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We have calculated the potentials of the heavy (charmed or bottomed) pseudoscalar mesons up to Oðϵ2Þ
with the heavy meson chiral perturbation theory. We take into account the contributions from the football,
triangle, box, and crossed diagrams with the 2ϕ exchange and one-loop corrections to the contact terms. We
notice that the total 2ϕ-exchange potential alone is attractive in the small momentum region in the channel
B̄ B̄I¼1, B̄sB̄s

I¼0, or B̄B̄s
I¼1=2, while repulsive in the channel B̄ B̄I¼0. Hopefully the analytical chiral

structures of the potentials may be useful in the extrapolation of the heavy meson interaction from lattice
QCD simulation.
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I. INTRODUCTION

Since the discovery of Xð3872Þ [1], many charmonium-
like and bottomoniumlike states such as Xð3940Þ [2] and
Xð4160Þ [3] have been observed in the past decade. The
charmoniumlike state Xð3872Þ was first observed by the
Belle Collaboration in the exclusive decay process
B� → K�πþπ−J=ψ . Last year the Belle Collaboration
observed two charged bottomoniumlike resonances
Zbð10610Þ and Zbð10650Þ in the hidden-bottom decay
channels π�ΥðnSÞ (n ¼ 1, 2, 3) and π�hbðmPÞ (m ¼ 1, 2)
of Υð5SÞ [4].
Some of these new states including the above two

charged Zb states do not fit into the conventional quark
model framework. Various theoretical approaches includ-
ing the lattice QCD [5], the QCD sum rule [6], and the
quark model [7] have been employed to interpret the
underlying structure of these new states. Despite huge
experimental and theoretical efforts, the nature of some of
these exotic states is still elusive.
For example, the interpretation of Xð3872Þ remains

challenging since the discovery in 2003. One popular
speculation is that Xð3872Þ is a molecular state composed
of a pair of heavy mesons [8–10]. Similarly, the two
charged Zbð10610Þ and Zbð10650Þ states are proposed
as the BB̄� and B�B̄� molecule states within the one boson
exchange (OBE) framework [11,12].
Besides the charmoniumlike and bottomoniumlike

states, the possible existence of some molecular candidates
composed of B̄ B̄ mesons and DD mesons is also very
interesting. If the attractive interaction is strong enough
between the heavy meson pair, this kind of states may exist.
Their behavior will be very similar to the deuteron, which is

composed of two nucleons. There have been some inves-
tigation of these interesting states within the OBE model.
However, the interaction potential derived from the OBE

model contains several phenomenological coupling con-
stants and cutoff parameters, which should in principle
be extracted through fitting to the experimental data.
Unfortunately, there is not much experimental information
on the strong interaction between the light meson and
heavy meson. It will be very desirable to derive the strong
interaction between the heavy meson pair with a model-
independent approach. Especially many new states such as
Xð3872Þ and the two Zb states lie very close to the
threshold. Within these very loosely bound systems, the
long-range pion exchange force should play an important
role. Therefore the chiral perturbation theory provides a
natural framework to investigate the heavy meson strong
interaction. In this work, we shall derive the heavy
pseudoscalar meson potential order by order.
Chiral perturbation theory (χPT) is a model-independent

tool to study the chiral dynamics of heavy hadrons. Heavy
hadron χPT is frequently used for the system made up with
a single heavy hadron and light pseudoscalar mesons
because of its explicit power counting [13–17]. The
scattering matrix can be expanded order by order in
the small parameter ϵ ¼ p=Λχ, where p represents either
the momentum of the light pseudoscalar mesons or the
residual momentum of the heavy hadrons in the non-
relativistic limit, while Λχ represents either the scale of
chiral symmetry breaking or the mass of heavy hadrons.
The power counting guarantees that one can just calculate
some limited Feynman diagrams and obtain the scattering
matrix at the certain order.
Weinberg developed a new formalism and first extended

the chiral perturbation theory to the two nucleon system
[18,19]. Since his pioneering work, the modern nuclear
force has been built upon the chiral effective field theory
[20–30]. Such a formalism was used extensively to
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investigate the various few-nucleon observables such as the
partial-wave analysis, few-nucleon scattering, and reaction.
As pointed out by Weinberg [18,19], the power counting

of the two nucleon scattering matrix is broken by the
double poles of the heavy hadrons in some two-particle-
reducible (2PR) Feynman diagrams. Let us illustrate this
point with the box diagram in Fig. 1. The Feynman
amplitude can be written as

i
Z

d4l
i

l0 þ P0 þ iε
i

−l0 þ P0 þ iε
× � � �

¼ i
Z

dl0
i

l0 þ P0 þ iε
i

−l0 þ P0 þ iε

Z
d3l � � � ; (1)

where we omit the parts relevant to the pion that preserves
the power counting. We will focus the integral with l0 and
work it out by closing the l0 contour integral in the lower
half-plane

I ≡ i
Z

dl0
i

l0 þ P0 þ iε
i

−l0 þ P0 þ iε

¼ π

P0 þ iε
≈

π

~P2=ð2mNÞ þ iε
: (2)

The naive power counting predicts that I should be

Oð1=j~PjÞ. But it is OðmN=j~Pj2Þ from Eq. (2). I is actually

enhanced by a large factor mN=j~Pj compared to the naive
power counting prediction.
With Weinberg’s formalism, we do not directly calculate

the scattering matrix of the few hadrons perturbatively with
the heavy hadron χPT due to the 2PR diagrams. Instead, we
focus on the potential. In the derivation of the hadron-
hadron potential, one takes into account the two-particle-
irreducible (2PI) parts of the Feynman diagrams only and
calculate the potential of the few hadrons perturbatively
with the correct power counting. Afterwards, one can
obtain the scattering matrix with the potential by solving
the nonperturbative equations such as Schrödinger equa-
tions, Lippmann-Schwinger equations, and so on. The 2PR
contributions will be recovered when solving the non-
perturbative equations.
The reliable hadron-hadron potential is a necessary input

for getting the scattering amplitude or phase shift of the
hadrons. It is also essential to explore the existence of the

heavy hadron molecules. For example, the binding energy
or size of the molecular states can be obtained from the
potentials of the hadrons by solving the Schrödinger or
Lippmann-Schwinger equations.
In this work, we shall use Weinberg’s formalism to

derive the B̄ B̄ potentials in four independent channels up to
the 1-loop level with heavy meson chiral perturbation
theory (HMχPT). We include the heavy vector B̄� mesons
as explicit degrees besides the B̄ and light pseudoscalar
ϕ mesons since the B̄ and B̄� mesons would form a
degenerate doublet in the limit of heavy quark symmetry.
We count the mass difference Δ between B̄ and B̄� mesons
as Oðϵ1Þ. The potentials of the B̄ B̄ mesons start at Oðϵ0Þ.
We will investigate the corrections up to Oðϵ2Þ.
This paper is organized as follows. In Sec. II, we list the

Lagrangians of HMχPT. In Sec. III, we present the
expressions of the B̄ B̄ potential, which include the tree-
level diagram contributions at the leading order and the
loop corrections atOðϵ2Þ. In Sec. IV, we give the numerical
results of the B̄ B̄ potentials in the first subsection. Then we
present the results of the potentials of theDDmesons in the
second subsection. We compare the results within different
schemes in Sec. V. Section VI is a short summary.

II. LAGRANGIANS WITH HMχPT

The leading order B̄ B̄ potential is at Oðϵ0Þ and receives
only the contribution from the tree-level diagrams made up
of the vertices of the leading order Lagrangians in Eq. (3).
The corrections start at Oðϵ2Þ. They contain the contribu-
tions of the 1-loop diagrams generated by the leading
Lagrangians and the contributions of tree diagrams gen-
erated by the Lagrangians at higher order.
The leading Lagrangians are

Lð0Þ
4H ¼ DaTr½HγμH̄�Tr½HγμH̄�

þDbTr½Hγμγ5H̄�Tr½Hγμγ5H̄�
þ EaTr½Hγμλ

aH̄�Tr½HγμλaH̄�
þ EbTr½Hγμγ5λ

aH̄�Tr½Hγμγ5λaH̄�; (3)

Lð1Þ
Hϕ ¼ −hðiv · ∂HÞH̄i þ hHv · ΓH̄i þ ghHuγ5H̄i

−
1

8
ΔhHσμνH̄σμνi; (4)

where the number in the parentheses represents the chiral
dimension, vμ ¼ ð1; ~0Þ is the velocity of a slowly moving
heavy meson, and H represents the B̄ and B̄� doublet in the
heavy quark symmetry limit,

H ¼ 1þ v
2

ðP�
μγ

μ þ iPγ5Þ;

H̄ ¼ γ0H†γ0 ¼ ðP�†
μ γμ þ iP†γ5Þ

1þ v
2

; (5)FIG. 1. The box diagram. The solid line represents the nucleon,
and the dashed line represents the pion.
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P ¼ ðB−; B̄0; B̄0
sÞ; P�

μ ¼ ðB�−; B̄�0; B̄�0
s Þμ: (6)

The pseudoscalar meson field, chiral connection, and axial
vector field are defined as follows:

Γμ ¼
i
2
½ξ†;∂μξ�; uμ ¼

i
2
fξ†;∂μξg; ξ¼ expðiϕ=2fÞ;

(7)

ϕ ¼
ffiffiffi
2

p
0
BB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 − 2ffiffi
6

p η

1
CCA: (8)

The Lagrangian Lð0Þ
4H generates the contact interaction

terms of the four bottomed mesons while Lð1Þ
Hϕ depicts the

interaction between the heavy mesons and light pseudo-
scalar mesons. The other contact terms with different
Lorentz structures at the leading order are not independent.

Actually they are linear combinations of terms in Lð0Þ
4H,

so we do not need them. For example, the term
Tr½HγμH̄HγμH̄� can be expressed as the linear combination

of terms in Lð0Þ
4H by the Fierz transformation. In the heavy

meson limit, Tr½HH̄�Tr½HH̄� and Tr½HσμνH̄�Tr½HσμνH̄�
can be absorbed by readjusting the coefficients Da and

Db of Lð0Þ
4H, respectively. The term Tr½Hγ5H̄�Tr½Hγ5H̄�

vanishes in the heavy meson limit. Similar conclu-
sions hold for the terms containing λa such as
Tr½Hγ5λ

aH̄�Tr½Hγ5λaH̄�.
The ranges of the couplings Da, Db, Ea, and Eb were

estimated in the DD̄ case by fixing the masses of Xð3872Þ,
Xð3915Þ, and Yð4140Þ and the isospin breaking branching
ratio of Xð3872Þ in Ref. [31]. Their values lie from several
to tens of GeV−2 with positive signs.
The Oðϵ2Þ Lagrangian Lð2Þ

4H will also contribute to the
potentials, which read

Lð2;hÞ
4H ¼ Dh

aTr½HγμH̄�Tr½HγμH̄�TrðχþÞ þDh
bTr½Hγμγ5H̄�Tr½Hγμγ5H̄�TrðχþÞ

þ Eh
aTr½Hγμλ

aH̄�Tr½HγμλaH̄�TrðχþÞ þ Eh
bTr½Hγμγ5λ

aH̄�Tr½Hγμγ5λaH̄�TrðχþÞ; (9)

Lð2;dÞ
4H ¼ Dd

aTr½Hγμ ~χþH̄�Tr½HγμH̄� þDd
bTr½Hγμγ5 ~χþH̄�Tr½Hγμγ5H̄�

þ Ed
adabcTr½HγμλaH̄�Tr½HγμλbH̄�Tr½~χþλc� þ Ed

bd
abcTr½Hγμγ5λaH̄�Tr½Hγμγ5λbH̄�Tr½~χþλc�; (10)

Lð2;vÞ
4H ¼ fDv

a1Tr½ðv ·DHÞγμðv ·DH̄Þ�Tr½HγμH̄� þDv
a2Tr½ðv ·DHÞγμH̄�Tr½ðv ·DHÞγμH̄�

þDv
a3Tr½ðv ·DHÞγμH̄�Tr½Hγμðv ·DH̄Þ� þDv

a4Tr½ððv ·DÞ2HÞγμH̄�Tr½HγμH̄�
þDv

b1Tr½ðv ·DHÞγμγ5ðv ·DH̄Þ�Tr½Hγμγ5H̄� þ � � � þ Ev
a1Tr½ðv ·DHÞγμλaðv ·DH̄Þ�Tr½HγμλaH̄� þ � � �

þ Ev
b1Tr½ðv ·DHÞγμγ5λaðv ·DH̄Þ�Tr½Hγμγ5λaH̄� þ � � �g þ H:c:; (11)

Lð2;qÞ
4H ¼ fDq

1Tr½ðDμHÞγμγ5ðDνH̄Þ�Tr½Hγνγ5H̄� þDq
2Tr½ðDμHÞγμγ5H̄�Tr½ðDνHÞγνγ5H̄�

þDq
3Tr½ðDμHÞγμγ5H̄�Tr½Hγνγ5ðDνH̄Þ� þDq

4Tr½ðDμDνHÞγμγ5H̄�Tr½Hγνγ5H̄�
þ Eq

1Tr½ðDμHÞγμγ5λaðDνH̄Þ�Tr½Hγνγ5λaH̄� þ � � �g þ H:c:; � � � (12)

where dabc is the totally symmetric structure constant of the
SU(3) group, and

~χ� ¼ χ� −
1

3
Tr½χ��; χ� ¼ ξ†χξ† � ξχξ;

χ ¼ diagðm2
π; m2

π; 2m2
K −m2

πÞ: (13)

The low-energy constants (LECs) in Eqs. (9)–(12)
contain both the infinite and the finite parts. We will use
the infinite parts to cancel the divergence introduced by the
loop diagrams. We are unable to determine the finite parts
of the LECs due to the lack of experimental data right now,
which we tend to neglect for the moment. However, these

LECs atOðϵ2Þ should be included in a complete analysis in
the future when more experimental data are available.
There will be devoted efforts to study the new resonances

composed of a pair of B̄ð�ÞBð�Þ at the approved SuperBelle,
KEK. The investigation of these systems may reveal the
interaction between B̄ð�ÞBð�Þ. For example, one may know
whether the interaction is attractive at some distance.
Moreover, right now there exists dedicated huge efforts

to study the D̄ð�ÞDð�Þ interaction through the decays of the
excited charmonium resonances at BESIII/BEPCII at IHEP,
Beijing. In quantum field theory, the B̄ð�ÞBð�Þ interaction
could be related to the B̄ð�ÞB̄ð�Þ except the short distance
part due to the annihilation in the B̄ð�ÞBð�Þ channel [32,33].
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Besides, using lattice QCD within the Lüscher’s formal-
ism, the scattering length and the scattering phase shifts
have been studied for pion-pion scattering, D�D̄1 scatter-
ing, and so on [34–36]. If there were lattice studies about
the B̄ B̄ or DD scattering in different partial waves and
different channels, we could fix some parameters or reduce
the number of independent parameters with the lattice
information. In Appendix B we fit some LECs with the
results of quenched lattice QCD. In our subsequent work,
we also plan to reduce the number of independent LECs by
assuming large Nc and heavy quark symmetry as used
in Ref. [37].
Lð2;hÞ
4H and Lð2;dÞ

4H are made up of four heavy meson fields,
TrðχþÞ, and traceless ~χþ. The LECs in Lð2;hÞ

4H and Lð2;dÞ
4H will

absorb the divergent parts from the one-loop diagrams that
are proportional tom2

ϕ.L
ð2;vÞ
4H will absorb the divergent parts

proportional to the square of the external line energy. There
are also divergent parts proportional to the mass difference
Δ, which will vanish in the heavy meson symmetry limit.
These divergences can be absorbed by the additional four
heavy meson interaction terms proportional to Δ. Lð2;qÞ

4H
does not contribute to the renormalization of the B̄ B̄
potentials. Instead it will contribute to the B̄B̄� and
B̄�B̄� potentials.

III. POTENTIALS WITH HMχPT

With the strict isospin symmetry, there are only four
independent potentials for the channels B̄ B̄1, B̄ B̄0, B̄sB̄s

0,
and B̄B̄s

1=2. The superscript represents the isospin of the
channel. At the leading order, the potentials of the
bottomed mesons only receive the contributions from
the tree diagrams with the contact terms in Lð0Þ

4H,

Vð0Þ
B̄ B̄1 ¼ −2Da −

8

3
Ea; Vð0Þ

B̄ B̄0 ¼ 0;

Vð0Þ
B̄sB̄s

0 ¼ −2Da −
8

3
Ea; Vð0Þ

B̄B̄s
1=2 ¼ −2Da −

8

3
Ea: (14)

The loop diagrams in Figs. 2 and 3 will contribute at the
next to leading order. The diagrams h.1, h.2, and B.1 in
Figs. 2 and 3 contain both 2PR and 2PI parts if using the
ordinary Feynman rules of HMχPT. We must remove the
2PR contribution to get the correct potentials. The 2PR
parts result from the double poles of the two heavy mesons,
which can be removed by the careful subtraction in the
propagator of the heavy mesons

1

½v ·p1 þ δ1 þ iε�½v ·p2 þ δ2 þ iε� ¼
8<
:

1
v·p1þδ1þiε

h
−1

v·p1þδ1þiε− 2πiδðv ·p1 þ δ1Þ
i
→ −1

ðv·p1þδ1þiεÞ2 v ·p2 þ δ2 ¼ −v ·p1 − δ1

1
½v·p1þδ1þiε�½v·p2þδ2þiε� other

.

(15)

We calculate these Feynman diagrams with dimension
regularization and the modified minimal subtraction

scheme. The divergent terms proportional to L will be
absorbed by the contact terms at Oðϵ2Þ, where

L ¼ λD−4

16π2

�
1

D − 4
þ 1

2
ðγE − 1 − ln 4πÞ

�
: (16)

Here γE is the Euler constant 0.5772157, λ is the scale of
the dimension regularization, and we set λ ¼ 4πf.
The potentials are finite after the renormalization of the

wave functions and vertices. The diagram z.1 in Fig. 2
arises from the renormalization of the wave functions. The
combined divergence generated by diagrams g.1 and g.2 in
Fig. 2 can be absorbed by the LECs Dv

ai, E
v
ai, D

h=d
b , and

Eh=d
b . The divergence generated by the diagram h.1 or h.2

can be absorbed by the redefinitions of LECs in Lð2;hÞ
4H ,

Lð2;dÞ
4H , and Lð2;vÞ

4H . For the 2ϕ exchange diagrams in Fig. 3,
the divergence of the football or triangle diagram can be
absorbed by Ev

ai and Eh=d
a . The divergence of the box and

crossed diagram can be absorbed by Dv
ai, D

h=d
a , Ev

ai, and

Eh=d
a .
The potentials obtained from the same Feynman diagram

for the different channels differ just by a flavor dependent

FIG. 2. The loop diagrams with a contact vertex. The thin solid,
thick solid, and dashed lines represent the heavy pseudoscalar
mesons, heavy vector mesons, and light pseudoscalar mesons,
respectively.

FIG. 3. The 2ϕ-exchange diagrams including the football
diagram (F.1), triangle diagrams (T.1 and T.2), box diagram
(B.1), and crossed diagram (R.1).
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coefficient. So it is convenient to write down the potential
of the channel “ch” in the form

Vð2Þ
ch ¼ −

1

4

X
diag;m1;m2;…

βdiagchðm1; m2;…Þ

⊗ Ydiagðm1; m2;…Þ; (17)

where “diag” runs over all the Feynman diagrams shown in
Figs. 2 and 3, and mi runs over fmπ; mK;mηg. Y is a scalar
function independent of the flavor structure of the channel
ch, while β is the flavor dependent coefficient.
The corresponding Y functions of Fig. 2 are

Yg:1ðmÞ≡ −
g2

f2

��
D
4
−
1

4

�
Jg22

�
r
ðm; E − q0 − Δ; E − ΔÞ;

(18)

Yg:2ðmÞ≡ −
g2

f2

��
D
4
−
1

4

�
Jg22

�
r
ðm; E þ q0 − Δ; E − ΔÞ;

(19)

Yh:1ðmÞ≡ −
g2

f2

��
D
4
−
1

4

�
Jh22

�
r
ðm; E − Δ; E − ΔÞ; (20)

Yh:2ðmÞ≡−
g2

f2

��
D
4
−
1

4

�
Jh22

�
r
ðm;E−q0−Δ;Eþq0−ΔÞ;

(21)

Yz:1ðmÞ≡ g2

f2

��
D
4
−
1

4

�
∂xJa22

�
r
ðm; xÞj

x→−Δ
; (22)

where we work in the center-of-mass frame of the incoming
heavy mesons, E is the residual energy of the incoming
heavy meson (the difference between the energy and the B̄
meson mass), and q is the transferred momentum. The
definitions of the J functions are collected in Appendix A.
fXgr represents the finite part of X,

fXgr ¼ lim
D→4

�
X − L

∂
∂LX

�
þ 1

16π2
lim
D→4

� ∂
∂D

∂
∂LX

�
:

(23)

The loop diagrams in Fig. 2 are made up of the contact
vertices of Lð0Þ

4H, so the flavor dependent coefficient β can be
written down as

β ¼ Da
~βDa þDb

~βDb þ Ea
~βEa þ Eb

~βEb: (24)

Actually, only three coefficient βs for the diagrams g.1, h.1,
and z.1 in Fig. 2 are independent. For convenience, we list
f~βg:1Da ; ~βz:1Da ; ~βg:1Db; ~βh:1Dbg in Table I and f ~βg:1Ea ; ~βz:1Ea ; ~βg:1Eb ; ~βh:1Eb g in
Table II. The coefficient βs for g.2 and h.2 can be obtained
by the following relations:

~βg:2Da ¼ ~βg:1Da ; ~βg:2Db ¼ ~βg:1Db; ~βh:2Db ¼ ~βh:1Db ;

~βg:2Ea ¼ ~βg:1Ea ; ~βg:2Eb ¼ ~βg:1Eb ; ~βh:2Eb ¼ ~βh:1Eb ; (25)

and all the others are zero.
Now one can write down the potentials induced by Fig. 2

for the different channels. Let us take the B̄B̄0 system as an
example. One can get the contribution from the diagram g.1
by Tables I and II,

TABLE II. The coefficient βs of the loop diagrams with a contact term: f ~βg:1Ea ; ~βz:1Ea ; ~βg:1Eb ; ~βh:1Eb g.
0 (mπ) (mK) (mη)

B̄ B̄1 f0;−64;− 128
3
;− 32

3
g f− 32

3
;− 128

3
;−32; 0g f32

9
;− 64

9
;− 32

9
;− 32

9
g

B̄ B̄0 f32; 0;−32; 0g f− 32
3
; 0;−32; 0g f− 64

9
; 0;− 64

9
; 0g

B̄sB̄s
0 0 f− 64

3
;− 256

3
;−64; 0g f128

9
;− 256

9
;− 128

9
;− 128

9
g

B̄B̄s
1=2 f−8;−32;−24; 0g f16;−64;− 112

3
;− 64

3
g f− 136

9
;− 160

9
;− 152

9
; 64
9
g

TABLE I. The coefficient βs of the loop diagrams with a contact term: f ~βg:1Da ; ~βz:1Da; ~βg:1Db; ~βh:1Dbg.
0 (mπ) (mK) (mη)

B̄ B̄1 f24;−48;−8;−8g f16;−32; 0; 0g f8
3
;− 16

3
;− 8

3
;− 8

3
g

B̄ B̄0 f24; 0;−24; 0g {16, 0, 0, 0} f8
3
; 0; 8

3
; 0g

B̄sB̄s
0 0 f32;−64; 0; 0g f32

3
;− 64

3
;− 32

3
;− 32

3
g

B̄B̄s
1=2 f12;−24; 0; 0g f24;−48;−16;−16g f20

3
;− 40

3
; 16
3
; 16
3
g
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Vg:1
B̄B̄0 ¼ −

1

4
½24Da − 24Db þ 32Ea − 32Eb�Yg:1ðmπÞ −

1

4

�
16Da −

32

3
Ea − 32Eb

�
Yg:1ðmKÞ

−
1

4

�
8

3
Da þ

8

3
Db −

64

9
Ea −

64

9
Eb

�
Yg:1ðmηÞ: (26)

The diagrams in Fig. 3 represent the potentials with the 2ϕ exchange. We list the β functions fβB:1; βR:1g in Table III, and
all the others can be obtained by the following relations:

βF:1 ¼ −βB:1 þ βR:1

16
; βT:1 ¼ βT:2 ¼ −βB:1 þ βR:1

4
: (27)

The corresponding Y functions of Fig. 3 are

YF:1ðm;MÞ≡ 1

f4
fJF22 þ ½q20�JF0 þ ½4q20�JF11 þ ½4q20�JF21grðm;M; qÞ; (28)

YT:1ðm;MÞ≡ g2

f4

�
JT34 þ

�
Dq0
2

−
q0
2

�
JT21 þ ½Dq0 − q0�JT31 þ ½−~q2�JT24 þ ½−~q2�JT33 þ

�
−
1

2
q0~q2

�
JT11

þ
�
−
3

2
q0~q2

�
JT22 þ ½−q0~q2�JT32

�
rðm;M; E þ q0 − Δ; qÞ; (29)

YT:2ðm;MÞ≡ g2

f4

�
JT34 þ

�
Dq0
2

−
q0
2

�
JT21 þ ½Dq0 − q0�JT31 þ ½−~q2�JT24 þ ½−~q2�JT33 þ

�
−
1

2
q0~q2

�
JT11

þ
�
−
3

2
q0~q2

�
JT22 þ ½−q0~q2�JT32

�
rðm;M; E − Δ; qÞ; (30)

YB:1ðm;MÞ≡ g4

f4

��
D2

4
−
1

4

�
JB41 þ

�
−
1

4
~q2
�
JB21 þ

�
−
1

2
D~q2 −

1

2
~q2
�
JB31 þ

�
−
1

2
D~q2 −

1

2
~q2
�
JB42 þ

�
1

4
ð~q2Þ2

�
JB22

þ
�
1

2
ð~q2Þ2

�
JB32 þ

�
1

4
ð~q2Þ2

�
JB43

�
rðm;M; E − Δ; E − Δ; qÞ; (31)

YR:1ðm;MÞ≡ g4

f4

��
D2

4
−
1

4

�
JR41 þ

�
−
1

4
~q2
�
JR21 þ

�
−
1

2
D~q2 −

1

2
~q2
�
JR31 þ

�
−
1

2
D~q2 −

1

2
~q2
�
JR42 þ

�
1

4
ð~q2Þ2

�
JR22

þ
�
1

2
ð~q2Þ2

�
JR32 þ

�
1

4
ð~q2Þ2

�
JR43

�
rðm;M; E − Δ; E þ q0 − Δ; qÞ: (32)

Again, taking the B̄B̄0 channel as an example, the potential from the diagram B.1 of Fig. 3 reads

VB:1
B̄B̄0 ¼ −

1

4

�
−9YB:1ðmπ; mπÞ −

1

9
YB:1ðmη; mηÞ þ YB:1ðmπ; mηÞ þ YB:1ðmη; mπÞ

�
: (33)

Finally, the potentials Vð2Þ atOðϵ2Þ can be obtained by summing the products of the corresponding β and Y as in Eq. (17).

TABLE III. The coefficient βs of the 2-ϕ exchange diagrams: fβB:1; βR:1g.
(mπ , mπ) (mK , mK) (mη, mη) (mπ , mK) (mπ , mη) (mK , mη) (mK , mπ) (mη, mπ) (mη, mK)

B̄ B̄1 f−1;−5g f0;−4g f− 1
9
;− 1

9
g 0 f− 1

3
;− 1

3
g 0 0 f− 1

3
;− 1

3
g 0

B̄ B̄0 f−9; 3g {0, 4} f− 1
9
;− 1

9
g 0 {1, 1} 0 0 {1, 1} 0

B̄sB̄s
0 0 f0;−8g f− 16

9
;− 16

9
g 0 0 0 0 0 0

B̄B̄s
1=2 0 f−4; 0g f− 4

9
;− 4

9
g f0;−3g 0 f4

3
;− 5

3
g f0;−3g 0 f4

3
;− 5

3
g
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IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Potentials of B̄ B̄ mesons

We have calculated the potentials of B̄ B̄ mesons up to
Oðϵ2Þ for four independent channels. The Oðϵ2Þ potentials
Vð2Þ contain two parts Vð2;contÞ and Vð2;2ϕÞ, corresponding to
Figs. 2 and 3, respectively. We will focus on the potentials
with E ¼ q0 ¼ 0 in the momentum space. After the Fourier
transformation, we can get the traditional potentials in the
coordinate space. The other parameters are listed as follows
[38–41]:

mπ ¼ 139 MeV; mK ¼ 494 MeV;

mη ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4m2

K −m2
πÞ=3

q
; Δ ¼ 46 MeV;

f ¼ 92 MeV; g ¼ 0.52; (34)

whereΔ is the mass difference between B̄ and B̄� mesons, f
is the pion decay constant, and g is the axial coupling
constant from the unquenched lattice QCD simulation.
The potentials Vð0Þ and Vð2;contÞ are both generated by the

contact vertices. They are independent of the transferred
momentum j~qj. They are δð~rÞ-like potentials in the coor-
dinate space. From Eq. (14), we notice that the terms
proportional to Db and Eb in L

ð0Þ
4H do not contribute to Vð0Þ.

The potential vanishes in the channel ðB̄ B̄Þ0 at the leading
order. At the next to leading order, the situation is different,

Vð2;contÞ
B̄ B̄1 ¼ −0.32Ea − 0.32Eb;

Vð2;contÞ
B̄ B̄0 ¼ 0.19Da − 0.02Db − 0.085Ea − 0.36Eb;

Vð2;contÞ
B̄sB̄s

0 ¼ −0.53Ea − 0.53Eb;

Vð2;contÞ
B̄B̄s

1=2 ¼ −0.32Ea − 0.32Eb: (35)

All the terms in Lð0Þ
4H contribute to Vð2; contÞ. However, in the

B̄ B̄1, B̄sB̄s
0, and B̄B̄s

1=2 channels, the contributions
proportional to Da or Db from different diagrams in
Fig. 2 cancel each other. Roughly speaking, the corrections
Vð2;contÞ are small compared with the leading order
contribution. We also notice that

jVð2;contÞ
B̄sB̄s

0 j > jVð2;contÞ
B̄B̄s

1=2 j ≈ jVð2;contÞ
B̄ B̄1 j: (36)

As we have emphasized in the previous section, the finite
parts of the Oðϵ2Þ LECs in Eqs. (9)–(12) also contribute to
the potential while its divergent parts cancel the divergence
from the one-loop diagrams. Unfortunately, we are unable
to fix these LECs because of the lack of experimental data.
In the following analysis, we focus on the behavior of the
2ϕ-exchange potentials.
We plot the 2ϕ-exchange potentials Vð2;2ϕÞ of the B̄ B̄

mesons in Fig. 4. From the figure, the contributions from
the football and triangle diagrams are coincidentally close
in all the B̄ B̄ channels. When the transferred momentum is
small, the sign of the potential from the crossed diagrams is

FIG. 4. The B̄ B̄ potentials with the 2ϕ exchange.
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different from that of the other 2ϕ-exchange diagrams. We
have noticed that the 2ϕ-exchange potentials of the B̄ B̄1,
B̄sB̄s

0, and B̄B̄s
1=2 channels are negative in the small-

momentum region. In other words, the 2ϕ-exchange inter-
action is attractive if we ignore the contribution from the
LECs. In contrast, the 2ϕ-exchange interaction of the B̄ B̄0

channel is repulsive in the small-momentum region without
these LECs. The 2ϕ-exchange potential in the B̄sB̄s

0 channel
is nearly twice as large as those in the other channels.
The potentials from the football diagram, triangle diagram,

box diagram, and crossed diagram are proportional to g0, g2,
g4, and g4, respectively, from Eqs. (28)–(32). So because the
coupling constant g ¼ 0.52 is quite small, one would naively
expect that the potential from the triangle diagram is sup-
pressed by a factor of about 0.27, and the potential from the
box or cross diagram is suppressed by about 0.07 compared
with that from the football diagram. However, we do not see
the suppression in Fig. 4. There is also an enhancement of the
flavor coefficient β for the triangle, box, and crossed diagram
from Eq. (27), which roughly compensates for the suppres-
sion of the small g. That is why we see neither the
suppression due to the small g nor the enhancement of β
in the numerical results. If we let g → 1, the potential from
the box or crossed diagram would be much larger than the
potential from the triangle diagram, which would be larger
than the potential from the football diagram.
From Fig. 4, we notice that the contribution from the box

diagram dominates the potential Vð2;2ϕÞ. From Eq. (32), we
have

15⪅
YB:1ðmϕ1

; mϕ2
Þ

YB:1ðmπ; mπÞ
⪅ 50; (37)

where the intermediate meson pair ϕ1ϕ2 can be πK, πη,
KK, Kη, or ηη. So the potential from the box diagram is
dominated by the intermediate states with at least one kaon
or eta meson.

B. Potentials of the DD mesons

Similarly we can study the potentials between the D0,
Dþ, and Dþ

s mesons. Now the intermediate heavy vector
mesons are D�0, D�þ, and D�þ

s . The mass difference Δ
increases to 142 MeV. The axial coupling constant g ¼
0.59 from the decay width of D�þ [38]. The LECs Da, Ea,
etc., should be modified correspondingly. The expressions
for the DD mesons are the same as those for the B̄ B̄’s
except that the channels are DD1, DD0, DsDs

0, and
DDs

1=2. The DD potentials with the 2ϕ exchange are
plotted in Fig. 5. The potentials related to the contact terms
are

Vð2;contÞ
DD1 ¼ 0.89EDD

a þ 0.89EDD
b ;

Vð2;contÞ
DD0 ¼ −0.59DDD

a þ 0.2DDD
b − 0.0056EDD

a þ 1.1EDD
b ;

Vð2;contÞ
DsDs

0 ¼ 1.1EDD
a þ 1.1EDD

b ;

Vð2;contÞ
DDs

1=2 ¼ 1.1EDD
a þ 1.1EDD

b : (38)

FIG. 5. The DD potentials with the 2ϕ exchange.
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We notice that there is a big difference between the
potentials Vð2;contÞ of the B̄ B̄ andDDmesons by comparing
Eqs. (35) and (38). The difference originates from the
different axial coupling g and mass difference Δ. The signs
of most of the terms in Vð2;contÞ are different for the bottom
and charm cases if assuming DDD

a=b (EDD
a=b) is equal to Da=b

(Ea=b) for the B̄ mesons. One obtains the relation

jVð2;contÞ
DDs

1=2 j ≈ jVð2;contÞ
DsDs

0 j > jVð2; contÞ
DD1 j; (39)

which is different from that in the case of the B̄ mesons.
Comparing Figs. 4 and 5, one can find that the total

Vð2;2ϕÞ
B̄ B̄ is roughly twice Vð2;2ϕÞ

DD for each channel. Moreover,
the separate contributions from the crossed or triangle
diagrams have opposite signs for the B̄ and D mesons.
One can obtain the potentials of anti-heavy mesons

based on C-parity conservation

VBBI ¼ VB̄ B̄I ; VD̄ D̄I ¼ VDDI : (40)

V. COMPARISON BETWEEN RESULTS IN
DIFFERENT SCHEMES

One can also systematically study the potentials of the
heavy pseudoscalar mesons without heavy vector mesons
as the explicit degrees. The contributions from the heavy
vector mesons, as well as other resonances, will be
embodied in the low-energy constants. In the scheme
without heavy vector mesons, the potential at the leading

order remains the same. However, only the football dia-
gram survives at Oðϵ2Þ.
It is also very interesting to investigate the case with strict

heavy quark spin symmetry. Now the heavy vector mesons
are included as the explicit degrees but the mass difference
Δ is set to be zero. When Δ approaches 0, the potentials
induced by the diagrams h.1, h.2, and B.1 will approach
infinity if the 2PR contributions are not removed. The two-
heavy-vector-meson-reducible contribution does not
appear when the mass difference Δ is finite. It only appears
as Δ ¼ 0 before the subtraction. So there is a jump in the
potentials as Δ goes from nonzero to zero. When solving
the nonperturbative equation to get the observable, the
potentials such as VB̄ B̄→B̄�B̄� must be included as Δ ¼ 0.
But they are not necessary as Δ ≠ 0. Thus the jump might
vanish for the observable such as the binding energy.
In the new approximations, the potentials do not change

at the leading order. The difference appears at the next to
leading order. In the approximation without the heavy
vector mesons, there does not exist those diagrams in
Fig. 2, so Vð2;contÞ ¼ 0. In the approximation including the
heavy vector mesons and Δ ¼ 0, we have

Vð2;contÞ
B̄ B̄1 ¼ −0.78Ea − 0.78Eb;

Vð2;contÞ
B̄ B̄0 ¼ 0.48Da − 0.077Db − 0.17Ea − 0.91Eb;

Vð2;contÞ
B̄sB̄s

0 ¼ −1.2Ea − 1.2Eb;

Vð2;contÞ
B̄B̄s

1=2 ¼ −0.88Ea − 0.88Eb; (41)

FIG. 6. The B̄ B̄ potentials with the 2ϕ exchange in different schemes.
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and

Vð2;contÞ
DD1 ¼ −1.0EDD

a − 1.0EDD
b ;

Vð2;contÞ
DD0 ¼ 0.62DDD

a − 0.099DDD
b − 0.22EDD

a − 1.2EDD
b ;

Vð2;contÞ
DsDs

0 ¼ −1.6EDD
a − 1.6EDD

b ;

Vð2;contÞ
DDs

1=2 ¼ −1.1EDD
a − 1.1EDD

b : (42)

The difference between the B̄ B̄ and DD potentials only
originates from the different axial coupling g as Δ ¼ 0,

Vð2;contÞ
B̄ B̄

Vð2;contÞ
DD

¼ 0.522

0.592
¼ 0.8; for Δ ¼ 0: (43)

The B̄ B̄ potential with Δ ¼ 0 is nearly twice as large as
that with Δ ¼ 46 MeV in every channel by comparing
Eqs. (35) and (41). The potentials with Δ ¼ 46 MeV are
approximately equal in the channels B̄ B̄1 and B̄B̄s

1=2,
while those with Δ ¼ 0 are not equal. The difference

between the DD potentials is even larger with different
Δ from Eqs. (38) and (42). The sign of the DD potential as
Δ ¼ 0 is different from that as Δ ¼ 142 MeV in every
channel. The potential of the channelDsDs

0 is very close to
that of the channelDDs

1=2 for the case withΔ ¼ 142 MeV,
but the situation is different for the case with Δ ¼ 0.
The difference between the potentials with different Δ

mainly results from the subtraction of the 2-heavy-vector-
meson-reducible contributions to get the potentials of the
heavy pseudoscalar mesons as Δ ¼ 0. To recover the two-
heavy-vector-meson-reducible contributions, one should
include the potentials such as VB̄ B̄→B̄�B̄� when solving
the nonperturbative equations to get the observable
as Δ ¼ 0.
We list the B̄ B̄ and DD potentials with 2ϕ exchange in

different approximations in Figs. 6 and 7, respectively.
From Fig. 6, the potentials are relatively close between the
case without B̄� (case I) and that with Δ ¼ 0 (case II). The
potential jVj for case I or II is about 15%–50% of that for
the case with B̄� and Δ ¼ 46 MeV (case III) in every
channel. The dependence of the potential on j~qj for case III

FIG. 7. The DD potentials with the 2ϕ exchange in different schemes.

TABLE IV. The 2ϕ-exchange potentials of B̄ B̄ with different λ in units of GeV−2.

Vð2;2ϕÞ
B̄ B̄1 Vð2;2ϕÞ

B̄ B̄0 Vð2;2ϕÞ
B̄sB̄s

0 Vð2;2ϕÞ
B̄B̄s

1=2

j~qj [MeV] 0 300 0 300 0 300 0 300

λ ¼ 4πf −18 −21 24 22 −57 −62 −33 −37
λ ¼ 0.8 GeV −14 −18 20 18 −51 −56 −28 −32
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is slightly stronger than that for the other two cases in the
channels B̄ B̄1, B̄sB̄s

0, and B̄B̄s
1=2. The potential decreases

for case III and increases for the other two cases as j~qj
grows in the channel B̄ B̄0.
The situation in Fig. 7 is similar to that in Fig. 6. But the

difference of the DD potentials between different cases is
smaller than that of the B̄ B̄ potentials. We notice that the
DD potential is equal to the B̄ B̄ potential for case I in each
channel since the potential from the football diagram is
independent of the mass difference Δ and the axial
coupling constant g.
The 2ϕ-exchange potentials in our results depend on the

energy scale λ that arises from the dimensional regulari-
zation. Thus the variations of the potentials with λ might
reveal the effect of the LECs to some extent. We reset
λ ¼ 0.8 GeV, which is different from the previous one
λ ¼ 4πf ≈ 1.2 GeV. For comparison, we list Vð2;2ϕÞ

B̄ B̄ poten-
tials (for case III) with different λ in Table IV. From
Table IV, one notices that as λ goes from 4πf to 0.8 GeV,
the 2ϕ-exchange potential changes about 10%–20%.

VI. SUMMARY

In a short summary, we have calculated the potentials of
the heavy pseudoscalar mesons up to Oðϵ2Þ in the
momentum space with HMχPT. We have carefully ana-
lyzed the tree-level contribution and one-loop correction to
the contact vertices, and the 2π-exchange contribution. We
have also discussed the potentials in different schemes.
Generally speaking, the potential of hadrons can be

separated into long-range, medium-range, and short-range
parts. For the two heavy pseudoscalar mesons, there
does not exist the long-range 1ϕ-exchange potential.
The medium-range potential contains the 2ϕ-exchange

potential and the contributions by the Lagrangians (9)–
(12). The 2ϕ-exchange potential is model independent (still
renormalization-scheme dependent) since there are no
unknown constants in it, which is very essential for the
medium-range interaction of the heavy pseudoscalar mes-
ons. The interaction induced only by the 2ϕ exchange is
repulsive in the channels B̄ B̄I¼0,DDI¼0, while attractive in
the other channels. Unfortunately the leading order cou-
pling constants from the contact terms and LECs at Oðϵ2Þ
remain undetermined due to the lack of experimental data.
Once these LECs are extracted from lattice QCD

simulation, other model approaches, or future experimental
measurements, the potentials derived in this work can be
used to study the possible molecular states or scattering
phase shift of the two-heavy-pseudoscalar-meson system.
On the other hand, the analytical chiral structures of the
potentials of the heavy meson pair may be useful in the
extrapolation of the heavy meson interaction from lattice
QCD simulation.
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APPENDIX A: SOME FUNCTIONS USED FOR
POTENTIALS

The J functions can be obtained by calculating the
following integrals in D dimensions:

i
Z

dDlλ4−D

ð2πÞD
f1; lα; lαlβ; lαlβlγg

ðv · lþ ωþ iεÞðl2 −m2 þ iεÞ≡ fJa0; vαJa11; vαvβJa21 þ gαβJa22; ðg∨vÞJa31 þ vαvβvγJa32gðm;ωÞ; (A1)

i
Z

dDlλ4−D

ð2πÞD
f1; lα; lαlβg

ðl2 −m2 þ iεÞ≡ fJc0; 0; gαβJc21gðmÞ; (A2)

i
Z

dDlλ4−D

ð2πÞD
f1; lα; lαlβ; lαlβlγg

ðv · lþ ωþ iεÞ½ðþ=−Þv · lþ δþ iε�sðl2 −m2 þ iεÞ
≡ fJg=h0 ; vαJg=h11 ; vαvβJg=h21 þ gαβJg=h22 ; ðg∨vÞJg=h31 þ vαvβvγJg=h32 gðm;ω; δÞ; (A3)

i
Z

dDlλ4−D

ð2πÞD
f1; lα; lαlβ; lαlβlγg

ðl2 −m2 þ iεÞ½ðqþ lÞ2 −M2 þ iε�≡ fJF0 ; qαJF11; qαqβJF21 þ gαβJF22; ðg∨qÞJF31 þ qαqβqγJF32gðm;M; qÞ;
(A4)
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i
Z

dDlλ4−D

ð2πÞD
f1; lα; lαlβ; lαlβlγ; lαlβlγlδg

ðv · lþ ωþ iεÞðl2 −m2 þ iεÞ½ðqþ lÞ2 −M2 þ iε�
≡ fJT0 ; qαJT11 þ vαJT12; g

αβJT21 þ qαqβJT22 þ vαvβJT23 þ ðq∨vÞJT24;ðg∨qÞJT31 þ qαqβqγJT32 þ ðq2∨vÞJT33 þ ðg∨vÞJT34
þ ðq∨v2ÞJT35 þ vαvβvγJT36; ðg∨gÞJT41 þ ðg∨q2ÞJT42 þ qαqβqγqδJT43 þ ðg∨v2ÞJT44 þ vαvβvγvδJT45 þ ðq3∨vÞJT46
þ ðq2∨v2ÞJT47 þ ðq∨v3ÞJT48þðg∨q∨vÞJT49gðm;M;ω; qÞ; (A5)

i
Z

dDlλ4−D

ð2πÞD
f1; lα; lαlβ; lαlβlγ; lαlβlγlδg

ðv · lþ ωþ iεÞ½ðþ=−Þv · lþ δþ iε�sðl2 −m2 þ iεÞ½ðqþ lÞ2 −M2 þ iε�
≡ fJR=B0 ; qαJR=B11 þ vαJR=B12 ; gαβJR=B21 þ qαqβJR=B22 þ vαvβJR=B23 þ ðq∨vÞJR=B24 ;ðg∨qÞJR=B31 þ qαqβqγJR=B32 þ ðq2∨vÞJR=B33

þ ðg∨vÞJR=B34 þ ðq∨v2ÞJR=B35 þ vαvβvγJR=B36 ; ðg∨gÞJR=B41 þ ðg∨q2ÞJR=B42 þ qαqβqγqδJR=B43 þ ðg∨v2ÞJR=B44 þ vαvβvγvδJR=B45

þ ðq3∨vÞJR=B46 þ ðq2∨v2ÞJR=B47 þðq∨v3ÞJR=B48 þ ðg∨q∨vÞJR=B49 gðm;M;ω; δ; qÞ; (A6)

where we have used the following Feynman rule for propagators of two heavy mesons in HMχPT to remove the 2PR
contributions from the Feynman diagrams:

1

ðv · lþ ωþ iεÞ½ðsgnÞv · lþ δþ iε�s
≡

8<
:

1
ðv·lþωþiεÞ

h
ð−Þ 1

v·lþωþiε − 2πiδðv · lþ ωÞ
i
s
≡ ð−Þ 1

ðv·lþωþiεÞ2 sgn ¼ −; δ ¼ −ω
1

ðv·lþωþiεÞ½ðsgnÞv·lþδþiε� other
.

(A7)

The notation X∨Y∨Z∨ � � � represents the symmetrized tensor of XαYβZγ � � �, and in detail,

q∨v≡ qαvβ þ qβvα; g∨q≡ gαβqγ þ gαγqβ þ gγβqα; g∨v≡ gαβvγ þ gαγvβ þ gγβvα;

q2∨v≡ qβqγvα þ qαqγvβ þ qαqβvγ; q∨v2 ≡ qγvαvβ þ qβvαvγ þ qαvβvγ;

g∨g≡ gαβgγδ þ gαδgβγ þ gαγgβδ; g∨q2 ≡ qαqβgγδ þ qαqδgβγ þ qαqγgβδ þ qγqδgαβ þ qβqδgαγ þ qβqγgαδ;

g∨v2 ≡ vαvβgγδ þ vαvδgβγ þ vαvγgβδ þ vγvδgαβ þ vβvδgαγ þ vβvγgαδ;

q3∨v≡ qβqγqδvα þ qαqγqδvβ þ qαqβqδvγ þ qαqβqγvδ; q∨v3 ≡ qδvαvβvγ þ qγvαvβvδ þ qβvαvγvδ þ qαvβvγvδ;

q2∨v2 ≡ qγqδvαvβ þ qβqδvαvγ þ qαqδvβvγ þ qβqγvαvδ þ qαqγvβvδ þ qαqβvγvδ;

g∨q∨v≡ qβvαgγδ þ qαvβgγδ þ qδvαgβγ þ qγvαgβδ þ qαvδgβγ þ qαvγgβδ þ qδvγgαβ þ qδvβgαγ þ qγvδgαβ

þ qγvβgαδ þ qβvδgαγ þ qβvγgαδ: (A8)

APPENDIX B: ESTIMATION OF
CONTRIBUTIONS FROM THE LECs AT Oðϵ2Þ
We will estimate the contributions of the LECs to the

potentials at order Oðϵ2Þ, based on the data from the
quenched lattice QCD study in the two-flavor case [42]. In
the quenched QCD, the “quark-flow approach” or
“quenched chiral perturbation theory” should be used to

get the potential [43–45]. In what follows, we apply for the
quark-flow approach in which one uses the ordinary chiral
Lagrangians but should eliminate all diagrams containing
virtual quark loops. As an estimation, we roughly consider
the contributions of the tree diagrams to fit the data of the
quenched lattice QCD study.
To Oðϵ2Þ, the potential from the tree diagrams in the

three-flavor case can be written as
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V tree
ch ð~q2Þ ¼ αch

Λ2
0

þ βch1
Λ4
0

m2
π þ

βch2
Λ4
0

m2
K þ βch3

Λ4
0

m2
η þ

γch

Λ4
0

~q2;

Λ0 ¼ 1 GeV; (B1)

where αch can be obtained by Eq. (14), and βchi and γch are
the linear combinations of LECs at Oðϵ2Þ. In quenched
QCD, the potential in the two-flavor case can be estimated
as follows:

VQQCD
B̄ B̄I ð~q2Þ ¼ aI

Λ2
0

þ bI

Λ4
0

m2
π þ

cI

Λ4
0

~q2; Λ0 ¼ 1 GeV;

(B2)

where aI , bI , and cI are similar to αch, βchi , and γch in the
three-flavor case.
From Eq. (14) one obtains a0 ¼ 0. Introducing Gaussian

form factor expð−~q2=Λ2
GÞ, we perform the Fourier trans-

formation to get the potential in the coordinate space,

Vð~rÞ ¼ 1

ð2πÞ3
Z

d3~q

�
1

4
Vð~q2Þ

�
e−~q

2=Λ2
Ge−i~q·~r: (B3)

The specific expression of the potential is

VQQCD
B̄ B̄I ðrÞ ¼ 1

4

Λ3
G expð− 1

4
Λ2
Gr

2Þ
32π3=2

�
4

�
aI

Λ2
0

þ bI

Λ4
0

m2
π

�

þ cI

Λ4
0

Λ2
Gð6 − Λ2

Gr
2Þ
�
: (B4)

By fitting the results of the quenched lattice QCD [42],
we obtain with χ2d:o:f ¼ 3.7

a0 ¼ 0; b0 ¼ 94� 38; c0 ¼ −16� 9;

a1 þ 0.16b1 ¼ 42� 8; c1 ¼ −69� 13;

ΛG ¼ 708� ð2 × 10−9Þ MeV: (B5)

We show the lattice data and the fitted curve in Fig. 8.
However, we cannot determine a1 and b1, respectively,
since the results of the lattice study are given with only one
set of mπ ¼ 402.5� 6.7 MeV.
With these values of aI , bI , and cI from the lattice

simulation, we can discuss the potential at the physical pion
mass now. The potential VB̄ B̄0 contains three parts up to

Oðϵ2Þ: Vð2;LECÞ
B̄ B̄0 from LECs at Oðϵ2Þ, the 2π-exchange

contribution Vð2;2πÞ
B̄ B̄0 , and loop corrections to the contact

terms Vð2;contÞ
B̄ B̄0 . Presently we cannot determine the third term

since there is only one set of data with
mπ ¼ 402.5� 6.7 MeV. We obtain the first term with
the value of b0 ¼ 94 and c0 ¼ −16, and the second term
by turning off the propagation of kaon and eta. As j~qj goes
from 0 to 300 MeV, Vð2;LECÞ

B̄ B̄0 changes from 1.8 GeV−2 to

0.4 GeV−2, and Vð2;2πÞ
B̄ B̄0 changes from −0.88 GeV−2 to

−6.6 GeV−2. Thus the potential induced by the LECs is
repulsive, whereas the 2π-exchange potential is attractive.
The potential induced by the first and the second terms is
repulsive but very weak at extremely small momentum in
the case without the contributions of kaon or eta, and it
becomes attractive when j~qj is hundreds of MeV. If b0 and

c0 take values in the interval ð−10; 10Þ, Vð2;LECÞ
B̄ B̄0 is

0.2 GeV−2 uppermost, and it is smaller than jVð2;2πÞ
B̄ B̄0 j.
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FIG. 8. Fitting the B̄ B̄ potentials. The data of the quenched lattice QCD are derived from Ref. [42] where mπ ¼ 402.5� 6.7 MeV,
and the error Δf is calculated with
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iαigi. The curve is obtained using Eqs. (B2) and (B3) with parameters
Eq. (B5).
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