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We carry out the first complete calculation of kinematic power corrections ∼t=Q2 and ∼m2=Q2 to
several key observables in deeply virtual Compton scattering. The issue of convention dependence of the
leading twist approximation is discussed in detail. In addition, we work out representations for the higher
twist corrections in terms of double distributions, Mellin-Barnes integrals and also within a dissipative
framework. This study removes an important source of uncertainties in the QCD predictions for
intermediate photon virtualities Q2 ∼ 1–5 GeV2 that are accessible in the existing and planned experi-
ments. In particular the finite-t corrections are significant and must be taken into account in the data
analysis.
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I. INTRODUCTION

Deeply virtual Compton scattering (DVCS) is the clean-
est process that gives access to generalized parton distri-
butions (GPDs) [1–3] and is receiving a lot of attention, see,
e.g., the reviews [4,5]. In this process the photon virtuality
Q is taken to be the largest scale which is at least of the
order of 1–2 GeV. The existing experimental results come
from HERA (H1 [6–9], ZEUS [10,11], HERMES [12–19])
at DESY and Jefferson Lab (CLAS [20–23] and Hall A
[24,25]) and many more measurements are planned after
the Jefferson Lab 12 GeV upgrade and at COMPASS-II at
CERN. DVCS plays also a virtual role in the physics case
of proposed collider experiments, the Electron-Ion-Collider
at RHIC or JLAB [26] and the Large-Hadron-Electron-
Collider at CERN [27].
The standard theoretical framework is based on collinear

factorization which is proven in QCD to the leading power
accuracy in the photon virtuality Q [28]. In this approach
the DVCS amplitudes are written as convolutions of
perturbatively calculable coefficient functions and non-
perturbative GPDs that represent the nontrivial nucleon
structure. The DVCS coefficient functions have been
calculated including the next-to-leading-order (NLO)
OðαsÞ corrections [29–33], and the scale-dependence of
GPDs is known to the two-loop accuracy [34,35] so that the
complete NLO renormalization-group improved calcula-
tion of the amplitudes is possible [36–38]. Experimental
observables—cross sections and asymmetries—are
obtained from the amplitudes [either leading order (LO)
or NLO] taking into account the interference with purely
electromagnetic Bethe-Heitler (BH) bremsstrahlung proc-
ess and including the relevant kinematic factors that are
usually taken at face value (not expanded in powers of
1=Q). This approach, commonly referred to as the leading

twist approximation, appears to be sufficient to describe
unpolarized proton DVCS data [39–41], raising the hope
that a fully quantitative description is within reach [42]. The
future data will have much higher statistics and allow one to
extract at least some GPDs with controllable precision.
The leading-twist approximation is, however incomplete

and in fact convention-dependent. It is well known that the
leading twist DVCS amplitudes do not satisfy electromag-
netic Ward identities. The Lorentz (translation) invariance
is violated as well: The results depend on the frame of
reference chosen to define the skewedness parameter and
the helicity amplitudes. In all cases, the required sym-
metries are restored by contributions that are formally
suppressed by powers of 1=Q, dubbed higher-twist
corrections.
Such power corrections can be called kinematic as they

are expressed in terms of the same GPDs that enter the
leading-twist amplitudes, i.e. do not involve new non-
perturbative input. Their role, from the theory point of view,
is to restore exact symmetries of the theory that are broken
in the leading twist approximation and make the calculation
unambiguous. By this reason one can expect that the subset
of kinematical power corrections is factorizable for arbi-
trary twist.
The relevant twist-three contributions 1=Q have been

studied in some detail [43–47] and it has been shown that
kinematic twist-three corrections also restore the invariance
under Lorentz rotations to the 1=Q accuracy [48]. Such
corrections have been evaluated partially also at the NLO
[49]. Phenomenological studies of the size of twist-three
effects were attempted by various authors with the generic
conclusion that these corrections are not negligible in the
experimental accessible phase space.
Kinematic twist-four effects 1=Q2 appear to be more

complicated and their structure has been understood only
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recently. These contributions correspond to corrections
to the DVCS amplitudes of the type m2=Q2; t=Q2, where
m is the target (nucleon) mass and t ¼ ðp0 − pÞ2 is the
momentum transfer to the target. Since the bulk of the
existing and expected data is for photon virtualities
Q2 < 5 GeV2, such corrections may have significant
impact on the data analysis and should be taken into
account. The finite-t corrections are of special importance if
one wants to access the three-dimensional picture of the
proton in longitudinal and transverse planes [50] in which
case the t–dependence has to be measured in a sufficiently
broad range.
The necessity of taking into account 1=Q2 kinematic

power corrections to DVCS is widely acknowledged
[5,43,45,47,51–55]. This task proves to be nontrivial
because, in addition to Nachtmann-type contributions
related to subtraction of traces in the leading-twist operators
Oμ1…μn , one must take into account their higher-twist
descendants obtained by adding total derivatives:
O1 ∼ ∂2Oμ1…μn , and O2 ∼ ∂μ1Oμ1…μn . The problem arises
because matrix elements of the operator O2 on free quarks
vanish [56]. Thus in order to find its LO coefficient
function in the operator product expansion of two electro-
magnetic currents one is forced to consider either more
complicated (quark-antiquark-gluon) matrix elements, or
stay with the quark-antiquark operators but go over to the
next-to-leading order (NLO) in αs. Either way the main
challenge is the separation of the contribution of interest
from the “genuine” quark-gluon twist-four operators.
The guiding principle suggested in Ref. [57] is that a

self-consistent separation can only be achieved if genuine,
or “dynamical” contributions do not get mixed with the
descendants of the leading-twist operators by the QCD
evolution. Explicit diagonalization of the twist-four mixing
matrix (which is a formidable task) can be avoided [57,58]
using conformal symmetry which implies that LO coef-
ficient functions of kinematic and genuine twist-four
operators are mutually orthogonal with a proper weight
function [59]. Using this approach Braun, Manashov and
Pirnay (BMP) calculated the finite-t and target-mass
corrections to DVCS for a scalar target [60] and for a
spin-1=2 (nucleon) target [61]. In both cases the restoration
of gauge- and translation-invariance to the Oð1=Q2Þ
accuracy has been verified and also found that the structure
of kinematic corrections proves to be consistent with
collinear factorization.
In a parallel development, following or extending the

work in Refs. [55,62,63], Belitsky, Müller and Ji (BMJ)
[64] suggested a new decomposition of the Compton
hadronic tensor in terms of photon helicity-dependent
Compton form factors (CFFs) that are free from kinemati-
cal singularities at the edges of the available phase space.
Although the main motivation for this study has been
different, namely to establish the connection of large-Q2

description in terms of GPDs and small-Q2 description in

terms of generalized polarizabilities, the BMJ basis seems
to be well suited for the study of higher twist effects.
In this paper we present the results of the first study of

the numerical impact of kinematic twist-three and twist-
four corrections on several key experimental observables in
DVCS for the kinematics of the existing (and planned)
measurements. Our calculation incorporates the BMP
helicity amplitudes [61] and uses the BMJ CFF decom-
position. Convention-dependence of the standard leading
twist approximation is emphasized and illustrated on a few
examples.
The presentation is organized as follows. In Sec. II we

express the electroproduction cross section in terms of an
exact BMJ parametrization of the DVCS amplitude and
provide the formulas for some key observables. Section III
contains an analysis of the generic structure of kinematical
twist-three and twist-four corrections and the expected size
of various contributions. We also explain and discuss the
convention dependence of the leading-twist results. In
Sec. IV we present an analysis of kinematic higher twist
corrections for a selected set of measured observables,
making use of a popular GPD model [65,66], refined by
Goloskokov and Kroll [67,68]. The final Sec. V is reserved
for a summary and conclusions.
One appendix contains the original result of Ref. [61]

and explains how to translate it in the conventions of
Ref. [64]. In the three further appendices we give analytic
expressions for the higher twist contributions in the double
distribution andMellin-Barnes integral representations, and
also within a dissipative framework.

II. ELECTROPRODUCTION OF PHOTONS

The electroproduction of a photon, e.g., off a nucleon
target,

e�ðk1; λ1ÞNðp1; s1Þ → e�ðk2; λ2ÞNðp2; s2Þγðq2; h2Þ; (1)

receives contributions of the Bethe-Heitler (BH) brems-
strahlung process, whose amplitude T BH is parametrized in
terms of two electromagnetic nucleon form factors, and the
DVCS process

γ�ðq1; h1Þ þ Nðp1; s1Þ → γðq2; h2Þ þ Nðp2; s2Þ; (2)

described by twelve complex valued helicity amplitudes
T DVCS, specified below. The photons have momenta qi and
helicities hi and the nucleon states the momenta pi and
polarization vectors si, where i ¼ 1ð2Þ refers to the initial
(final) state. The full electroproduction amplitude is given
by the sum

T ¼ T BH þ T DVCS: (3)

The five-fold differential cross section in the laboratory
frame, where the incoming electron momentum has a
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positive x-component and the virtual photon travels along
the negative z-direction [55,62–64], can be written as

dσ ¼ α3emxBy2

16π2Q4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ���� Te3
����2dxBdQ2djtjdϕdφ: (4)

Here αem ¼ e2=4π is the electromagnetic fine structure
constant, Q2 ¼ −q21 is the (initial) photon virtuality,
xB ¼ Q2=2ðp1 · q1Þ the Bjorken scaling variable and t ¼
ðp2 − p1Þ2 the momentum transfer. The angle ϕ is defined
as the azimuthal angle between the leptonic and reaction
planes and, in the case of a transversely polarized nucleon,
φ is the azimuthal angle of the polarization vector.
Hereafter we use the notation

γ ¼ 2mxB=Q; (5)

where m is the nucleon mass. The usual electron energy
loss variable y ¼ p1 · q1=p1 · k1 is related to the other
kinematical variables as Q2 ¼ yxBðs −m2Þ where s is the
center-of-mass energy. We add that nowadays often another
laboratory frame is used, the so-called Trento convention,
where the azimuthal angle ϕTrento is related to the adopted
here by

ϕTrento ¼ π − ϕ: (6)

The BH amplitude T BH is electron charge even and real
valued to the leading order in QED. The electroproduction
amplitude squared appearing in Eq. (4) can therefore be
decomposed as

jT j2 ¼ jT BHj2 þ 2T BHℜe½T DVCS� þ jT DVCSj2: (7)

The jT BHj2 term is written in terms of the nucleon form
factors. The corresponding expression can be found, e.g., in
Ref. [62]. Most interesting for phenomenology is the
interference term that is linear in DVCS amplitudes:

I ¼ 2T BHℜe½T DVCS�: (8)

T DVCS is electric charge odd, i.e. this contribution has
different sign for electron vs positron scattering. The
interference term has a rich angular structure and can be
decomposed in unpolarized, longitudinal, and two trans-
versely polarized parts as

I ¼ IunpðϕÞ þ ILPðϕÞ cos θ
þ ½ITPþðϕÞ cosφþ ITP−ðϕÞ sinφ� sin θ; (9)

where θ is the polar angle of the nucleon polarization
vector. The separate terms ISðϕÞ for the four polarization
options S ∈ funp;LP;TPþ;TP−g are usually written as the
harmonic expansion with respect to azimuthal angle ϕ of
the form

ISðϕÞ ¼
�e6

xBy3tP1ðϕÞP2ðϕÞ
�X3

n¼0

cIn;S cosðnϕÞ

þ
X3
n¼1

sIn;S sinðnϕÞ
�
; (10)

where the ϕ-dependence of the electron propagators in the
BH amplitude is contained in the prefactor 1=P1ðϕÞP2ðϕÞ
(see e.g. [62]) and the sign þð−Þ refers to an electron
(positron) beam. It is usually assumed that the lowest n ∈
f0; 1g harmonics come from photon helicity conserved
processes related to the twist-two CFFs, the n ¼ 2 har-
monics from longitudinal-to-transverse spin flip contribu-
tions that give access to twist-three CFFs, and the n ¼ 3
ones from transverse photon helicity flip contributions
[62,69]. This identification is, however, oversimplified
[55,63,64]. We will illustrate below that in reality all
helicity amplitudes contribute to any given harmonic in
the interference term. Contributions of separate CFFs can
be disentangled, generally speaking, by considering linear
combinations of the harmonics cIn;S, s

I
n;S for various polar-

izations options. There exist altogether eight (2 × 4) inde-
pendent linear combinations for n ∈ f1; 2g, only four,
however, exist for n ¼ 3 as well as for n ¼ 0.
The DVCS amplitude squared term, jT DVCSj2, can be

expanded in contributions of unpolarized, longitudinally
and two transversely polarized parts in complete analogy to
Eq. (9), with each part having a harmonic expansion

jT DVCS
S ðϕ;φÞj2 ¼ e6

y2Q2

�X2
n¼0

cDVCSn;S ðφÞ cosðnϕÞ

þ
X2
n¼1

sDVCSn;S ðφÞ sinðnϕÞ
�
: (11)

The ϕ-independent n ¼ 0 term in this expression is
given by an incoherent sum of all contributions with and
without photon helicity flip, see Eq. (33) below, the n ¼ 1
harmonics originate from the interference of longitudinal-
to-transverse helicity-flip amplitudes with the helicity-
conserved and transverse helicity-flip ones, and the n ¼
2 terms arise from the interference of the helicity-conserved
with the transverse helicity-flip contributions.
Starting from the fully differential cross section in Eq. (4)

one can construct various observables. Availability of both
electron and positron beams at HERA experiments allows
one to separate the interference term in the cross section. In
an unpolarized experiment, for example, one gains access
to the four n ∈ f0;…; 3g cosðnϕÞ-harmonics of the inter-
ference term by measuring the cross section difference for
eþ and e−,
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dσodd
dxBdQ2djtjdϕ ¼ 1

2

�
dσþ

dxBdQ2djtjdϕ −
dσ−

dxBdQ2djtjdϕ
�

¼ −
α3em

8πytQ4

P
3
n¼0 c

I
n;unp cosðnϕÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

P1ðϕÞP2ðϕÞ
; (12)

and to the DVCS squared term from the sum

dσeven
dxBdQ2djtjdϕ ¼ 1

2

�
dσþ

dxBdQ2djtjdϕþ dσ−
dxBdQ2djtjdϕ

�

¼ α3emxB
8πQ6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p X2
n¼0

cDVCSn;unp ðφÞ cosðnϕÞ

þ BH cross section; (13)

which, however, contains also the BH cross section that
may overwhelm the DVCS contribution in the fixed target
kinematics. The corresponding beam charge asymmetry
defined as

ACðϕÞ ¼
dσþðϕÞ − dσ−ðϕÞ
dσþðϕÞ þ dσ−ðϕÞ

(14)

is easier to measure. A drawback is that it depends
nonlinearly on the DVCS amplitudes because of the
denominator. One can further project the beam charge
asymmetry on the various harmonics,

AcosðnϕÞ
C ¼ 2 − δn0

2π

Z
π

−π
dϕ cosðnϕÞACðϕÞ: (15)

The AcosðnϕÞ
C is governed by cIn;unp, however, because of the

ϕ-dependent denominator in (14), it is contaminated by all
other harmonics as well.
In the case that only an electron beam is available, e.g., in

JLAB experiments, one can use single spin flip asymme-
tries to access the interference term. First note that the beam
spin summed electroproduction cross section differs from
the charge even cross section in Eq. (13) by the interference
term

dΣBSσ

dxBdQ2djtjdϕ ¼ 1

2

�
dσ→−

dxBdQ2djtjdϕþ dσ←−
dxBdQ2djtjdϕ

�

¼ dσeven
dxBdQ2djtjdϕ

þ α3em
8πytQ4

P
3
n¼0 c

I
n;unp cosðnϕÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

P1ðϕÞP2ðϕÞ
: (16)

The BH cross section, taken in QED LO approximation,
drops out in the beam spin difference, however, the
interference term (8) is contaminated by a sinðϕÞ modu-
lation of the DVCS cross section,

dΔBSσ

dxBdQ2djtjdϕ ¼ 1

2

�
dσ→−

dxBdQ2djtjdϕ −
dσ←−

dxBdQ2djtjdϕ
�

¼ α3em
8πytQ4

P
2
n¼1 s

I
n;unp sinðnϕÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

P1ðϕÞP2ðϕÞ

þ α3emxBsDVCS1;unp sinðϕÞ
8πQ6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p : (17)

The latter can at least in principle be distinguished from the
interference term by means of the y-dependence. The single
beam spin asymmetry, defined as

ALU;∓ðϕÞ ¼
dσ→∓ − dσ←∓
dσ→∓ þ dσ←∓

; (18)

is dominated by the first harmonic, n ¼ 1, of the interfer-
ence term. To get rid of both the odd n ¼ 1 harmonic in
the squared DVCS term (17) and of the interference term in
the denominator, one defines the charge-odd beam spin
asymmetry

ALU;IðϕÞ ¼
½dσ→þ − dσ←þ � − ½dσ→− − dσ←− �
dσ→þ þ dσ←þ þ dσ→− þ dσ←−

: (19)

Nevertheless, in reality the beam spin asymmetries depend
nonlinearly on all twelve DVCS amplitudes. The corre-
sponding odd harmonics,

AsinðnϕÞ
LU;��� ¼ 1

π

Z
π

−π
dϕ sinðnϕÞALU;���ðϕÞ; (20)

appear to be only in approximate correspondence with the
harmonics of the interference term (10).
At least in principle, there exist a (over)complete set of

observables, measurable in unpolarized, single spin and
double spin flip experiments with both eþ and e− beams,
which is sufficient to disentangle the imaginary and real
parts of all twelve DVCS amplitudes [62]. Such an attempt
has been undertaken by the DVCS program of the
HERMES collaboration and it has been demonstrated
recently that these asymmetry measurements can indeed
be mapped into the space of DVCS amplitudes [42].
It has been very common in the past to parametrize the

DVCS amplitude by the expressions that arise from a
partonic calculation (alias leading-twist QCD calculation at
LO accuracy) in terms of GPDs. This procedure is,
however, ambiguous and the results depend, e.g., on the
choice of lightlike vectors. In order to overcome this
ambiguity one has to perform the analysis using a certain
Lorentz-invariant decomposition of the Compton tensor,
not bound to a partonic picture that is necessarily con-
vention dependent. Such a physically motivated paramet-
rization in terms of CFFs was proposed in Ref. [62].
Starting from this parametrization, the electroproduction
cross section has been calculated recently by BMJ [55,64]
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for all possible polarization options of the initial electron
and nucleon. The corresponding analytic expressions are
exact (for massless electrons) and can also be used in the
quasireal photon regime. To the best of our knowledge the
BMJ framework is presently the only complete, consistent,
and published calculational scheme; we will be using it
throughout this paper.
The starting point is the DVCS tensor

Tμνðq1; q2; p1Þ ¼ i
Z

d4xeiðq1þq2Þ·x=2

× hp2; s2jTfjμðx=2Þjνð−x=2Þgjp1; s1i;
(21)

where ν (μ) refers to the initial (outgoing) photon. In the
following the BMJ reference frame is taken to be the
laboratory frame as specified above, for details see
Appendix A 2. The BMJ photon helicity amplitudes are
defined by the contraction of the DVCS tensor with the
polarization vectors, given in Eqs. (A32)–(A34), and are
further decomposed in terms of the bilinear spinors [64] as

T BMJ
a� ¼ ð−1Þa−1ϵν�2 ð�ÞTνμϵ

μ
1ðaÞ;

¼ Ha�hþ Ea�e∓ ~Ha� ~h∓ ~Ea� ~e: (22)

Here, a ∈ f−; 0;þg labels the helicity of the (initial) virtual
photon and the bilinear spinors read

h ¼ 1

P · q
ūðp2Þquðp1Þ; e ¼ 1

P · q
ūðp2Þ

iσqΔ
2m

uðp1Þ;

~h ¼ 1

P · q
ūðp2Þqγ5uðp1Þ; ~e ¼ Δ · q

P · q
ūðp2Þ

γ5
2m

uðp1Þ;

(23)

where

P ¼ p1 þ p2; Δ ¼ p2 − p1; q ¼ ðq1 þ q2Þ=2
(24)

and we use a shorthand notation σqΔ ¼ σαβqαΔβ.
The coefficients Hab;…; ~Eab in the decomposition (22)

are called photon helicity dependent CFFs. The CFFs are
functions of the invariant kinematic variables, xB, t, andQ2.
We will use a generic notation

F aþðxB; t; Q2Þ with F ∈ fH; E; ~H; ~Eg;
a ∈ f−; 0;þg:

(25)

With the sign convention in Eq. (22) one obtains

F−− ¼ Fþþ; Fþ− ¼ F−þ; F 0− ¼ F 0þ:

Similar to the photon helicity amplitudes themselves, the
photon helicity dependent CFFs are not Lorentz-invariant

quantities; they depend on the chosen (BMJ) refer-
ence frame.
The CFFs H ( ~H) and E ( ~E) can be viewed as nonlocal

generalizations of the Dirac (axial-vector) and Pauli (pseu-
doscalar) form factor, respectively. They describe, loosely
speaking, the proton helicity-conserved and helicity-flip
transitions. QCD collinear factorization provides the fol-
lowing power counting scheme

Fþþ ≃Oð1=Q0Þ;
F 0þ ≃Oð1=QÞ;
F−þ ≃Oð1=Q2Þ; (26)

which is not quite accurate as the transverse helicity flip
CFFs also contain Oð1=Q0Þ terms in higher orders of
perturbation theory induced by the so-called gluon trans-
versity GPDs [69–72]. These contributions are not relevant,
however, for the subject of this study.
The BMJ helicity-flip CFFs satisfy certain kinematical

constraints that ensure vanishing of some harmonics in the
cross section at the phase space boundaries. These con-
straints apply to the “electric” and “magnetic” combina-
tions of the CFFs

Gab ≡Hab þ
t

4m2
Eab;

Mab ≡Hab þ Eab; (27)

(and similar for ~Hab; ~Eab) that are obvious generalizations
of the Sachs form factors (or axial-vector and pseudoscalar
form factors). In particular, the electric CFFs must have the
following behavior for t → tmin:

G0þ; ~G0þ ∝ ðtmin − tÞ1=2;
G−þ; ~G−þ ∝ ðtmin − tÞ1: (28)

In contrast, the ‘magnetic’ CFFsM0þ; ~M0þ may contain a
square root singularity 1/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtmin − tÞp
, and M−þ; ~M−þ do

not necessarily vanish. In addition, the following con-
straints

H0þ þ
xBð1þ t

Q2Þ
2 − xB þ xBt

Q2

~H0þ ∝ ðtmin − tÞ1=2;

H−þ þ
xBð1þ t

Q2Þ
2 − xB þ xBt

Q2

~H−þ ∝ ðtmin − tÞ1; (29)

and the similar ones for H; ~H → E; ~E have to be satisfied
[64]. From these four combinations for longitudinal (or
transverse helicity) flip, three are independent. A fourth
independent combination, suggested by the BMP result, is
quoted in Appendix C.
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The harmonic coefficients of the interference (10) and
DVCS amplitude squared (11) term that are directly related
to experimental observables, e.g., Eqs. (12)–(20), can be
calculated in terms of linear and bilinear combinations of
CFFs (25). The power counting scheme, given in Eq. (26),

implies that the n ¼ 1 harmonics cI1; S and sI1; S of the
interference term (10) provide the dominant contributions
in the DVCS regime. For an unpolarized nucleon these
harmonics are given to the leading twist-two accuracy by
the following linear combinations

�
cI1; unp
sI1; unp

�
¼

8 ~K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y − y2γ2

4

q
Qð1þ γ2Þ2

8>><
>>:

−
�
2 − 2yþ y2

�
1þ γ2

2

��
λyð2 − yÞð1þ γ2Þ

9>>=
>>;
�

ℜe
ℑm

�
CIunpðFþþÞ þOð1=Q2Þ; (30)

where λ ¼ �1 is the electron polarization (helicity),

CIunpðF Þ ¼ F1Gþ ðF1 þ F2Þ
� xBð1þ t

Q2Þ
2 − xB þ xBt

Q2

~H −
t

4m2
E
�
;

(31)

F1ðtÞ and F2ðtÞ are the Dirac and Pauli proton form factors,
and ~K ¼ OðQ0Þ is a kinematical factor which has mass
dimension one. This factor, defined in Eq. (A36), vanishes
at the momentum transfer boundaries t ¼ tmin and t ¼ tmax,

tmin=max ≡ −Q2
2ð1 − xBÞð1∓

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
Þ þ γ2

4xBð1 − xBÞ þ γ2
; (32)

[upper (lower) sign correspond to the minimal (maximal)
allowed value −tmin (−tmax)] as well as at the maximal
allowed value of Bjorken variable xB maxðt; Q2Þ, see dis-
cussion of Eq. (10) in Ref. [64].

The linear combination (31) of CFFs is written in such a
manner that the kinematical constraints (28) and (29) are
implemented. The omitted terms Oð1=Q2Þ in Eq. (30)
contain the contributions of the helicity-flip CFFs and some
further kinematical corrections in which it is also ensured
that the kinematical singularities in F 0þ are explicitly
canceled. The complete formula for the unpolarized n ¼ 1
odd harmonic (30) is provided below in Eq. (70). Note that
for typical DVCS kinematics (xB ≪ 1, −t ≪ 4m2) the
expression for CIunpðF Þ in Eq. (31) is dominated by
the first term which involves the electric combination G
of the CFFs (27). Similar expressions can be derived for a
polarized target; they can be found in Sec. 2.3 of Ref. [64].
However, only the unpolarized result (C0Iunp in the notations
of [64]) is presently available in a compact and explicitly
kinematical singularity-free form.
The main contribution to the cross section of the DVCS

amplitude squared term (11) comes from the constant
n ¼ 0 harmonics, e.g., for an unpolarized target one obtains
the expression

cDVCS0; unp ¼ 2
2 − 2yþ y2 þ γ2

2
y2

1þ γ2
f½CDVCSunp ðFþþ;F �þþÞ þ CDVCSunp ðF−þ;F �

−þÞ� þ 2εðyÞCDVCSunp ðF 0þ;F �
0þÞg; (33)

where CDVCSunp stand for the bilinear combinations of CFFs

CDVCSunp ðF ;F �Þ ¼ 4

ð2 − xB þ xBt
Q2Þ2

�
ð1 − xBÞ

�
1þ xBt

Q2

�
½GG� þ ~G ~G�� þ

�
2þ t

Q2

�
x2Bm

2

Q2
~G ~G�

þ
~K2

4m2

�
GE� þ EG� þ ~G ~E� þ ~E ~G� þ 4m2 − t

4m2
EE� −

t
4m2

~E ~E�
��

(34)

and the ratio of longitudinal to transversal photon flux is

εðyÞ ¼ 1 − y − γ2

4
y2

1 − yþ 1
2
y2 þ γ2

4
y2

: (35)

For a typical DVCS experiment ~K2 ≪ 4m2. In this case,
taking into account the power counting rules (26), cDVCS0; unp is

dominated at large Q2 by the helicity conserving electric
CFFs Gþþ and ~Gþþ.
The n ¼ 0 harmonic (33) is formally suppressed by an

additional factor Oð1=QÞ as compared to the interference
term, e.g., for the unpolarized case one infers from
Eqs. (12), (13), (30), and (33) the relative factor
ytP1ðϕÞP2ðϕÞ= ~KQ ∼Oð1=QÞ. Note that the interference
term can get weakened by integration over ϕ and that there
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is no 1=Q-suppression if we compare the n ¼ 0 harmonic
(33) with those of the interference term.
The n ¼ 1 harmonics in (11) originate from the inter-

ference of longitudinal helicity flip CFFs F 0þ with the
transverse ones and the n ¼ 2 harmonics arise from the
interference of F−þ with Fþþ. All of these harmonics can
be expressed in terms of bilinear combinations of the CFFs,
similar to Eq. (34), and are listed in Sec. 2.2 of Ref. [64].
The power counting scheme (26) implies that these
harmonics are formally suppressed by 1=Q2 as compared
to the corresponding ones of the interference term.
To summarize, although the power counting in Eq. (26)

suggests that the properly chosen experimental observables
are dominated by one particular CFF (e.g. the n ¼ 1
harmonics of the interference term by photon helicity
conserved and the n ¼ 2 harmonics by the longitudinal-
to-transverse helicity flip CFFs), exact expressions are
rather intricate and contain contributions of all remaining
CFFs as well. In the data analysis that is not restricted to the
formal largeQ2 limit that, we believe, is not appropriate for
both the existing and the expected future data, all such
subleading contributions have to be taken into account. The
point that we want to stress here is that the definition of the
CFFs themselves is ambiguous to the 1=Q accuracy; this
ambiguity is resolved at the level of physical observables
only, in the sum of all contributions. Similarly, kinematical
singularities in the helicity dependent CFFs cancel each
other in the exact expressions for the amplitudes which can
be rather lengthy.
Last but not least, we want to note that in present DVCS

phenomenology only the nonflip CFFHþþ can be accessed
from the n ¼ 1 even and odd harmonics in unpolarized
experiments [39] and its parity-odd analog ~Hþþ is
constrained by measurements on longitudinal polarized
target [42,73]. The nucleon helicity flip contributions,
Eþþ or ~Eþþ, are essentially not constrained at all [42].
Furthermore, it is generally accepted that the photon
helicity flip contributions, which are suppressed, are
compatible with zero within the present day experimental
errors.

III. POWER CORRECTIONS TO COMPTON
FORM FACTORS

A. Partonic description of DVCS and beyond

The parton model corresponds to the LO QCD pertur-
bative calculation to leading twist-two accuracy. At this
level there are four CFFs F ∈ fH; E; ~H; ~Eg that are given
by convolution integrals of GPDs F ∈ fH;E; ~H; ~Eg over
the momentum fraction x with simple coefficient functions,

F¼LO
X
q

e2q

Z
1

−1
dx

�
1

ξ− x− iϵ
−

σðFÞ
ξþ x− iϵ

�
Fqðx;ξ; tÞ; (36)

with an obvious correspondence

H↔H; E↔E; ~H↔ ~H; ~E↔ ~E:

Here and below we assume that the GPDs are defined with
the established conventions, e.g., given in [4],

σðHÞ ¼ σðEÞ ¼ 1 and σð ~HÞ ¼ σð ~EÞ ¼ −1; (37)

is a signature factor, ξ≃ xB=ð2 − xBÞ is the skewedness
variable, and eq are the fractional quark charges. The scale
dependence of the GPDs is not shown for brevity. To the
NLO accuracy the coefficient functions are modified by
OðαsÞ corrections and become more complicated. Such
corrections are not relevant for the present study, we ignore
them in what follows.
Note that only charge conjugation even C ¼ þ1 combi-

nations of the GPDs

FqðþÞ ðx; ξ; tÞ ¼ Fqðx; ξ; tÞ − σðFÞFqð−x; ξ; tÞ (38)

can contribute to the DVCS, which is reflected in Eq. (36)
by the (anti)symmetrization of the coefficient function in x.
Using this symmetry we can rewrite (36) as

F¼LO
X
q

e2q

Z
1

−1

dx
2ξ

T0

�
ξþ x − iϵ
2ðξ − iϵÞ

�
FqðþÞ ðx; ξ; tÞ≡LOT0⊛F;

(39)

where the (anti)symmetrized kernel is replaced by

T0ðuÞ ¼
1

1 − u
(40)

and in the second line we have introduced a notation “⊛”
for the (normalized) convolution integral, including the
sum over the quark flavors.
If the QCD calculation is done to the 1=Q2 accuracy, the

following complications occur and must be taken into
account:

(i) The skewedness parameter ξ must be defined with a
power accuracy

ξ → ξðxB; t; Q2Þ ¼ xB
2 − xB

þOð1=Q2Þ; (41)

(ii) The CFFs must be defined through a certain
decomposition of the DVCS tensor (21). The
BMJ decomposition (22) is one possibility; the
BMP decomposition discussed below is another
valid option. In both cases the LO CFFs (36) are
recovered as the scaling limit of the helicity-con-
serving CFFs, that is

Fþþ ¼ T0⊛Fjξ→ξðxB;t;Q2Þ þOð1=Q; 1=Q2Þ; (42)
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where the expression for the Oð1=Q; 1=Q2Þ addenda
depends both on the chosen form factor decomposi-
tion (e.g. BMJ vs BMP) and on the convention used
for the skewedness parameter.

(iii) There are eight more CFFsF 0þ;F−þ corresponding
to photon helicity flip transitions that must be taken
into account in the same approximation.

In what follows we discuss the convention dependence of
various elements in this setup in some detail. It is important
to realize that the corresponding ambiguities only cancel at
the level of physical observables.
In the literature the skewedness variable ξðxB; t; Q2Þ is

defined in various manners. This ambiguity is related to the
choice of the reference frame in which one performs the
calculation, see a discussion in Ref. [5]. The KM con-
vention, used by Kumerički and Müller in global DVCS
fits, is

ξKM ¼ xB
2 − xB

: (43)

It is known that the Vanderhaeghen-Guichon-Guidal
(VGG) convention, used by Guidal, for local CFF fits is
practically not very different from the KM one, a discussion
for scalar target can be found in [63], and those used by
Kroll, Moutarde, and Sabatie in [74]. All these definitions
are motivated by using a certain generalization of the
standard DIS reference frame where the initial photon and
proton momenta form the longitudinal plane. In contrast to
this traditional approach, BMP [60,61] define the longi-
tudinal plane as spanned by the two photon momenta q1
and q2, see Appendix A 1. For this choice the momentum
transfer to the targetΔ ¼ q1 − q2 is purely longitudinal and
both—initial and final state—protons have the same non-
vanishing transverse momentum P⊥,

jξP⊥j2 ¼
1 − ξ2

4
ðtmin − tÞ; tmin ¼ −

4m2ξ2

1 − ξ2
; (44)

where ξ ¼ ξBMP is the BMP skewedness parameter defined
with respect to the real (final state) photon momentum
q22 ¼ 0:

ξBMP ¼
p1 · q2 − p2 · q2
p1 · q2 þ p2 · q2

¼ xBð1þ t=Q2Þ
2 − xBð1 − t=Q2Þ (45)

and tmin is exactly equivalent to the expression (32).
Consequently, the condition jP⊥j2 ≥ 0 translates to the
lower bound for the negative momentum transfer
square, −t ≥ −tmin.
The BMP choice is advantageous in two respects. First, it

is easy to convince oneself that most contributions to the
longitudinal-to-transverse helicity flip amplitudes (A16)
and the transverse flip amplitudes (A17) are proportional to
the first and the second power of jξP⊥j ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tmin − t

p
,

respectively, and also the remaining terms are compatible

with the expected threshold behavior (28) and (29).
Second, as shown in Ref. [60], the DVCS amplitudes on
a scalar target have an expansion in t=Q2 and jξP⊥j2 and do
not contain any target mass corrections m2=Q2 apart from
those absorbed in jξP⊥j through the expression for

tmin ¼ −4m2ξ2=ð1 − ξ2Þ ∼ −m2x2B for xB ≪ 1:

This property can be viewed as the generalization of the
well-known result that target mass corrections in DIS are
organized in terms of the Nachtmann variable and involve
the expansion in powers of m2x2B rather than m2. An
interesting feature of DVCS is that all such corrections
contribute through the combination jξP⊥j2 ∝ ðtmin − tÞ so
that in the physical region −t ≥ −tmin Nachtmann-type
target-mass corrections are always overcompensated by the
finite-t effects, i.e., the sign of the overall kinematic
correction is opposite. For spin-1=2 targets there are some
additional mass corrections [61] that have a simple struc-
ture, however. They arise entirely from the algebra of spinor
bilinears.
Another difference of the BMP and BMJ conventions is

that the photon helicity amplitudes are defined in Ref. [60]
with respect to a different set of polarization vectors
ε�;0
μ (A7)

T BMP
a� ¼ ð−1Þa−1ε�ν Tνμεa;�μ

¼ Hq
a�hþ Ea�e∓ ~Ha� ~h∓ ~Ea� ~e; (46)

cf. Eq. (22). The relation between the BMP CFFs (46) F ∈
fH;E; ~H; ~Eg and the BMJ CFFs (22) F ∈ fH; E; ~H; ~Eg is
purely kinematical and can easily be worked out, see
Appendix A 1:

F�þ ¼ F�þ þ ϰ

2
½Fþþ þF−þ� − ϰ0F0þ;

F 0þ ¼ −ð1þ ϰÞF0þ þ ϰ0½Fþþ þF−þ� (47)

with an obvious correspondence H↔H, etc. Here

ϰ0 ¼
ffiffiffi
2

p
Q ~Kffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

ðQ2 þ tÞ
¼ Oð1=QÞ;

ϰ ¼ Q2 − tþ 2xBtffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
ðQ2 þ tÞ

− 1 ¼ Oð1=Q2Þ: (48)

Since Fþþ ¼ Oð1=Q0Þ, F0þ ¼ Oð1=QÞ, and F−þ ¼
Oð1=Q2Þ, the relations (47), strictly speaking, are beyond
the accuracy of the BMP calculation for the helicity
amplitudes. For consistency one may use approximate
relations
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F�þ ≃F�þ þ ϰ

2
Fþþ − ϰ0F0þ and

F 0þ ≃ −F0þ þ ϰ0Fþþ

that differ from (47) by terms proportional to 1=Q3 and
1=Q4. However, using the exact transformation formulas
from the BMP to the BMJ basis, Eq. (47), has the advantage
that the results for physical observables expressed in terms
of the BMJ CFFs coincide with the corresponding results
which one would obtain by a direct calculation by means of
the original BMP parametrization. We will stick to this
“exact” transformation in the following.
Explicit expressions for the BMP CFFs F ∈

fH;E; ~H; ~Eg are collected in Eqs. (A23)–(A25). They
include also some Oð1=Q3Þ and Oð1=Q4Þ corrections that
are due to the transformation of the original BMP expres-
sions (A13)–(A17) to the basis of spinor bilinears in
Eq. (23). The resulting ambiguity—to include such terms
or leave them out—signals the uncertainty which is left. For
example, the BMP result for the helicity conserved CFF
Hþþ reads

Hþþ ¼ T0⊛H þ −t
Q2

�
1

2
T0 − T1 − 2ξDξT2

�
⊛H

þ 2t
Q2

ξ2∂ξξT2⊛ðH þ EÞ: (49)

The first convolution integral on the right-hand side (r.h.s.)
of this equation corresponds to the leading-order parton
model result (39) calculated using the BMP convention
with the skewedness parameter ξ ¼ ξBMP (45). The remain-
ing terms are the kinematical twist-four corrections of order
Oð1=Q2Þ. They are given by similar convolution integrals
that involve new coefficient functions T1ðuÞ; T2ðuÞ;… and,
in general, other GPDs. These convolutions are also
decorated by powers of the skewedness parameter and
the derivatives ∂ξ ¼ ∂=∂ξ. The differential operator Dξ is
defined as

Dξ ¼ ∂ξ þ 2
jξP⊥j2

t
∂2
ξξ

¼ ∂ξ −
t − tmin

2t
ð1 − ξ2Þ∂2

ξξ: (50)

The expressions for the other CFFs (A23)–(A25) have
similar structure. The full list of the coefficient functions
appearing in the BMP results is

T0ðuÞ ¼
1

1 − u
; (51a)

TðþÞ
1 ðuÞ ¼ ð1 − 2uÞ lnð1 − uÞ

u
; (51b)

Tð−Þ
1 ðuÞ≡ T1ðuÞ ¼ −

lnð1 − uÞ
u

; (51c)

T2ðuÞ ¼
Li2ð1Þ − Li2ðuÞ

1 − u
þ lnð1 − uÞ

2u
; (51d)

where the notation follows Ref. [75]. These functions are
holomorphic in the complex u-plane except for a pole at
u ¼ 1 in the LO kernel (51a) or rather harmless, logarith-
mic ½1;∞�-cuts for the kernels (51b)–(51d) which contrib-
ute to the higher twist corrections. All of them enter the
convolution integrals with Feynman’s causality prescrip-
tion, as exemplified in (39), that gives rise to a positive
imaginary part. Hence, for a positive GPD the resulting
imaginary part from the convolution is positive, too. Note
that in contrast to all other kernels TðþÞ

1 ðuÞ, defined in
(51b), does not vanish in the limit u → ∞, however, this
peculiarity will be cured by applying the differential
operator ∂ξξ to the corresponding convolution integral.

B. GPD model

To gain some generic insights in the structure of power
corrections in this section we use a t-independent toy GPD
model that is based on Radyushkin’s double distribution
ansatz (RDDA) [65,66],

FqðþÞ ðx; ξÞ ¼
Z

1

0

dy
Z

1−y

−1þy
dzδðx − y − ξzÞ

×
105

128

ð1 − yÞ2 − z2ffiffiffi
y

p − σðFÞfx → −xg: (52)

This model corresponds to the generically correct
valencelike quark density qðxÞ ¼ ð35=32Þx−αð1 − xÞβ with
α ¼ 1=2 and β ¼ 3, normalized to one, and the so-called
profile function ð3=4Þð1 − w2Þ with w ¼ z=ð1 − yÞ.
The convolution of this GPD with the leading-order kernel
T0 provides a signature-independent imaginary part
ℑmFLO ¼ πFqðξ; ξÞ, where

Fqðξ; ξÞ ¼ 7

4ð1þ ξÞ
�

2ξ

1þ ξ

�
−1=2 1 − ξ

1þ ξ
: (53)

In such a model the ξ → 1 behavior of Fqðξ; ξÞ is
determined by the profile function rather than the x → 1
behavior of the parton distribution function (PDF), in our
case Fqðξ; ξÞ ∼ ð1 − ξÞ1. The small ξ-asymptotics is the
same as for the PDF, corresponding to a “Reggeon
intercept” α ¼ 1=2. Skewedness changes, however, the
value of the residue.
We note in passing that it is possible to rewrite the BMP

results [60,61] directly in terms of the double distributions.
This can be useful in the applications. The corresponding
expressions are given in Appendix B.
The GPD on the cross-over line x ¼ ξ (53) can be used to

evaluate the real part of the convolution integral T0⊛F via
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signature-even or -odd dispersion relations [76], which
presents an alternative to a direct numerical calculation of
the LO convolution integral (our notation will be consistent
with those of Sec. 3.2 in Ref. [75]).
A dissipative framework can also be used for the

evaluation of power corrections. As the first step one
calculates the imaginary parts,

ℑmT⊛F ¼ π
X
q

e2q

Z
1

ξ

dx
x
tðxÞFqðþÞ ðξ=x; ξÞ; (54)

that arise from the convolution with the imaginary parts of
the kernels T ∈ fT0; T

ð�Þ
1 ; T2g defined in Eq. (51),

t0ðxÞ ¼ δð1 − xÞ; (55a)

tðþÞ
1 ðxÞ ¼ 1

xð1þ xÞ ; (55b)

tð−Þ1 ðxÞ≡ t1ðxÞ ¼
1

1þ x
; (55c)

t2ðxÞ ¼
ln 1þx

2x

1 − x
−

1

2ð1þ xÞ : (55d)

For technical details and notation see Sec. 3.2 in [75]. The
real parts of the photon helicity conserved CFFs Fþþ can
be recovered from dispersion relations, unsubtracted for the
signature-odd CFFs and involving the D-term related
subtraction constant for signature-even CFFs Hþþ and
Eþþ, modified as compared to the leading-order leading
twist result.
The BMP results for helicity flip CFFs can be treated in

the same framework, however, it is desirable to remove first
the kinematical constraints by suitable prefactors.
We add that the applicability of the dissipative frame-

work was established for NLO corrections at leading twist-
two and also for the LO result at twist-three level for a
scalar target in Ref. [77] and Ref. [78], respectively. In
Appendix C we show that it holds for twist-four kinemati-
cal corrections as well.
The imaginary parts (54) only involve the GPD in the

outer region with the argument ξ ≤ ξ=x ≤ 1. The corre-
sponding expression is readily obtained from (52) and
reads

Fqðξ=x; ξÞ ¼ 7ð1 − ξ2Þ
32

ffiffiffi
ξ

p
x
5
2

��
1þ x
1þ ξ

− 5
1 − x
1 − ξ

��
1þ x
1þ ξ

�3
2

−
�
1 − x
1 − ξ

− 5
1þ x
1þ ξ

��
1 − x
1 − ξ

�3
2

�
: (56)

For x ¼ 1 this function is given by the GPD on the cross-
over line, see (53), while for x → ξ it has a PDF-like
behavior,

Fqðξ=x; ξÞ ¼ξ=x→1 35x3ð1 − ξ=xÞ3
32ξ3ð1 − ξ2Þ2

characterized by a generic ð1 − ξ=xÞ3 falloff. Since all
kernels in Eq. (55) except for the LO t0ðxÞ have a constant
behavior for x → 1, the convolution (54) weakens the
ξ → 1 asymptotics compared to the GPD at the cross-over
line by one power, i.e., in our model we obtain ∼ð1 − ξÞ2.
The derivatives over skewedness in the expressions for the
power corrections, ∂ξ or ð1 − ξ2Þ∂2

ξ, cf. (49), reduce
the power again and restore the original ∼ð1 − ξÞ behavior.
Thus the higher-twist corrections have, generically, the
same behavior at ξ → 1 as the LO term.
In the small ξ-region we read off from Eq. (56) the

expected Regge behavior ∼ξ−1=2,

Fqðξ=x; ξÞ ¼ξ→0 7ð1þ xÞ3=2
16x3=2

ffiffiffi
ξ

p

×

�
6þ 2þ 3x

x

��
1 − x
1þ x

�3
2

− 1

��
: (57)

Note that this function vanishes for x → 0 as
ffiffiffi
x

p
and

approaches a constant for x → 1. With an exception of

tðþÞ
1 ðxÞ ¼ 1

x
− tð−Þ1 ðxÞ;

which possesses a 1=x-singularity, the remaining kernels in
Eq. (55) are regular at x ¼ 0. Thus, apart from this singular
case, one can safely set the lower limit of the integration in
(54) to zero which reveals that the convolution integral
behaves as 1=

ffiffiffi
ξ

p
as well. The additional 1=x-singularity in

tðþÞ
1 ðxÞ yields an extra 1=ξ-pole, however, it is annihilated
in the final expressions by the application of the differential
operator ∂ξξ.
The small-ξ and large-ξ behavior of various contribu-

tions to the power corrections can be studied in the similar
manner for a more general RDDA such that the GPD on the
cross-over line reads as

Fðξ; ξÞ ∼ 1

1þ ξ

�
2ξ

1þ ξ

�
−α
�
1 − ξ

1þ ξ

�
b

with parameters α > 0 and b > 0 governing the ξ → 0 and
ξ → 1 asymptotics, respectively. We find that also in this
case the small-ξ and large-ξ asymptotics of the twist-three
and twist-four corrections will follow the LO behavior. This
conclusion seems to be rather generic. For a large class of
GPDs the convolutions (54) yield functions that monoto-
nously decrease with ξ. The consequent application of the
homogeneous differential operator ξ∂ξ on a convolution
integral changes the sign and leaves the functional form of
Fðξ; ξÞ roughly intact. Another possibility, the application
of the differential operator ∂ξξ ¼ 1þ ξ∂ξ yields a sum of
positive and negative contributions such that the negative
one overwhelms at large-ξ whereas for small-ξ the positive
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contribution dominates if 0 < α < 1. Some selected exam-
ples which illustrate this discussion are displayed for our
toy model in Fig. 1.
Closing this general discussion, we mention that for

integer b (profile parameter) and β (PDF parameter), e.g.,
for our toy model with α ¼ 1=2, all convolution integrals
with the kernels in Eq. (55) can be calculated analytically in
terms of elementary, logarithmic, and dilogarithmic func-
tions. Starting from these expressions one can calculate the
corresponding dispersion integrals, again in an analytic
manner, and finally apply the corresponding differential
operators. For the GPD model of Goloskokov and Kroll,
which we will utilize below, the imaginary part can be

analytically evaluated in terms of hypergeometric functions

2F1. As shown in Appendix C, one can then utilize
dispersion relations to calculate the real part in a direct
manner, i.e. no differentiation of the real part is needed. We
are now in a position to consider higher-twist power
corrections to various (BMP) CFFs in some detail.

C. Helicity conserved CFFs Fþþ
The original BMP results [61] for the photon helicity-

conserved CFFs, exactly transformed to the basis (46), are
collected in Eq. (A23). They can be written in a compact
form as follows,

Fþþ ¼ T0⊛F þ −t
Q2

�
1

2
T0 − T1 − 2ξ

1þσ
2 Dξξ

1−σ
2 T2

�
⊛F þ δ ~EF

4m2

Q2

�
T0 þ

−t
Q2

�
1

2
T0 − T1 − 2DξξT2

��
⊛ ~G

−
4m2δEF − tδHF

Q2
2ξ2∂ξξT2⊛ðH þ EÞ − 4m2δ ~EF − tδ ~HF

Q2
2ξ∂ξT2⊛ ~H; (58)

where Fþþ ∈ fHþþ;Eþþ; ~Hþþ; ~Eþþg, δF0F is the
Kronecker symbol (equal to one if the CFFs F0 and F
coincide and zero otherwise), σ ≡ σðFÞ is the signature
factor (37), and the electric GPD ~G ¼ ~H þ ðt=4m2Þ ~E is
defined in analogy to the electric CFFs (27). The differ-
ential operator Dξ is defined in Eq. (50). Note that Dξ ¼ ∂ξ

for t ¼ tmin, and Dξ ¼ ∂ξ − ð1=2Þð1 − ξ2Þ∂2
ξξ for

−t ≫ −tmin, i.e. in the both limiting cases t-dependence
drops out. The extra term ∼m2=Q2 in the second line in
Eq. (58) has the same combination of coefficient functions
as shown in the first line for σ ¼ −1 and it contributes only
to ~Eþþ, however, is determined by the electric GPD ~G. It
arises from the rewriting of BMP bilinear spinors in the
BMJ basis, clearly visible in Eq. (A20) of Appendix A 1 c.
Note that this rewriting is also associated with an

additional t=Q2 correction, which is hidden here in
ð4m2=Q2Þ ~G ¼ ð4m2=Q2Þ ~H þ ðt=Q2Þ ~E. Strictly speaking
the twist-six terms ∼m2t=Q4 and ∼t2=Q4 are beyond our
accuracy, however, keeping them ensures that we discuss
the original BMP result in another representation.
As can be expected on general grounds, signature-even

(i.e. parity-even) and signature-odd (i.e. parity-odd) CFFs,
Hþþ;Eþþ and ~Hþþ; ~Eþþ, arise only from the GPDs with
the same signature (parity), H;E and ~H; ~E, respectively.
The 4m2=Q2 terms are absent in the target helicity con-
served CFFs Hþþ and ~Hþþ so that their twist-four
corrections are entirely proportional to −t=Q2 (apart from
the term in tmin in Dξ which is numerically insignificant),
whereas they do contribute to the target helicity flip CFFs
Eþþ and ~Eþþ. Although there is no kinematical necessity,
we observe that the terms in the third and fourth line of
Eq. (58) drop out in the electric CFFs

Gþþ ¼ Hþþ þ t
4m2

Eþþ; ~Gþþ ¼ ~Hþþ þ t
4m2

~Eþþ;

that are expressed in terms of the electric GPDs of the same
signature (or parity)

G ¼ H þ t
4m2

E; ~G ¼ ~H þ t
4m2

~H;

so that for these combinations the whole twist-four con-
tributions are proportional to −t=Q2 as well.
In order to quantify these corrections, we define the

(relative) coefficients kFþþ as

ℑmFþþðξ; t; Q2Þ
ℑmFLTþþðξ; t; Q2Þ ¼

�
1 −

t
Q2

kFþþðξ; tmin=tÞ
�
; (59a)

4

FIG. 1 (color online). Imaginary parts of typical contributions
to the CFFs, multiplied with ξ=π, from the toy GPD model (52):
LO contribution Fðξ; ξÞ (dashed), convolution integral T1⊛F
(dotted), acting on it with the differential operator ξ∂ξ (solid) and∂ξξ (short-dashed), as well as ∂ξξT

ð−Þ
1 ⊛F (dash-dotted). Nor-

malization of the u(d)-quark PDF is set to 2 (1).
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where the value kFþþ ¼ 1 corresponds to a (enhanced)
higher-twist multiplicative correction factor ð1 − t=Q2Þ to
the imaginary part of a given CFF Fþþ with respect to the
LO leading-twist expression. As reference we take the

original BMP result to leading twist accuracy, which is
obtained from Eq. (58) by dropping the last two lines and
all explicit t=Q2 corrections in the first two lines,

FLTþþ ¼
(
T0⊛F for F↔F ∈ fH;E; ~Hg
T0⊛ ~Eþ m2

Q2 T0⊛½ ~H þ t
4m2

~E� for F ¼ ~E
. (59b)

The twist-four term ∼m2=Q2 in the CFF ~Eþþ arises again
from the transformation of bilinear spinors and is discussed
in more detail in Sec. IVA, see Eq. (69a). A very important
point here is also that the LO expression T0⊛F is
calculated using BMP convention (45) for the skewedness
parameter ξ ¼ ξBMP. The expansion of ξBMPðxB; t=Q2Þ in
powers of t=Q2 yields additional corrections that will be
discussed separately.
We choose to begin with the electric combinations of the

CFFs where the corrections have simpler structure. From
Eqs. (58) and (59) one easily obtains

kGþþ ¼ ℑmf1
2
T0⊛G − T1⊛G − 2ξ∂ξT2⊛Gg

ℑmT0⊛G

þ t − tmin

t

ℑmð1 − ξ2Þξ∂2
ξξT2⊛G

ℑmT0⊛G
; (60)

and

k ~Gþþ ¼ ℑmf1
2
T0⊛ ~G − T1⊛ ~G − 2∂ξξT2⊛ ~Gg

ℑmT0⊛ ~G

þ t − tmin

t

ℑmð1 − ξ2Þ∂2
ξξ

2T2⊛ ~G

ℑmT0⊛ ~G
: (61)

These two factors are displayed in Fig. 2 as functions of
BMP skewedness parameter for the GPD model specified
in Eq. (52) and two choices of the momentum transfer:
−t ≫ −tmin (solid curves) and t ¼ tmin (dashed curves).
The difference between solid and dashed curves is mar-
ginal, which signals that the ðt − tminÞ=t terms are numeri-
cally less important. We observe also that for ξ≳ 0.1 the
kþþ factors in the signature-even (thick curves) and -odd
(thin curves) sector are rather similar and that all curves are
rather flat and kGþþ ≃ k ~Gþþ ≃ 0.5–1. Approaching the small-
ξ region kGþþ increases while k ~Gþþ decreases. The limiting
values at ξ → 0, which are not displayed, remain finite.
They depend on model details and can be calculated
analytically, see Sec. IV E.
Next, we consider the signature-even magnetic combi-

nation, Hþ E. In this case an additional contribution
proportional to 2ξ2ð4m2 − tÞ=Q2 appears that involves
a convolution with magnetic GPD H þ E. In a typical
DVCS kinematics (Q2 ≳ 2m2) this factor is roughly
2m2x2B=Q

2 ≲ x2B and can be considered as small apart

from the region of very large xB. Hence this extra con-
tribution is numerically not very important (at least in the
valence region) and therefore kHþE

þþ ≈ kGþþ. It follows that
the twist-four corrections to the CFFs H and E themselves
are of the same order as for the magnetic combination,
kHþþ ≈ kEþþ ≈ kGþþ, displayed in Fig. 2.
Finally, we consider the signature-odd CFFs. The coef-

ficient k
~H
þþ of the −t=Q2 proportional correction to ~H has

the same structure as the corresponding coefficient for the
signature-odd electric CFF ~G (61), with an extra term

t
Q2

ℑm∂ξξT2⊛ ~H

ℑmT0⊛ ~H
:

The ratio of imaginary parts in this expression is rather
small because of the differential operator ∂ξξ in the
numerator, cf. analogous convolutions shown by short
(for ∂ξξT1) and long dashes (for T0) in Fig. 1. Thus this
extra contribution is not very significant. It follows that the
−t=Q2 corrections to ~H are positive and roughly of the
same magnitude as for ~G shown in Fig. 2. The −t=Q2

corrections to ℑm ~Eþþ are entirely determined by

k ~Gþþ ∼ 0.5, however, for this CFF the extra term

−
4m2ℑm∂ξξT2⊛ ~H

ℑmT0⊛½ðQ2 þ tÞ ~Eþ 4m2 ~H�

appears. For vanishing GPD ~E this term simplifies to
−ℑm∂ξξT2⊛ ~H=ℑmT0⊛ ~H, which as we have discussed is
a smaller (positive) modification, which will decrease
further for a positive ℑmT0⊛ ~E. Note also that the corre-
sponding spinor bilinear ~e contains also a small prefactor
Δ · q=P · q ¼ −ξ=ð1þ t=Q2Þ, see Eq. (23), so that the full
~Eþþ contribution is suppressed in the experimental observ-
ables by an additional factor ξ, which makes the effect of
the 4m2=Q2 correction even milder. Furthermore, this CFF
drops out entirely in the unpolarized interference term in
the cross section, Iunp in Eq. (9).

D. Longitudinal-to-transverse helicity flip CFFs F0þ
The longitudinal-to-transverse helicity flip CFFsF0þ are

twist-three, i.e. suppressed by 1=Q compared to the
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helicity-conserving contributions, and the power correc-
tions to them are twist-five, of order 1=Q3 which is beyond
our accuracy. The leading, twist-three, expressions have
been known for a decade, and have been confirmed once
more in Ref. [61]. The BMP results for F0þ in the
representation (46) are collected in Eq. (A24) and can
be cast in the following form

F0þ≃ −
4jξP⊥jffiffiffi

2
p

Q

�
1þ ð1 − σÞt

2Q2

�
ξ
1þσ
2 ∂ξξ

1−σ
2 T1⊛F

þ 4m2ðδEF − δ ~EFÞ − tðδHF − δ ~HFÞffiffiffi
2

p
QjξP⊥j

ξ
1þσ
2

× fξT1⊛ðH þ EÞ − T1⊛ ~Hg; (62)

where the notation is similar to Eq. (58) and where we
neglected twist-five terms proportional to ðjξP⊥jt=Q3Þ ×
∂ξξT1⊛ðH þ EÞ and ðjξP⊥j4m2=Q3Þ × ∂ξξT1⊛ ~H which
are present in the exactly transformed expressions for H0þ
and ~E0þ, cf. Eqs. (A24a) and (A24d).
The contribution in the first line in Eq. (62) involves the

kinematical factor

4jξP⊥jffiffiffi
2

p
Q

¼ 2
ffiffiffi
2

p
~K

Qð2 − xB þ xBt
Q2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðtmin − tÞð1 − ξ2Þ

p
Q

;

which vanishes at the phase space boundaries. Note that it
can be expressed in terms of the kinematical factor ~K which
is used in Ref. [64].
The contributions in the second and third lines in

Eq. (62) are shown exactly as they arise from the BMP
calculation (no approximation are done here). These terms
have a kinematical 1=jξP⊥j singularity which drops out in
electric combinations

G0þ ¼ H0þ þ t
4m2

E0þ; ~G0þ ¼ ~H0þ þ t
4m2

~E0þ

as well as in H0þ þ ξ ~H0þ and E0þ þ ξ ~E0þ. These cancel-
ations ensure that all angular harmonics in the cross section
have the correct behavior at t → tmin as discussed in Sec. II,
cf. Eqs. (28) and (29).
The size of these kinematical singularity-free combina-

tions of the twist-three CFFs is governed by the convolution
of the corresponding combinations of GPDs with the kernel
T1 (51c), and applying a homogeneous differential operator
ξ∂ξ (signature-even) or ∂ξξ (signature-odd). As we have
seen already, such convolution integrals are rather mild.
The corresponding imaginary parts normalized to the
leading-twist helicity conserving contributions,

kðþÞ
0þ ¼ −

ℑmξ∂ξT1⊛F
ℑmT0⊛F

; kð−Þ0þ ¼ −
ℑm∂ξξT1⊛F
ℑmT0⊛F

; (63)

are shown by the thick and thin short-dash-dotted curves in
Fig. 3, respectively. We see that these ratios are at most
∼1=2. Thus the magnitude of the singularity-free combi-
nations of the twist-three CFFs can be estimated as
≲ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtmin − tÞð1 − ξ2Þ=2Q2
p

ℑmT0⊛F, which for DVCS
kinematics, say −4t=Q2 ≲ 1, is a reasonably small number.
The numerical size of the addenda in the two last lines in

Eq. (62) is determined by the convolution integral

ξT1⊛ðH þ EÞ − T1⊛ ~H;

where the H þ E combination enters with an additional
factor ξ. To exemplify the numerical size of the addenda we
show in Fig. 3 the quantities

ΔkðþÞ
0þ ¼ −ξkð−Þ0þ ; Δkð−Þ0þ ¼ −

ℑmT1⊛F
ℑmT0⊛F

(64)

k , t tmin

k , t tmin

k , t tmin

k , t tmin

FIG. 2 (color online). Effective coefficients kFþþ of −t=Q2

corrections (59) for the electric signature-even F ¼ Gþþ (thick)
and signature-odd F ¼ ~Gþþ (thin) CFFs evaluated for the GPD
(52). The solid and dashed curves are calculated for −t ≫ −tmin
and t ¼ tmin, respectively.

k0

k0

k 0

k 0

FIG. 3 (color online). The ratios kðþÞ
0þ (thick dash-dotted curves)

and kð−Þ0þ (thin dash-dotted curves), cf. Eq. (63), characterizing the
magnitude of the contributions in the first line in Eq. (62) to the
longitudinal-to-transverse helicity flip CFFs F0þ, evaluated for
the GPD model in Eq. (52). The thick and thin long dash-dotted
curves show the ratios ΔkðþÞ

0þ and Δkð−Þ0þ , respectively, which are
defined in Eq. (64) and determine the numerical size of the
addenda in the two last lines in Eq. (62).
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as thick and thin long dash-dotted curves, respectively.
Note that for the signature-even combination H0þ þ E0þ
there is one more factor ξ in front. These terms will either
disappear in physical observables or their kinematical
singularities will be softened and they will be dressed with
additional suppression factors, e.g. ξt=Q2.

E. Transverse helicity flip CFFs F−þ
The CFFs F−þ, involving photon helicity flip by two

units, are suppressed by two powers of the large momen-
tum, i.e. they are twist-four (and include twist-six etc.
corrections). They are interesting in their own right as a
background to possible leading-twist gluon transversity
GPD contributions to the same amplitudes and can be of
phenomenological importance in this context [79]. The
leading twist-four quark contribution to F−þ was calcu-
lated in Ref. [61]. The result is given in Eq. (A25) and can
be cast in the following form

F−þ≃ð−1Þδ ~HF
4jξP⊥j2
Q2

�
1þ ð1 − σÞt

2Q2

�
ξ
1þσ
2 ∂2

ξξ
3−σ
2 TðσÞ

1 ⊛F

−
4m2ðδEF − δ ~EFÞ − tðδHF − δ ~HFÞ

Q2
ξ
1þσ
2

× 2fξ∂ξξT
ðþÞ
1 ⊛ðH þ EÞ þ ∂ξξT

ð−Þ
1 ⊛ ~Hg; (65)

where we now neglected additional twist-six contributions
to H−þ and ~E−þ, proportional to ðt=Q2Þ∂2

ξξ
2TðþÞ

1 ⊛ and
−ð4m2=Q2Þ∂2

ξξ
2Tð−Þ

1 ⊛ ~H, respectively, see Eqs. (A25a)
and (A25d).
The general structure of the expression (65) resembles

what we observed already for the longitudinal-to-transverse
CFFs. The contributions in the first line vanish at the
kinematic boundaries thanks to the prefactor

4jξP⊥j2
Q2

¼ 4 ~K2

Q2ð2 − xB þ xBt
Q2Þ2 ¼

tmin − t
Q2

ð1 − ξ2Þ;

whereas the addenda in the second and the third lines drops
out in electric CFFs

G−þ ¼ H−þ þ t
4m2

E−þ; ~G−þ ¼ ~H−þ þ t
4m2

~E−þ;

as well in the H−þ þ ξ ~H−þ and E−þ þ ξ ~E−þ combina-
tions. Hence these combinations vanish linearly as
t → tmin, in agreement with Eqs. (28) and (29). The
magnitude of these, kinematical singularity-free, combina-
tions of CFFs, in units of ðtmin − tÞ=Q2, is governed by the
convolution of the corresponding GPDs with the kernels
TðþÞ
1 (51b) and T1 ≡ Tð−Þ

1 (51c) decorated by the second-
order differential operators ð1 − ξ2Þξ∂2

ξξ (signature-even)
or ð1 − ξ2Þ∂2

ξξ
2 (signature-odd).

According to our discussion in Sec. III B one should
expect that the net results for the imaginary parts behave in

the ξ → 0 and ξ → 1 limits similarly to the LO convolution
integrals. In Fig. 4 we plot the corresponding ratios

kðþÞ
−þ ¼ ℑmð1 − ξ2Þξ∂2

ξξT
ðþÞ
1 ⊛F

ℑmT0⊛F
;

kð−Þ−þ ¼ ℑmð1 − ξ2Þ∂2
ξξ

2Tð−Þ
1 ⊛F

ℑmT0⊛F
(66)

by the thick and thin dashed curves, respectively. One sees
that kðþÞ

−þ ≃þ0.5 whereas kð−Þ−þ changes sign at ξ ∼ 0.5 but
becomes positive again at ξ → 0.
The addenda in the second and the third line in Eq. (65)

has the same structure as for the longitudinal-to-transverse
helicity flip CFFs F0þ considered in the previous section,
cf. Eq. (62). Hence, it will disappear in physical observ-
ables or will be dressed with additional suppression factors
like ðt − tminÞ=Q2. The size of these contributions is
governed by the convolution integral

−2fξ∂ξξT
ðþÞ
1 ⊛ðH þ EÞ þ ∂ξξT1⊛ ~Hg:

The contribution of the magnetic GPD combination H þ E
involves an extra factor ξ as compared to the second term so
that its contribution is suppressed and less important for
smaller ξ values, whereas the contribution of ~H possesses a
node because of the differential operator ∂ξξ. For illus-
tration we show in Fig. 4 the ratios

ΔkðþÞ
−þ ¼ −2

ℑmξ∂ξξT
ðþÞ
1 ⊛F

ℑmT0⊛F
;

Δkð−Þ−þ ¼ −2
ℑm∂ξξT

ð−Þ
1 ⊛F

ℑmT0⊛F
(67)

as thick and thin short–dashed curves, respectively.

k

k

k

k

FIG. 4 (color online). The ratios kðþÞ
−þ (thick dashed curves) and

kð−Þ−þ (thin dashed curves), defined in Eq. (66), characterizing the
magnitude of the contributions in the first line in Eq. (65) to the
transverse-to-transverse helicity flip CFFs F0þ, evaluated for the
GPDmodel (52).ThedashedanddottedcurvesshowtheratiosΔkðþÞ

−þ
andΔkð−Þ−þ, respectively,which characterize the numerical size of the
addenda in the two last lines in Eq. (65), as defined in Eq. (67).
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IV. POWER CORRECTIONS TO
DVCS OBSERVABLES

A. Mapping the BMP and BMJ Compton form factors

To evaluate observables, we need to express the electro-
production cross section (4) in terms of the BMP helicity
dependent CFFs Fab. Instead of a new calculation one can
overtake the results from Ref. [64] making use of the
transformation (47) of the BMP CFFs to the BMJ basis,
Fab → F ab. As we have already mentioned, these relations
are purely kinematic and can be thought of as, loosely
speaking, a Lorentz transformation to a different reference
frame. The relations in Eq. (47) are exact (no approxima-
tion has been made) and contain terms proportional to
1=Q3 and 1=Q4 that are beyond the twist-four accuracy of
the BMP amplitudes [61]. The corresponding ambiguity—
use the exact relations or truncate them to 1=Q2 accuracy—
is part of the remaining uncertainty 1=Q3 of our calculation.
We have chosen to use exact transformations because in
this way the results for physical observables expressed in
terms of the BMJ CFFs coincide identically with the
corresponding results which one would obtain by a direct
calculation by means of the original BMP parametrization.
Since the BMJ CFF basis is designed to make absence of

kinematic singularities explicit, using it at the intermediate
step offers a useful insight in the threshold behavior of the
results near kinematic boundaries, e.g. t → tmin. It is easy to
check that the coefficients ϰ0, ϰ, appearing in the relations
between BMP and BMJ CFFs (47) and defined in Eq. (48),
have the following behavior in this limit:

ϰ0 ∼ ðtmin − tÞ1=2; ϰ ∼ ðtmin − tÞ1:

Thus, the admixture of the longitudinal-to-transverse hel-
icity-flip BMP CFFs F0þ to the helicity-conserved Fþþ or
transverse helicity flip F−þ BMJ CFFs in the first line in
Eq. (47) is proportional to ðtmin − tÞ1=2 and in this way the
kinematical singularities of F0þ, see Eq. (62), [or the
original BMP result in Eq. (A24)] are removed. TheFþþ þ
F−þ admixture is multiplied with ϰ ∼ ðtmin − tÞ1 and
vanishes at the threshold. For the case of F−þ the
contributions of the addenda in the last two lines in
Eqs. (62) and (65) do not vanish at threshold, however,
in physically observables they will be dressed with extra
kinematical factors ∼ðtmin − tÞ. The expression for F 0þ in
the second line of Eq. (47) is consistent with the threshold
behavior as well.
An important issue that we want to discuss in detail is the

ambiguity of the leading-twist (LT) calculations. Starting
from the BMJ conventions, the LT approximation to LO
accuracy can be summarized as follows:

LT≡ LTKM∶
�
Fþþ ¼ T0⊛F; F 0þ ¼ 0;

F−þ ¼ 0; ξ ¼ ξKM
(68)

i.e. the BMJ helicity-conserving CFF is calculated in the LO
approximation using ξKM ¼ xB=ð2 − xBÞ for the skewed-
ness parameter and the other CFFs are put to zero. This
ansatz is used by Kumerički and Müller [39–42] in global
DVCS fits, and in practical terms it is not very different from
the VGG convention, used by Guidal, (see a discussion in
[63]) and also the convention used by Kroll, Moutarde, and
Sabatie in [74]. We will, therefore, refer to Eq. (68) as the
“standard” LO approximation in what follows.
Starting instead from the BMP framework, the analogous

LT LO approximation, derived from (A12), reads

LTBMP∶

8>>><
>>>:

Fþþ ¼ T0⊛F; for F ∈ fH;E; ~Hg
~Eþþ ¼ ð1þ t

Q2ÞT0⊛ ~Eþ 4m2

Q2 T0⊛ ~H

F0þ ¼ F−þ ¼ 0; ξ ¼ ξBMP:

(69a)

As already said above, the more complicated expression
for ~Eþþ as compared to Hþþ;Eþþ; ~Hþþ is due to the
rewriting of the original BMP amplitudes in terms of
the BMJ spinor bilinears. The difference with the
naive choice ~ELTBMPþþ ¼ T0⊛ ~E is a twist-four correction
Oðt=Q2; m2=Q2Þ. Including this correction in the LT
approximation or adding it to the addenda of higher-twist
contributions is mostly a matter of taste as only the sum is
defined to the Oð1=Q2Þ accuracy, and is just another facet
of the ambiguity of the twist separation. We include this
correction in (69a) so that this ansatz corresponds literally
to the leading-twist BMP amplitudes. Numerically, the
difference is rather large for the CFF ~Eþþ but appears to be
very small for all observables that we consider below for
unpolarized and longitudinally polarized targets. We stress
that the full result including power suppressed contribu-
tions to the BMP amplitudes is well defined to this
accuracy, only the separation of the LT part involves some
freedom and is prescription dependent.
Finally, using the transformation rules (47), the approxi-

mation in Eq. (69a) is equivalent to

LTBMP∶
�
Fþþ ¼ ð1þ ϰ

2
ÞFþþ F 0þ ¼ ϰ0Fþþ;

F−þ ¼ ϰ
2
Fþþ; ξ ¼ ξBMP;

(69b)

where the LT CFFs Fþþ are specified in (69a) and ξBMP ¼
ξBPMðxB; t; Q2Þ is defined in Eq. (45).
It is important to realize that the two LTansätze in Eq. (68)

and Eq. (69a) are perfectly legitimate. Their difference
reveals that both the distinction between helicity-conserving
and helicity-flip CFFs, and the expression for the skewed-
ness parameter in terms of kinematic invariants, depend to
power 1=Q accuracy on the reference frame.
The resulting ambiguity is quite large because, first, the

kinematic factors ϰ0 and ϰ are sizable despite of being
power suppressed. For example, for −t=Q2 ≃ 1=4 one
obtains ϰ=2 ∼ 1=3. Second, ξBMP < ξKM, for practical
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purposes one can approximate ξBMP ≈ ð1þ t=Q2ÞξKM for
xB ≲ 0.4. Thus generally FðξBMP; ξBMPÞ > FðξKM; ξKMÞ if
the GPDs have Regge behavior, although this effect is
moderated for larger t by the slope of the Regge-trajectory.
The qualitative picture is illustrated for our toy GPD model
(56) in Fig. 5 where we show the LTBMP predictions for the
imaginary parts of the BMJ CFFs Fþþ (dashed), F 0þ
(dash-dotted) and F−þ (short-dashed) vs xB for t ¼
−0.375 GeV2 and Q2 ¼ 1.5 GeV2. The LTKM result for
Fþþ is shown by dots for comparison. Note that the upper
value of xB is bounded by tminðxB; Q2Þ ¼ −0.375 GeV2.
One sees that the LTBMP prediction for ℑmFþþ is much
larger than LTKM, and the induced longitudinal-to-trans-
verse helicity flip CFF ℑmF 0þ for xB ≲ 0.25 is as large as

the LTKM helicity-conserving CFF, whereas the transverse
helicity flip CFF ℑmF−þ can be considered as small.
The ambiguity of the LT approximation is cured (to the

1=Q2 accuracy) by adding the higher-twist addenda to
the BMP CFFs that was studied in Sec. III. To illustrate the
effect, we employ a realistic GPD model that is compatible
with experimental data within the conventional LT setting.
We have chosen the Goloskokov and Kroll model which we
refer to as GK12, as used in [74]. It is based on the popular
RDDA [65] and also involves a certain model for the Q2

dependence which we overtake in the numerical calcula-
tions presented below. Note, however, that theQ2 evolution
embedded in the GK12 model is not exactly the one
predicted by the LO GPD evolution equations, especially
in the small-xB region. Technically, this model is rather
convenient since it uses mostly integer values for the profile
parameters bi and PDF parameters βi so that all needed
convolution integrals can be evaluated analytically. To be
precise, we will be using the negative sea quark GPD Esea

scenario. Unfortunately, we were unable to find out how the
CFFs in Ref. [74], evaluated at LO with the convention
(68), are connected to observables.
As an example, we consider kinematical singularity-free

electric CFF combinations G¼Hþðt=4m2ÞE, cf. Eq. (27),
which are the dominant contributions for the harmonics of
the interference term (31) and the DVCS cross section (34)
for unpolarized proton target. The imaginary parts
ðxB=πÞℑmG (left panel) and ðxB=πÞℑm ~G (right panel)
calculated using the GK12 GPD model are shown in
Fig. 6 in the LTBMP approximation and with full account
of all (kinematic) twist-four corrections. For the helicity-
conserving CFFs Gþþ and ~Gþþ we also show the LTKM
results for comparison (dotted curves). For this plot we took

FIG. 5 (color online). LTBMP predictions for the imaginary
parts of the BMJ CFFs ðxB=πÞℑmF aþðxB; t; Q2Þ vs xB at −t ¼
0.375 GeV2 and Q2 ¼ 1.5 GeV2 for the GPD model (56): Fþþ
(dashed), F 0þ (dash-dotted), and F−þ (short-dashed), compared
with the LTKM result for Fþþ (dotted).

FIG. 6 (color online). The imaginary part of electric CFFs GaþðxB; t; Q2Þ (left panel) and ~GaþðxB; t; Q2Þ (right panel), multiplied by
ðxB=πÞ, in the photon helicity dependent CFF basis (25) with a ¼ þ (solid, dashed), a ¼ 0 (dashed-dotted), and a ¼ − (short dashed) vs
xB at t ¼ −0.375 GeV2 and Q2 ¼ 1.5 GeV2. They are evaluated from the GPD model GK12 with kinematical corrections and
compared to the leading twist-two BMP result (69) [dashed for a ¼ þ and otherwise thin curves] where ξBMP ¼ xBð1þ t=Q2Þ=ð2 −
xB þ xBt=Q2Þ and to the leading twist-two KM result (68) [dotted curves] where ξKM ¼ xB=ð2 − xBÞ.
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again a rather low value for Q2 ¼ 1.5 GeV2 and a large
value for t ¼ −0.375 GeV2.
A qualitatively different xB-dependence of the signature-

even and -odd combinations is due to the built-in “pomeron-
like” growth of H and E at small xB whereas the increase in
~H and ~E is milder. Hence xBGaþ increases at xB → 0,
whereas xB ~Gaþ, on the contrary, vanishes in the same limit.
Note that relevant GPD combinations are positive.
For the dominant CFF Gþþ we see that inclusion of the

1=Q2 addenda (solid curve) increases the LTBMP result
(dashed) somewhat, which is in turn much larger than the
commonly accepted LT ≈ LTKM approximation. Hence the
two effects add up. The difference between the LTBMP
expression and the full BMP result to the twist-four
accuracy dies out in the small-xB region. This is due to
a partial cancelation of the admixture of G0þ and G−þ, as
can be seen from Eq. (47). The large positive LTBMP
expression for G0þ (thin dash-dotted curves), is signifi-
cantly reduced so that the full result (thick dash-dotted
curves) is much smaller. Finally the transverse helicity-flip
BMJ CFF G−þ (short dashed curves), suppressed by
−t=Q2, turns out to be rather stable with respect to the
twist-four addenda (and remains small) which, again, can
be traced to a cancelation of the corresponding contribu-
tions in Eq. (47).
For the signature-odd CFF ~Gþþ the difference between

the LTBMP (thick dashed curve) and LTKM (dotted curve)
approximations turns out to be smaller as compared to the
signature-even CFF Gþþ. This is mainly caused by a partial
cancelation of 1=Q2 corrections that arise from the trans-
formation of bilinear spinors, cf. Eq. (69a), and photon
helicity amplitudes, cf. Eq. (69a). Compared to CFF ~Gþþ,
we find again that the induced longitudinal helicity flip
CFF ~G0þ (dash-dotted curves) is rather sizeable while
transverse helicity flip CFF ~G−þ is less important. The
differences of the full BMP result and the LTBMP

approximation are mild. In contrast to Gaþ, the full
BMP result for ~Gþþ is smaller than the LTKM (for xB ≲
0.3 also smaller than LTBMP) and the kinematical correc-
tions to the CFF ~G0þ are tiny. The reason is twofold: the
partial cancelation of 1=Q2 corrections in this specific
choice of CFF and the corresponding convolution integrals
are in general smaller than in the signature-even sector.
To summarize, we want to stress that the distinction of

1=Q2 corrections that are “implicitly” taken into account by
the BMP choice of the skewedness parameter
ξBMP ¼ ξBMPðxB; t; Q2Þ, and, thus, included in the LTBMP
approximation (69), and “explicit” higher-twist corrections
∼t=Q2; m2=Q2 to the BMP CFFs has no physical meaning.
Only the sum of such corrections is well defined and
unambiguous to the claimed 1=Q2 accuracy, although it
can happen that one of them is numerically dominant in
certain observables, see examples below.

B. From CFFs to DVCS observables

The power corrections to helicity-dependent CFFs that
we have studied in the preceding sections do not neces-
sarily propagate in a one-to-one correspondence to the
observables. E.g. in the (unpolarized) DVCS cross section
the corrections to various CFFs F aþ add incoherently, see
Eqs. (33) and (34), and for the harmonics of the interference
term the corrections might partially cancel or be amplified,
so that there seems to be no simple general pattern.
For definiteness let us consider the n ¼ 1 odd harmonic

sI1;unp which governs the size of the electron beam spin
asymmetry (18), for which we already quoted the approxi-
mate expressions in Eq. (30). This example is sufficiently
simple so that it can be discussed in an analytic manner.
Including all corrections that have been omitted in Eq. (30),
we can write the exact BMJ result as

sI1;unp ¼
8 ~Kλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y − y2γ2

4

q
ð2 − yÞy

Qð1þ γ2Þ ℑm

�
CIunp

��
1 −

ϰ

2Q2

Q2 þ tffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p �
Fþþ þ

�
1 −

2þ ϰ

2Q2

Q2 þ tffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p �
F−þ

þ ðQ2 þ tÞϰ0
Q2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p F 0þ

�
þ −tðQ2 þ tÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

Q4
ΔCIunp

�
F−þ þ ϰ

2
½Fþþ þ F−þ� − ϰ0F 0þ

��
; (70)

where the function CIunpðF Þ is defined in Eq. (31) and the expression for ΔCIunpðF Þ is given below. Using the transformation
rules in Eq. (47) we can rewrite this result, equivalently, in terms of the BMP CFFs:

sI1;unp ¼
8 ~Kλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y − y2γ2

4

q
ð2 − yÞy

Qð1þ γ2Þ ℑm

�
CIunp

�
ð1þ ϰÞFþþ þ

�
1þ ϰ −

Q2 þ t

Q2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p �
F−þ − 2ϰ0F0þ

�

þ −tðQ2 þ tÞ
Q4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ΔCIunpðF−þÞ
�
: (71)
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As already stated in Sec. II, the expression (31) for CIunp
does not include the kinematical addenda that appear in the
second and third lines of Eqs. (62) and (65). These terms
are absorbed in ΔCIunp so that the resulting expression

ΔCIunp ¼
2xBðF1 þ F2Þ
2 − xB þ xBt

Q2

½xBðH−þ þ E−þÞ þ ð1 − xBÞ ~H−þ�

(72)

is free from kinematical singularities. Together with
the accompanying kinematical prefactor −tðQ2 þ
tÞ=Q4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
this twist-four term can be considered as

a small correction.
The difference of the LTKM and LTBMP approximations

can now be illuminated very clearly. We find for the
imaginary parts of the relevant CFF combinations

LTKM∶πCIunp
��

1 −
ϰ

2Q2

Q2 þ tffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p �
FðξKM; ξKMÞ

�
;

LTBMP∶πCIunpðð1þ ϰÞFðξBMP; ξBMPÞÞ; (73)

respectively. As we have discussed already, practically we
have FðξKM; ξKMÞ < FðξBMP; ξBMPÞ, and the LTKM pre-
diction is further reduced by the kinematical factor

1 − ϰðQ2 þ tÞ=2Q2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q

whereas the LTBMP one is enhanced by the factor 1þ ϰ
rather than 1þ ϰ=2 that is present in Eq. (69). Thus the
dominant n ¼ 1 odd harmonic is larger with the LTBMP
than the LTKM convention.
Furthermore, if we include higher twist corrections, a

partial cancelation of these 1=Q2 corrections in the argu-
ment of CIunp might take place, e.g., the transverse CFFs
F−þ and longitudinal CFF ϰ0F0þ contributions to the
dominant electric CFF G enter in Eq. (71) with different
signs, see also corresponding lines in Figs. 3–6.
The expression for the n ¼ 1 even harmonic is analogous

to (70), however, in this case additional power suppressed
contributions appear that depend on the photon polarization
parameter εðyÞ, defined in Eq. (35). Moreover, the n ¼ 0
harmonic may play a certain role, too, and the behavior of
the real part of CFFs can be rather model dependent. For
instance, at larger values of xB it is determined by both
valence and sea quarks as well as the D-term or pion-pole
contributions, while at small-xB the real part is pomeron-
induced and is small compared to the imaginary part.
Somewhere in the transition region of intermediate xB the
negative real part of the pomeron and the positive real part
due to “reggeon” exchanges in H cancel each other.

C. Fixed target kinematics (unpolarized proton)

The HALL A collaboration provided high statistic cross
section measurements in dependence of the electron beam
helicity [24]. These data, in particular for the unpolarized
cross section, suggest that the DVCS cross section is larger
than expected from popular GPD models and their descrip-
tion is widely regarded as challenging, see comments in
[80]. The unpolarized cross section HALL A data can be
described, nevertheless, in a global twist-two fit, if one
assumes a large effective ~H and ~E scenario [41].
The unpolarized cross section (16) data [24], corrected

for QED radiative effects, are shown in the two upper
panels in Fig. 7 for the smallest −t ¼ 0.17 GeV2 (left
panel) and the largest available −t ¼ 0.33 GeV2 (right
panel), respectively. These data correspond to Q2 ¼
2.3 GeV2 and a rather large xB ¼ 0.36 value. The data
are compared with the QCD calculation using the GK12
GPD model in three different approximations: LTKM
(dotted curves), LTBMP (dashed curves), and with the full
account of kinematic twist-four effects (solid curves). The
BH squared term is calculated using the formulas set from
[62] with Kelly’s electromagnetic form factor parametriza-
tion [81]. Because of this contribution, the differences of
the predictions of the unpolarized cross section in different
models or approximations are washed out.
In the conventional LTKM framework, the GK12

GPD model underestimates the data slightly for the
smallest −t value and strongly for the large −t. Note that
−t ¼ 0.17 GeV2 is very close to the kinematic boundary
tmin ¼ −0.158 GeV2, so that the both relevant expansion
parameters are small,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtmin − tÞ=Q2

p
≪ −t=Q2 ∼ 0.1. As

the result, the difference in LT predictions using KM
(dotted) and BMP (dashed) conventions is small as well
and the effect of including extra 1=Q2 corrections (solid)
appears to be tiny. The power corrections for the large −t ¼
0.33 GeV2 are much larger. In particular, changing
LTKM → LTBMP produces relative large enhancement of
both the DVCS cross section and the interference term and
the prediction becomes closer to the data, whereas kin-
ematical twist corrections proportional to −t=Q2 ≈ 0.14
remain hardly visible. Thus, for this observable, the LTBMP
approximation alone captures the main part of the total
kinematic power correction.
The electron helicity dependent cross section difference

(17) is shown in Fig. 7 in the two lower panels. We take for
this plot the data measured for the same values of the
momentum transfer −t ¼ 0.17 GeV2 (left panel) and t ¼
−0.33 GeV2 (right panel) with xB ¼ 0.36, but for a differ-
ent, the lowest available photon virtuality Q2 ¼ 1.5 GeV2.
This helicity dependent cross section difference is well
described with standard GPD models, see also [80], and it
mainly arises from the n ¼ 1 odd harmonic of the inter-
ference term (the deviation from a pure sinϕ shape is
induced by the additional ϕ-dependence of the electron
propagators in the BH subprocess). For t ¼ −0.17 GeV2
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with −t=Q2 ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtmin − tÞ=Q2

p
∼ 0.1, both the LTKM vs

LTBMP difference and the additional twist-four
corrections are of the same order of magnitude and rather
small. For t ¼ −0.33 GeV2 with −t=Q2 ≈ 0.22 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtmin − tÞ=Q2

p
≈ 0.35, the differences in the three pre-

dictions are clearly visible and affect significantly the shape
of the ϕ-distribution. Having in mind the experimental
errors, all of the predictions are, nevertheless, compatible
with the data.
The CLAS collaboration measured the electron beam

spin asymmetry (18) over a rather large −t interval [22]. In
the conservative KM analysis only data were included
which satisfy the criteria jtj=Q2 ≲ 0.25 with Q2 ≳
1.5 GeV2 and the CLAS data were well described in a
global fit. The GK12 model predictions for this observable
are compared to the data in Fig. 8 for the relatively low
Q2 ¼ 1.37 GeV2 and two values of the momentum trans-
fer, −t ¼ 0.13 GeV2 and −t ¼ 0.28 GeV2. Typical model
GPD predictions have the tendency to overshoot the data in
the framework of the standard LT analysis, as exemplified
by the LTKM (dotted) curves in Fig. 8 (and, e.g., Fig. 5 in
[74]). Changing to LTBMP (dashed curves) the discrepancy
becomes larger whereas adding the remaining 1=Q2 power

corrections (solid curves) has marginal effect. According to
the left panel in Fig. 6 the dominant CFF Gþþ, which
governs the size of the n ¼ 1 odd harmonic in the
interference term, is very weakly affected by these correc-
tions. However, the DVCS cross section in the denominator
of the asymmetry increases and also the interference terms
can change so that the asymmetry may get slightly smaller.
The fixed target HERMES experiment had both eþ and

e− beams available and the collaboration provided mea-
surements with an unpolarized target of both beam spin
asymmetry (20), including the charge-odd ones, and beam
charge asymmetry (15). The main data set [12,13,15,18]
was extracted by using the missing mass technique,
however, also fully exclusive measurements of the beam
spin asymmetry were performed with a recoil detector [19].
In Fig. 9 we display the data [18] for the n ¼ 1

harmonics of the charge-odd electron beam spin asymmetry
AsinðϕÞ
LU;I (upper panel) and charge asymmetry AcosðϕÞ

C (lower
panel) for an unpolarized proton vs −t for xB ≈ 0.1 and
Q2 ≈ 2.6 GeV2. Note that the mean values of kinematical
parameters for these data are correlated, in particular the
mean hQ2i increases with growing jtj, and thus the −t=Q2-
ratio is for the highest available −t value −t=Q2 ≃ 0.12.

FIG. 7 (color online). The unpolarized cross section (16) for xB ¼ 0.36 and Q2 ¼ 2.3 GeV2 [upper panels] and electron helicity
dependent cross section difference (17) for xB ¼ 0.36 and Q2 ¼ 1.5 GeV2 [lower panels] from HALL A collaboration [24] vs GK12
GPD model predictions, which are obtained with the LT ¼ LTKM approximation (68) [dotted curves], the LTBMP approximation (69)
[dashed curves], and with a full account of kinematic power corrections to the 1=Q2 accuracy [solid curves].
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Furthermore, both asymmetries vanish at t ¼ tmin which is
also the case for the predictions, however, it is not visible in
the plots since our lowest value −t is still larger than −tmin.
Typically for standard GPD model predictions, the beam

spin asymmetry comes out to be too large (in absolute
value) and the prediction increases further for larger −t
values going over from LTKM (dotted curve) to LTBMP
(dashed curve). As observed for CLAS kinematics, shown
in Fig. 8, adding the remaining corrections (solid curve)
implies only a very slight change of the predictions for the
beam spin asymmetry. Apart from the small changes of the
dominant CFF Gþþ, see solid and dashed curves in the left
panel of Fig. 6, the net result is also influenced, presum-
ably, by the excitation of higher odd and even harmonics in
the interference and DVCS square term, respectively. We
recall that the denominator in the definition of asymmetries
has a ϕ-dependence, and thus the n ¼ 1 harmonics of the
asymmetries are polluted by higher harmonics, see e.g.
Eqs. (16)–(20).
The beam charge asymmetry is shown in Fig. 9, bottom

panel. As explained above, the real part of the dominant
CFF Gþþ can be small in the valence-to-sea quark transition
region, which is consistent with the measurements.
Nevertheless, it is not automatically guaranteed that

standard GPD models describe the HERMES data, as
the GK12 model does, since the prediction depends very
much on model details. The GK12model prediction proves
to be very stable against power corrections (compare
dotted, dashed and solid curves), but this stability seems
to be accidental rather than generic. We were not able to
trace its precise origin.

D. Fixed target kinematics (polarized proton)

DVCS measurements on a polarized proton allow for a
disentanglement of the various CFF species. The HERMES
collaboration provided the most complete set of DVCS
measurements up to date in terms of asymmetry harmonics.
Apart from the measurements on an unpolarized target, a
transversely polarized target for both eþ and e− beams was
available [14,17] and measurements on a longitudinally
polarized target were performed with a positron beam [16].
The HERMES data allow us at least in principle to access
the imaginary and real parts of all CFFs, where, however,
suppressed contributions are very noisy, see the random
variable map based on twist-two dominance hypothesis,
described in Ref. [42]. Such an analysis shows that besides
the CFF Hþþ also the CFF ~Hþþ is constrained by

FIG. 8 (color online). The single electron beam spin asymmetry
(18) measured by the CLAS collaboration for xB ¼ 0.18, Q2 ¼
1.37 GeV2 and two different −t values 0.13 GeV2 (upper panel)
and 0.28 GeV2 (bottom panel) [22]. Curves are described in Fig. 7.

FIG. 9 (color online). The single electron beam spin asymmetry
(upper panel) in the charge odd sector and the unpolarized beam
charge asymmetry (bottom panel) measured by the HERMES
collaboration [18] at xB ∼ 0.1 and Q2 ∼ 2.5 GeV2 in six t-bins.
Curves are described in Fig. 7.
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measurements on a longitudinal polarized target, see also
local CFF fits [73].
Proton spin dependent cross sections and single spin

proton asymmetries are governed by the interference term
and can be utilized to address the imaginary parts of further
CFF combinations. In particular for a longitudinally polar-
ized proton the interference term is governed by the n ¼ 1
odd harmonic, which is very sensitive to ~Gþþ (or ~Hþþ).
Single longitudinally polarized proton spin asymmetries
AUL;���ðϕÞ and their Fourier coefficients are defined in full
analogy to the single electron beam spin asymmetries in
Eqs. (18)–(20), i.e., replace the beam spin by the target spin.
The single longitudinally polarized proton spin asym-

metry AsinðϕÞ
UL was measured by the CLAS collaboration [21]

with an electron beam and by the HERMES collaboration
[16] with a positron beam. These data are shown in the top
and bottom panel in Fig. 10, respectively. (Again, this
asymmetry vanishes at t ¼ tmin but this point is outside the
plotted region.) For both the CLAS measurement at xB ¼
0.276 and Q2 ¼ 1.82 GeV2 with −t=Q2 ≤ 0.24 and
HERMES measurements the difference between LTKM
and LTBMP is rather large (compare dotted and dashed
curve). Note that the robustness of ~G0þ, demonstrated in the
right panel of Fig. 6, does not hold for the CFF ~Hþþ, which

increases if we change from LTKM to LTBMP. A closer look
reveals also that the longitudinal helicity flip CFF ~H0þ
plays an important role in the dominant n ¼ 1 odd
harmonic sI1;LP of the interference term. Adding the
remaining kinematical higher-twist corrections (solid
curve) reduces the difference between LTKM and LTBMP
predictions for CLAS kinematics considerably, but has very
little effect for HERMES kinematics, at least for the GK12
model that we employ here.
Let us add that the target helicity flip CFFs Eþþ and ~Eþþ

are much less constrained. Because of the kinematical
suppression factors that accompany these CFFs, mainly
proportional to −t=m2, and the pollution by contributions
of proton helicity conserving CFFs, we expect that kin-
ematical twist corrections are rather important if one
attempts to interpret transverse target observables in terms
of GPDs E or ~E.

E. Collider kinematics

The dominant contribution in the small xB region arises
from the pomeron exchange, which is included in the small
ξ behavior of sea-quark GPD Hsea (and gluon GPD which
enters explicitly at the NLO through the contribution of the
box diagram). It remains an open problem, related to the
nucleon spin puzzle, whether also the GPD E contains such
a behavior. Not much is known phenomenologically about
the small ξ behavior of GPD ~H. As a working hypothesis,
we will assume that all of them and also the GPD ξ ~E are
unimportant in the collider kinematics.
From Eqs. (58), (62), and (65) we find with tmin ∝ x2B ≈ 0

for the CFFs is the BMP basis

Hþþ ¼ T0⊛H þ −t
Q2

�
1

2
T0⊛H − T1⊛H þ ξ2∂2

ξT2⊛H

�
;

H0þ ¼ −
ffiffiffi
2

p ffiffiffiffiffi
−t

p
Q

ξ∂ξT1⊛H;

H−þ ¼ −t
Q2

ξ∂2
ξξT

ðþÞ
1 ⊛H; (74)

and analogous relations for CFFs Eaþ in terms of GPD E.
Note that the pomeron behavior of GPD H implies the
similar behavior of both photon helicity-conserving and
helicity-flip amplitudes.
Going over to the BMJ CFF basis by means of the

transformation rules in Eq. (47), where the kinematical
factors (48) can be safely approximated as

ϰ ¼ −2t
Q2

and ϰ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−2tQ2

p
Q2 þ t

;

one obtains with Eq. (74) the following expressions
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FIG. 10 (color online). The longitudinal proton spin asymmetry
from CLAS (upper panel) [21], measured with an electron beam
at xB ¼ 0.276 and Q2 ¼ 1.82 GeV2 and HERMES (lower panel)
[16], measured with a positron beam at xB ∼ 0.1 and
Q2 ∼ 2.5 GeV2, versus −t. Curves are described in Fig. 7.
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Hþþ ¼ T0⊛H

þ −t
Q2
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⊛H; (75a)
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H−þ ¼ −t
Q2
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1 −
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Q2 þ t
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where

T ¼ 3

2
T0 − T1 þ 2ξ∂ξT1 þ ξ2∂2

ξT2 þ ξ∂2
ξξT

ðþÞ
1 : (75d)

For this analysis we can assume that the GPD behaves
(for αðtÞ > 0) as

Fðξ=x; ξ; tÞ ¼ξ→0ðξ=xÞ−αrðx; tÞ; (76)

where α≡ αðtÞ is the effective leading Regge trajectory and
rðx; tÞ is the residue function. It is model-dependent and
can be calculated similarly to perturbative QCD corrections
in, e.g., Sec. 5 of [75]. For a RDDA model such as the one
used in GK12, the x-dependence of the residue function is
given by a hypergeometric function

rðx; tÞ ¼ rðtÞ2F1

�
α=2; α=2þ 1=2

bþ 3=2
jx2

�
; (77)

where b is the so-called profile parameter and rðtÞ contains
the residual t-dependence. Note that the small-ξ approxi-
mation (57) of our toy GPD model (52) follows by setting
α ¼ 1=2 and b ¼ 1, where the hypergeometric function
reduces to a combination of elementary functions.
With this kind of model all kinematic twist corrections

can be calculated analytically for general (positive) b and β
values. To this end the convolution integrals in the
imaginary parts (54) with the kernels (55) can be obtained
from

Fðξ; ξÞ ≈ξ→0
rðtÞ Γð3

2
þ bÞΓð1þ b − αÞ

Γð1þ b − α
2
ÞΓð3

2
þ b − α

2
Þ ξ

−α; (78)

and

Z
1

ξ

dx
x
t1ðxÞ

Fðξ=x;ξÞ
Fðξ;ξÞ ≈

ξ→01

2

�
S1

�
b−

α

2

�
−S1

�
bþ 1

2
−
α

2

��

þ 1

2

�
S1

�
α

2
−
1

2

�
−S1

�
α

2
− 1

��
; (79a)

Z
1

ξ

dx
x
tðþÞ
1 ðxÞFðξ=x; ξÞ

Fðξ; ξÞ ≈
ξ→0 1þ b − α

ð1þ b − α
2
Þðα − 1Þ

−
Z

1

ξ

dx
x
t1ðxÞ

Fðξ=x; ξÞ
Fðξ; ξÞ −

1

ξ
· const:; (79b)

Z
1

ξ

dx
x
t2ðxÞ

Fðξ=x; ξÞ
Fðξ; ξÞ ≈

ξ→0
−
1

2

Z
1

ξ

dx
x
t1ðxÞ

Fðξ=x; ξÞ
Fðξ; ξÞ

þ 1

8

�
S1

�
b −

α

2

�
− S1

�
1

2
þ b −

α

2

�
− S1

�
α

2
− 1

�

þ S1

�
α − 1

2

��
2

þ 1

2
½S2ð1þ 2b − αÞ − S2ðα − 1Þ�;

(79c)

where Sk are the usual harmonic functions. The term
proportional to 1=ξ in (79b) is annihilated by the applica-
tion of the differential operator ∂ξξ and does not contribute
to the final answer.
The set of formulas (79) allows one to understand the

behavior of twist corrections also for the special class of
GPD models that were conjectured in Refs. [82–84] and the
GPD models obtained from a t-decorated PDF by taking
values b ¼ α and b → ∞, respectively. The GK12 model
corresponds to b ¼ 2. It turns out that assuming the
dominant effective pomeron trajectory with 0.9 < α < 1.4
and b > 1, the corrections can be quoted, generically, as

Hþþ ¼ T0⊛H þ −t
Q2

ð1þ…ÞT0⊛H; (80a)

H0þ ¼
ffiffiffiffiffiffiffiffiffi
−t
2Q2

r
ð1þ 2 ×…ÞT0⊛H; (80b)

H−þ ¼ −t
Q2

ð1þ…ÞT0⊛H: (80c)

Here the ellipses contain terms that are numerically less
important, including those that are additionally suppressed
in −t=ðQ2 þ tÞ and are determined by the convolution with
the T -kernel (75d). Such corrections are roughly two times
larger for H0þ compared to the other cases. Comparing
these expressions with the LTBMP set in Eq. (69), we see
that they essentially coincide for transverse CFFsHþþ and
H−þ so that in these cases the remaining twist-four
corrections (not included in LTBMP) are small, however,
they are significant and reduce the longitudinal CFF H0þ.
This generic behavior is illustrated for the GK12 model
with −t=Q2 ¼ 1=4 in Fig. 6 (left panel). In this case the
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term shown by the ellipses in (80b) is of order one, yielding

H0þ ≈
ffiffiffiffiffiffi
−2t
Q2

q
T0⊛H. Hence, the full result to the twist-four

accuracy is reduced with respect to LTBMP by the fac-
tor 1þ t=Q2 ¼ 3=4.
Since the intercept of the effective pomeron exchange is

larger than one, the DVCS cross section overwhelms at
small-xB the BH cross section and the integration over ϕ
suppresses the interference terms. Hence, in collider experi-
ments one has access directly to the DVCS cross section.
The unpolarized t-differential DVCS cross section within
the Hand convention [85] is expressed by the n ¼ 0 DVCS
harmonic (33),

dσDVCS

dt
≃ πα2em

Q4
x2B½CðFþþ;F �þþÞ

þ CðF−þ;F �
−þÞ þ 2εðyÞCðF 0þ;F �

0þÞ�; (81)

where the C-coefficient (34) can be approximated by

CðF ;F �Þ ≈ jHj2 − t
4m2

jEj2 (82)

and the photon polarization parameter (35), i.e., the ratio of
longitudinal to transverse photon flux, can be set
to εðyÞ ¼ 2ð1 − yÞ=ð2 − 2yþ y2Þ.
The H1 [7,9] and ZEUS [11] data are shown in Fig. 11

together with the GK12 model predictions vs −t ≤
0.8 GeV2 for different Q2 values in the range
3.2 GeV2 ≤ Q2 ≤ 25 GeV2. In the LTKM approximation
(68) (dotted curves) the GK12 model describes the data
well (this RDDA model works at LO since GPD evolution

is replaced by PDF evolution). Going over to LTBMP (69)
(dashed curves) produces a huge correction for
Q2 ¼ 3.2 GeV2 and even at Q2 ¼ 8 GeV2 the effect is
large. This is mainly caused by the fact that BMP
skewedness parameter is smaller than the KM one
ξBMP ¼ ð1þ t=Q2ÞξKM, which produces a significant
enhancement of the helicity-conserving bilinear CFF
combination

CBMPðFþþ;F �þþÞ
CKMðFþþ;F �þþÞ

≈
LT ð1 − t

Q2Þ2
ð1þ t

Q2Þ2α :

Numerically, e.g., for t ¼ −0.8 GeV2 and Q2 ¼ 3.2 GeV2

this is an enhancement of roughly a factor three, whereas
for Q2 ¼ 8 GeV2 it is a factor ∼3=2. In addition, LTBMP
approximation (69) includes helicity-flip contributions (if
translated to the BMJ basis), which are commonly not
considered in data analyses. This induced longitudinal-to-
transverse helicity-flip CFF can be estimated, according to
the above discussion, as

CBMPðF 0þ;F �
0þÞ

CKMðFþþ;F �þþÞ
∼LO

−2t
Q2ð1þ t

Q2Þ2 ;

and there is also a much smaller contribution bilinear in the
transverse flip CFFs F−þ, proportional to t2=Q4.
Taken together, these two effects produce at t ¼

−0.8 GeV2 the enhancement of the LTBMP predictions by
roughly a factor of six (four) as compared to LTKM at Q2 ¼
3.2 GeV2 (Q2 ¼ 8 GeV2), respectively, cf. dotted and
dashed curves in Fig. 11. The main effect of the remaining
twist-four contributions is to reduce the longitudinal-to-
transverse helicity-flip CFF, so that the full kinematic
higher-twist correction to the cross section is somewhat
reduced as well, compare the solid and dashed curves.

V. CONCLUSIONS

Our analysis has been based on the recent results in
[57,58,60,61] (BMP) where the DVCS tensor has been
calculated in QCD to twist-four accuracy taking into
account the descendants of the leading-twist operators.
We refer to these corrections as kinematic as they are
expressed in terms of the leading-twist GPDs. It has been
checked that this addition restores gauge- and translation-
invariance of the DVCS amplitudes at the considered order,
and their structure is consistent with QCD collinear
factorization. The final result is presented in Ref. [61] as
the expansion of the DVCS tensor in terms of scalar
invariant functions that can be identified with photon
helicity dependent Compton form factors (CFFs) in a
certain reference frame. The twist expansion of the CFFs
is organized in terms of two parameters

−t
Q2

and
tmin − t
Q2

;

FIG. 11 (color online). The DVCS cross section vs −t for
various Q2 values from the H1 (squares, diamonds, triangles)
[7,9] and ZEUS (circles) [11] collaboration. Curves are described
in Fig. 7.

DEEPLY VIRTUAL COMPTON SCATTERING TO THE … PHYSICAL REVIEW D 89, 074022 (2014)

074022-23



where the second one is related to the target transverse
momentum in the BMP frame (44). In the case of a scalar
target all target mass corrections are absorbed in
tmin ∝ x2Bm

2, whereas for the proton some additional terms
in m2=Q2 arise due to spinor algebra; their structure is
strongly constrained by the requirement that certain har-
monics in the cross section vanish for t → tmin. In this work
we present a detailed study of kinematic power corrections
∼1=Q; 1=Q2 to several key DVCS observables that incor-
porates these developments.
Calculation of the observables starting from a given set

of CFFs is by itself a nontrivial task. Instead of the direct
calculation in terms of BMP CFFs we use another set of
CFFs, suggested by BMJ [55,64] at the intermediate step.
The transition between BMP and BMJ CFFs is a purely
kinematic transformation that can be thought of as Lorentz
transformation to a different reference frame. We do this
transformation exactly, and also use exact expressions for
the observables in terms of the BMJ CFFs available from
Ref. [64]. In this way the results for physical observables
are the same as the ones that one would obtain by a direct
calculation employing the original BMP parametrization.
In order to discuss the impact of kinematic higher-twist

corrections one has to formulate the leading-twist approxi-
mation that would serve as the reference. An important
point that is often overlooked in phenomenological studies
is that this choice is not unique as the leading-twist
calculations are intrinsically ambiguous. The reason is that
in the DVCS kinematics the four-momenta of the initial and
final photons and protons do not lie in one plane. Hence the
distinction of longitudinal and transverse directions is
convention-dependent. In the Bjorken high-energy limit
this is a 1=Q effect. The freedom to redefine large “plus”
parton momenta by adding smaller transverse components
has two consequences. First, the relation of the skewedness
parameter ξ appearing as an argument in GPDs to the
Bjorken variable xB may involve power suppressed con-
tributions. Second, such a redefinition generally leads to
excitation of the subleading photon helicity-flip ampli-
tudes. Any attempt to compare the calculations with and
without kinematic power corrections must start with
specifying the precise conventions, i.e. the definition of
what is meant by leading-twist to the power accuracy.
Viewed in this context, the kinematic power corrections
calculated in [60,61] are convention-dependent as well.
This dependence exactly cancels the convention-depend-
ence of the leading twist so that the full result is unam-
biguous (to the stated 1=Q2 accuracy).
The convention (68) used by Kumerički and Müller in

global DVCS fits [39–42], adopting the BMJ cross section
formula from Ref. [55,64], is in practical terms not very
different from the VGG convention used by Guidal, and
also the convention used by Kroll, Moutarde, and Sabatie in
[74]. We have, therefore, overtaken Eq. (68) as the
“standard” leading-twist LO approximation in our study.

The conventions used by BMP in [60,61] are quite
different so that the corresponding leading-twist
approximations that we refer to as LTBMP, defined in
(69) vs LTKM defined in (68), are rather different as well.
In particular the change in the definition of the skewedness
parameter has a large effect. It turns out that at least for
some observables this difference presents the main source
(numerically) of kinematic corrections, whereas the
remaining higher-twist contributions to the BMP CFFs
are rather mild.
Let us conclude about what we have learned from our

studies for the phenomenological description of DVCS
measurements. Presently, the DVCS data are mainly dis-
cussed at LO and LT accuracy. Changing to the LTBMP
convention (69) allows one to include the bulk of the
calculated higher twist corrections and will increase the
predicted value of (unpolarized) cross sections and longi-
tudinal spin asymmetries with growing −t=Q2. For stan-
dard GPD model predications this is desired with respect to
the unpolarized HALL A cross section measurements,
shown in Fig. 7, however, it will further increase the
tension with respect to CLAS and HERMES beam spin
measurements, see Figs. 8 and 9. Implementing the BMP
convention (69) in the global KM fitting framework
[39–42], a hybrid of the GPD model and dissipative
approach, can be straightforwardly done at leading twist
and should lead, effectively, to a reparametrization of the
GPD extractions. In future phenomenological studies it is
highly advisable to implement besides the kinematical
corrections also perturbative next-to-leading order correc-
tions and, certainly, GPD evolution must be taken properly
into account. This requires a change to global fitting
routines that are based on appropriate GPD model para-
metrizations. All this is partially done, and can be fully
implemented in the KM routines that are based on Mellin-
Barnes integral representation. Surely, one can work in any
other representation, too, however, in this case the relevant
technology, including a flexible GPD parametrization, still
has to be developed. Let us also mention with respect to
global GPD fitting, which also includes nowadays deeply
virtual meson production in exclusive channels [86,87],
that it remains a challenge to work out the kinematical
corrections for deeply virtual meson production. Finally,
we have learned that the corrections are generically of order
Oð−t=Q2Þ (for some observables much smaller). Hence,
keeping kinematical twist-four corrections under control
requires an upper bound for the photon virtuality of the
order of Q2 ≳ −4t. This constraint provides an important
requirement for addressing the three-dimensional picture of
the proton in impact parameter space [50], where one
presumably needs to know the −t dependence of GPDs up
to at least ∼1–2 GeV2. Thus, large Q2 values are needed,
which can be reached at proposed collider experiments
such as eRHIC [26], for a comprehensive model study
see Ref. [88].
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To summarize our findings, the finite-t kinematic power
corrections to DVCS observables are significant and must
be taken into account in the data analysis aiming to extract
GPDs at a quantitative level. This result removes an
important source of uncertainties in the QCD predictions
for intermediate photon virtuality square Q2 ∼ 1–5 GeV2

that are accessible in the existing and planned experiments.
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APPENDIX A: TRANSLATION BETWEEN BMP
AND BMJ CONVENTIONS

The aim of this appendix is to provide a detailed
comparison of the notation and conventions used in
Refs. [61] (BMP) and [64] (BMJ). The final results of
this translation are the expressions given below in
Eqs. (A23)–(A25) for the BMJ helicity amplitudes that
include finite-t and target mass corrections calculated in
[61]. The presentation is deliberately detailed as we think
that a scrupulous comparison of different conventions is
important for further studies. We retain the original notation
in Refs. [61,64] whenever possible.

1. BMP conventions and results

a. BMP conventions

The DVCS process (2) reads in BMP notation as [60,61]

γ�ðqÞ þ Nðp; sÞ⟶γðq0Þ þ Nðp0; s0Þ: (A1)

The DVCS tensor Aμν is defined by the following expres-
sion:

Aμνðq; q0; pÞ ¼ i
Z

d4xe−iðz1q−z2q0Þ·x

× hp0; s0jTfjμðz1xÞjνðz2xÞgjp; si; (A2)

where jμðz1xÞ and jνðz2xÞ are the electromagnetic currents
at the indicated space-time positions, z1; z2 are real num-
bers and it is assumed that z1 − z2 ¼ 1. Note that the tensor
Aμν should not depend on z1 þ z2. This property is referred
to as translation invariance in Refs. [60,61] and has been
verified to the required (twist-four) accuracy by explicit
calculation.
BMP use the photon momenta, q and q0, to define a

longitudinal plane spanned by the two lightlike vectors

n ¼ q0; ~n ¼ −qþ ð1 − τÞq0; (A3)

where τ ¼ t=ðQ2 þ tÞ with Q2 ¼ −q2. For this choice the
momentum transfer to the target

Δ ¼ p0 − p ¼ q − q0; t ¼ Δ2

is purely longitudinal and the both—initial and final state—
proton momenta have a nonzero transverse component

Pμ ¼
1

2ξ
ðn̄μ − τnμÞ þ P⊥;μ;

jP⊥j2 ¼ −m2 −
t
4

1 − ξ2

ξ2
: (A4)

Here, P is defined as average of nucleon momenta and the
longitudinal momentum fraction in the t-channel is defined
with respect to the lightlike vector n ¼ q0,

P≡ PBMP ¼ 1

2
ðpþ p0Þ; ξ≡ ξBMP ¼ −

Δ · q0

2P · q0
: (A5)

jP⊥j2 can equivalently be written in terms of kinematic
invariants as

jP⊥j2 ¼
1 − ξ2

4ξ2
ðtmin − tÞ; tmin ¼ −

4m2ξ2

1 − ξ2
; (A6)

where the BMP skewedness parameter ξ can be expressed
in terms of the Bjorken scaling variable as shown
in Eq. (45).
BMP write the DVCS amplitude Aμν as decomposition

in scalar amplitudes in terms of the photon polarization
vectors that are chosen as follows:

ε0μ ¼ −ðqμ − q0μq2=ðq · q0ÞÞ=
ffiffiffiffiffiffiffiffi
−q2

q
;

ε�μ ¼ ðP⊥
μ � iP̄⊥

μ Þ=ð
ffiffiffi
2

p
jP⊥jÞ; (A7)

where P⊥
μ ¼ g⊥μνPν, P̄⊥

μ ¼ ϵ⊥μνPν and

g⊥μν ¼ gμν − ðqμq0ν þ q0μqνÞ=ðq · q0Þ þ q0μq0νq2=ðq · q0Þ2;
ϵ⊥μν ¼ ϵμναβqαq0β=ðq · q0Þ; ϵBMP

0123 ¼ 1: (A8)

Normalization is such that εþμ ε−μ ¼ −1, ε0με0μ ¼ þ1. The
pair ε�μ form an orthonormal basis of two unit vectors in the
transverse plane whereas ε0μ is a unit vector in longitudinal
plane that is orthogonal to the real photon momentum q0.
Explicit construction uses a two-component spinor formal-
ism and is explained in Sec. IIb in [60].
Using this basis, BMP write the DVCS amplitude Aμν

(A2) in terms of scalar (helicity) amplitudes defined as

Aμν ¼ εþμ ε−νAþþ þ ε−μ ε
þ
ν A−− þ ε0με

−
νA0þ

þε0με
þ
ν A0− þ εþμ εþν Aþ− þ ε−μ ε

−
νA−þ: (A9)

Note that a term proportional to q0ν has been neglected since
it does not contribute to any observable. Each helicity
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amplitude involves the sum over quark flavors,
A ¼ P

e2qAq, and is written in terms of the leading-twist
GPDs Hq; Eq; ~Hq; ~Eq. For the GPD definitions BMP
follow Ref. [4]. The results are written in terms of the
vector and axial-vector bilinear spinors

vμ ¼ ūðp0ÞγμuðpÞ; aμ ¼ ūðp0Þγμγ5uðpÞ (A10)

using shorthand notations

v�⊥ ¼ ðv · ε�Þ; a�⊥ ¼ ða · ε�Þ;
P�⊥ ¼ ðP · ε�Þ ¼ −jP⊥j=

ffiffiffi
2

p
: (A11)

b. BMP results for helicity amplitudes

At leading twist only the helicity-conserving amplitudes

A�� ¼
X

q¼u;d;…

e2qA��
q

contribute. To the LO accuracy they read

A��
q ¼ v · P

2m2
Eq ⊗ C−

0 þ v · q0

q · q0
ξMq ⊗ C−

0

� a · Δ
4m2

ξ ~Eq ⊗ Cþ
0 � a · q0

q · q0
ξ ~Hq ⊗ Cþ

0 ; (A12)

where the shorthand notation

Mqðx; ξ; tÞ ¼ Hqðx; ξ; tÞ þ Eqðx; ξ; tÞ

for the magnetic GPD combination is used. The notation
F ⊗ C stands for the convolution of a GPD F with a
coefficient function C:

F ⊗ C≡
Z

1

−1
dxFðx; ξ; tÞCðx; ξÞ;

where the LO coefficient functions C∓
0 are given below in

Eq. (A18). The LT result (A12) extends to the following
general decomposition

A��
q ¼ v · P

2m2
Vq
1 þ

v · q0

q · q0
Vq
2 �

a · Δ
4m2

Aq
1 �

a · q0

q · q0
Aq

2; (A13)

where in DVCS kinematics the bilinear spinors behave as

v · q0

q · q0
∼
a · q0

q · q0
∼
v · P
2m2

∼
a · Δ
4m2

¼ OðQ0Þ: (A14)

The following expressions that include Oðt=Q2Þ and
Oðm2=Q2Þ corrections present the main result of Ref. [61]:

Vq
1 ¼

�
1 −

t
2Q2

�
Eq ⊗ C−

0 þ t
Q2

Eq ⊗ C−
1 −

2

Q2

�
t
ξ
þ 2jP⊥j2ξ2∂ξ

�
ξ2∂ξEq ⊗ C−

2 þ 8m2

Q2
ξ2∂ξξMq ⊗ C−

2 ; (A15a)

Vq
2 ¼

�
1 −

t
2Q2

�
ξMq ⊗ C−

0 þ t
Q2

ξMq ⊗ C−
1 −

4

Q2

��
jP⊥j2ξ2∂ξ þ

t
ξ

�
ξ2∂ξ −

t
2

�
ξMq ⊗ C−

2 ; (A15b)

Aq
1 ¼

�
1 −

t
2Q2

�
ξ ~Eq ⊗ Cþ

0 þ t
Q2

ξ ~Eq ⊗ Cþ
1 −

2

Q2

�
t
ξ
þ 2jP⊥j2ξ2∂ξ

�
ξ2∂ξξ ~E

q ⊗ Cþ
2 þ 8m2

Q2
ξ2∂ξ

~Hq ⊗ Cþ
2 ; (A15c)

Aq
2 ¼

�
1 −

t
2Q2

�
ξ ~Hq ⊗ Cþ

0 þ t
Q2

ξ ~Hq ⊗ Cþ
1 −

4

Q2

��
jP⊥j2ξ2∂ξ þ

t
ξ

�
ξ2∂ξ −

t
2

�
ξ ~Hq ⊗ Cþ

2 : (A15d)

The BMP results for longitudinal and transverse helicity-flip amplitudes read

A0�
q ¼ 2

Q

��
v�⊥ − 4P�⊥

v · q0

Q2
ξ2∂ξ

�
ξMq ⊗ C−

1 �
�
a�⊥ − 4P�⊥

a · q0

Q2
ξ2∂ξ

�
ξ ~Hq ⊗ Cþ

1

þ P�⊥
v · P
m2

ξ2∂ξEq ⊗ C−
1 � P�⊥

a · Δ
2m2

ξ2∂ξξ ~E
q ⊗ Cþ

1

�
(A16)

and

A∓�
q ¼ −

8P�⊥
Q2

��
v�⊥ − 2P�⊥

v · q0

Q2
ξ2∂ξ

�
ξ2∂ξMq ⊗ ½xCþ

1 � �
�
a�⊥ − 2P�⊥

a · q0

Q2
ξ2∂ξ

�
ξ2∂ξξ ~H

q ⊗ Cþ
1

þ P�⊥
v · P
2m2

ξ3∂2
ξE

q ⊗ ½xCþ
1 �∓P�⊥

a · Δ
4m2

ξ3∂2
ξξ

2 ~Eq ⊗ Cþ
1

�
; (A17)
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respectively. The derivatives ∂ξ ¼ ∂=∂ξ and ∂2
ξ ¼ ∂2=∂ξ2

act onto the full expression to the right, i.e. on both GPDs
and coefficient functions, which are given by the following
expressions:

C�
0 ðx; ξÞ ¼

1

ξþ x − iϵ
� 1

ξ − x − iϵ
;

C�
1 ðx; ξÞ ¼

1

x − ξ
ln

�
ξþ x
2ξ

− iϵ

�
� ðx↔ − xÞ;

C�
2 ðx; ξÞ ¼

�
1

ξþ x

�
Li2

�
ξ − x
2ξ

þ iϵ

�
− Li2ð1Þ

�

� ðx↔ − xÞ
�
þ 1

2
C�
1 ðx; ξÞ: (A18)

Note thatC�
0 have simple poles at x ¼ �ξwhereasC�

1;2 have
a milder (logarithmic) singularity at the same points. This
ensures that the kinematic power corrections are factorizable,
at least to the leading order in αs. The helicity-conserving
amplitudes (A15a)–(A15d) include leading contributions
Oð1=Q0Þ and the corrections Oð1=Q2Þ, whereas all terms
in Eqs. (A16) and (A17) are of the order Oð1=QÞ and
Oð1=Q2Þ, respectively, as expected.

c. BMP amplitudes in terms of BMJ spinor bilinears

The BMP amplitudes (A13)–(A17) can be expressed in
terms of the BMJ spinor bilinears (23). We parametrize
these amplitudes in analogy to the CFF decomposition in
Eq. (22)

Aa�
q ¼ Hq

a�hþ Eq
a�e∓ ~Hq

a� ~h∓ ~Eq
a� ~e: (A19)

To find Fab ∈ fHab;Eab; ~Hab; ~Eabg which, as we
will explain below, differ from the CFFs in Eq. (25),
one has to express the BMP bilinear spinors, appearing in
(A13)–(A17), in terms of the BMJ ones (23). Note that the
notation for particle momenta by BMJ and BMP is different
as indicated in (2) and (A1), respectively, i.e., we have the
correspondence

q↔q1; q0↔q2; p↔p1; p0↔p2:

In addition some care is needed since

PBMJ ¼ p1 þ p2 ¼ 2PBMP ¼ 2ðpþ p0Þ;

qBMJ ¼ 1

2
ðq1 þ q2Þ ¼

1

2
ðqþ q0ÞBMP;

whileΔBMJ ¼ ΔBMP and the same bilinear spinors are used.
Making use of the free Dirac equation for the nucleon
states, we find

v · P
2m2

¼ h − e;
v · q0

q · q0
¼ −

1

ξ
h;

a · Δ
4m2

¼ −
1

ξ

�
1þ t

Q2

�
~e;

a · q0

q · q0
¼ −

1

ξ
~h −

1

ξ

4m2

Q2
~e;

(A20)

and

v�⊥ffiffiffi
2

p ¼ −jP⊥jh −
m2

jP⊥j
�
e −

t
4m2

h

�
∓ m2

ξjP⊥j
�
~e −

t
4m2

~h

�
;

a�⊥ffiffiffi
2

p ¼ −
m2

ξ2jP⊥j
�
~e −

t
4m2

~h

�
∓ m2

ξjP⊥j
�
e −

t
4m2

h

�
: (A21)

Using these relations and the original BMP results in
(A13)–(A17) we obtain the desired expressions for the
BMP CFFs Fab that we rewrite here in a more compact
form in terms of charge parity-even GPDs (38) replacing
original BMP coefficients (A18) by those defined in (51)
such that

C�
0 ðx; ξÞ ¼ �ð2ξÞ−1½T0ðuÞ � T0ð1 − uÞ�;

C�
1 ðx; ξÞ ¼ �ð2ξÞ−1½T1ðuÞ � T1ð1 − uÞ�;

½xCþ
1 ðx; ξÞ� ¼ þð2ξÞ−1ξ½TðþÞ

1 ðuÞ − TðþÞ
1 ð1 − uÞ�;

C�
2 ðx; ξÞ ¼ ∓ð2ξÞ−1½T2ðuÞ � T2ð1 − uÞ�; (A22)

where u ¼ ðξ − iϵþ xÞ=2ðξ − iϵÞ. To shorten the notation
we use the convolution symbol (39) where the summation
over the quark flavors is included. One obtains

Hþþ ¼ T0⊛H þ t
Q2

�
−
1

2
T0 þ T1 þ 2ξDξT2

�
⊛H þ 2t

Q2
ξ2∂ξξT2⊛ðH þ EÞ; (A23a)

Eþþ ¼ T0⊛Eþ t
Q2

�
−
1

2
T0 þ T1 þ 2ξDξT2

�
⊛E −

8m2

Q2
ξ2∂ξξT2⊛ðH þ EÞ; (A23b)

~Hþþ ¼ T0⊛ ~H þ t
Q2

�
−
1

2
T0 þ T1 þ 2DξξT2

�
⊛ ~H þ 2t

Q2
ξ∂ξT2⊛ ~H; (A23c)
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~Eþþ ¼ T0⊛ ~Eþ t
Q2

�
−
1

2
T0 þ T1 þ 2DξξT2

�
⊛ ~E −

8m2

Q2
ξ∂ξT2⊛ ~H

þ 4m2

Q2

�
T0 þ

t
Q2

�
−
1

2
T0 þ T1 þ 2DξξT2

��
⊛
�
~H þ t

4m2
~E

�
(A23d)

for the helicity-conserved CFFs,

H0þ ¼ −
4jξP⊥jffiffiffi

2
p

Q

�
ξ∂ξT1⊛H þ t

Q2
∂ξξT1⊛ðH þ EÞ

�
−

tffiffiffi
2

p
QjξP⊥j

ξT1⊛½ξðH þ EÞ − ~H�; (A24a)

E0þ ¼ −
4jξP⊥jffiffiffi

2
p

Q
½ξ∂ξT1⊛E� þ 4m2ffiffiffi

2
p

QjξP⊥j
ξT1⊛½ξðH þ EÞ − ~H�; (A24b)

~H0þ ¼ −
4jξP⊥jffiffiffi

2
p

Q

�
1þ t

Q2

�
½∂ξξT1⊛ ~H� þ tffiffiffi

2
p

QjξP⊥j
T1⊛½ξðH þ EÞ − ~H�; (A24c)

~E0þ ¼ −
4jξP⊥jffiffiffi

2
p

Q

�
1þ t

Q2

��
∂ξξT1⊛

�
~Eþ 4m2

Q2
~H

��
−

4m2ffiffiffi
2

p
QjξP⊥j

T1⊛½ξðH þ EÞ − ~H� (A24d)

for the longitudinal-to-transverse helicity-flip CFFs, and

H−þ ¼ 4jξP⊥j2
Q2

�
ξ∂2

ξξT
ðþÞ
1 ⊛H þ t

Q2
∂2
ξξ

2TðþÞ
1 ⊛ðH þ EÞ

�
þ 2t
Q2

ξ½ξ∂ξξT
ðþÞ
1 ⊛ðH þ EÞ þ ∂ξξT1⊛ ~H�; (A25a)

E−þ ¼ 4jξP⊥j2
Q2

½ξ∂2
ξξT

ðþÞ
1 ⊛E� − 8m2

Q2
ξ½ξ∂ξξT

ðþÞ
1 ⊛ðH þ EÞ þ ∂ξξT1⊛ ~H�; (A25b)

~H−þ ¼ −
4jξP⊥j2
Q2

�
1þ t

Q2

�
½∂2

ξξ
2T1⊛ ~H� − 2t

Q2
½ξ∂ξξT

ðþÞ
1 ⊛ðH þ EÞ þ ∂ξξT1⊛ ~H�; (A25c)

~E−þ ¼ 4jξP⊥j2
Q2

�
1þ t

Q2

��
∂2
ξξ

2T1⊛
�
~E −

4m2

Q2
~H

��
þ 8m2

Q2
½ξ∂ξξT

ðþÞ
1 ⊛ðH þ EÞ þ ∂ξξT1⊛ ~H�: (A25d)

for transverse helicity-flip CFFs. In these expressions twist-
five and higher power suppressed contributions Oð1=Q3Þ
and Oð1=Q4Þ induced by the rewriting in terms of BMJ
spinor bilinears are kept, i.e., they correspond literally to
the BMP result.

2. BMJ conventions

BMJ define the DVCS tensor in the notation of (2) as

Tμνðq1; q2; p1Þ ¼ i
Z

d4xeiðq1þq2Þ·x=2

× hp2; s2jTfjμðx=2Þjνð−x=2Þgjp1; s1i:
(A26)

Setting z2 ¼ −z1 ¼ 1=2 in the BMP definition (A2), one
realizes that both tensors are consistent, except that μ refers
to the outgoing photon rather than to the incoming one, i.e.,

TBMJ
νμ ðq1; q2; p1Þ≡ABMP

μν ðq; q0; pÞ: (A27)

Note that to leading accuracy in 1=Q both tensors would
look the same without additional interchange of Lorentz
indices since BMJ, compared to BMP, use the opposite sign
convention for the Levi-Civita tensor

ϵBMJ
0123 ¼ −1; i:e:; ϵBMJ

αβγδ ¼ −ϵBMP
αβγδ :

In the BMJ reference frame the nucleon target is at rest,
pμ
1 ¼ ðm; 0; 0; 0Þ, and the incoming photon momentum is

specified as

qμ1¼
Q
γ
ð1;0;0;−

ffiffiffiffiffiffiffiffiffiffiffiffi
1þγ2

q
Þ; γ≡ϵBMJ¼2mxB

Q
: (A28)

To avoid confusion with polarization vectors, we denote
here the original variable ϵ≡ ϵBMJ as γ. The polarization
vectors of the initial photon are defined as
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ϵμ1ð0Þ ¼
1

γ
ð−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
; 0; 0; 1Þ;

ϵμ1ð�Þ ¼ e∓iϕffiffiffi
2

p ð0; 1;�i; 0Þ; (A29)

where the phase is given by the azimuthal angle ϕ of the
final state nucleon.
The essential difference to BMP is that BMJ defines

helicity amplitudes

T BMJ
a� ¼ ð−1Þa−1ϵν�2 ð�ÞTνμϵ

μ
1ðaÞ; (A30)

where a ∈ f�1; 0g, in the specified target rest frame and,
thus, the BMP and BMJ amplitudes differ from each other
by 1=Q2 suppressed terms. BMJ define the CFFs (25) using
the parametrization of the helicity amplitudes of the form

T BMJ
a� ¼ Ha�hþ Ea�e∓ ~Ha� ~h∓ ~Ea� ~e; (A31)

in terms of the bilinear spinors (23). Let us add that the
corresponding sets of BMJ polarization vectors can be
constructed from the four momenta

ϵμ1ð0Þ ¼ −
1

Q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p qμ1 −
2xB

Q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p pμ
1; (A32)

ϵμ1ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
ffiffiffi
2

p
~K

�
Δμ −

γ2ðQ2 − tÞ − 2xBt
2Q2ð1þ γ2Þ qμ1

þ xB
Q2 − tþ 2xBt
Q2ð1þ γ2Þ pμ

1

�
∓ xBffiffiffi

2
p

~K

iϵPqΔμ

Q2
; (A33)

for the initial and

ϵμ2ð�Þ ¼
1þ γ2

2
Q2þt

Q2þxBtffiffiffi
2

p
~K

�
Δμ −

γ2ðQ2 − tÞ − 2xBt
2Q2ð1þ γ2Þ qμ1 þ xB

Q2 − tþ 2xBt
Q2ð1þ γ2Þ pμ

1

�

þ
~Kffiffiffi

2
p ð1þ γ2ÞðQ2 þ xBtÞ

½γ2qμ1 − 2xBp
μ
1�∓ xBffiffiffi

2
p

~K

iϵPqΔμ

Q2
(A34)

for the final state photons. Here, a kinematical variable
~K is employed that is related to jP⊥j in the BMP notation:

~K ¼ xB
Q2 þ t
Q2

jP⊥jBMP: (A35)

Another representation is [64]

~K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xBð1 − xB þ xBm2

Q2 Þðtmin − tÞðt − tmaxÞ
Q2

vuut
; (A36)

where tmin and tmax as functions of xB and Q2 are given in
Eq. (32).

3. Mapping of BMJ and BMP
helicity amplitudes

In order to use the BMP results from Sec. A 1 for the
evaluation of the differential leptoproduction cross section
[64], one needs to express the helicity dependent BMJ
CFFs F ab in terms of the BMP CFFs Fab in (A23)–(A25).
The relation between the corresponding DVCS tensors
(A27) implies that the BMP and BMJ helicity amplitudes
(A30) are related as

T BMJ
a� ¼ ð−1Þa−1ϵμ1ðaÞABMP

μν ϵν�2 ð�Þ: (A37)

The BMJ polarization vectors (A32), (A33) for the initial
state photon ϵ1;μðaÞ can be written in terms of the BMP
polarization vectors ε0;�μ , cf. (A7), as follows:

ϵ1;μð0Þ ¼ −ð1þ ϰÞε0μ − ϰ0½εþμ þ ε−μ �;
ϵ1;μð�Þ ¼ ε∓μ þ ϰ

2
½εþμ þ ε−μ � þ ϰ0ε

0
μ; (A38)

where the kinematical factors

ϰ0 ¼
ffiffiffi
2

p
Q ~Kffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

ðQ2 þ tÞ
; ϰ ¼ Q2 − tþ 2xBtffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

ðQ2 þ tÞ
− 1

(A39)

are of order ϰ0 ¼ Oð1=QÞ and ϰ ¼ Oð1=Q2Þ. In turn, the
BMP (A34) and BMJ (A7) polarization vectors for the final
state photon coincide up to terms proportional to q0μ,

ϵ2;μð∓Þ ¼ ε�μ þOðq0μÞ≃ ε�μ ½or ϵ�2;μð�Þ≃ ε�μ �; (A40)

which are irrelevant as they drop out because of current
conservation. Using these expressions and the parametri-
zation of the BMP tensor in (A9), we immediately read off
Eq. (A37) the desired relations
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T 0þ ¼ −ð1þ ϰÞA0þ þ ϰ0½Aþþ þA−þ�;
T �þ ¼ A�þ þ ϰ

2
½Aþþ þA−þ� − ϰ0A0þ; (A41)

and three more similar relations follow from the inter-
change of the final photon helicity þ↔−.
Since we use the same expression for the parametrization

of helicity amplitudes in terms of bilinear spinors, compare
Eqs. (A19) and (A31), identical relations hold also between
the BMJ and BMP CFFs. The result is quoted in (47).

APPENDIX B: DOUBLE DISTRIBUTION
REPRESENTATION FOR BMP

HELICITY AMPLITUDES

The studies of GPDs require building theoretical models
that satisfy several nontrivial constraints. In this context the

approach based on the so-called double distributions (DDs)
representation [1,89] has several advantages and is receiv-
ing a lot of attention, see e.g. Ref. [90] for a recent
discussion. For this reason the expressions for BMP
helicity amplitudes (A15)–(A17) directly in terms of
DDs can be of considerable interest for the future data
analysis. Such expressions, in fact, arise naturally at
intermediate steps of the calculation. They have not been
given in Ref. [61] because of space limitations. In this
appendix we follow the notation and conventions of
Ref. [61], cf. Appendix A 1.
The representation of GPDs in terms of DDs is not

unique. For the present task the following parametrization
of the nucleon matrix element of light-ray vector- and axial-
vector operators turns out to be the most convenient:

hp0jq̄ðz1nÞnqðz2nÞjpi ¼
Z Z

dydzeiyPþz12þi1
2
Δþðz1þz2−z12zÞ

�
ūðp0ÞnuðpÞhqðy; z; tÞ þ iūðp0ÞuðpÞ

z12m
Φqðy; z; tÞ

�
;

hp0jq̄ðz1nÞnγ5qðz2nÞjpi ¼
Z Z

dydzeiyPþz12þi1
2
Δþðz1þz2−z12zÞ

�
ūðp0Þnγ5uðpÞ ~hqðy; z; tÞ þ

iūðp0Þγ5uðpÞ
z12m

~Φqðy; z; tÞ
�
: (B1)

Here, the integration goes over the domain jyj þ jzj ≤ 1, n
is an auxiliary lightlike vector, z12 ¼ z1 − z2, and the
double distribution variables are related to Radyushkin’s
notation as y≡ β and z≡ α (as in Sec. III B, α and β are
commonly used to parametrize the small-x and large-x
behavior of PDFs, respectively).
These expressions define four DDs hq, ~hq, Φq, ~Φq in

terms of which the standard GPDs [4] can be expressed as
follows:

ðHqþEqÞðx;ξ; tÞ¼
Z Z

dydzδðx−y−ξzÞhqðy;z;tÞ;

∂xEqðx;ξ; tÞ¼−
Z Z

dydzδðx−y−ξzÞΦqðy;z; tÞ;

~Hqðx;ξ; tÞ¼
Z Z

dydzδðx−y−ξzÞ ~hqðy;z;tÞ;

∂x
~Eqðx;ξ; tÞ¼−

1

ξ

Z Z
dydzδðx−y−ξzÞ ~Φqðy;z; tÞ:

(B2)

The DDs Φ; ~Φ can be represented in a somewhat more
conventional form as

Φðy; z; tÞ ¼ ∂yfðy; z; tÞ þ ∂zgðy; z; tÞ;
~Φðy; z; tÞ ¼ ∂y

~fðy; z; tÞ þ ∂z ~gðy; z; tÞ; (B3)

where f; g; ~f; ~g are new functions which are also referred to
as DDs, that are not defined uniquely. Using this repre-
sentation one obtains

E ¼ −
Z Z

dydzδðx − y − ξzÞðf þ ξgÞ;

ξ ~E ¼ −
Z Z

dydzδðx − y − ξzÞð ~f þ ξ~gÞ: (B4)

Time reversal invariance implies that all GPDs are even
functions of ξ [4]. As a consequence the DDs h, ~h andΦ are
even functions of z and ~Φ is odd:

hqðy;z;tÞ¼hqðy;−z;tÞ; Φqðy;zÞ¼Φqðy;−zÞ;
~hqðy;z;tÞ¼ ~hqðy;−z;tÞ; ~Φqðy;zÞ¼− ~Φqðy;−zÞ: (B5)

Next, only charge conjugation even C ¼ þ1 combinations
of the GPDs can contribute to DVCS. They are

HqðþÞ ðx; ξ; tÞ ¼ Hqðx; ξ; tÞ −Hqð−x; ξ; tÞ
~HqðþÞ ðx; ξ; tÞ ¼ ~Hqðx; ξ; tÞ þ ~Hqð−x; ξ; tÞ (B6)

and similar for E; ~E. In the forward limit these distributions
are reduced to “singlet” quark parton distributions
HqðþÞ ðx; ξ; tÞ ¼ qðxÞ þ q̄ðxÞ, as opposed to C ¼ −1 com-
binations that are related to “valence” quark den-
sities Hqð−Þ ðx; ξ; tÞ ¼ qðxÞ − q̄ðxÞ.
Going over to the DD representation, this means that

only the following C ¼ þ1 combinations can appear:
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hq−ðy; z; tÞ ¼
1

2
½hqðy; z; tÞ − hqð−y; z; tÞ�;

Φq
þðy; z; tÞ ¼

1

2
½Φqðy; z; tÞ þ Φqð−y; z; tÞ�;

~hqþðy; z; tÞ ¼
1

2
½ ~hqðy; z; tÞ þ ~hqð−y; z; tÞ�;

~Φq−ðy; z; tÞ ¼
1

2
½ ~Φqðy; z; tÞ þ ~Φqð−y; z; tÞ�: (B7)

They correspond to matrix elements of the (anti)sym-
metrized over quark positions combinations of vector-
and axial-vector operators, OVðz1; z2Þ −OVðz2; z1Þ and
OAðz1; z2Þ þOAðz2; z1Þ, that contribute, as is well known,
to the expansion of the product of electromagnetic currents.

The subscript “�” indicates the symmetry behavior under
the simultaneous sign change of the both arguments:
ðy; zÞ → ð−y;−zÞ, e.g. hq−ðy; z; tÞ ¼ −hq−ð−y;−z; tÞ, etc.
The calculation of finite-t and target mass corrections for

DVCS for the nucleon follows closely the procedure
explained in [60] for the scalar target, but becomes
considerably more cumbersome. To this end it is conven-
ient to define the following variable

w ¼ 1

2

�
y
ξ
þ zþ 1

�
: (B8)

We obtain for the helicity amplitudes (A15)–(A17) in the
DD representation:

Vq
1 ¼ 2

Z Z
dydz

�
Φq

þ lnðw − iϵÞ − 1

Q2

�
2m2hq−y∂w þ Φq

þ

�
jP⊥j2y2∂w − t

�
1þ y

ξ
− w

���
SþðwÞ

�
;

Aq
1 ¼ 2

Z Z
dydz

�
~Φq
− lnðw − iϵÞ − 1

Q2

�
2m2 ~hqþ

�
2þ 1

ξ
y∂w

�
þ ~Φq

−

�
jP⊥j2y2∂w − t

�
1þ y

ξ
− w

���
S−ðwÞ

�
;

Vq
2 ¼

Z Z
dydzhq−

�
1

w − iϵ
−

1

Q2

�
jP⊥j2ðy∂wÞ2 − 2t

�
1þ 1

ξ
y∂w −

1

2
∂wðw − 1Þ

��
SþðwÞ

�
;

Aq
2 ¼

Z Z
dydz ~hqþ

�
1

w − iϵ
−

1

Q2

�
jP⊥j2ðy∂wÞ2 − 2t

�
1þ 1

ξ
y∂w −

1

2
∂wðw − 1Þ

��
S−ðwÞ

�
; (B9)

A0;�
q ¼ −

2

Q

Z Z
dydz

�
yP�⊥

�
v · P
m2

Φq
þ � a · Δ

2m2
~Φq
−

�
− hq−

�
v� −

v · q0

q · q0
P�⊥y∂w

�
∓ ~hqþ

�
a� −

a · q0

q · q0
P�⊥y∂w

��
lnðw − iϵÞ
w − 1

;

(B10)

A∓�
q ¼ −

ffiffiffi
2

p jP⊥j
Q2

Z Z
dydz

��
−yΦq

þ
v · P
m2

P�⊥ þ 2hq−

�
v� −

v · q0

2q · q0
P�⊥y∂w

��
y∂w

2w − 1

w − 1
lnðw − iϵÞ

�
�
y ~Φq

−
a · Δ
2m2

P�⊥ þ 2~hqþ

�
a� −

a · q0

2q · q0
P�⊥y∂w

��
y∂w

1

w − 1
lnðw − iϵÞ

�
; (B11)

where

S�ðwÞ ¼
1

w − 1

�
1

2
lnðw − iϵÞ

�
�
Li2ðwþ iϵÞ − Li2ð1Þ

��
: (B12)

Note that the leading-twist coefficient functions
∼1=ðw − iϵÞ and ∼ lnðw − iϵÞ in the helicity-conserving
amplitudes Vk and Ak have singularities at w ¼ 0. The
twist-four contributions ∼S�ðwÞ have singularities at w ¼
0 as well, and in addition have the logarithmic branching
point at w ¼ 1 due to Li2ðwþ iϵÞ. Since

wð−y;−zÞ ¼ 1 − wðy; zÞ

and thanks to symmetry properties of the DDs under the
transformation ðy; zÞ → ð−y;−zÞ, the two points w ¼ 0
and w ¼ 1 are, however, equivalent. It is possible to rewrite
the results in Eq. (B9) in the form where all singularities are
at the point w ¼ 0 only.
It can be shown that the twist-four contributions

(B9)–(B11) are well defined (finite), provided the integrals
for the leading-twist contributions converge. The danger is
that derivatives with respect to w might produce stronger
singularities as compared to the leading terms. Notice that
these derivatives are always accompanied by the prefactor
y. Using Eq. (B8) one can rewrite y∂w in terms of the
derivative with respect to the asymmetry parameter ξ:

y∂wfðwÞ ¼ −2ξ2∂ξfðwÞ;
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and move all ξ-derivatives out of the integral [93]. In this
way one sees that the singularities of higher-twist coef-
ficient functions are not enhanced as compared to the
leading twist ones. The y; z-integrals converge and define
smooth functions of ξ (away from ξ ¼ 0).
In order to recast the results in the DD representation,

Eqs. (B9)–(B11), in terms of GPDs one can rewrite, e.g.

Z Z
dydzΦðz; yÞyFðwÞ

¼ ξ2∂ξ
1

ξ

Z Z
dydzðf þ ξgÞFðwÞ: (B13)

Inserting

1 ¼
Z

1

−1
dxδðx − y − ξzÞ

under the y; z-integral and changing the order of integra-
tions one arrives after some algebra to the expressions in
Eqs. (A15)–(A17) of Ref. [61].
We add that in standard GPD models, used in phenom-

enology, the original DD distribution representation [1,89]

Fðx; ξ; tÞ ¼
Z Z

dydzδðx − y − ξzÞfðy; z; tÞ (B14)

for F ∈ fH;E; ~H; ~Eg is employed, where f ∈ fh; e; ~h; ~eg
denote the corresponding DDs. Plugging this representa-
tion (B14) into convolution formulas as they appear in the
kinematic twist corrections (A23)–(A25) (or in perturbative
higher order corrections), they can be simply translated into
the standard DD representation by means of the equality

Z
1

−1

dx
2ξ
ðξ∂ξÞpTi

�
ξþ x− iϵ
2ðξ− iϵÞ

�
FqðþÞ ðx;ξ; tÞ ¼

¼ 1

2ξ

Z Z
dydz½ð−y∂yÞpTiðwÞ�fqðþÞ ðy;z; tÞ; (B15)

where wðy; zÞ is defined in Eq. (B8) and fq
ðþÞ ðy; z; tÞ are

charge parity even DD functions with the symmetry
properties spelled out above. Note that the homogeneous
differential operator ðξ∂ξÞp acts in (A23)–(A25) also on the
integral measure and that some care is needed with respect
to the imaginary parts of the coefficient functions, which is
inherited from the ξ − iϵ prescription, and translates in our
notation (51) into Tiðwþ iϵÞ.
Finally, we add that the DD-representation (B14) is not

complete for GPD H or E, however, it is complete for
H þ E. To fix this, a so-called D-term, which we write
here as

Dqðx; ξ; tÞ ¼ θðjxj ≤ jξjÞsignðξÞφq
D

�
ξþ x
2ξ

; t

�
; (B16)

is added or subtracted to the DD-representation (B14),

Hq → Hq þDq; Eq → Eq −Dq:

This term is antisymmetric in x, i.e., φDðu; tÞ ¼
−φDð1 − u; tÞ. In a similar manner, the pion-pole contri-
bution, appearing in GPD ~E, is modeled as [91,92]

~Eq
πðx; ξ; tÞ ¼ θðjxj ≤ jξjÞ 1

jξjφ
q
π

�
ξþ x
2ξ

; t

�
; (B17)

which is symmetric in x, i.e., φπðu; tÞ ¼ φπð1 − u; tÞ. In
our convolution formulas, the integrals read

Ti⊛D ¼ 2
X
q

e2q

Z
1

0

duTiðuÞφq
Dðu; tÞ;

Ti⊛ ~Eπ ¼
2

ξ

X
q

e2q

Z
1

0

duTiðuÞφq
Dðu; tÞ: (B18)

Consequently, the D-term and pion-pole contribution are
annihilated by the differential operators ∂ξ and ∂ξξ
respectively.

APPENDIX C: ANALYTICITY

In this appendix we show that the convolution formulas
for BMP CFFs, given in Eqs. (A23)–(A25), can easily be
converted into dispersion relation (DR) integrals. Such a
dispersion representation is interesting in its own right and
can be used in practice to evaluate CFFs numerically
starting from a given GPD model. Without loss of general-
ity, to simplify the derivation we employ here the
DD-representation (B14) together with its D-term and
pion-pole addenda.
First we demonstrate that the convolution integrals

satisfy the DR

Z
1

−1

dx
2ξ

Ti

�
ξþ x − iϵ
2ðξ − iϵÞ

�
FqðþÞ ðx; ξ; tÞ

¼
Z

1

0

dx
xþ ξþ σðx − ξÞ
ξ2 − x2 − iϵ

Z
1

x

dr
r
tiðrÞFqðþÞ ðx=r; x; tÞ:

(C1)

This is evident for the imaginary part, where we can equate

ℑm
xþ ξþ σðx − ξÞ
ξ2 − x2 − iϵ

¼ πδðξ − xÞ for x ≥ 0; ξ ≥ 0;

and the imaginary part on the left-hand side (l.h.s) is thus by
definition equal to the r.h.s., see Eq. (57). To show that (C1)
holds true for the real part, we first exploit the symmetry,

FqðþÞ ð−x=r;−x; tÞ ¼ −σFqðþÞ ðx=r; x; tÞ;
to rewrite (C1) in the following form
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Z
1

−1

dx
2ξ

Ti

�
ξþ x − iϵ
2ðξ − iϵÞ

�
FqðþÞ ðx; ξ; tÞ

¼
Z

1

−1
dx

1

ξ − x − iϵ

Z
1

jxj

dr
r
tiðrÞFqðþÞ ðx=r; x; tÞ: (C2)

Next we plug the DD-representation (B14) into Eq. (C2),
where the l.h.s. is given by Eq. (B15) with p ¼ 0, and the
r.h.s. reads after integration over x as follows,Z

1

−1
dx

1

ξ−x− iϵ

Z
1

jxj

dr
r
tiðrÞFqðþÞ ðx=r;x;tÞ

¼
Z Z

dydz
Z

1

0

dr
θð1− jyj− rzÞ

ξð1− rzÞ−yr− iϵ
tiðrÞfqðþÞ ðy;z; tÞ;

(C3)

where the θ-function does not imply any further
restrictions. Employing the definition tiðrÞ ¼
ℑmTiðð1þ rÞ=2rÞ=ð2πrÞ, the r-integral can be written
after the transformation of variables u ¼ ð1þ rÞ=2r in
form of a DR integralZ

1

0

dr
tiðrÞ

ξð1 − rzÞ − yr − iϵ
¼ 1

2πξ

Z
∞

1

du
ℑmTiðuÞ
u − w − iϵ

¼ 1

2ξ
Tiðwþ iϵÞ; (C4)

where wðy=ξ; zÞ is specified in Eq. (B8) and we defined,
without loss of generality, the coefficient functions in such
a manner that they have only cuts on the real axis for u ≥ 1.
Thus, this DR integral yields the functions Tiðwþ iϵÞ.
Plugging Eq. (C3) into Eq. (C4) and using the DD
convolution formula (B15) for p ¼ 0 establishes
Eqs. (C2) and (C1). We add that the kernel TðþÞ

1 ðuÞ needs
a subtraction yielding an ambiguous term c=ξ that, as we
have discussed in Sec. IV E, is at the end irrelevant.
Second, we explicitly show that the action of differential

operators, appearing in the convolution formulas (A23)–
(A25), acting on both the real and imaginary part is
compatible with the DR-representation. The application

of the homogeneous differential operator ξ
1þσ0
2 ∂ξξ

1−σ0
2 with

σ0 ¼ �1 on the Cauchy integral kernel reads after partial
integration

ξ
1þσ0
2 ∂ξξ

1−σ0
2

Z
1

0

dx
xþ ξþ σðx − ξÞ
ξ2 − x2 − iϵ

τðxÞ

¼
Z

1

0

dx
xþ ξþ σðx − ξÞ
ξ2 − x2 − iϵ

x
1þσ0
2 ∂xx

1−σ0
2 τðxÞ; (C5)

where we assumed that the test function τðxÞ vanishes at
x ¼ 1 and that xð1þσÞ=2xτðxÞ vanishes at x ¼ 0. With the
same assumptions for the small-x behavior and supposing
that ∂xτðxÞ vanishes at x ¼ 1, we can reshuffle the relevant

homogeneous differential operator of second order

ξ
1þσ0
2 ∂2

ξξ
3−σ0
2 as well. Finally note that the differential operator

(50) can be written as

2Dξ ¼ ½2∂ξ − ∂2
ξξ� þ ξ2

�
1 −

4m2

t

�
∂2
ξξ (C6)

and the terms proportional to ξ2 can be treated
algebraically,

ξ2
xþ ξþ σðx − ξÞ
ξ2 − x2 − iϵ

¼ x2
xþ ξþ σðx − ξÞ
ξ2 − x2 − iϵ

þxð1þ σÞ þ ξð1 − σÞ: (C7)

This allows us to establish the equality

ξ
1þσ
2 2Dξξ

1−σ
2

Z
1

0

dx
xþ ξþ σðx − ξÞ
ξ2 − x2 − iϵ

τðxÞ

¼
Z

1

0

dx
xþ ξþ σðx − ξÞ
ξ2 − x2 − iϵ

x
1þσ
2 2Dxx

1−σ
2 τðxÞ

þ 2ð1þ σÞ
�
1 −

4m2

t

� Z
1

0

dxxτðxÞ; (C8)

where for even-signature an additional “subtraction” term
appears. In a similar manner, the last term in Eqs. (A23a)
and (A23b) for Hþþ and Eþþ can be rewritten as,
respectively,

ξ2∂ξξ

Z
1

0

dx
2xτðxÞ

ξ2 − x2 − iϵ
¼

Z
1

0

dx
2xx2∂xxτðxÞ
ξ2 − x2 − iϵ

− 2

Z
1

0

dxτðxÞ: (C9)

Note that the additional constants in Eqs. (C8) and
(C9) cancel each other in the magnetic combina-
tion Hþþ þ Eþþ.
Since convolution integrals can be converted into DR-

integrals, and the application of differential operators can
be reshuffled from the real to the imaginary parts up to a
possible constant, we can rewrite the BMP convolution
formulas (A23)–(A25) as DRs. Thereby, the existence of
DR-integrals is ensured if we require that the GPDs for
x ¼ ξ vanish in the limit ξ → 1, i.e. convolution integrals
for the imaginary parts are suppressed by one additional
power (1 − ξ), and that GPDs possess the common Regge
behavior, see discussions in Secs. III B and IV E. The
subtraction constants are calculated by means of Eq. (B18)
and additional contributions, calculated from the imaginary
parts, can only appear inHþþ and Eþþ in the form of a D-
term addition. For the helicity conserving CFFs (A23) we
find the DR-integral
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Fþþðξ; t; Q2Þ ¼ 1

π

Z
1

0

dx
xþ ξþ σðx − ξÞ
ξ2 − x2 − iϵ

ℑmFþþðx; t; Q2Þ þ ðδFH − δFEÞDþþðt; Q2Þ þ 1

ξ
δF ~EPþþðt; Q2Þ; (C10)

where the imaginary part is calculated from (A23), e.g., by means of the convolution integral (54), and the nonvanishing
subtraction constants read

Dþþðt; Q2Þ ¼ 2

Z
1

0

du
1 − u

�
1 −

t
2Q2

ð1 − 2 ln uÞ
�X

q

e2qφ
q
Dðu; tÞ

− 4

Z
1

0

dξξ
Z

1

ξ

dx
x
t2ðxÞ

X
q

e2q

�
4m2

Q2
HqðþÞ þ t

Q2
EqðþÞ

�
ðξ=x; ξ; tÞ; (C11)

Pþþðt; Q2Þ ¼ 2

�
1þ t

Q2

�Z
1

0

du
1 − u

�
1 −

t
2Q2

−
t
Q2

ln u

�X
q

e2qφ
q
πðu; tÞ; (C12)

where the coefficient function t2ðxÞ is defined in Eq. (55d).
For electric helicity flip CFFs, defined in Eq. (27), and

for the even-signature CFF combinations (29) one immedi-
ately realizes from the explicit expressions in (A24) and
(A25) that the kinematical factors can be stripped off,

G0þ
jξP⊥j

;
E0þþξ ~E0þ

jξP⊥j
ðσ¼þ1Þ;

~G0þ
jξP⊥j

ðσ¼−1Þ;

G−þ
jξP⊥j2

;
E−þþξ ~E−þ

jξP⊥j2
ðσ¼þ1Þ; G−þ

jξP⊥j2
ðσ¼−1Þ;

and that such CFFs satisfy unsubtracted DRs. It is evident
from the BMP results, quoted in Eqs. (A24) and (A25), and
the equality tþ ξ2ð4m2 − tÞ ¼ −4jξP⊥j2, cf. Eq. (44), that
two further helicity flip CFF combinations,

~H0þ þ ξðH0þ þ E0þÞ
jξP⊥j

;

~H−þ − ξðH−þ þ E−þÞ
jξP⊥j2

ðσ ¼ −1Þ;

exist that are free of kinematical singularities. It can be
easily shown that they are independent from the above
quoted combinations and satisfy unsubtracted signature-
odd DRs. We emphasize that the D-term and pion-pole
contribution drop out in all longitudinal and transverse flip
BMP CFFs (A24) and (A25), i.e., in all terms proportional
to jξP⊥j or jξP⊥j2 as well as in the addenda. We also note
that the two additional terms in the third line of Eqs. (62)
and (65), satisfy unsubtracted odd-signature DRs which
can be converted into subtracted even-signature DRs (after
multiplication with a factor ξ), where the subtraction
constant is calculated from the magnetic GPD H þ E.
We finally add that for a scalar target only three CFFs

appear. For the twist-four results, given in Eqs. (120) and
(121) of Ref. [60], one can immediately show that BMP

helicity amplitudes satisfy DRs in which the kinematical
factors are removed. In the BMP basis a D-term induced
subtraction constant [modified by the imaginary part, cf.
Eq. (C11)] only appears for the helicity conserved CFF.
After a transformation to another CFF basis, e.g., the BMJ
basis (47), this subtraction constant propagates, however, to
the DRs for helicity flip CFFs, as emphasized in Ref. [78].

APPENDIX D: CONFORMAL MOMENTS OF
COEFFICIENT FUNCTIONS

To implement the kinematical corrections in an existing
GPD fitting code [38,39], which is based on a Mellin-
Barnes integral representation, the conformal moments of
the coefficients (51) are needed. For nonnegative integer n
the conformal partial waves are restricted to the region 0 ≤
u ≤ 1 and are given in terms of Gegenbauer polynomials
with index 3=2, normalized here as

p̂nðuÞ ¼ 2uūC
3
2
nðu − ūÞ with p̂nðūÞ ¼ ð−1Þnp̂nðuÞ;

(D1)

where ū≡ 1 − u. The conformal moments are calculated
by the convolutionsZ

1

0

du
1

ū
p̂nðuÞ ¼ 1; (D2a)

Z
1

0

du ln ūp̂nðuÞ ¼ −
ðnþ 1Þ2
ðnÞ4

; (D2b)

Z
1

0

du
ln ū
u

p̂nðuÞ ¼ −
1

ðnþ 1Þ2
; (D2c)

Z
1

0

du
Li2ð1Þ − Li2ðuÞ

ū
p̂nðuÞ ¼

ðnþ 1Þ2 þ 1

½ðnþ 1Þ2�2
; (D2d)
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where ðnÞa ¼ n � � � ðnþ a − 1Þ denotes the Pochhammer
symbol. The transformation ū → u in the coefficients
corresponds to a multiplication with the factor ð−1Þn.
For complex-valued conformal moments this sign

alternating factor is replaced by −σ with the signature
factor σ. The conformal moments of the coefficients (51)
and the auxiliary ones are listed in Table I. This table allows
one to translate easily the twist corrections (A23)–(A25)
into the space of conformal moments. We add that
the derivatives with respect to ξ in the expressions
(A23)–(A25) act on the integrand in the Mellin-Barnes
integrals, i.e., on ξ−j−1fjðξ; t; Q2

0Þ, where fjðξ; t; Q2
0Þ are

conformal GPD moments. For integer j ¼ n they are given
by polynomials in ξ2 of order ðn� 1Þ=2 [for signature-even
n ∈ f1; 3; � � �g] or n=2 [for signature-odd n ∈ f0; 2; � � �g],
respectively. Finally, note that a transformation of BMP
CFFs to the basis employed in the code used to calculate
DVCS observables, e.g., to the BMJ basis given in (47), is
needed.
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