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We discuss the characteristics of collective modes induced by relativistic jets in a collisionless
anisotropic quark-gluon plasma (AQGP) assuming a colorless Tsunami-like momentum distribution of the
jet partons. Within the framework of the transport equation, we derive and discuss the dispersion relations
for both the stable and unstable modes of the composite system in the Vlasov approximation. We consider
the case when the wave vector is parallel to the anisotropy direction as the growth rate of the unstable mode
is maximum in this scenario. When the wave vector (k) is perpendicular to the jet velocity (vjet), two stable
modes are found (referred to as mode I and mode II hereafter) of which one is independent of the jet
velocity. In case of k∥vjet, we obtain two identical modes (mode I) and one distinct mode (referred to as
mode III hereafter). In all of the cases it is found that stable modes shift toward the light cone for nonzero
values of the anisotropy parameter (ξ) and the jet strength (η). In case of unstable mode I, the growth rate
increases with ξ for fixed η. The growth rate in case of modes II and III increases with ξ and η, and the
nature of the increase depends on the jet velocity.
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I. INTRODUCTION

The primary goal of the ultrarelativistic heavy-ion
collision experiments at BNL RHIC and at CERN LHC
is to study the properties of a deconfined state of the QCD
matter, commonly known as quark-gluon plasma (QGP).
According to lattice calculation, the novel state of matter is
expected to be formed when the temperature of the nuclear
matter is raised to the critical value Tc ∼ 170 MeV or the
energy density of the nuclear matter is raised to above
1 GeV=fm3. High-energy partons behave as hard probes
which are produced in the early stage of the collision due
to hard scattering. In a relativistic heavy-ion collision, jets
with high transverse momentum travel through the hot and
dense medium losing energy by collisional (interaction
with thermal quark and gluon) and radiative processes
(bremsstrahlung). As a consequence, high pT hadrons
produced due to parton fragmentation are suppressed.
This phenomenon is known as jet quenching [1].
Apart from jet quenching, the jet particles also interact

with the plasma leading to modified collective oscillation.
Moreover, supersonic jets propagating through the plasma
lead to conical flow behind it in the form of shock waves
with Mach cone structure in the medium. This produces a
color charge density wake and also wake potential [2–5] in
the QGP. Such studies have been performed in Refs. [6,7].
The experimental evidence of the azimuthal dihadron
correlation at RHIC shows a double-peak structure in
the away side [8,9] for the intermediate pT particles.
Such peaks were predicted as a signature of Mach shocks
[6,7] and Cherenkov-like radiation [10] created by the

partonic jets traveling through the QGP. It should be noted
that the interaction of a relativistic stream of charge
particles with an electromagnetic plasma also influences
the collective modes of the system, which may lead to some
observables relevant to the heavy-ion phenomenology.
First, Manuel, Mrowczynski, and Mannarelli [11–13] have
studied unstable collective modes of a system composed by
an equilibrated and isotropic QGP when a relativistic jet of
partons passes through the medium. Within the framework
of linear response theory, the interaction between the jet
and the plasma shows an exponential growth of collective
gauge fields, with a colorless tsunamilike initial momentum
distribution of the jet. The unstable modes arise at a
velocity of the jet larger than the speed of sound in the
QGP. At a lower velocity of the jet, the modes are unstable
under certain conditions. In another work [14], the energy
loss due to stream instabilities induced by two jets has been
discussed in great detail. All of the phenomenological
treatments are performed in situations where the distribu-
tions of the soft partons providing the thermal background
are assumed to have isotropic momentum distributions. In a
realistic scenario, due to rapid longitudinal expansion at the
onset of the QGP phase, anisotropy arises in the pT − pL
plane with hpL

2i ≪ hpT
2i in the local rest frame [15–17].

Such momentum-space anisotropy leads to the collective
modes having a characteristic behavior distinct from what
happens in isotropic plasma which has been extensively
studied in [18,19] where it is shown that the gluonic
collective modes can be unstable.
In the present work we concentrate on the collective

modes in an anisotropic quark-gluon plasma (AQGP)
induced by relativistic jets. In studying the evolution of
such a system, we use the method of the plasma physics
within the framework of the quark-gluon transport theory
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[20,21] in weak coupling regime, i.e., g ≪ 1. The time
scale for the evolution of collective modes is assumed to be
much shorter than the interparticle collision time. In this
approach, we have neglected the hard mode interactions,
assuming that the interactions between jet and plasma are
only mediated by mean gauge fields. Kinetic instability can
occur due to the interaction of the plasma and jet partons
which leads to electric or magnetic-type instabilities with
the latter being analogous to theWeibel instability [22] in the
QGP [20,23–25]. Plasma instabilities could be an explan-
ation for the fast isotropization predicted by the study of
elliptic flow at relativistic heavy ion collider (RHIC) [26,27].
In momentum-space anisotropic plasma, the growth rate of
the magnetic instability is maximum in the direction of
anisotropy [18,19,28]. Sowe concentrate on this special case
in which the momentum of the collective mode is in the
direction of the anisotropy. The nonequilibrium jet of
particles while traveling through AQGP destabilizes the
plasma producing the collective gauge fields. In the present
work we give a quantitative estimate of how the passage of
the jet affects the dispersion relations of the collective
modes and the growth rate of the instabilities in AQGP.
For demonstrative purpose, a colorless tsunamilike jet
distribution has been considered in which case some
portion of the calculation can be done analytically.
The organization of the paper is as follows. In Sec. II

we present analytic expression for the hard-loop gluon
polarization tensor in case of anisotropic plasma and the
polarization tensor of the jet, and then we show how the
dispersion relations are modified in the presence of a
tsunamilike jet along with the numerical results. Finally,
we conclude in Sec. III.

II. POLARIZATION TENSORS AND COLLECTIVE
MODES IN AQGP INDUCED BY A JET

In this section we briefly mention how the polarization
tensors can be obtained in a purely anisotropic QGP and in
an AQGP with a jet propagating through it. Then we write
down the dispersion relations in AQGP (without the jet)
as well for the composite system comprising of the jet.
To do this it may be recalled that with the linear
approximation of transport equations(Vlasov approxi-
mation) one can solve the polarization tensor for
particles species λ [12,13,18,28,29]:

Πμν
λ ðKÞ ¼ g2

Z
p
pμ ∂fλðpÞ

∂pβ

�
gβν −

pνkβ

P:K þ iϵ

�
; (1)

where λ specify the quarks, antiquarks, gluons, or partials
of jet. fðpÞ is an arbitrary distribution. This tensor is
symmetric,ΠμνðKÞ ¼ ΠνμðKÞ, and transverse,KμΠμν ¼ 0.
We first discuss the structure of the polarization function

in a purely AQGP, i.e., in absence of the jet. To include
the local momentum-space anisotropy in the plasma, one
has to calculate the gluon polarization tensor incorporating

anisotropic distribution function of the particles. This
subsequently can be used to construct the hard thermal
loop (HTL)-corrected gluon propagator which, in general,
assumes a very complicated form. Such an HTL propagator
was first derived in [18] in the temporal-axial gauge.
In an anisotropic plasma (without the jet), the spacelike

component of the self-energy tensor can be written as [18]

Πij
p ðKÞ ¼ −g2

Z
d3p
ð2πÞ3 v

i∂lfðpÞ
�
δjl þ vjkl

K:V þ iϵ

�
: (2)

The phase-space distribution is assumed to be given by the
following ansatz [18]:

fðpÞ ¼ fξðpÞ ¼ fiso
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ ξðp:n̂Þ2
q �

: (3)

Here fiso is an arbitrary isotropic distribution function,
and n̂ is the direction of anisotropy. The parameter ξ
is the degree of anisotropy ð−1 < ξ < ∞Þ and is given

by ξ ¼ 1
2

hp2
Ti

hp2
zi − 1. By making a change of variable

( ~p2 ¼ p2ð1þ ξðp:n̂Þ2Þ) the spatial components can be
written as

Πij
p ðKÞ ¼m2

D

Z
dΩ
ð4πÞv

i v
lþ ξðv:n̂Þnl

ð1þ ξðv:n̂Þ2Þ2
�
δjlþ vjkl

ðK:Vþ iϵ

�
;

(4)

where

m2
D ¼ −

g2

2π2

Z
∞

0

dpp2
dfisoðp2Þ

dp
(5)

is the isotropic Debye mass which depends on fiso.
The self-energy, apart from four-momentum (Kμ), also
depends on the anisotropic vector ðnμ ¼ ð1;nÞÞ. Using
the proper tensor basis [18,30], one can decompose the
self-energy into the four-structure functions as

Πij
p ðKÞ ¼ αAij þ βBij þ γCij þ δDij; (6)

where

Aij ¼ δij − kikj=k2; Bij ¼ kikj=k2;

Cij ¼ ~ni ~nj= ~n2; Dij ¼ ki ~nj þ kj ~ni; (7)

with ~ni ¼ Aijnj, which obeys ~n:k ¼ 0 and n2 ¼ 1. Now
α; β; γ and δ are determined by the following contractions:

kiΠijkj ¼ k2β; ~niΠijkj ¼ ~n2k2δ;

~niΠij ~nj ¼ ~n2ðαþ γÞ; TrΠij ¼ 2αþ β þ γ: (8)

The expressions for structure functions have been given in
Ref. [18]. In the isotropic limit, ξ → 0, the structure
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functions γ and δ vanish, and α and β are directly related to
the transverse and longitudinal components of the polari-
zation tensor of the plasma, respectively.
The dispersion law for the collective modes of aniso-

tropic plasma in temporal axial gauge can be determined by
finding the poles of the propagator ~Δij

½ ~Δ−1ðKÞ�ij ¼ ðk2 − ω2Þδij − kikj þ Πij
p ðKÞ: (9)

By substituting Eq. (7) in the above equation and perform-
ing the inverse formula [18] one finds

~ΔðKÞ ¼ ~ΔA½A −C� þ ~ΔG½ðk2 − ω2 þ αþ γÞB
þ ðβ − ω2ÞC − δD�: (10)

The dispersion relation for the gluonic modes in anisotropic
plasma (without jet) is given by the zeroes of

~Δ−1
A ðKÞ ¼ k2 − ω2 þ α ¼ 0; (11)

~Δ−1
G ðKÞ ¼ ðk2 − ω2 þ αþ γÞðβ − ω2Þ − k2 ~n2δ2 ¼ 0: (12)

If we examine the propagators (11) and (12) in the static
limit(ω → 0), we find that there are three mass scales [18]:
mα and m�. In isotropic limit, ξ → 0, m2

α ¼ m2
− ¼ 0

and m2þ ¼ m2
D.

The solutions of the above two equations depend on
mD;ω;k; ξ and k̂:n̂ ¼ cos θn. For ξ > 0 one finds that
there are at most three stable and two unstable modes which
depend on θn, and for ξ < 0, there are three stable modes;
however, only one is unstable [18,19]. In general, the
expressions for the structure functions are very complicated
[18,19] and cannot be evaluated analytically for the general
case, i.e., for the arbitrary orientation of the wave vector
with respect to the anisotropy direction. However, if we
concentrate on the case where the momentum k is in the
direction of anisotropy n̂ðkjjn̂Þ, analytical evaluations of
the structure functions are possible. Moreover, in such a
case, the structure function γ and ~n2 ¼ 1 − ðk̂:n̂Þ2 are
identically equal to zero. The other structure functions are
obtained using the contractions given in Eq. (8), and the
final results simplify to [19]

αðω; k; ξÞ ¼ m2
D

4
ffiffiffi
ξ

p ð1þ ξz2Þ2
�
ð1þ z2 þ ξ½ðξ − 1Þz4 þ ðξþ 6Þz2 − 1�Þarctan

h ffiffiffi
ξ

p i

þ
ffiffiffi
ξ

p
ðz2 − 1Þ

�
1þ ξz2 − zð1þ ξÞ ln zþ 1þ iε

z − 1þ iε

��
;

βðω; k; ξÞ ¼ −
m2

Dz
2

2
ffiffiffi
ξ

p ð1þ ξz2Þ2
�
ð1þ ξÞð1 − ξz2Þarctan

ffiffiffi
ξ

p
þ

ffiffiffi
ξ

p �
1þ ξz2 − zð1þ ξÞ ln zþ 1þ iε

z − 1þ iε

��
;

δðω; k; ξÞ ¼ m2
Dz

4
ffiffiffi
ξ

p ð1þ ξz2Þ3
�
ðξ½ξz4ðξþ 3Þ − 2z2ðξ2 þ 6ξþ 3Þ þ 6ξþ 3� − 1Þz arctan

ffiffiffi
ξ

p

þ
ffiffiffi
ξ

p �
zð1þ ξz2Þð1þ 4ξ − 3ξz2Þ þ ξðz2 − 1Þð4z2 þ 3ξz2 − 1Þ ln zþ 1þ iε

z − 1þ iε

��
; (13)

where z ¼ ω=k.
In order to study the collective modes due to the

propagation of an energetic jet, we have to find also
the structure of the polarization tensor induced by the
jet. For simplicity, this can be done by assuming a
colorless tsunamilike momentum distribution of the jet
[13,31]:

fjetðpÞ ¼ n̄ū0δð3Þðp − ΛūÞ: (14)

Here n̄ is a parameter proportional to the density, and
ūμ ¼ γð1; vjetÞ is the four-velocity, where γ is the Lorentz
factor and vjet is the velocity of the jet parton. The
parameter Λ fixes the scale of energy of particles.
By substituting Eq. (14) in Eq. (2), one deduces the
following expression of the polarization tensor for the jet
partons:

Πij
jetðKÞ ¼ ω2

jet

�
δij þ kivjjet þ kjvijet

ω − k:vjet
−
ðω2 − k2Þvijetvjjet
ðω − k:vjetÞ2

�
;

(15)

where vjet is the velocity of jet and ω2
jet ¼ g2n̄

2Λ is the plasma
frequency of the jet. The dispersion relations of the
collective modes of the system due to jet are determined
by searching the poles of the propagator of Eq. (9) by
replacing Πij

p with Πij
jet, i.e., by finding the solution ωðkÞ.

In this work, our main aim is to study the collective
modes of the anisotropic plasma due to the propagation of
an energetic jet. To do this, we note that in a very short time
regime, where the Vlasov approximation is valid, the total
polarization of the system is given by the sum of the two
polarization tensors:

Πμν
t ðKÞ ¼ Πμν

p ðKÞ þ Πμν
jetðKÞ: (16)
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The dispersion relation for the collective modes of the total
system can be found by solving the equation

det½ðk2 − ω2Þδij − kikj þ Πij
t ðKÞ� ¼ 0: (17)

In order to simplify the dispersion relation [Eq. (17)], we
define a dimensionless quantity η ¼ ω2

jet=ω
2
t , where ω2

t ¼
ω2
jet þm2

D=3which is related to Debye mass and the plasma
frequency of the jet. The solution of the dispersion relation
depends on jkj, jet velocity(jvjetj), η and the angle between
momentum k and the jet velocity vjet. It is clearly seen that
the jet does not interact with the plasma when η ¼ 0. In the
following subsection we analyze jet-induced collective
modes in AQGP for the two special cases, when the jet
velocity is (a) perpendicular to the momentum, i.e., k⊥vjet,
and (b) parallel to the momentum, i.e., kjjvjet.

A. k orthogonal to vjet
Here we choose the coordinates k ¼ ð0; 0; kÞ and

vjet ¼ ðvjet; 0; 0Þ. In this case the condition (17) reads as

d22ðd11d33 − d213Þ ¼ 0; (18)

where

d11 ¼ ðk2 − ω2Þ þ αðω; k; ξÞ þ ηω2
t

�
1 −

ðω2 − k2Þv2jet
ω2

�
;

d13 ¼ ηω2
t
k
ω
vjet;

d22 ¼ ðk2 − ω2Þ þ αðω; k; ξÞ þ ηω2
t ;

d33 ¼ βðω; k; ξÞ − ω2 þ ηω2
t : (19)

1. Stable modes

First, we find the stable collective modes which have
poles at real-valued ω > jkj. The dispersion relation for all
of the collective modes of the composite system can be
determined by finding the solution to the equations

d22 ¼ ðk2 − ω2Þ þ αðω; k; ξÞ þ ηω2
t ¼ 0; (20)

and

d11d33 − d213 ¼
�
ðk2 − ω2Þ þ αðω; k; ξÞ

þ ηω2
t

�
1 −

ðω2 − k2Þv2jet
ω2

��
½βðω; k; ξÞ

− ω2 þ ηω2
t � −

�
ηω2

t
k
ω
vjet

�
2

¼ 0; (21)

which is referred to as mode I and mode II, respectively. It
may be noted that when η ¼ 0 one recovers the usual

modes as in AQGP given by Eqs. (11) and (12) with γ ¼ 0
and ~n2 ¼ 0. It is clearly seen that the collective mode I is
independent of jet velocity. However, it depends on the
plasma frequency of the jet. In Fig. 1 we present the
dispersion relation for the mode I for different values of
the anisotropy parameter ξð0; 1; 5Þ, mD ¼ ffiffiffi

3
p

and η ¼ 0.1.
It is clearly noticed that the collective modes are very
sensitive to the anisotropy parameter, and with the increase
of ξ, it is diminished. The results for stable mode II are
shown in Fig. 2 for two different ηð0.05; 0.1Þ at two
different jet velocities (0.55, 0.99). In all of the cases
the collective modes shift toward the light cone with the
increase of ξ. At the low-momentum region, the collective
modes are enhanced with the increase of the strength of the
jet(η) for both the jet velocities considered here. Moreover,
at fixed values of η and ξ, the modes are increased with the
increase of the jet velocity.

2. Unstable modes

In an AQGP, when the momentum is parallel to the
anisotropy direction, i.e., kjjn̂, the scale m2

α and m2
− are

negative at ω → 0 [18]. It indicates that for ξ > 0 the
system possesses an magnetic instability [32,33]. This can
be identified as the so-called filamentation or Weibel
instability [22]. The instability is driven by the energy
transferred from the particles to the field, which leads to a
more rapid thermalization and equilibration of QGP.
We now investigate how the colorless tsunamilike jet

distribution affects the growth rates of these instabilities.
The dispersion relation Eqs. (20) and (21) also have poles
along the imaginary ω axis. The dispersion relation for
these modes can be calculated by taking ω ¼ ω0 þ iΓ with
ω0 and Γ are real valued. Numerically we find that the
collective modes of Eqs. (20) and (21) are nonpropagating
(ω0 ¼ 0). The solution ωðkÞ ¼ iΓðkÞ gives the growth rate

0 0.5 1 1.5 2

k/m
t

0

0.5

1

1.5

2

ω
/m

t

isotropic

ξ = 1
ξ = 5

η = 0.1

FIG. 1 (color online). Dispersion relation for the stable mode I
for an anisotropy parameter ξ ¼ f0; 1; 5g and fixed η ¼ 0.1.
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ΓðkÞ. At ξ ¼ 0 we do not find any unstable collective mode
for mode I. In Fig. 3 we present the unstable collective
mode I at two different strength of the anisotropy
(ξ ¼ f1; 5g) for three different values of η. In both cases
we find that with the increasing values of η the maximum
values of Γ decrease and the corresponding value of the
momentum remains approximately the same at fixed ξ.
However, at fixed η, the maximum value of the growth rate
Γ increases with ξ and shifted toward the higher momen-
tum. Figure 4 describes the imaginary part of the dispersion
relation for the unstable collective mode II for two different
velocities of jet. When the velocity of the jet is less than the
average speed of the plasmon, the growth rate increases
with the increase of ξ at fixed η, and the maximum point
switches toward the higher value of the momentum, as
shown in Fig. 4(a). It is also seen that the maximum value
of Γ is increased with increasing value of η at same values

of ξ, and the corresponding value of the momentum
remains approximately the same [13]. For vjet ¼ 0.99,
i.e., for the jet velocity greater than the phase velocity of
plasmon, the unstable collective mode II of the composite
system is shown in Fig. 4(b). It is clearly noticed that the
value of Γ increases with the increasing values of ξ and η.
But the values of the momenta at which the maxima of Γ
occur are independent of ξ and η. In order to find the wave
number kmaxðξ; vjet; ηÞ at which the unstable modes of the
spectrum terminates, we take the limit Γ → 0 to obtain

kmax¼
ωt

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v2jet

q
�
3−2v2jetððη−3Þ−7ηÞ−3ðη−1Þ

×ð−1þξþ2vjetð1þξÞÞarctan½
ffiffiffi
ξ

p �ffiffiffi
ξ

p
�
1=2

: (22)

0 0.5 1 1.5 2

k/m
t

0

0.5

1

1.5

2
ω

/m
t

η = 0.05

0 0.5 1 1.5 2

k/m
t

isotropic

ξ = 1
ξ= 5

η = 0.1

v
jet

 = 0.55

0 0.5 1 1.5 2

k/m
t

0

0.5

1

1.5

2

2.5

ω
/m

t

η = 0.05

0 0.5 1 1.5 2

k/m
t

isotropic

ξ = 1
ξ = 5

η = 0.1

v
jet

 = 0.99

FIG. 2 (color online). Dispersion relation for the stable mode II for an anisotropy parameter ξ ¼ f0; 1; 5g and different η ¼ f0.05; 0.1g
at two jet velocities vjet ¼ f0.55; 0.99g.

0 0.5 1

k/m
t

0

0.025

0.05

0.075

Γ
/m

t

η = 0.0

η = 0.05
η = 0.1

ξ = 1

0 0.5 1 1.5 2

k/m
t

0

0.05

0.1

0.15

Γ
/m

t

η = 0.0
η = 0.05
η = 0.1

ξ = 5

FIG. 3 (color online). Imaginary part of the dispersion relation of the unstable mode I at ξ ¼ 1 (left) and at ξ ¼ 5 (right) for different
values of η ¼ f0; 0.05; 0.1g.
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The minimum value for the jet velocity where the unstable
mode is generated is given by

vmin ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 7η − 3ðη − 1Þðξ − 1Þ arctan½

ffiffi
ξ

p �ffiffi
ξ

p
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ ηþ 3ðη − 1Þð1þ ξÞ arctan½

ffiffi
ξ

p �ffiffi
ξ

p
q : (23)

Therefore, the threshold value of the jet velocity depends
both on η and the anisotropy parameter ξ.

B. k parallel to vjet
We now discuss the unstable collective mode for the

system composed by the AQGP and the jet in the case
where the jet velocity is parallel to the momentum of the
collective modes. The jet velocity and the wave vector
are chosen as k ¼ ð0; 0; kÞ and vjet ¼ ð0; 0; vjetÞ, and the
corresponding solution of Eq. (17) is

d011d
0
22d

0
33 ¼ 0; (24)

where

d011 ¼ ðk2 − ω2Þ þ αðω; k; ξÞ þ ηω2
t ¼ d022; (25)

d033 ¼ βðω; k; ξÞ − ω2 þ ηω2
t

ω2ð1 − v2jetÞ
ðω − kvjetÞ2

: (26)

The solution of the dispersion relation shows that the
collective modes of the composite system have three
solutions. But the expressions d011 and d022 are the same
and identical to Eq. (20). Consequently, we found similar
collective modes as collective mode I in the case when
kjjvjet. Hence, the dispersion relation for the other collec-
tive mode can be determined by solving

ðβ − ω2Þðω − kvjetÞ2 þ ηω2
tω

2ð1 − v2jetÞ ¼ 0; (27)

which is referred to as mode III.

1. Stable modes

In Fig. 5 we present the dispersion relation for the
collective mode III for two different values of ηð0.05; 0.1Þ
at two different values of velocity (0.55, 0.99) of the jet
with the variation of anisotropy parameter ξ. In all of the
cases we find that the collective modes depend on the
anisotropy parameter, and with the increase of ξ, the modes
are shifted toward the light cone. At vjet ¼ 0.55, due to the
effect of η, a marginally enhancement of collective modes is
seen in the lower momentum region at fixed ξ, but at a
higher value of the jet velocity, it is unaffected.

2. Unstable modes

Numerically we find that the solutions of Eq. (27) are an
unstable propagating mode, i.e., ω0 ≠ 0. At vjet ¼ 0.55, the
maximum value of the growth rate Γ increases with the
increase of the anisotropy parameter ξ and the strength of
the jetðηÞ is shown in Fig. 6(a). The value of the momentum
corresponding to the maximum of Γ is the same for all the
cases considered here. The behavior of the growth rate is
completely different when the value of the jet velocity is
greater than the plasmon phase velocity, as shown in
Fig. 6(b). At fixed value of ξ, the maximum value of Γ
increases with η, and the corresponding value of the
momentum is approximately independent of η. Due to
the effect of the anisotropy, the maximum value of the
growth rate Γ does not change at fixed η, but the value of
the momentum is shifted toward the origin with the increase
of ξ.
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FIG. 4 (color online). Imaginary part of the dispersion relation of the unstable mode II as a function of k for two different values of the
velocity of the jet with the variation of ξ and η. The left (right) panel corresponds to v ¼ 0.55ð0.99Þ.
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III. SUMMARY

In this paper we have studied the effects of the jet of
particles on the collective modes of a QCD plasma which is
anisotropic in momentum-space using transport theory. To
simplify the analysis, we considered the initial distribution
of the jet of particles to be a colorless tsunamilike
distribution. As we know, the filamentation instability of
AQGP is a maximum when the direction of the wave vector
is parallel to the anisotropy(kjjn̂); we concentrate our
calculation on this particular case of such a composite
system. For the case when k⊥vjet, we find two stable
modes (I and II), of which one is independent of the jet
velocity; however, both the modes strongly depend on the
value of ξ, and for nonzero ξ, the modes shift toward the
light cone. In case of k∥vjet we obtain two identical modes

as mode I and one distinct mode (III) which also shifts
toward the light cone for nonzero ξ.
We note that the velocity dependence of modes II and III

strongly affects the growth rate (Γ) of the unstable modes.
In case of mode I, the maximum value of the growth rate
increases with the strength of the anisotropy. In case of
mode II, Γmax increases with the velocity of the jet. With
the increase of η or ξ, Γmax also increases for both the
jet velocities considered here. It is also seen that for jet
velocity less than the plasmon speed the values of the
momenta for which Γ is maximum are approximately
independent of the jet strength for fixed ξ. For nonzero
ξ, the value of the momentum for which Γ is maximum
shifts toward the higher value. It is also important to note
that the nature of the growth rate strongly depends on the jet
velocity. We also notice that if the jet velocity is greater
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FIG. 5 (color online). Dispersion relation for the stable mode III for an anisotropy parameter ξ ¼ f0; 1; 5g and different
η ¼ f0.05; 0.1g at two jet velocities vjet ¼ f0.55; 0.99g.
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FIG. 6 (color online). Imaginary part of the dispersion relation of the unstable mode III as a function of k for two different values of the
velocity of the jet with the variation of ξ and η. The left (right) panel corresponds to v ¼ 0.55ð0.99Þ.
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than the plasmon speed, the maximum growth rate is
independent of ξ and η. When the momentum of the
collective modes is collinear with the velocity of the jet,
the maximum growth rate of the instability increases with ξ
and η at the jet velocity vjet ¼ 0.55, and the corresponding
momentum is k ≈ 1.75ωt for mode III. However, Γmax is
independent of ξ when the jet velocity is greater than the
phase velocity of plasmon at fixed η. Due to the increase of
the strength of the jet, the growth rate is also increased.

Moreover, the stable collective mode III is almost unaf-
fected by the jet velocity. In our numerical analysis, we
find that the maximum value of the growth rate of such a
system varies from 0.05ωt to 0.25ωt. Therefore, the plasma
instability fully develops on the time scale of the order of
t ∼ ð4 − 20Þ=ωt, and we can estimate the upper bound of
this time scale evaluating the plasma frequency in
a weak coupling scenario at T ∼ 350 MeV, finding
t ∼ 1 − 3 fm=c.
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