : (20)

Note that the two orbital momenta LðξÞ and LðηÞ are
independent and commute with each other. Finally from
(9) one obtains for F ¼ 0,

NEUTRON IN STRONG MAGNETIC FIELDS PHYSICAL REVIEW D 89, 074033 (2014)

074033-3



H0 ¼ −
1

2ω
ðΔξ þ ΔηÞ þ

1

2ω

�
eB
4

�
2
�
ω2þ
ω2
3

ξ2⊥ þ η2⊥
�

þ eB
4ω

�
ω3 − 2ω

ω3

LðξÞ þLðηÞ
�
þ
X3
i¼1

m2
i þ ω2

i

2ωi
:

(21)

A word of caution is in order here. One can safely put
F ¼ 0 at the ground state only when the interparticle
potential is a harmonic oscillator one [13,23,26], otherwise
the ground state may require nonzero F, as it happens in the
nonrelativistic treatment of heavy quarkonia [13]. Below
we show that with the high accuracy, confinement may be
represented in a such form.
Next, we add the interaction terms to the Hamiltonian

following the approach developed in [10] for mesons. The
complete Hamiltonian has the form

HðBÞ ¼ H0 þ Vσ þ Vconf þ VCoul þ ΔSE þ Δstring þ ΔSD:

(22)

Here

Vσ ¼ −
X3
i¼1

eiσðiÞB
2ωi

; Vconf ¼ σ
X3
i¼1

jzðiÞ − zY j; (23)

where zY is the string junction position (Torricelli point),

VCoul ¼ −
2

3

X
i>j

αsðrijÞ
rij

; rij ≡ jzðiÞ − zðjÞj; (24)

ΔSE ¼ −
3σ

4π

X3
i¼1

1þ η
�
λ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eBþm2
i

p 		
ωi

; (25)

where ηðtÞ ¼ t
R∞
0 z2K1ðtzÞe−zdz and λ ∼ 1 GeV−1 is

vacuum correlation lengths,

ΔVstring ¼ −
X l2i σhr−1i i

2hσriiðωi þ 1
3
hσriiÞ

; ri ¼ jzi − zY j;

(26)

ΔSE is quark self-energy [27], and li is the angular
momentum of the quark i. The spin-dependent interaction
can be split into four terms,

ΔSD ¼ Δpert
ss þ Δnonp

ss þ Δpert
SO þ Δnonp

SO ; (27)

and, e.g.,

Δpert
ss ¼

X
i<j

σðiÞσðjÞV4ðrijÞ þ ½3ðσðiÞnÞðσðjÞnÞ − σðiÞσðjÞ�V3ðrijÞ
24ωiωj

(28)

with

V4ðrÞ ¼
32παs
3

δð3ÞðrÞ; V3ðrÞ ¼
4αs
r3

: (29)

In what follows the tensor contribution proportional to V3

in (28) will be neglected. The reason is twofold. First, we
shall be interested in lowest states with li ¼ 0. However,
even in this case tensor forces may be present due to the
deformation of the wave function in MFs, as it happens
with the hydrogen atom [16]. Below it will be shown that
this can occur only at eB ≫ σ ≃ 1019 G. Therefore the
second reason to ignore V3 is that this term is irrelevant at
eB≲ 1019 G. The term Δnonp

ss appears to be much smaller
than Δpert

ss and will be neglected. For more details on spin-
dependent terms in the absence of MFs see [20], and for the
case of nonzero MFs a detailed derivation is given in [18],
where it is shown that the MF induced tensor forces are
tending to zero at very large MFs. There also, the terms
Δpert

ss , Δnonp
ss , and ΔSE are derived explicitly.

III. SIMPLIFICATION FOR LOWEST LEVELS

As in the case of mesons, we shall replace Vconf by the
quadratic expression, which after minimization with
respect to parameter γ approaches the original form (3);

Vconf ¼ σ
X3
i¼1

jzðiÞ − zY j → VðγÞ
conf

¼ σ

2

�X3
i¼1

�ðzðiÞ − zYÞ2
γ

�
þ 3γ

�

¼ 3
σγ

2
þ σ

2γ

X3
i¼1

ðzðiÞ − zYÞ2: (30)

Minimization yields

min
γ
VðγÞ
conf ¼ σ

�X3
i¼1

ðzðiÞ − zYÞ2
�1=2

≤ σ
X3
i¼1

fðzðiÞ − zYÞ2g1=2 ¼ Vconf : (31)

We approximate the Torricelli point zY by the c.m. point.
This is reasonable for equal or small masses. Passing to the
Jacobi coordinates we get the final expression

VðγÞ
conf ¼

3σγ

2
þ σ

2γ

�
ω2
3 þ 2ω2

ωþω3

ξ2 þ η2
�
: (32)
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As in the case of mesons, we take the average value hVCouli
of the OGE operator (24) and of Δpert

ss with the wave
function Ψðξ; ηÞ, corresponding to H0 þ VðγÞ

conf . The result-
ing energy eigenvalue can be considered as an upper limit
for the actual energy eigenvalue. From (21) and (32) it is
clear that this wave function factorizes, φðξ; ηÞ ¼ χðξÞϕðηÞ.
Similarly to what happens in the case of the qq̄ system

[10], for eB ≫ σ our system acquires the form of an
elongated ellipsoid with large axis r0 ≈ 1ffiffi

σ
p and small axis

rB ¼ 1ffiffiffiffi
eB

p . This results in the increase of the Coloumb term

hVCouli asymptotically as ln ðln eB
σ Þ. As will be seen, the

inclusion of quark loops in the gluon exchange stabilizes
the energy of the three-body system as in the case of
mesons, discussed in [11].
Finally, Δpert

ss is considered as a correction with the
average value hΔpert

ss i calculated with the wave functions
which are the eigenfunctions of the equation

ðH0 þ Vσ þ VconfÞφðη; ξÞ ¼ M0ðωi; γÞφðη; ξÞ: (33)

The final expression for the baryon mass is

MðBÞ ¼ M̄0ðBÞ þ ΔSEðωð0Þ
i Þ þ hVCoulðωð0Þ

i Þi
þ hΔpert

ss ðωð0Þ
i Þi; (34)

where M̄0ðBÞ is obtained inserting into M0ðωi; γÞ the
extremal values of ωi and γ, obtained from the conditions

∂M0ðωi; γÞ
∂ωi






ωi¼ωð0Þ

i

¼ 0;
∂M0ðωi; γÞ

∂γ





γ¼γð0Þ

¼ 0: (35)

We remind, that Eq. (33) admits a separable solution
φðη; ξÞ ¼ ϕðηÞχðξÞ with ϕ and χ being explicit oscillator
functions yielding the exact answer for M0ðωi; γiÞ.
The total baryon wave function can be written as

ΨB ¼ ½Ψsymmðξ; ηÞψ symmðσ; fÞ þΨ0ðξ; ηÞψ 0ðσ; fÞ
þΨ00ðξ; ηÞψ 00ðσ; fÞ þΨaðξ; ηÞψaðσ; fÞ�ψaðcolorÞ;

(36)

where ψðσ; fÞ is spin-flavor wave function, while ψðξ; ηÞ is
the coordinate one; the superscripts, symm, a, 0, and 00,
refer to symmetric, antisymmetric, and two-dimensional
representations of the three-body permutation group; note,
that ðξ; ηÞ belong to ð 00; 0Þ representations.
We shall be interested primarily in the neutron state, and

since all terms in (36), except for the first one, contain
nonzero angular momenta, they will be suppressed at large
B as compared to the first one [28]. Therefore, we can
write the combination ψ symmðσ; fÞ for the neutron with
spin-down as

ψ symm
n ðσ; fÞ ¼

ffiffiffi
2

p

6
f2uþd−d− − dþu−d− − u−dþd−

þ 2d−uþd− − −d−dþu− − dþd−u−

− d−u−dþ − u−d−dþ þ 2d−d−uþg: (37)

In (37) u�, d� denote individual quark spin-flavor
functions with spin-up or -down. ψ symm

n ðσ; fÞ is normalized
to unity.
The above classification is simple in the absence of MFs

and equal quark masses, since in this case bothH0 (21) and

VðγÞ
conf (32) are symmetric. For nonzero B three symmetry

violations occur: (1) B violates Oð3ÞðSUð2ÞÞ symmetry
and spin mixing may occur between J ¼ 1

2
and J ¼ 3

2
states,

(2) B violates isospin symmetry implying the mixing of

I ¼ 1
2
and 3

2
states, and (3) both H0 and VðγÞ

conf are not
symmetric in quark indices for B ≠ 0, which implies that
not all, but only some components of Eq. (37) are dominant
ones for strong B.
Strictly speaking, when spin and isospin are not good

quantum numbers, the Pauli principle applies only to d

quarks in the same state. Both H0 and VðγÞ
conf are symmetric

with respect to η↔ − η; hence, the ϕðηÞ component in the
wave function Ψðξ; ηÞ ¼ ϕðηÞχðξÞ has a symmetry ϕðηÞ ¼
ϕð−ηÞ and ψ symm

n ðσ; fÞ is symmetric in d, d spin coor-
dinates, but has no definite spin and isospin. The terms
−ðdþd− þ d−dþÞu− and d−d−uþ in (37) meet these con-
ditions. As will be seen, when B is switched on, the neutron
state gets split into three states (in order of growing energy):
ðd−d−uþÞ, ðd−dþu−Þ, ðdþd−u−Þ.
Actually only for two combinations, ðd−d−uþÞ and

ðdþdþu−Þ, our equations with ω1 ¼ ω2 ¼ ω are valid,
and the most general case with arbitrary masses and charges
will be considered in the subsequent paper. In the present
paper we consider the state ðd−d−uþÞ at a large MF eB ≥ σ,
where it is dominant for the neutron, and, in addition, all
other states at small MFs, where pseudomomentum fac-
torization does not hold but MFs can be considered as a
perturbation.

IV. MASS SPECTRUM IN MAGNETIC FIELDS

The solution of Eq. (33) for the neutral 3q system in MFs
with confinement, given by Eq. (32), reduces to the solution
of four independent oscillator equations. For the lowest
ðd−d−uþÞ state this yields

M0ðωi; γÞffiffiffi
σ

p ¼ Ωξ⊥ þ Ωη⊥ þ 1

2
ðΩξ∥ þΩη∥Þ þ

3
ffiffiffi
σ

p
γ

2

þm2
d þ ω2 − e

2
B

ω
ffiffiffi
σ

p þm2
u þ ω2

3 − eB
2ω3

ffiffiffi
σ

p ; (38)

where the following notations are used:
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Ωξ⊥ ¼
��

eB
4σ

�
2 a2þ
a2a23

þ a23 þ 2a2

βaaþd3

�
1=2

; (39)

Ωξ∥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a23 þ 2a2

βaaþa3

s
; (40)

Ωη⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
eB
4σ

�
2 1

a2
þ 1

βa

s
; (41)

Ωη∥ ¼
1ffiffiffiffiffiffi
βa

p : (42)

Here ω ¼ a
ffiffiffi
σ

p
, ω3 ¼ a3

ffiffiffi
σ

p
, γ ¼ β=

ffiffiffi
σ

p
, aþ ¼ 2aþ a3.

The resulting parameters a, a3, β are to be found from
the conditions (35), which are written explicitly in
Appendix A. Directly from (38) it follows that at

eB → ∞, M̄0 ¼ M0ðωð0Þ
i ; γð0ÞÞ tends to a finite limit. As

for the parameters a, a3, and β, they vary in the limits
1 ≥ a, a3, β⪆0.5, when eB grows from 0 to infinity.
The mass M̄0ðeB ¼ 0Þ for mq ¼ 0 is equal to M̄0 ¼ 6

ffiffiffi
σ

p
.

According to [10], self-energy contribution also depends on
MFs. For the 3q system one has

ΔSE ¼ −2
3
ffiffiffi
σ

p
4πa

�
1þ η

�
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eBþm2

1

q ��

−
3
ffiffiffi
σ

p
4πa3

�
1þ η

�
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBþm2

3

q ��
; (43)

where

ηðtÞ ¼ t
Z

∞

0

z2K1ðtzÞe−zdz: (44)

Note, that ΔSE cancels a large part of the meson mass M0,
which might cast a doubt on the use of ΔSE as a correction.
However, this approach was successfully used for the
calculation of many meson and baryon masses and
Regge trajectories; for baryons see, e.g., [19,20], for
mesons [29].
In Fig. 1 we show the quantityM0 þ ΔSE as a function of

eB. One can see a rapid fall within the interval
0 < eB < 1 GeV2. Consider now the color Coulomb con-
tribution, i.e., the term hVCouli with VCoul, given by (24).
The eigenfunctions of H0 þ VðγÞ

conf can be written in the
form

Ψðξ; ηÞ ¼ ψ1ðξ⊥Þψ2ðξ∥Þφ1ðη⊥Þφ2ðη∥Þ; (45)

where

ψ1ðξ⊥Þ ¼
1ffiffiffiffiffiffiffiffiffi
πr2ξ⊥

q exp

�
−

ξ2⊥
2r2ξ⊥

�
;

ψ2ðξ∥Þ ¼
1

ðπr2ξ∥Þ1=4
exp

�
−

ξ2∥
2r2ξ∥

�
;

φ1ðη⊥Þ ¼
1ffiffiffiffiffiffiffiffiffi
πr2η⊥

q exp

�
−

η2⊥
2r2η⊥

�
;

φ2ðη∥Þ ¼
1

ðπr2η∥Þ1=4
exp

�
−

η2∥
2r2η∥

�
; (46)

where

r−2ξ⊥ ¼ ωΩξ⊥ ·
ffiffiffi
σ

p
; r−2ξ∥ ¼ ωΩξ∥

ffiffiffi
σ

p
;

r−2η⊥ ¼ ωΩη⊥ ·
ffiffiffi
σ

p
; r−2η∥ ¼ ωΩη∥

ffiffiffi
σ

p
: (47)

Momentum space color Coulomb potential with the
account of gluon and quark loop effects reads [11]

VCoulðqÞ

¼ −
16παð0Þs

3½q2ð1þ αð0Þs
4π

11
3
Nc lnðq

2þM2
B

μ2
0

ÞÞ þ αð0Þs nf jeBj
π e−

q2⊥
2jeBjTðq2z

4σÞ�
;

(48)

where

TðzÞ ¼ lnð ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p þ ffiffiffi
z

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðzþ 1Þp þ 1: (49)

Inclusion of quark-antiquark loops allows us to avoid an
unrestricted diminishing of the mass at eB → ∞. In this
way the “fall to the center” in the hydrogen atom is
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FIG. 1. The dynamical baryon mass (without gluon exchange
and hf interaction) in GeV as a function of eB.
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prevented [5]. The collapse becomes a real danger only in
the Nc → ∞ limit.
Taking the average of the interquark OGE interaction

(24) over the wave function (45) and keeping in mind the
relation (3) between zi and the Jacobi coordinates, one
obtains

ΔMCoulðρ⊥ðijÞ; ρzðijÞÞ ¼
Z

d2q⊥dqz
ð2πÞ3 VðqÞe−

q2⊥ρ2⊥ðsÞ
4

−
q2
∥
ρ2
∥
ðsÞ

4 :

(50)

Here

ρ2⊥ð12Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðeB
4
Þ2 þ aσ2

β

q ; ρ2∥ð12Þ ¼
1

σ

ffiffiffi
β

a

r
; (51)

ρ2⊥ð13Þ ¼ ρ2⊥ð23Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeB
2
Þ2 þ 4σ2 aa3

βa3þ
ða23 þ 2a2Þ

q
þ
��

eB
2

�
2

þ 4σ2a
β

�−1=2
; (52)

ρ2∥ð13Þ ¼
1

2σ

�
a3þβ

a3aða23 þ 2a2Þ
�
1=2

þ 1

2σ

ffiffiffi
β

a

r
; (53)

and ρ2⊥ð13Þ ¼ ρ2⊥ð23Þ, ρ2∥ð13Þ ¼ ρ2∥ð23Þ. Comparing
Eq. (50) for hVCouli with the corresponding expression
in the case of the ðqq̄Þ system in [10], one can see the same
structure of the integral (41) in [10] and our Eq. (50), and
similar values of parameters ρ⊥ and ρ∥, which in our case
for eB → ∞ behave as 2ffiffiffiffi

eB
p and 1ffiffi

σ
p , respectively, for s ¼ 12,

and 2ffiffiffiffi
eB

p and
ffiffi
2
σ

q
for s ¼ 13, 23.

This should be compared to the ðqq̄Þ parameters

r⊥ðeB → ∞Þ ¼ 0; r∥ðeB → ∞Þ ¼
ffiffi
2
σ

q
. If one represents

the color Coulomb correction for a meson as
ΔMmes

Coulðr2⊥; r2∥Þ, then for a baryon one can write according
to (50)

ΔMbar
Coul ¼

1

2
ΔMmes

Coulðρ2⊥ð12Þ; ρ2∥ð12ÞÞ
þ ΔMmes

Coulðρ2⊥ð13Þ; ρ2∥ð13ÞÞ: (54)

Now, if one takes the standard Coulomb interaction [i.e.,
VðqÞ in (48) without quark loops], we encounter the
problem of a boundless decrease of the neutron mass at
B → ∞. This phenomenon can be called the “magnetic
collapse of QCD,” which holds at least in the large Nc limit
when the quark loop contribution becomes negligible.
The situation is similar to the hydrogen atom case, where

the binding energy diverges as ð−ln2eBÞ [5]. For mesons,
as it was shown in [9,10], ΔMmes

Coul diverges as −
ffiffiffi
σ

p
ln ln eB

σ
in the limit eB ≫ σ. In all three cases—the hydrogen atom,
mesons, and baryons—the situation is cured by the screen-
ing effect produced by the loop contribution in MFs.
Retaining in (48) the quark loop contribution, one arrives
at the nontrivial conclusion that the ground state energy is
frozen and the “fall to the center” phenomenon is elimi-
nated [11]. The resulting color Coulomb correction with an
account of the screening effect from (48) is shown
on Fig. 2.

V. SPIN SPLITTINGS IN MAGNETIC FIELDS

Since the MF violates both spin and isospin sym-
metries, one must diagonalize the spin-dependent terms
of the Hamiltonian (22) in order to find its solutions. The
spin-dependent piece is

hσ ¼ Δpert
ss þ Vσ

¼ Δpert
ss −

X3
i¼1

eiσ
ðiÞ
z B

2ωi

≡ dσ3ðσ1 þ σ2Þ þ bσ1σ2 − c3σ3z þ cðσ1z þ σ2zÞ; (55)

where

d ¼ 4αs
9ωω3

hδðr31Þi; b ¼ 4αs
9ω2

hδðr12Þi; (56)

c ¼ eB
4ω

; c3 ¼
eB
2ω3

: (57)

These expressions are valid for the state j − −þi. In the
more general case, the coefficients in front of σ1z and σ2z as
well as in front of σ3σ1 and σ3σ2 should differ.
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FIG. 2. The color Coulomb potential contribution in GeV as a
function of eB. One can see a saturation at eB > 4 GeV2 due to a
quark loop contribution in the gluon exchange.
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The mixing between the S ¼ 1=2 and S ¼ 3=2 states is
due to the term dσ3ðσ1 þ σ2Þ. Writing the 3q spin-flavor
wave function for total spin projection ð− 1

2
Þ in a simplified

form [to be symmetrized in (123)], one has

Ψ−1
2
¼ αð− −þÞ þ βffiffiffi

2
p ½ðþ − −Þ þ ð−þ −Þ�;

α2 þ β2 ¼ 1: (58)

Note, that the spin-independent part of the total
Hamiltonian has a diagonal form with respect to spin
variables, but diagonal elements are spin dependent, since
the quantities ωi for the states with different spin projec-
tions are defined by a different minimization condition. So,
for the state ð− −þÞ all ωi and the resulting mass M̄0 tend
to the finite limit at large eB, while for the state 1ffiffi

2
p ½ðþ −

−Þ þ ð−þ −Þ� we have one bounded and two growing ωi
at large eB. The resulting mass for this state grows
unboundedly with an increase of MFs.
At zero MF the initial values of α and β are, for the

neutron αn ¼
ffiffi
2
3

q
, βn ¼ − 1ffiffi

3
p , and for theΔ isobar αΔ ¼ 1ffiffi

3
p ,

βΔ ¼
ffiffi
2
3

q
. Consequently one finds the “trajectory” of the

neutron mass going down with eB and that of the Δ mass
going up. We shall denote these combinations nB and ΔB;
their wave functions are described by (58) with the
corresponding α and β. In the limit eB → ∞ we have
αn ¼ 1, βn ¼ 0 and αΔ ¼ 0, βΔ ¼ 1, which corresponds to
the disappearance of mixing. In the general case for a finite
MF, the ratio of coefficients β=α for the neutron (or α=β for
Δ) is suppressed. Hence j − −þi is a good approximation
for the lowest mass state, which gives the dominant
contribution for eB ≥ σ.
The trajectory nB without the hf interaction tends to a

positive constant at eB → ∞. The inclusion of the hf
interaction at large MF can make the neutron mass
negative, since hVhfi ∝ eB. However, it was proved that
MF cannot make the mass vanish due to spin-dependent
forces [18]; therefore, considering the hf interaction as a
perturbation, one should use the smearing factor with the
smearing radius of ð0.1 ÷ 0.2Þ fm [13,30,31]. As will be
seen below, this procedure still does not prevent the
vanishing of MnðeBÞ at large eB ∼ 1 GeV2, which implies
the importance of higher order hf interaction terms, which
must ensure the positivity of MnðeBÞ at all values of eB.
The 3q Green’s function generated by the 3q current

Jμ1μ2μ3 is proportional to

G ∼ hJjnBi expð−iMðnBÞtÞhnBjJi
þ hJjΔBi expð−iMðΔBÞtÞhΔBjJi (59)

and therefore will display the pattern of mass oscillation
depending on MF. This is similar to the neutrino mass
oscillations, but strongly differs in scale.

VI. BARYON MASS SPECTRUM AT VARYING
MAGNETIC FIELDS

In what follows we shall be interested primarily in
the trajectory nB and shall use for eB ≥ σ the diagonal
element of the total Hamiltonian describing the j − −þi
component. The mass (energy) eigenvalue is

Mn ¼ Eþ ðb − 2dÞ; (60)

where E is the solution of (33), written with an account of
the self-energy ΔSE and the Coulomb hVCouli corrections:

E ¼ M0 þ ΔSE þ hVCouli: (61)

The parameters b and d are defined in (56) and (57); the
explicit expressions for hδðrijÞi are given in Appendix B.
The quantities VCoul andΔSE are evaluated making use of

the variational averaging procedure; hence, one should find
the stationary value of M0 from the conditions (35), where
M0 is given in (38).
As a result, one obtains M̄0 ¼ M0ðωð0Þ;ωð0Þ

3 ; γð0ÞÞ, with
parameters taken at stationary points. In this way M̄0ðBÞ is
obtained. The starting point is eB ¼ 0, where one has from
Appendix C [expression (60) is not a good approximation
for zero MFs]

M� ¼ Eþ b − d� 3d; (62)

so the n − Δ mass difference is 6d ≅ 0.15αs
ffiffiffi
σ

p
≈ 20 MeV

for αs ¼ 0.35 and 6d ≈ 100 MeV for αs ¼ 1.72.
Thus, we see that Δpert

ss by itself does not ensure the
experimental splitting between n and Δ close to 300 MeV.
As it is well known [22], this difference can be explained
adding the OPE interaction, having the same σiσj structure.
Therefore, one has to include the OPE quark-antiquark
interaction

VðijÞ
opeðkÞ ¼ 4πg2qqπτðiÞτðjÞ

ΓiΓj

k2 þm2
π

�
Λ2

Λ2 þ k2

�
2

; (63)

where Γi ¼ σðiÞk
ωiþmi

, ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

p
. Comparing Vope (63)

with Δss (56), one can see that both have the similar
structure in the p space, since for vanishing masses mu ¼
md ¼ mπ ¼ 0 one has in (63) the structure ðσðiÞkÞðσðjÞkÞ

ωiωjk2
→

σðiÞσðjÞ
ωiωj

. Numerically, as shown in [22] for σ ¼ 0.12 GeV2

the contribution of V̄ss ¼
P

i>jðVðijÞ
hf þ VðijÞ

opeÞ to n and Δ
masses are (−471 MeV) and (−79 MeV) respectively.
Therefore, after summing Δpert

ss , Eq. (55) and Vope,
Eq. (63), we introduce the new hf interaction

Vhf ¼ Δpert
ss þ Vope ≃ ~dσ3ðσ1 þ σ2Þ þ ~bσ1σ2; (64)
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where the form (56) with αs replaced by αhf ¼ αs þ αope,
and αope takes into account the pion charge structure of
Eq. (67); see Appendix C for details.
The difficulty we encounter here is that in order to get a

correct answer it is necessary to take into account the
mixing of different spin states at eB ≪ σ [see (58)]. While
keeping only the state j − −þi the neutron mass at eB ≪ σ
exceeds the experimental value.
Consider now the OPE interaction at growing eB. We

have to split the OPE interaction into the contributions from
πþ, π−, and π0 mesons.

Vij
ope ¼ 4πg2

ωiωj

�ðσi · kÞðσj · kÞ
k2 þm2

πþ
2τiþτj− þ ðσi · kÞðσj · kÞ

k2 þm2
π−

× 2τi−τ
j
þþ

ðσi · kÞðσj · kÞ
k2 þm2

π0
τi3τ

j
3

��
Λ2

k2 þ Λ2

�
2

: (65)

As it was shown analytically in [12] and on the lattice [32],
the π� masses grow with MF as ∼

ffiffiffiffiffiffi
eB

p
. Therefore the first

two terms in (65) are suppressed at large eB. On the other
hand, the mass of π0 becomes somewhat smaller [12] and
its contribution into Vope important in the whole interval of
MF. Hence, only the last term in (65) survives in the large
eB limit. That is why αopeðeB ≫ σÞ≃ 1

3
αopeðB ¼ 0Þ. Being

averaged over the jddui isospin state and over the wave
function (45), the OPE and spin-spin interaction operators
have the same structure with the only qualitative difference
concerning the smearing procedure of the δ function—the
Gaussian one for the spin-spin [10] and the Yukawa form
factor for OPE. This difference is of a minor importance for
the dependence of the interaction on MF. Therefore, both
corrections can be treated in a uniform way by the
introduction of the effective hyperfine interaction constant
αhf. Here one must distinguish two regions: (1) eB ≤ σ,
(2) eB ≥ σ. In the first, one must keep all terms of the wave
function as in (58), and calculate the ground state of hσ
(55), as shown in Appendix C. Here αhf is chosen to

reproduce the Δ − n splitting of 300 MeV. In the second
region one keeps only the dominant j − −þi state, and uses
Eq. (60) to calculate MnðBÞ; the exact procedure and
numerical values are given in Appendix C. The result is
shown in Fig. 3. The main general conclusion is that the
spin-spin interaction is extremely sensitive to MFs.
Necause of the Fermi-Breit δ-type interaction the mass
tends to cross the M ¼ 0 value at eB ∼ 2σ, while the
general statement (see [18]) forbids this from happening.
This means that for δ-type interactions the perturbation
theory fails to lead to physically correct results in the limit
of strong MFs. One has to develop an alternative approach
to treat hyperfine interaction in MFs.

VII. DISCUSSION OF THE RESULTS

At this point one must look more closely at the problem
of the hyperfine interaction in baryons. It was understood
rather early (see, e.g., the discussion in [33,34]) that the
standard hf interaction is too weak for a reasonable αs to
explain the 300 MeV splitting between the masses of Δ and
nucleon. This is contrast to the meson case, when the qq̄ hf
interaction yields ≃200 MeV splitting of ρ and π masses,
and in addition the Nambu-Goldstone mechanism shifts the
pion mass to its proper place. In a baryon with αSðmNÞ ∼
0.5 one obtains the splitting around 35 MeV instead of
300 MeV. To save the situation in [34], the authors have
used the smeared form of the hf potential to all orders,
which strongly enhanced the hf contribution: as shown in
[33] for the smearing parameter λ ¼ 1.5 GeV the hf
splitting grows approximately 10 times, when taken to
all orders of the Vhf, derived in the first order of αs.
Another approach was used in [35], where the instanton

interaction was parametrized to increase the hf contribution.
Instead we have used a more physical mechanism, which

should anyhow be present in the 3q system: the pion
exchange. We have shown, based on earlier papers [22],
that the pion exchange strongly increases the resulting gap in
masses and can ensure the physical splitting (in absence of
MF) for reasonable values of a pion coupling with quarks.
However, for growing MFs one encounters several

difficulties. First of all, the pseudomomentum factorization
(4), which is the basis of our present approach, requires the
equality of masses and energies m1 ¼ m2, ω1 ¼ ω2, which
is true only for the state jddui ⊗ j − −þi. Now this state is
the main component of the ground state for eB ≫ σ, and
therefore one obtains a reliable result for the neutron mass
in this region before the inclusion of the hf interaction.
However, including the hf interaction with the pion
exchange at strong MFs one immediately obtains a huge
shift down of the neutron mass, making it negative
around eB ∼ 0.5 GeV2.
This happens both with or without the pion exchange

term, provided the starting Δ − n splitting is around
300 MeV, and the problem is that the resulting hf shift
at the perturbative level is huge, and violates the theorem
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FIG. 3. The hyperfine diagonal contribution hVhfi ¼ ~b − 2~d
from Eq. (64) to the neutron mass in GeV as a function of eB.
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of [18], stating that MFs cannot make the hadron mass
become negative. As shown in [18], when the mass tends to
zero in MFs, the Dirac eigenvalues of all quarks can
condense near the zero point, similarly to the case of the
chiral symmetry breaking phenomenon, and may ensure
the mass to be nonzero, however small. We illustrate this
behavior in Fig. 4 by a dashed line, which gives the idea of
a true trajectory, satisfying the stabilization theorem of [18].
At small MF we have another difficulty—inapplicability

of the pseudomomentum factorization (4), when all com-
ponents of the wave function are taken into account, and
to proceed, we have used the limit of small MFs and
calculated the neutron mass up to the order ðeBσ Þ2,
(polarizability region), using all components of the wave
function. This result, valid for eB < 0.15 GeV2, is shown
in Fig. 4 by a piece of a solid line below the dotted line; the
latter depicts the mass of the state j − −þi, continued to the
region of small eB, where it is not reliable. The regime of
the strong MF (eB > σ) is depicted by a dotted line in
Fig. 4. Thus, the pseudomomentum factorization method
with the j − −þi component provides the results, shown
in Fig. 4 by a dotted line. At larger eB one assumes the
saturating behavior, shown by a dashed line, while
the dotted line describes the behavior predicted by the
first order perturbation theory. Thus, the solid line in
Fig. 4 shows the results obtained within the reliable
approximations.

VIII. CONCLUSIONS

In our treatment of the relativistic 3q system embedded
in MFs we relied on pseudomomentum factorization of the
wave function and the relativistic Hamiltonian technique.
To our knowledge this is the first investigation of the three-
body system with relativistic interaction in the external MF.

The focus was on the dependence of the neutron mass on
MF. This problem was solved analytically with confine-
ment, color Coulomb, and spin-spin interactions taken into
account. From the physical arguments it is clear that MF
starts to produce drastic variation of the neutron mass as
soon as its strength approaches the string tension, eB ∼
σ ∼ 1019 G ∼ 0.2 GeV2. Our calculations confirm this
conclusion. In strong MFs the ground state of the ddu
system has the spin structure j − −þi. An intriguing
question is whether the mass of this state goes to zero in
the limit eB → ∞. This “fall to the center” phenomenon
might happen for two reasons. The first one is the color
Coulomb interaction. This kind of collapse is avoided due
to quark-antiquark loops in the same way, as it happens in
the quark-antiquark system, or in the hydrogen atom due to
eþe− loops. The second potential source of collapse is the
spin-spin interaction which is proportional to the delta
function and gives a contribution growing linearly with eB.
How to treat this interaction beyond the perturbation theory
is an old and still unresolved problem. The standard way to
overcome this difficulty is to smear a delta function around
the origin with some characteristic range. For the quark
system this range is given by the correlation length of the
gluon field equal to 0.1–0.2 fm. However, even with
smearing the neutron mass can become zero at a finite
value of eB and, as it shown in [18], this cannot happen for
any value of eB in the exact treatment, and the mass
vanishing is the result of the unlawful use of perturbation
theory. Instead, the condensation of the quasizero Dirac
eigenmodes may prevent this type of collapse.
In future studies, this line of research can be continued in

several directions. Our method allows us to consider the
phase transition between neutron and quark matter in MFs.
This problem is of utmost importance for the neutron stars
physics.
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APPENDIX A: SOLUTION OF THE
SYSTEM OF EQ. (35)

In terms of a, a3, β, Eq. (35) can be written as

∂
∂a
�
Ωξ⊥ þ Ωη⊥ þ 1

2
Ωξ∥ þ

1

2
Ωη∥

�
−
m2

d −
e
2
B

a2σ
þ 1 ¼ 0;

(A1)

∂
∂a3

�
Ωξ⊥ þ Ωη⊥ þ 1

2
Ωξ∥ þ

1

2
Ωη∥

�
−
m2

u − eB
2a23σ

þ 1

2
¼ 0;

(A2)

∂
∂β
�
Ωξ⊥ þ Ωη⊥ þ 1

2
Ωξ∥ þ

1

2
Ωη∥

�
þ 3

2
¼ 0: (A3)
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FIG. 4. The neutron mass with hf correction included vs eB.
The solid line refers to the region where the approximations made
are reliable. The dotted line refers to the state j − −þiwith hf as a
perturbation. The dashed line shows a possible form of the
behavior, satisfying the stabilization theorem.
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Using (39)–(42), one can calculate all terms in (A1)–(A3).
We shall explicitly write down the results in two opposite
limits: eB ¼ 0 and eB → ∞.
(a) eB ¼ 0. In this case a3 ¼ a and, neglecting quark

masses mu, md, one has

M0ffiffiffi
σ

p ¼ 3ffiffiffiffiffiffi
βa

p þ 3

2
ðaþ βÞ: (A4)

Equation (A1) yields a ¼ β−1=3. From (A3) one
has β ¼ a−1=3, which results in aðeB ¼ 0Þ ¼
βðeB ¼ 0Þ ¼ 1.

(b) eB→∞. In this case (A1)–(A3) yield correspondingly

4a3=2β1=2 ¼ 1þ
ffiffiffi
x

p ðx2 þ 4x − 2Þ
ð2þ xÞ3=2ð2þ x2Þ1=2 ; (A5)

a3=2β1=2 ¼ 2þ 2x − x2

ð2þ xÞ3=2x3=2ð2þ x2Þ1=2 ; (A6)

6a1=2β3=2 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2

xðxþ 2Þ

s
; (A7)

where x≡ a3
a . The numerical solution of (A5)–(A7)

yields x ¼ 1, β=a ¼ 1, and finally one obtains

aðeB → ∞Þ ¼ a3ðeB → ∞Þ ¼ βðeB → ∞Þ ¼ 1ffiffiffi
3

p :

(A8)

APPENDIX B: HYPERFINE MATRIX ELEMENTS

To calculate hδðr13Þi one can use wave functions
(45)–(47) and the relations

r13 ≡ z1 − z3 ¼
1

2

 ffiffiffiffiffiffiffiffiffi
2ωþ
ω3

s
ξ −

ffiffiffi
2

p
η

!
; r12 ¼

ffiffiffi
2

p
η;

(B1)

which yields

hδðr13Þi ¼ 23=2
Z

ψ2
1ðξ⊥Þψ2

2ðξ∥Þφ2
1

� ffiffiffiffiffiffiffi
ωþ
ω3

r
ξ⊥
�

× φ2
2

� ffiffiffiffiffiffiffi
ωþ
ω3

r
ξ∥

�
d3ξ: (B2)

Inserting in (B2) the explicit expressions (46) and (47),
one has

hδðr13Þi ¼
�
2aσ
π

�
3=2 Ωξ⊥Ωη⊥

Ωξ⊥ þ ωþ
ω3

Ωη⊥

� Ωξ∥Ωη∥

Ωξ∥ þ ωþ
ω3

Ωη∥

�
1=2

;

(B3)

hδðr12Þi ¼
�
aσ
2π

�
3=2

Ωη⊥Ω
1=2
η∥ : (B4)

Now we replace δðrÞ, for which the perturbation theory
is unlawful, by a smeared out version

δð3ÞðrÞ→ ~δð3ÞðrÞ¼
�

1

λ
ffiffiffi
π

p
�

3

e−r
2=λ2 ; λ∼1GeV−1: (B5)

With this function we obtain

h~δð3Þðr13Þi ¼
�
2aσ
π

�
3=2
�
1þ 2λ2a3

aþ
aσΩξ⊥

�−1

×

�
1þ 2λ2a3

aþ
aσΩξ∥

�−1=2
Ωξ⊥Ωη⊥Ω

1=2
ξ∥

Ω1=2
η∥

×
�
aþ
a3

Ωη⊥ þ Ωξ⊥

1þ 2λ2a3
aþ

aσΩξ⊥

�
−1

×
�
aþ
a3

Ωη∥ þ
Ωξ∥

1þ 2λ2a3
aþ

aσΩξ∥

�−1=2
; (B6)

h~δð3Þðr12Þi ¼
�
aσ
π

�
3=2

Ωη⊥Ω
1=2
η∥

×
1

2þ λ2aσΩη⊥

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ λ2aσΩη∥

q : (B7)

Equations (39)–(42) help to express the rhs of (B6) and
(B7) in terms of a3, a, β.

APPENDIX C: BARYON MASS IN WEAK
MAGNETIC FIELDS

Calculation of the mass spectrum of the 3q system in
weak MFs in our formalism is similar to the calculation of
the Zeeman splitting in ordinary quantum mechanics. First
of all, one should fix values of a0 ¼ aðB ¼ 0Þ, a30 ¼ a3
ðB ¼ 0Þ, and γ0 ¼ γðB ¼ 0Þ for the zero MF; i.e., we
exclude any influence of the MF over the dynamics and
spatial wave function. The next step is to treat magnetic
moments and hyperfine terms as a perturbation around
the E0 ¼ EðB ¼ 0Þ from Eq. (61). The third step is to
diagonalize the spin-dependent Hamiltonian (55) [with ~d
and ~b from (64)] with respect to the 3q spin-flavor wave
function with total spin projection ð− 1

2
Þ

hσ ¼ ~dσ3ðσ1 þ σ2Þ þ ~bσ1σ2 − c3σ3z þ cðσ1z þ σ2zÞ;
(C1)

Ψ−1
2
¼ αð− −þÞ þ βffiffiffi

2
p ½ðþ − −Þ þ ð−þ −Þ�;

α2 þ β2 ¼ 1: (C2)

After straightforward manipulations, one has for n
and Δ0
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M� ¼ E0 þ ~b − ~d − c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8~d2 þ ðcþ c3 þ ~dÞ2

q
: (C3)

The final step is to choose an appropriate αhf ¼ αs þ
αope constant. There are three key points the choice is
based on: first of all the hf interaction should provide
the proper value of the splitting between the n and Δ0 at
zero MFs; this requirement gives us αhfðB ¼ 0Þ ¼ 17.

The second point is that in the high MF limit αopeðeB ≫
σÞ≃ 1

3
αopeðB ¼ 0Þ since only the π0 contribution survives

at high eB. The third point is that in the intermediate
region near the eB ∼ σ these two trajectories should have a
smooth connection, which provides αhfðeB ≫ σÞ ¼ 7.
This situation takes place only if αs ¼ 0.6 and
αopeðB ¼ 0Þ ¼ 3αopeðeB ≫ σÞ ¼ 16.4.
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