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Sufficient control of transition form factors is a vital ingredient for the precision flavor programs
including the nearer term searches at the Large Hadron Collider and the forthcoming Belle II experiment.
We improve on existing methods to extract B → K� form factor ratios at low hadronic recoil from B →
K�lþl− data on the angular observables FL, A

ð2Þ
T and P0

4 by adding heavy quark symmetry-based
constraints and by investigating the cross talk between low and large recoil. The data-extracted form factor
ratios (i) provide benchmarks for the lattice and light-cone sum rule predictions, the latter of which have
been updated including improved uncertainty estimations, and (ii) allow us to improve the predictions for
benchmark observables. We find that present data on the forward-backward asymmetry AFB and the angular
observable P0

5 at low recoil are in good agreement with the Standard Model.
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I. INTRODUCTION

Semileptonic exclusive rare B decays are important
probes of the flavor sector in and beyond the Standard
Model (SM). With available event rates exceeding several
hundreds first results of statistics-intense angular analyses
in B → K�μþμ− decays have recently become available
[1–6], allowing for a first thorough look into the physics of
the jΔBj ¼ jΔSj ¼ 1 transitions. (The B-factory sample by
BABAR [1] contains electron final states as well.)
Notorious limitations of the (new) physics sensitivity

stem from hadronic matrix elements, most importantly
transition form factors, and their uncertainties. For B → K�
transitions form factor estimations exist from relativistic
quark models [7,8], light-cone sum rules (LCSR) [9–11] or
lattice QCD [13–15]. To further validate and shape such
methods, which, at the same time provide inputs to SM
tests, independent information on the form factors is
desirable.
As discussed in a series of papers dedicated angular

observables enable one to control the form factor uncer-
tainties [16–24] and to measure this SM background
irrespective of new physics (NP) [25]. While proposals
exist for the kinematic region of large hadronic recoil, at
low recoil the operator product expansion (OPE) in 1=Q,
Q ¼ fmb;

ffiffiffiffiffi
q2

p
g [26], recently [27], together with

improved Isgur-Wise form factor relations [28] is instru-
mental. (mb denotes the mass of the b quark while q2 the
invariant mass-squared of the dileptons.) The low recoil

region features the additional advantage of a strong para-
metric suppression of the subleading 1=mb corrections to
the decay amplitudes at the level of a few percent. The high
predictivity of the low recoil OPE to Oð1=mbÞ implies that
its performance can be quantified experimentally. Requisite
observables have been discussed recently in Ref. [29].
In a previous work two of us demonstrated the extraction

of B → K� form factor ratios from data in the low recoil
region [30], for which the outcome is in agreement with a
general Bayesian fit [31]. Within this first analysis good
agreement between the data-extracted ratios and the lattice
estimations at low recoil as well as the LCSR results at
large recoil has been obtained. Given the importance of
further form factor information in view of the high statistics
searches in the near term future at LHCb [32] and the
forthcoming Belle II [33] experiments in this work we
improve the method in several ways as follows:

(i) Use the recent experimental B → K�lþl− data.
(ii) Add symmetry-based form factor relations at large

recoil to the fit and detail the higher order symmetry-
breaking corrections.

(iii) Provide LCSR form factor ratios obtained by taking
into account error correlations.

The plan of the paper is as follows: In Sec. II we review
the relevant low recoil observables in B → K�lþl− decays.
In Secs. III A and III B we scrutinize B → K� form factor
relations following from the equations of motion (e.o.m.)
and the heavy quark expansion, respectively, which are
beneficial to the LCSR predictions for form factor ratios
presented in Sec. III C. Fits to data and resulting predictions
for rare decay observables are presented in Secs. IV and V,
respectively. We conclude in Sec. VI. Details on the B →
K�lþl− angular distribution is deferred to Appendix A. In
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Appendix B we give auxiliary information on B → K� and
B → K form factors. In Appendix C the origin of form
factor suppressions from LCSR at tree level is illustrated.

II. B → K�lþl− OBSERVABLES AT LOW RECOIL

We briefly recapitulate in Sec. II A the benefits of certain
B → K�lþl− observables in terms of short-distance inde-
pendence at low hadronic recoil. In Sec. II B we comment
on the impact of right-handed flavor-changing neutral
currents (FCNCs) and how this potential NP background
to the form factor extractions can be controlled exper-
imentally even further.

A. Short-distance independence

The low recoil region is the kinematic region where the
emitted K� is soft in the B-rest frame; see Fig. 1 for a
schematic of the regions of interest in B → K�lþl−

decays. The low recoil OPE [26,27] predicts at leading
order a universal factorized form of the transversity
amplitudes AL;R

⊥;jj;0 in B → K�lþl− decays [25],

AL;R
i ðq2Þ ∝ CL;Rðq2Þ · fiðq2Þ þOðαs=mb; ½C7=C9�=mbÞ;

i ¼ ⊥; jj; 0: (1)

Here, the CL;R denote short-distance coefficients, which are
independent of the K� polarization. The latter is labeled by
i ¼ ⊥, jj, 0 denoting perpendicular, parallel and longi-
tudinal polarization, respectively, and the superscripts L, R
denote the lepton pair chirality. The form factors fi, on the
other hand, are independent of the short-distance coeffi-
cients of the jΔBj ¼ jΔSj ¼ 1 electroweak theory.
The simple structure shown in Eq. (1) is the source of a

multitude of phenomenological opportunities. Let us dis-
cuss corrections to it. As indicated in Eq. (1) the univer-
sality holds up to parametrically suppressed 1=mb
corrections which originate from αs corrections to the
matrix element and from the higher order Isgur-Wise

relations. The latter enter with suppression by the ratio
of Wilson coefficients as jC7=C9j≲ 0.1 by virtue of recent
rare decay data; see, e.g., [25]. While the next-to-leading
order 1=mb corrections are computed in [26], only little is
known presently on the additional heavy quark form factors
they depend on. Further breakings could arise from
violations of quark hadron duality. Toy model estimates,
however, indicate that they are negligible within current
uncertainties [27]; in any case breakings of universality
could be probed for experimentally [29]. For further
discussion including cc̄-resonance contributions, see,
recently [34]. The impact of right-handed currents, which
would invalidate Eq. (1), is discussed in Sec. II B.
The form factors fi, at leading order 1=mb, are given by

f⊥ ¼ N

ffiffiffiffiffiffiffiffi
2ŝ λ̂

p
1þ m̂K�

V; f∥ ¼ N
ffiffiffiffiffi
2ŝ

p
ð1þ m̂K�ÞA1;

f0 ¼ N
ð1 − ŝ − m̂2

K� Þð1þ m̂K� Þ2A1 − λ̂A2

2m̂K� ð1þ m̂K� Þ : (2)

Above we have suppressed the explicit q2 dependence of
the form factors as we shall occasionally do in the rest of
the paper. The hatted quantities denote: ŝ≡ q2=m2

B and
m̂K� ≡mK�=mB, where mK� and mB are the respective
meson masses. The common normalization factor is given
as [30]

N ¼ N ðŝÞ ¼ GFαeVtbV�
ts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3

B

ffiffiffî
λ

p
3 × 210π5

s
; (3)

where GF denotes the Fermi constant, Vij are the Cabibbo-
Kobayashi-Maskawa matrix elements, and the Källén
function λ̂¼λð1;m̂2

K� ;ŝÞ reads as usual λ̂ ¼ 1þ ŝ2 þ m̂4
K�−

2ðŝþ ŝm̂2
K� þ m̂2

K� Þ. The standard form factors V, A1;2 are
defined as

hK�ðp;ηÞjs̄γμð1−γ5ÞbjB̄ðpBÞi¼ϵμνρση
�νqρpσ 2Vðq2Þ

mBþmK�
−iη�μðmBþmK� ÞA1ðq2ÞþiðpBþpÞμ

ðη� ·qÞA2ðq2Þ
mBþmK�

þqμ…; (4)

where η denotes the K� polarization, p; pB the 4-momenta
of the K�, B̄ mesons, respectively, and q ¼ pB − p.
From Eq. (1) one can obtain short-distance independent

observables of the type ðAL
i A

L�
j �AR

i A
R�
j Þ=ðAL

l A
L�
k �AR

l A
R�
k Þ,

where i; j; k; l ¼ ⊥; jj; 0. Examples include the fraction of
longitudinally polarized K� mesons FL, the transverse

asymmetry Að2Þ
T [16] and the angular observable P0

4

[24,35], defined as

FIG. 1. The regions of interest in the physical spectrum, 4m2
l ≤ q2 ≤ ðmB −mK� Þ2, for B → K�lþl− decays. The energy of the K�

meson in the B rest frame is given by EK� ¼ ðm2
B þm2

K� − q2Þ=ð2mBÞ. ml denotes the mass of the leptons. Here we use Λ ¼ ΛQCD for
the QCD scale. At low recoil the OPE captures the effect of the higher cc̄ resonances after sufficiently large q2 binning.
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FLðq2Þ≡ jAL
0 j2 þ jAR

0 j2P
X¼L;RðjAX

0 j2 þ jAX⊥j2 þ jAX
∥ j2Þ

; (5)

Að2Þ
T ðq2Þ≡ jAL⊥j2 þ jAR⊥j2 − jAL

∥ j2 − jAR
∥ j2

jAL⊥j2 þ jAR⊥j2 þ jAL
∥ j2 þ jAR

∥ j2
; (6)

P0
4ðq2Þ≡

ffiffiffi
2

p
ReðAL

0A
L�
∥ þAR

0A
R�
∥ Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjAL⊥j2þjAR⊥j2þjAL
∥ j2þjAR

∥ j2ÞðjAL
0 j2þjAR

0 j2Þ
q ;

(7)

which can be measured from an angular analysis. The
aforementioned low recoil OPE predicts, for fixed q2 [25],

FLðq2Þ ¼
f20ðq2Þ

f20ðq2Þ þ f2⊥ðq2Þ þ f2∥ðq2Þ
;

Að2Þ
T ðq2Þ ¼ f2⊥ðq2Þ − f2∥ðq2Þ

f2⊥ðq2Þ þ f2∥ðq2Þ
;

P0
4ðq2Þ ¼

ffiffiffi
2

p
f∥ðq2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2∥ðq2Þ þ f2⊥ðq2Þ
q ;

(8)

up to the corrections indicated in Eq. (1). The ranges are

0 ≤ FL ≤ 1, −1 ≤ Að2Þ
T ≤ 1 and 0 ≤ P0

4 ≤
ffiffiffi
2

p
. If these

observables are extracted from a binned analysis, as
required by the OPE and done in the subsequent fits,
one inherits a residual short-distance dependence. From the
angular coefficients Jk, with binned value

hJkibin ≡
Z
bin

dq2Jkðq2Þ; (9)

one obtains for an observable XðJkÞ its binned value
as hXi ¼ XðhJkiÞ. Observables used in this work expressed
in terms of the Jk and expressions for the latter can be

seen in Appendix A. In the case of FL and Að2Þ
T the

binning corresponds to simply replacing f2i ðq2Þ
with

R
bin dq

2ðjCLðq2Þj2 þ jCRðq2Þj2Þf2i ðq2Þ.
The short-distance coefficients drop out of Eqs. (8) in the

limit of vanishing bin size only. However, since the bin-
averaged change of the q2 slope due to NP does not exceed
the percent level [30], the numerical impact of the binning-
induced short-distance dependence is negligible given the
present accuracy of the data. In the following we use the
most recent data on FL, A

ð2Þ
T and P0

4 to obtain information
on form factor ratios fi=fj by application of the binned
version of Eqs. (8). Further, presently not measured low
recoil observables sharing a similar short-distance insensi-
tivity are given in [25,29]. Note that, at the point of zero
recoil, where the dilepton mass is maximal, q2max ¼
ðmB −mK� Þ2 and λ̂ ¼ 0, hold

FLðq2maxÞ¼
1

3
; Að2Þ

T ðq2maxÞ¼−1; P0
4ðq2maxÞ¼

ffiffiffi
2

p
; (10)

by means of Eqs. (2) and (8). In fact, inspecting the general
expressions in Ref. [29] the above endpoint relations hold
model-independently. The origin of Eq. (10) and other
exact predictions for angular observables is the absence of
direction in B → K�lþl− decays at zero recoil, which
enforces relations between the transversity amplitudes in a
general dimensions six effective Hamiltonian based on
Lorentz invariance [34]; see [36] for the case of sequential
decays.

B. NP background

The extraction of form factor ratios independent of NP is
based on the fact that up to few-percent corrections short-
distance coefficients drop out of certain observables. As far
as ratios involving f⊥ are concerned, it hinges on the
assumption that no significant right-handed NP component
is present. While at present there is no experimental
evidence for V þ A FCNCs, it is important to search for
or bound such effects. Current data imply a model-
independent background not exceeding ∼30% in f⊥=f∥
[29]. If NP resides in dipole operators only, the background
is reduced to ≲15%, because the dipole coefficients are
generically an order of magnitude smaller than the 4-Fermi
ones, and because the factor ∼mbmB=q2 with which the
dipole operators enter the decay amplitudes gives no
enhancement at low recoil, where q2 ∼Oðm2

bÞ. For ratios
f0=f∥ the method remains valid even with right-handed
currents [29].

III. B → K� FORM FACTORS

In Sec. III Awe review the origin of form factor relations
from the exact QCD e.o.m. Predictions for ratios of form
factors at low and maximum recoil including order 1=mb
terms are given in Sec. III B. In Sec. III C we present LCSR
predictions for form factor ratios at q2 ¼ 0 by taking into
account error correlations.

A. QCD equation of motions and
helicity form factors

The following two equations:

i∂νðs̄iσμνbÞ ¼ −ðms þmbÞs̄γμbþ i∂μðs̄bÞ
− 2s̄iD⃖μb;

i∂νðs̄iσμνγ5bÞ ¼ −ðms −mbÞs̄γμγ5bþ i∂μðs̄γ5bÞ
− 2s̄iD⃖μγ5b; (11)

are straightforward applications of the QCD e.o.m. of the
quarks. The second equation follows from the first one by
replacing b → γ5b and mb → −mb which leaves the QCD
Lagrangian invariant. Equations (11) indicate that there are
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relations between (axial-)vector and tensor form factors.
Equations (11) can be used to compute 1=mb corrections to
Isgur-Wise relations (IWR) [37] in terms of local matrix
elements. The latter are known as improved Isgur-Wise
relations [28].
In order to retain the simplicity of Eqs. (11) we use the

same Lorentz decomposition for the derivative term as for
the tensor and vector form factors as in Eq. (B1):

hK�ðp; ηÞjs̄ð2iD⃖Þμðaþ γ5ÞbjB̄ðpBÞi
¼ aPμ

1D1ðq2Þ þ Pμ
2D2ðq2Þ þ Pμ

3D3ðq2Þ þ Pμ
PDPðq2Þ:

(12)

Above a denotes an arbitrary constant separating vector
and axial-vector current contributions and Pμ

1;2;3;P are
defined in Eq. (B3). Using the decompositions Eqs. (B1)
and (11) as well as the e.o.m. gives rise to four equations:

T1ðq2Þ¼−ðmbþmsÞV1ðq2Þ−D1ðq2Þ;
T2ðq2Þ¼−ðmb−msÞV2ðq2Þ−D2ðq2Þ;
T3ðq2Þ¼−ðmb−msÞV3ðq2Þ−D3ðq2Þ;

0¼
�

q2

mbþms
−ðmb−msÞ

�
VPðq2Þ−DPðq2Þ: (13)

In terms of the standard form factors V, A0;1;2;3 these
equations1 read

T1ðq2Þ ¼ c1Vðq2Þ −D1ðq2Þ;
T2ðq2Þ ¼ c2A1ðq2Þ −D2ðq2Þ; (14)

T3ðq2Þ ¼
c3
q2

A3ðq2Þ −D3ðq2Þ;

0 ¼
�
cP −

c3
q2

�
A0ðq2Þ −DPðq2Þ; (15)

with

c1ð2Þ ≡ mb �ms

mB �mK�
;

c3 ≡ 2mK�ðms −mbÞ;

cP ≡ −2mK�

mb þms
; (16)

see Eq. (B2) for conversion from VP;1;2;3. The appearance
of the pole at q2 ¼ 0 is an artifact of the decomposition.

The pole would correspond to a massless hadron with b̄s
flavor which is not present in the QCD spectrum. The
condition A0ð0Þ ¼ A3ð0Þ ensures that V-A matrix elements
(B1) are free of this pole. Since there is no structure Pμ

P in
the tensor matrix elements it follows that the DP;3 have to
cancel the pole in Eqs. (15) as illustrated in Appendix B 3.
Alternatively one might add the two equations in (15):

T3ðq2Þ ¼
�
c3
q2

ðA3ðq2Þ − A0ðq2ÞÞ þ cPA0ðq2Þ
�

− ½DPðq2Þ þD3ðq2Þ�; (17)

where both terms in square brackets are regular as q2 → 0,
which follows from A0ð0Þ ¼ A3ð0Þ and the fact that T3ðq2Þ
has no 1=q2 term. In fact for q2 → 0 the equation above
becomes

T3ð0Þ ¼ ½c3ðA0
3ð0Þ − A0

0ð0ÞÞ þ cPA0ð0Þ�
− ½DPð0Þ þD3ð0Þ�; (18)

where the prime denotes the derivative with respect to q2.
For the subsequent discussion we introduce the helicity

form factors f� ¼ ðf⊥∓f∥Þ=
ffiffiffi
2

p
and define

Dþðq2Þ≡ 1ffiffiffi
2

p ðD1ðq2Þ −D2ðq2ÞÞ; (19)

where the “þ” subscript indicates theK� helicity in the case
where V-A structure is assumed. Using the equality of T1

and T2 at q2 ¼ 0 [Eq. (B1)] from Eqs. (2) and (14) one can
show that

ffiffiffi
2

p
Dþð0Þ ¼ c1Vð0Þ − c2A1ð0Þ (20)

and

fþð0Þ ∝ Dþð0Þ þOðms=mbÞ: (21)

B. Helicity suppression of form factors

At large recoil empirical facts and theoretical investiga-
tions indicate that there are relations between helicity
directions. As we will show, on the level of form factors
this amounts to the statement (to be made more precise)

Dþð0Þ ¼ O
�
Λ5=2

m5=2
b

�
; (22)

implying a suppression with respect to the standard form
factors T1;2ð0Þ and V, A1;2ð0Þ by one power of the heavy
quark mass. At low recoil the form factors D1;2 are
separately power suppressed by virtue of the IWR. We
discuss these aspects, partly, through the double ratio R
and its reduced part R̂:

1Equations (13) correspond to the four equations given in the
Appendix of Ref. [26] in a convention of form factors adapted to
low recoil, as used by Isgur and Wise [37]. The conversion
between the two Lorentz decompositions for the vector/tensor
and vector-derivative form factors (12) can be found in the
Appendix of Ref. [26] and in Appendix B of this work,
respectively.
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Rðq2Þ≡ Vðq2Þ=A1ðq2Þ
T1ðq2Þ=T2ðq2Þ

≡ c2
c1

R̂ðq2Þ; (23)

where by means of Eq. (14)

R̂ðq2Þ ¼ 1þD1ðq2Þ=T1ðq2Þ
1þD2ðq2Þ=T2ðq2Þ

: (24)

For the subsequent discussion we write R̂ in terms of an αs
and 1=mb double expansion:

R̂ ¼ ½R̂1 þ R̂αs þ � � �� þ ½R̂1=mb
þ R̂αs=mb

þ � � ��
þ ½R̂1=m2

b
þ � � ��: (25)

We elaborate on R̂1 ¼ 1 and R̂αs ¼ 0 at large and low
recoil in Secs. III B 1 and III B 2, respectively, and sum-
marize them in Sec. III B 3.

1. Maximum recoil

At q2 ¼ 0 the ratio R̂ can be written as

R̂ð0Þ ¼ 1þDþð0Þ
T

þOðΛ2=m2
bÞ;

Dþð0Þ
T

¼ OðΛ=mbÞ; (26)

where we have defined
ffiffiffi
2

p
T ≡ T1;2ð0Þ. In the following we

summarize the statements on Dþð0Þ=T ¼ Oð1=mbÞ, or
equivalently R̂ð0Þ − 1 ¼ Oð1=mbÞ in the literature in
chronological order and then elaborate it within LCSR.
The IWR predict that at low recoil D1 and D2 are both

power suppressed [26,38]. The applicability of the IWR to
large recoil is not straightforward as the heavy quark ceases
to be static. Burdman and Donoghue [39] follow up on this
question pointing out that soft contributions are not to
change the relations and suggested that hard αs corrections
are not to change them either. In the seminal work on the
large energy limit (LEL) Charles et al. [40] perform a tree-
level analysis and obtain symmetry relations which are
even stronger than the IWR. In addition they show through
explicit computation that LCSR satisfy the LEL relations at
tree level. The question of whether these relations receive
hard αs corrections was undertaken by Beneke and
Feldmann [41] within the framework of QCD factorization
(QCDF), for an investigation using soft collinear effective
theory; cf., [42]. It was found that Dþð0Þ but not D1;2ð0Þ
are power suppressed at order αs. An interesting observa-
tion is that endpoint sensitive contributions, which prevent
a computation of the form factors per se in QCDF, are
absent in the symmetry-breaking corrections [41], i.e., the
Di. In Ref. [43] it was conjectured that to leading order in
1=mb helicity is preserved, causing a suppression of the
“wrong” B → K� helicity amplitude fþ, and that therefore
a subset of the LEL relations, which are valid for
EK� ; mb ≫ Λ [40],

Vðq2Þ
A1ðq2Þ

¼ ðmBþmK�Þ2
2mBEK�

;
T1ðq2Þ
T2ðq2Þ

¼ mB

2EK�
; ðLELÞ (27)

does not receive corrections at any order in αs, which is
consistent with an explicit α2s computation in QCDF [44]. A
consequence of the conjecture is that Dþð0Þ is power
suppressed to all orders in αs. For works exploiting the
suppression of fþ, see [16,18,45–48].
Here we discuss the suppression ofDþð0Þ within LCSR.

In Ref. [49] it was shown that for the twist-2 distribution
amplitude (DA) ϕ⊥ [(⊥) superscript in the equation below]
the relation

Xð⊥Þ
1 ðq2Þ ¼ Xð⊥Þ

3 ðq2Þ ¼ ð1 − q2=m2
BÞXð⊥Þ

2 ðq2Þ; (28)

is valid in LCSR to all order in αs for massless QCD (at the
exception of the one b quark). Here the functions Xiðq2Þ,
i ¼ 1, 2, 3, are form factors of arbitrary local operators in
the Lorentz decomposition of Eqs. (B1) and (12).
Specifically, Xi stands for Ti, Vi or Di. Equation (28) is
based on a general ansatz that is convoluted with the ϕ⊥
projector and boundedness of the B → K�lþl− decay rate
for mK� → 0; see [50] for details. Second, the other twist-2
DA ϕ∥ does not contribute to the �-helicity polarization.2,3

Therefore to leading twist-2 and to all orders in αs, Eq. (28)
returnsDð⊥Þ

þ ð0Þ ¼ 0 and establishes the twist-2 suppression
of Dþð0Þ in LCSR. We have verified explicitly that this is
true up to order αs by using the results given in [51].
We expand this discussion as it is known that the twist

and heavy quark power counting do not correspond to each
other. On the level of the correlation function the light-cone
dominance and thus the higher twist suppression is con-
trolled parametrically by the b-quark mass mb. When the
sum rule is constructed and the continuum threshold is
introduced, higher twist contributions are suppressed by the
Borel parameter. The latter is an external parameter which
can be chosen at a compromise value to suppress higher
twist contributions and continuum states, parameterized by
the continuum threshold s0, such that the form factor
extraction is not affected significantly. At this point the
role of mb is changed from being a parametric to a
numerical quantity. The twist counting does not correspond
to themb counting anymore. This is reflected in the fact that
twist-2 and twist-3 contributions do enter at the same power
of the heavy quark mass when the heavy quark limit of the

2In the terminology for the DA the superscript ⊥ corresponds
to the i ¼ ⊥; ∥(�) polarizations and the superscript ∥ corre-
sponds to the i ¼ 0 helicity polarization. The reason a 0-helicity
quantity appears in an �-helicity direction is that the DA
parameters are related by the QCD e.o.m.

3The correlation functions, from which LCSR are built, satisfy
the e.o.m. modulo contact terms between the operator in question
and the interpolating current for the B meson. The latter are,
however, independent of the four momentum squared of the B
meson and therefore do not enter the dispersion relation.

B → K� FORM FACTORS FROM FLAVOR … PHYSICAL REVIEW D 89, 074014 (2014)

074014-5



type [52] is attempted. Let us remark that this is tightly
connected to the Feynman mechanism, whereby the spec-
tator quark only carries a wee momentum fraction. The
latter is a nonperturbative or soft effect and related to the
fact that direct perturbative approaches do not reliable
capture this effect. Using the results in [51], we find
though that for Dþ the twist-3 contributions which enter
at leading order in heavy quark power counting do cancel.
This might be related to the observation in [41] that
endpoint divergent contributions in QCDF do not contrib-
ute to symmetry-breaking corrections. This establishes
R̂1ð0Þ ¼ 1 and R̂αsð0Þ ¼ 0 in LCSR. Our findings suggest
that Dþ can be approximated by Dð0Þ

þ obtained using static
b quarks.

Summarizing, within LCSR we have given an argument
of why the leading twist-2 DA does not contribute to Dþ to
any order in αs and we have verified up to order αs that
twist-3 contributions do not contribute to leading order.
Thus Dþ is power suppressed at least to order αs in LCSR.
Let us add that the twist-2 statement also applies to QCDF,
consistent with fixed order calculations [41,44]. In
Appendix C the power suppression at tree level of
D1;2;þð0Þ in LCSR is shown explicitly.

2. Low recoil

At leading order in 1=mb the two form factors D1;2 are
matched onto the static matrix elements Dð0Þ

1;2. The e.o.m.
Eqs. (14) become

T1ðq2Þ ¼
ðmbκm þmsÞ
mB þmK�

Vðq2Þ −Dð0Þ
1 ðq2Þ þOðαsm−1=2

b ;m−3=2
b Þ;

T2ðq2Þ ¼
ðmbκm −msÞ
mB −mK�

A1ðq2Þ −Dð0Þ
2 ðq2Þ þOðαsm−3=2

b ; m−5=2
b Þ; (29)

where κmðμÞ ¼ 1þ αs=ð4πÞð2 lnðμ=mbÞ þ 2Þ þOðα2sÞ [26] incorporates the leading heavy quark matching and mBκ ¼
mbκm at leading order with κ ¼ 1 − 2αs=ð3πÞ lnðμ=mbÞ as in Ref. [25].

One readily obtains the scaling V ∼ T1 ∼mbD
ð0Þ
1 ∼m1=2

b and A1 ∼ T2 ∼mbD
ð0Þ
2 ∼m−1=2

b [26,37]. For completeness we
give as well the relations for A3 and A0 corresponding to Eq. (15):

T3ðq2Þ ¼
2mK� ðms −mbκmÞ

q2
A3ðq2Þ −Dð0Þ

3 ðq2Þ þOðαsm−1=2
b ; m−3=2

b Þ;

0 ¼ −2mK�

�
1

ms þmb
þms −mbκm

q2

�
A0ðq2Þ −Dð0Þ

P ðq2Þ þOðαsm−3=2
b ; m−5=2

b Þ: (30)

It is straightforward to arrive at

R̂ðq2ÞEK�∼Λ ¼ 1þ
�
Dð0Þ

1 ðq2Þ
T1ðq2Þ

−
Dð0Þ

2 ðq2Þ
T2ðq2Þ

�
þOðαs=mb; 1=m2

bÞ; (31)

and therefore R̂1 ¼ 1 and R̂αs ¼ 0 at low recoil. The heavy
quark scaling between Dð0Þ

1;2 and T1;2 is not changed at any
order in αs by virtue of heavy quark effective theory power
counting.

3. Synthesis of maximum and low recoil region

The ratio R̂ (23) assumes the same leading order term at
maximum (26) and at low recoil (31):

R̂ ¼ 1þOðΛ=mbÞ; (32)

despite the different heavy quark scaling of the form factors
at low and large recoil, as summarized in Table I. In
addition we observe that the LEL relations themselves

Eq. (27) give Rðq2ÞjLEL ¼ 1þOðΛ=mbÞ, that is, a con-
stant of order one. Therefore, Eq. (26) and hence (32)
extends to higher q2 above maximum recoil to the extent
that LEL is still a good description, before it coincides at
low recoil and leading power with the IWR prediction.
We emphasize that at Oðα0sÞ the D1;2ð0Þ are power

suppressed with respect to the standard form factors and
thus consistent with the IWR. This has been indirectly
verified by Charles et al. by showing that the LCSR tree-
level results obey the LEL relation of which the IWR are a
subset. We should add, as previously discussed, that in [41]
it was found that in QCDF αs corrections contribute at
leading power to D1;2ð0Þ, but not to Dþð0Þ.

C. LCSR prediction for form factor ratios
at maximum recoil

In this section we provide an update of form factor ratios,
entering (2), at maximum recoil (q2 ¼ 0) using the LCSR
[10] which include up to twist-3 radiative corrections. The
improvement over taking the ratio of the form factors from
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[10] consists in updated hadronic parameters taken from
[49], as well as the fact that ratios have correlated and
therefore smaller parametric and systematic uncertainties.
The latter has, for instance, been exploited in
TB→K�
1 ð0Þ=TB→ρ

1 ð0Þ [53].
The updated hadronic parameters include LCSR and

lattice computation of Gegenbauer moments, quark
masses from the Particle Data Group (PDG) [54] averages
and a new value of f∥K� due to updated experimental results
in [54]. Summarizing the values: μ2F ¼ ðm2

B −m2
bÞ�

1 GeV2, ff∥;f⊥gK� ¼f0.211ð7Þ;0.163ð8ÞgMeV, fa∥1;a⊥1 ;
a∥2;a

⊥
2 gK�¼f0.06ð4Þ;0.04ð3Þ;0.16ð9Þ;0.10ð8Þg, fmb;msg¼

f4.7ð1Þ;0.094ð3ÞgGeV, hq̄qi¼ð−0.24ð1ÞGeVÞ3 and the
scale-dependent quantities, at the exception of the quark
masses, are evaluated at the renormalization scale
μ ¼ 1 GeV.
So far we have omitted the Borel parameter M2 and the

effective continuum threshold s0 in our discussion. This is
where the e.o.m. in (20) bring in a new aspect.
Equation (20) is exact and the same relation is going to
be true at the level of the relevant correlation functions,
modulo the irrelevant contact terms mentioned earlier, since
the light-cone OPE is compatible with or partly built on the
QCD e.o.m. Thus (20) can be satisfied trivially by setting
M2

F and the effective continuum thresholds sF0 equal
for all F ¼ V, A1, D1;2. Generally though there could be
significant balancing between the terms. Yet, since
jDþð0Þj ≪ jVð0Þj, jA1ð0Þj [see Eq. (26)], this implies
fM2

V; s
V
0 g ≈ fM2

A1
; sA1

0 g. Let us be slightly more precise
by making the argument in two steps. First semiglobal
quark hadron duality implies that the continuum thresholds
of A1; V;Dþ are all somewhere between, say, ðmB þmπ þ
mKÞ2 and ðmB þmK� Þ2. Second if we offset sA1

0 from sV0 by
a significant amount, then due to the smallness of Dþ this
can only be balanced by an ever larger value of sDþ

0 which
would contradict step one. In view of this chain of argu-
ments we take the average of the continuum thresholds as
sA1

0 ¼ sV0 ¼ ð35� 1Þ GeV2 and the Borel parameters as
M2

A1
¼ M2

V ≃ ð9.0� 1.5Þ GeV2 [10]. The latter value cor-
responds to M2

LC in [10]. The same values are taken for A2

though it can, only partly, be justified from the e.o.m. being
an admixture of � and 0-helicity polarization. One might
argue that sA2

0 ¼ sA1

0 andM2
A2

¼ M2
A1
are consistent with the

fact that the intermediate states in the B-meson channel
carry the same quantum numbers. In essence the somewhat
weaker argument here will simply result in larger

parametric uncertainties in sA2

0 and sA1

0 in the corresponding
form factor ratio.
We obtain the following numerical values for the form

factor ratios at q2 ¼ 0:

Rð0Þ ¼ Vð0Þ
A1ð0Þ

¼ 1.31� 0.10;

R0ð0Þ≡ A2ð0Þ
A1ð0Þ

¼ 0.83� 0.08; (33)

with 8% and 10% relative uncertainty, respectively. We

have also determined ½f0ðŝÞ=f∥ðŝÞ� ·
ffiffiffî
s

p
→
ŝ→0

0.83� 0.09,

where sf00 and s
f∥
0 are treated analogously to the other ratios.

Each uncertainty consists of two parts, a parametric
uncertainty, Δpara, and a systematic uncertainty due to
quark hadron duality, Δs0 , which have been added linearly
to arrive at Eq. (33):

ΔRð0Þð0Þ ¼ Δpara þ Δs0 : (34)

The parametric uncertainties correspond to all parameters
except the continuum thresholds as described above.We add
those uncertainties in quadrature Δpara ¼ ðPiΔ2

i Þ1=2 as we
do not see any special reasons for correlations.4 Noticeable
uncertainties come from mb and the Borel mass M2, which
add up to one below the 2% level. The uncertainty due to the
continuum threshold is treated in a conservativeway. For the
quantity Rð0Þ we vary the threshold separately, sV0 ¼
ð35� 1Þ GeV2 and sA1

0 ¼ ð35� 1Þ GeV2, and add the
uncertainties linearly as Δs0 ¼ ΔsV

0
þ Δs

A1
0

. The quantity

R0ð0Þ is treated in an analogous manner.
With this treatment the bulk part, about 6(8)% out of the

8(10)% for Rð0ÞðR0ð0ÞÞ, of the uncertainty comes from

TABLE I. Heavy quark scaling of the form factors appearing in the e.o.m. Eq. (14). The low recoil results are the well known Isgur-
Wise scaling relations for V, A1 and T1;2 [37] and the ones for Dð0Þ

i were stated in [26]. The large recoil results for the standard form
factors are based on LCSR computations, e.g., [9,10]. The tree level and OðαsÞ mb scaling of D1;2 are based on [40,41], respectively.

T1ðq2Þ Vðq2Þ D1½Dð0Þ
1 �ðq2Þ T2ðq2Þ A1ðq2Þ D2½Dð0Þ

2 �ðq2Þ Dþðq2Þ
Large recoil m−3=2

b m−3=2
b m−5=2

b þOðαsÞm−3=2
b m−3=2

b m−3=2
b m−5=2

b þOðαsÞm−3=2
b m−5=2

b

Low recoil m1=2
b m1=2

b m−1=2
b m−1=2

b m−1=2
b m−3=2

b m−1=2
b

4The exception being the errors of the parallel- and
perpendicular-type Gegenbauer moments which are assumed
to be fully correlated. This can be justified by inspecting the
sum rules for the first Gegenbauer moments in Ref. [12]. The bulk
part is due to the perturbative part and the strange quark
condensate which are the same, or almost the same, respectively.
Since the sum rules for the Gegenbauer moment exhibit a mild,
relative, dependence on the effective continuum threshold this
suggests that the errors are highly correlated. If the Gegenbauer
moments are varied separately, the uncertainty in R0ð0Þ, but not
in Rð0Þ, raises considerably.
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Δs0 . When the continuum thresholds are varied in a
correlated way, imposing sV0 ¼ sA1

0 (sA1

0 ¼ sA2

0 ), then Δs0
drops in both ratios below the 2% level. This might well be
the procedure to follow as the discussion of the previous
section suggests. Therefore we feel justified to say that the
estimate Eq. (33) is on the conservative side by varying the
thresholds separately and adding the corresponding uncer-
tainties linearly.
Let us compare the results Eq. (33) with previous

LCSR predictions from [10], where fRð0Þ;R0ð0Þg½10�≃
f1.40; 0.88g. This amounts in both ratios to a downwards
shift of the central values of 7%. The reasons are the
modified input parameters from theory, a new value of f∥K�

from PDG [54] as well as improved knowledge on the
correlation between the effective continuum thresholds as
discussed at the beginning of this section.

IV. FITTING FORM FACTORS

We perform fits to B → K�lþl− data at low recoil and
extract ratios of form factors. In Sec. IVA we describe the
parametrization used. Details of the fit are given in Sec. IV
B. Fit results are presented in Sec. IV C.

A. Form factor series expansion

Following Ref. [30], we parametrize the transversity
form factors fi, i ¼ ⊥, 0, ∥, in B → K�lþl− decays
through a series expansion (SE) [55–61]

fi ∝
XN−1

k¼0

αi;kzkðtÞ; (35)

in the variable z defined as

zðtÞ≡ zðt; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p : (36)

Here, t denotes the analytic continuation of q2 to the
complex plane, t� ¼ ðmB �mK�Þ2 and t0 is a free param-
eter in the range 0 ≤ t0 < tþ for which a common choice is
t0 ¼ topt with topt ¼ tþð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t−=tþ

p Þ [61,62]. Note
that jzj ≤ 1 and zðt0Þ ¼ 0. We show zðt; t0Þ in Fig. 2.
How many orders of the series expansion (35) are needed
for a description depends, from a pragmatic viewpoint, on
the precision of the data.
To lowest order SE (SE1), the form factors are para-

meterized as

f⊥ðtÞ ¼ α⊥Λðt; m2
1−Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−zðt; 0Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðt; t−Þ

p
;

f∥ðtÞ ¼ α∥Λðt; m2
1þÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−zðt; 0Þ

p
;

f0ðtÞ ¼ α0Λðt; m2
1þÞ; (37)

with

Λðt; m2
RÞ ¼

N ðtÞ
zðt; m2

RÞϕV−A
T ðtÞ ; αi ≡ αi;0: (38)

In our numerical evaluations we take m1− ¼ 5.42 GeV for
the vector (⊥) and m1þ ¼ 5.83 GeV for the axial vector
ð∥; 0Þ transitions [54].
It turns out that within SE1 several relations hold

between the expansion coefficients and the full QCD form
factors, and that this ansatz is actually quite constrained.
Note, at this order there is no dependence on t0.
Specifically,

f⊥ðq2Þ
f∥ðq2Þ

¼ α⊥
α∥

zðq2; m2
1þÞ

zðq2; m2
1−Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðq2; t−Þ

q
(39)

and

α⊥
α∥

¼
ffiffiffî
λ

p
ð1þ m̂K�Þ2

zðq2; m2
1−Þ

zðq2; m2
1þÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðq2; t−Þ

p Vðq2Þ
A1ðq2Þ

: (40)

Numerically, it follows at q2 ¼ 0

α⊥
α∥

¼ 1.19
Vð0Þ
A1ð0Þ

: (41)

This relation allows one to determine Að2Þ
T from Vð0Þ=A1ð0Þ

and vice versa within SE1. Furthermore, within SE1 the
constraint from FL Eq. (10) implies (note that this has not
been taken into account in [30])

α0
α∥

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−zðt−; 0Þ

2

r
¼ 0.29 (42)

and

A2ð0Þ
A1ð0Þ

¼ 1

ð1−m̂K� Þ2
�
1−m̂2

K� −4
ffiffiffi
2

p
m̂K� ð1þm̂K� Þ

�
α0
α∥

��

¼1.41–1.63

�
α0
α∥

�
: (43)

0 5 10 15

0.15

0.10

0.05

0.00

0.05

0.10

0.15

q2 GeV2

z

FIG. 2. zðt; t0Þ as a function of q2 in GeV2 for t0 ¼ t−, topt and
t0 ¼ 0, from top to bottom, respectively.
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Using Eq. (42) it follows A2ð0Þ=A1ð0Þ ¼ 0.93. This is at
variance with the LCSR findings Eq. (33). The reason is the
simple q2 dependence of SE1. We discuss this further in
Sec. IV C.
To accommodate more involved q2 shapes we go to next

order in the SE (SE2). Specifically we extend Eq. (37) as

f⊥ðtÞ ¼ α⊥Λðt; m2
1−Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−zðt; 0Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðt; t−Þ

p
ð1þ p⊥zðt; t0ÞÞ;

f∥ðtÞ ¼ α∥Λðt; m2
1þÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−zðt; 0Þ

p
ð1þ p∥zðt; t0ÞÞ;

f0ðtÞ ¼ α0Λðt; m2
1þÞð1þ p0zðt; t0ÞÞ; (44)

where pi ≡ αi;1=αi;0, introducing in total three additional fit
parameters pi, i ¼ ⊥, jj, 0, and dependence on t0 through
zðtÞ in Eq. (36).
For t0 near the endpoint t−, zðtÞ is close to its zero

crossing, and there is reduced sensitivity to the pi in the low
recoil fit. On the other hand, zðtÞ is more significant at large
recoil; see Fig. 2. Alternatively, choosing t0 ≪ m2

b gives
high sensitivity to the low recoil fit, but has smaller impact
at large recoil. We study the impact of different values of t0
numerically in Sec. IV C. Note that for t0 ¼ 0 the relations
Eqs. (41) and (43) remain valid within higher order SE if
the αi are identified with the respective lowest order
coefficients αi;0.

B. Details of the fit

We perform a fit to the current experimental data on FL,
Að2Þ
T and P0

4, given in Table II and include several theoretical
constraints, explained in the previous sections. The observ-
ables are defined in Eq. (8), while the form factors are taken
at leading order (SE1) (37) and next-to-leading order (SE2)
(44). The endpoint relations (10) are included in the fits. We
perform fits with LCSR input, or with LEL input, or with
none. The LCSR input is given by Eq. (33). The LEL input
is given by Eq. (27) evaluated at q2 ¼ 0:

Vð0Þ
A1ð0Þ

����
LEL

¼ 1.37� 0.40: (45)

Here we assumed an uncertainty of 30% from 1=mb
corrections accounting for the absence of precise predic-
tions for Dð0Þ

þ ; see Eq. (26). Furthermore, we perform a
“full” fit in SE2, where in addition to the data and the LCSR

ratio Eq. (33) we include the lattice results [15] for V, A1

and A2 (the latter is given implicitly only). For the lattice
data we assume an overall error correlation of 75%5 and
take into account 5% systematic uncertainties by adding
them linearly to the statistical ones.
We perform a χ2 fit and adopt noncorrelated Gaussian

errors for the data, while the theory uncertainties in the fit
are treated within the R-fit scheme [63]. The fits are
performed using the LUCY code [64], which is executed
with MATHEMATICA and generates C++ code in an automa-
tized way. The C++ code is linked to the NLOPT 2.3 library
[65], which performs the numerical minimization. For the
minimization of the χ2 function we use the Sbplx/Subplex
algorithms [65,66].

C. Results

We show FL, A
ð2Þ
T , P0

4 and the extracted values of the
form factor ratios f0=f∥, f⊥=f∥, V=A1 and A2=A1 in
Figs. 3–9. The corresponding values of the SE parameters
and resulting form factor ratios are given in Table III.
We summarize the findings of the fits:
(i) All parameterizations describe the low recoil data for

FL and Að2Þ
T in the low recoil region well; see Figs. 3

and 4.
(ii) The deviations in P0

4 in particular in the lower bin
(see Fig. 5) go along with the observation that the χ2

value decreases significantly in all fits by about
Oð5–10Þ once P0

4 is removed from the fit. The effect
of P0

4 in the fit is insignificant for the parameter
determination.

(iii) The results in plain SE1 are consistent with the
previous findings of Ref. [30], but not equal due to
the different B → K�lþl− data. The current data
gives lower values of V=A1.

(iv) The SE1 fit returns a value of Vð0Þ=A1ð0Þ which is
somewhat higher than expected from LCSR Eq. (33)
and heavy quark large energy Eq. (27) predictions,
although it is in agreement within uncertainties (at
∼1σ); see Table III.

(v) Within SE1 the ratios A2=A1 and f0=f∥ are fixed
by the parameterization for all q2; see also Figs. 6

TABLE II. High-q2 data on B → K�lþl− observables FL, A
ð2Þ
T and P0

4 from BABAR [1], CDF [2], LHCb [3,6], ATLAS [4] and CMS
[5] as used in this work. The statistical and systematic uncertainties are added in quadrature. The maximum q2 value in units of GeV2

equals X ¼ 19 for LHCb, ATLAS and CMS and is the endpoint otherwise.

BABAR CDF LHCb ATLAS CMS
q2 [GeV2] FL FL Að2Þ

T FL Að2Þ
T P0

4
a FL FL

[14.18, 16] 0.43þ0.13
−0.16 0.40þ0.12

−0.12 0.11þ0.65
−0.65 0.33þ0.08

−0.08 0.07þ0.26
−0.28 −0.18þ0.54

−0.70 0.28þ0.16
−0.16 0.53þ0.12

−0.12

½16; X� 0.55þ0.15
−0.17 0.19þ0.14

−0.13 −0.57þ0.60
−0.57 0.38þ0.09

−0.08 −0.71þ0.36
−0.26 0.70þ0.44

−0.52 0.35þ0.08
−0.08 0.44þ0.08

−0.08
aThe values quoted differ from the LHCb ones by a factor −2 to match the definition in Eq. (7).

5We thank Matthew Wingate for discussions on this point.
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and 9. Related to this is the observation that the
SE1 fit with LCSR input Eq. (33) does not
converge, i.e., returns a huge χ2 because the
R-fit scheme used cannot resolve the > 1σ tension
between A2ð0Þ=A1ð0Þ in SE1 and the correspond-
ing LCSR value.

(vi) The issues with the simpler SE1 parametrizations
mentioned in the previous item are familiar ones
with the single pole ansatz of vector meson domi-
nance (VMD). We recall that in B → π studies
within LCSR [51] it was found that VMD is
insufficient to describe higher q2 data. In fact, even
low-q2 data are insufficiently described as the

residue of the B� pole is known from lattice as well
as through experiment and heavy quark scaling [51].
To sharpen this further, we repeated the fit within the
simplified series expansion at lowest order (SSE1)
[60], which resembles VMD. SSE1 corresponds to
SE1 with the changes zðt; m2

RÞ → 1 − t=m2
R,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−zðt; 0Þp
→

ffiffi
t

p
=mB and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðt; t−Þ

p
→

ffiffiffî
λ

p
in

Eq. (37). The following relations hold within
SSE1: α⊥=α∥ ¼ 0.73½Vð0Þ=A1ð0Þ�, α0=α∥ ¼ 0.59
and A2ð0Þ ¼ A1ð0Þ. The fit (see Table III) performs
worse than SE1 and exhibits larger conflicts
with LCSR.

FIG. 3 (color online). Current data on FL by BABAR (orange triangles), CDF (blue circles), LHCb (black squares), ATLAS (cyan
hollow squares) and CMS (red hollow circles) together with the fit results. LEL and LCSR indicate that the constraints Eq. (45) and
Eq. (33), respectively, have been taken into account in the R-fit scheme. “full” indicates that in addition to the data and LCSR input
Eq. (33) the lattice results given in [15] have been taken into account. The SE1 LCSR fit is inconsistent, i.e., does not work and is not
shown; see text for details. The (dark green) light green bands denote the (68%) 95% C.L. regions. The solid black curve corresponds to
the best fit result.

TABLE III. Results of the fits in first order (SE1) and second order (SE2) series expansion to the data given in Table II. “LEL” and
“LCSR” indicate that the constraints Eq. (45) and Eq. (33), respectively, have been taken into account in the R-fit scheme. “full”
indicates that in addition to the data and LCSR input Eq. (33) the lattice results given in [15] have been taken into account. In the SE2 full
fit we obtain for the additional fit parameter the result α∥ ¼ −0.07þ0.01

−0.02 . SE2 fits have been performed with t0 ¼ 0. The SE1 fit with
LCSR input does not work and is therefore not given. The last row corresponds to a fit in SSE1 that is given for illustration only. See text
for details.

Fit χ2=d:o:f: α⊥=α∥ α0=α∥ p∥ p⊥ p0 Vð0Þ=A1ð0Þ A2ð0Þ=A1ð0Þ
SE1 20.5=14 1.88þ0.34

−0.34 0.29a 1.58þ0.29
−0.29 0.93a

SE1 LEL 20.5=15 1.88þ0.18
−0.34 0.29a 1.58þ0.15

−0.29 0.93a

SE2 12.2=11 7.02þ3.50
−4.27 0.87þ0.04

−0.35 −1.99þ3.79
−6.92 3.84þ0.00

−6.09 3.14þ0.37
−2.29 5.90þ2.99

−3.64 0.00þ0.57
−0.00

SE2 LCSR 15.8=13 1.68þ0.00
−0.24 0.40þ0.00

−0.04 2.85þ0.36
−2.20 1.50þ1.04

−3.71 3.64þ0.06
−1.60 1.41þ0.00

−0.20 0.75þ0.06
−0.00

SE2 LEL 13.6=12 2.06þ0.00
−0.95 0.87þ0.06

−0.41 −2.89þ5.28
−8.16 −5.96þ7.92

−24.45 2.81þ0.77
−2.73 1.73þ0.00

−0.80 0.00þ0.67
−0.00

SE2 full 21.0/(12 + 10b) 1.68þ0.00
−0.24 0.36þ0.04

−0.06 1.91þ0.84
−1.00 2.07þ0.63

−0.96 2.62þ0.73
−1.09 1.41þ0.00

−0.20 0.82þ0.09
−0.07

SSE1 22.2=14 1.16þ0.22
−0.22 0.59a 2.28þ0.44

−0.43 1a

aFixed within parametrization.
bNumber of lattice points.
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(vii) All SE2 fits have been performed with t0 ¼ 0. We
checked that while changing the fit parameters a
different value of t0 does not change the qualitative
features and the figures.

(viii) In all SE2 fits with t0 ¼ 0 Eqs. (41) and (43) hold, as
they should.

(ix) Within SE2 or higher some large recoil input
is required to be predictive at large recoil; see
Figs. 6–9. This highlights the importance of theory
input for Vð0Þ=A1ð0Þ.

(x) As is well known the sensitivity to A2 is very low
towards the endpoint (see Fig. 9) as A2 is multiplied
by

ffiffiffî
λ

p
which vanishes towards the endpoint. Note

that at low recoil A1=A2 ¼ Oð1=mbÞ and both terms
in the numerator of f0 are Oð1=m2

bÞ due to the
kinematic factors EK�=mB ¼ Oð1=mbÞ in the B rest
frame, and f0=f∥ ¼ Oð1Þ.

(xi) Ratios of the transversity form factors f0=f∥ and
f⊥=f∥ are well behaved at low recoil always; see

Figs. 6 and 7, respectively. Note that f0ðq2maxÞ=
f∥ðq2maxÞ ¼ 1=

ffiffiffi
2

p
by means of Eq. (10).

Good fits (see Table III) are obtained in the SE2, SE2
LEL and SE2 LCSR scenarios, corresponding to χ2=d:o:f:
equal 1.11, 1.13 and 1.22, respectively, The latter two fits
are advantageous with respect to the former because their
predictive power extends to large recoil. As argued pre-
viously, the SE1 fits are quite constrained by their simpler
parameterization and yield larger χ2=d:o:f. The SE2 full fit
exhibits the smallest χ2=d:o:f: ¼ 0.95 if individual lattice
points are counted separately. It relies on the data given in
[15] with systematic errors of 5% added linearly to the
statistical ones. The SE2 full fit serves here as a preview of
the obtainable precision in the future. In view of this, we
consider the three fits SE2, SE2 LEL and SE2 LCSR, with
increasing input, as the best ones for further low recoil
analyses.

FIG. 4 (color online). Current data on Að2Þ
T by CDF (blue circles) and LHCb (black squares) together with the fit results; see Fig. 3.

FIG. 5 (color online). Current data on P0
4 by LHCb (black squares) together with the fit results; see Fig. 3.
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Finally, we compare predictions for V=A1 and f0=f∥ in
Fig. 10. Shown are recent lattice findings [15] (blue data
points), the LCSR ratios Eq. (33) (red points) and the results
from the fit toB → K�lþl− data includingLEL input inSE2
with the (68%) 95%C.L. regions shown as (dark green) light
green bands. We observe, at this still quite early stage,
consistency between the determinations at most q2 values.
The largest discrepancies exist in V=A1 (2σ) and at q2 ¼
15.64 GeV2 in f0=f∥ (3σ) between the lattice [15] and the
SE2 LEL fit. Note that the lattice results forV=A1 shown are
in agreement with previous ones for T1=T2 [13,14] and the
lowest order IWR, Eq. (31). In particular, R≳ 1. The SE2
LEL fit exhibits a 1.8σ discrepancy between LCSR results
Eq. (33) and A2ð0Þ=A1ð0Þ; see Table III.
In Fig. 11 we aim to predict the form factors

themselves. Shown are predictions for V, A1, A2 and

f0 in the SE2 full fit, including form factors from the
lattice [15] (blue data points) which fix the normalization.
The LCSR predictions for form factors [10] (red hatched
region) are not included in the fit. In all cases they
exhibit very good agreement with the outcome of the
full fit.

V. PREDICTIONS IN SM AND BEYOND

We use the fit results for the form factor ratios from the
previous section to obtain predictions for B → K�lþl−

observables. Specifically, we predict the forward-backward
asymmetry AFB and the angular observable P0

5 [24,35] in
the SM at low recoil. Up to the corrections indicated in
Eq. (1), locally, they can be written as (see [25] and
Appendix A)

FIG. 6 (color online). Fit results as in Fig. 3 for f0=f∥ in the full q2 range. f0=f∥ is fixed within the SE1 parametrization.

FIG. 7 (color online). Fit results as in Fig. 3 for f⊥=f∥ for the full q2 range.
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FIG. 8 (color online). Fit results as in Fig. 3 for V=A1 for the full q2 range.

FIG. 9 (color online). Fit results as in Fig. 3 for A2=A1 in the full q2 range. A2=A1 is fixed within the SE1 parametrization.

FIG. 10 (color online). V=A1 (left-handed plot) and f0=f∥ (right-handed plot) from a fit to data including LEL in SE2 with 68% and
95% C.L. regions shown as dark green and light green bands, respectively. Also shown are lattice results [15] (blue data points), the
LCSR ratio Eq. (33) (red point) and the LEL relation Eq. (27) (blue hatched band).
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FIG. 11 (color online). Form factors in the SE2 full fit scenario, where in addition to the data and the LCSR ratio Eq. (33) the lattice
results [15] (blue data points) have been taken into account for V, A1 and A2. The LCSR predictions for form factors [10] (red hatched
region) are not included in the fit and are shown for comparison only. The (dark green) light green bands denote the (68%) 95% C.L.
regions. The solid black curve corresponds to the best fit result.

FIG. 12 (color online). AFB=ðρ2=ρ1Þ (left-handed plot) and ASM
FB (right-handed plot) at low recoil from fit to data in SE2. The (68%)

95% C.L. regions are shown in (dark green) light green. The dashed (purple) boxes denote the 1σ SM bins. The data points (magenta)
correspond to the experimental world average; see Table IV.

FIG. 13 (color online). P0
5=ðρ2=ρ1Þ (left-handed plot) and P0SM

5 (right-handed plot) at low recoil from fit to data in SE2. The (68%)
95% C.L. regions are shown in (dark green) light green. The dashed (purple) boxes denote the 1σ SM bins. The data points (magenta)
correspond to the experimental world average; see Table V.
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AFBðq2Þ ¼
ρ2ðq2Þ
ρ1ðq2Þ

·
3f∥ðq2Þf⊥ðq2Þ

f20ðq2Þ þ f2⊥ðq2Þ þ f2∥ðq2Þ
; (46)

P0
5ðq2Þ ¼

ρ2ðq2Þ
ρ1ðq2Þ

·
2

ffiffiffi
2

p
f⊥ðq2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2∥ðq2Þ þ f2⊥ðq2Þ
q ; (47)

where

ρ1ðq2Þ ¼
1

2
ðjCRðq2Þj2 þ jCLðq2Þj2Þ;

ρ2ðq2Þ ¼
1

4
ðjCRðq2Þj2 − jCLðq2Þj2Þ: (48)

The factorization into short-distance coefficients and form
factor ones is again manifest. Importantly, only form
factor ratios enter. The ranges are −3=4 ≤ AFB ≤ 3=4
and −

ffiffiffi
2

p
≤ P0

5 ≤
ffiffiffi
2

p
.

In Figs. 12 and 13 (left-handed plots) we show the
predictions of the fit for the purely form factor-dependent
factors AFB=ðρ2=ρ1Þ and P0

5=ðρ2=ρ1Þ, respectively. Also
shown in the figures (right-handed plots) are the resulting
SM predictions taking the short-distance factors ρ1;2 in the
SM from [25] with parameters as in [29]. Here, SE2 has
been employed. Fits to the other parametrizations give
similar results at low recoil and are not shown. In Tables IV
and V we further give q2-binned values of ASM

FB and P0SM
5 ,

respectively, obtained using the binning procedure
described in Sec. II A.
For both AFB and P0

5 we find that the low recoil data are
in good agreement with the corresponding SM predictions
resulting from the data-extracted form factor ratios. The
SM predictions at low recoil are stable under change of the
fit parameterization, apart from the first P0

5 bin which
exhibits a 2.5σ tension between SE2 and SE2 full, and are
consistent with Refs. [24,29]. We recall from Sec. IV C that

we consider the fit scenarios SE2, SE2 LEL and SE2 LCSR
as best suited presently for low recoil phenomenology. The
SE2 full fit, on the other hand, demonstrates the future
potential of combining data with LCSR and precision
lattice input.
The theoretical uncertainties from the fit output in

Figs. 12 and 13 and Tables IV and V correspond to form
factor ones only. The uncertainties from the SM value of
ρ2=ρ1 are subleading, about 2% [25]. The resulting com-
bined uncertainties for AFB and P0

5 are smaller than the ones
obtained previously [24,29] and can be further reduced by
experimental measurements. Note that while FL; A

ð2Þ
T and

P0
4 are protected from leading cc̄ contributions [34], such

effects need to be considered in more detail in AFB and P0
5

once data are more precise.

VI. CONCLUSIONS

Our main conclusion is that QCD input to flavor
observables can be model-independently extracted from
rare decay data and fed back towards improving the SM
predictions. This happens twofold, indirectly by providing
benchmarks for nonperturbative methods and directly as
we demonstrated for AFB and P0

5; see Figs. 12 and 13,
respectively.
While the first point has been made previously [30] here

we significantly improved on the latter analysis by using
more detailed fits. Our results, based on V-A operators only,
are summarized in Sec. IV C. We stress that fits at low
recoil provide quite parameterization-independent exper-
imental information on form factor ratios in this region.
This is useful for direct comparison with lattice predictions
in particular. The more ambitious extrapolations to the
whole kinematic range are more sensitive to the parameter-
ization and in particular require some large recoil input,
taken here from LCSR, Eq. (33), or heavy quark large
energy symmetries, Eq. (27).

TABLE IV. Experimental world average [1–5,67] of AFB at low recoil and corresponding SM predictions from [29] and our fits in
different parameterizations. The global sign of the AFB data has been adjusted to match the conventions as in Ref. [29]. There are no high
luminosity data available for AFB in the full low recoil bin.

q2 [GeV2] Data SM [29] SM SE1 SM SE1 LEL SM SE2 SM SE2 LCSR SM SE2 LEL SM SE2 full

[14.18, 16] −0.46� 0.04 −0.44þ0.07
−0.07 −0.48þ0.05

−0.04 −0.48þ0.05
−0.02 −0.45þ0.02

−0.03 −0.46þ0.04
−0.03 −0.44þ0.03

−0.03 −0.42þ0.00
−0.03

[16, q2max] −0.36� 0.04 −0.38þ0.06
−0.07 −0.40þ0.06

−0.05 −0.40þ0.06
−0.03 −0.40þ0.05

−0.05 −0.43þ0.05
−0.05 −0.45þ0.05

−0.03 −0.35þ0.03
−0.00

[14.18, q2max] −0.43þ0.06
−0.04 −0.43þ0.06

−0.02 −0.42þ0.03
−0.03 −0.45þ0.05

−0.04 −0.44þ0.03
−0.03 −0.38þ0.03

−0.03

TABLE V. Preliminary LHCb data [6] of P0
5 at low recoil and corresponding SM predictions from [24] with errors added in quadrature

and our fits in different parameterizations. There are no data available for P0
5 in the full low recoil bin.

q2 [GeV2] Data SM [24] SM SE1 SM SE1 LEL SM SE2 SM SE2 LCSR SM SE2 LEL SM SE2 full

[14.18, 16] −0.79þ0.27
−0.22 −0.78þ0.33

−0.36 −0.81þ0.11
−0.09 −0.81þ0.11

−0.05 −1.03þ0.10
−0.06 −0.87þ0.08

−0.07 −0.98þ0.10
−0.06 −0.73þ0.06

−0.05

[16, q2max] −0.60þ0.21
−0.18 −0.60þ0.28

−0.37 −0.62þ0.09
−0.09 −0.62þ0.09

−0.05 −0.73þ0.13
−0.12 −0.73þ0.10

−0.09 −0.81þ0.12
−0.07 −0.55þ0.05

−0.05

[14.18, q2max] −0.70þ0.10
−0.09 −0.70þ0.10

−0.05 −0.88þ0.13
−0.08 −0.80þ0.09

−0.08 −0.89þ0.12
−0.07 −0.64þ0.06

−0.05

B → K� FORM FACTORS FROM FLAVOR … PHYSICAL REVIEW D 89, 074014 (2014)

074014-15



Overall, there is consistency between determinations of
form factor ratios based on B → K�lþl− data, lattice
QCD, heavy quark and large energy symmetries and
LCSR at present at the exception of a few outliers; see
Fig. 10. It is interesting to follow up on whether these
different methods in the future converge or exhibit a
conflict. Either way will be informative for flavor physics
and QCD calculations.
We consider the fit scenarios SE2, SE2 LEL and SE2

LCSR as best suited presently for low recoil phenomenol-
ogy. The SE2 full fit demonstrates the future potential of a
combined fit including LCSR and precision lattice results.
Already with present data the SM predictions of NP-

sensitive observables AFB and P0
5 from fitted form factor

ratios improve on existing estimates; see Table IV and V,
respectively. Presently, there is good agreement with the
SM in these observables at low recoil. This requires, at least
within the SM basis of jΔBj ¼ jΔSj ¼ 1 operators used in
this work, that NP contributions to semileptonic short-
distance coefficients are to be small. Explanations of the
current anomaly in P0

5 data at large recoil [6] based on order
one NP predominantly in the Wilson coefficient C9 alone
[68] are therefore strongly disfavored, in agreement with
the findings of [69,70].
We encourage further experimental investigations to

shed light on the ∼2σ discrepancy in P0
4, which within

the OPE cannot be explained; see Fig. 5 and also [69]. We
stress that higher cc̄ resonances at low recoil as observed
recently in Bþ → Kþμþμ− [71] are expected, e.g., [72–74].
The OPE can, generally, be expected to work better for
larger binning. Whether this is the case with present data, or
the general performance of the OPE could be accessed
using different binnings, including the full low recoil one,
and with dedicated observables, such as Hð1Þ

T and
Hð2Þ

T =Hð3Þ
T [25], which quantify breakings of the universality

feature of the OPE, Eq. (1).
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APPENDIX A: OBSERVABLES FROM
ANGULAR COEFFICIENTS

The B → K�lþl− observables used in this work can be
written in terms of the angular coefficients Jk ¼ Jkðq2Þ as

dΓ
dq2

¼ 4

3
ð4J2s − J2cÞ; AFB ¼ J6

dΓ=dq2
;

FL ¼ −
4

3

J2c
dΓ=dq2

; Að2Þ
T ¼ 1

2

J3
J2s

;

P0
4 ¼

J4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−J2sJ2c

p ; P0
5 ¼

J5
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−J2sJ2c

p : (A1)

The Jk are related to the transversity amplitudes f0;∥;⊥ at
low recoil as follows:

−
4

3
J2c ¼ 2ρ1f20;

4

3
½2J2s þ J3� ¼ 2ρ1f2⊥;

4

3
½2J2s − J3� ¼ 2ρ1f2∥;

ffiffiffiffiffi
32

p

3
J4 ¼ 2ρ1f0f∥;ffiffiffi

8
p

3
J5 ¼ 4ρ2f0f⊥;

2

3
J6 ¼ 4ρ2f∥f⊥: (A2)

The short-distance coefficients ρ1;2 are given in Eq. (48).
We neglect lepton masses; hence the formulae do not
apply to tau leptons. CP averaging and SM operator basis
is understood. For further details on the full angular
distribution, see, e.g., [29].

APPENDIX B: DEFINITIONS

1. The B → K� form factors

The (axial-)vector and tensor form factors are defined as
follows:

ðfTλ Þμ ¼ hK�ðp; ηðλÞÞjs̄iqνσμνðaþ γ5ÞbjB̄ðpBÞi
¼ aPμ

1T1ðq2Þ þ Pμ
2T2ðq2Þ þ Pμ

3T3ðq2Þ;
T1ð0Þ ¼ T2ð0Þ;
ðfVλ Þμ ¼ hK�ðp; ηðλÞÞjs̄γμða − γ5ÞbjB̄ðpBÞi

¼ aPμ
1V1ðq2Þ þ Pμ

2V2ðq2Þ þ Pμ
3V3ðq2Þ þ Pμ

PVPðq2Þ;(B1)

where a is a constant separating the parity-violating and
parity-conserving parts and V1 and A0;2;3 are given by

VPðq2Þ ¼
−2mK�

q2
A0ðq2Þ; V1ðq2Þ ¼

−Vðq2Þ
mB þmK�

;

V2ðq2Þ ¼
−A1ðq2Þ
mB −mK�

;

V3ðq2Þ ¼
�
mB þmK�

q2
A1ðq2Þ −

mB −mK�

q2
A2ðq2Þ

�

≡ 2mK�

q2
A3ðq2Þ: (B2)

The relation A3ð0Þ ¼ A0ð0Þ assures finite matrix
elements at q2 ¼ 0 and A0ð0Þ ≠ 0 corresponds to the
pseudoscalar form factor. The Lorentz structures Pμ

i are
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given by

Pμ
P ¼ iðη� · qÞqμ; Pμ

1 ¼ 2ϵμαβγη
�αpβqγ;

Pμ
2 ¼ ifðm2

B −m2
K� Þη�μ − ðη� · qÞðpþ pBÞμg;

Pμ
3 ¼ iðη� · qÞ

�
qμ −

q2

m2
B −m2

K�
ðpþ pBÞμ

�
; (B3)

with Bjorken and Drell convention for the Levi-Civita
tensor ϵ0123 ¼ þ1. The reason for the mismatch between
the indices between A and A is due to the fact that the
original nomenclature between the axial Ai- and tensor Ti-
form factors is not coherent from the viewpoint of the
Lorentz decomposition. Furthermore note that the follow-
ing relation:

qμhK�ðp; ηðλÞÞjs̄γμð−γ5ÞbjB̄ðpBÞi ¼ ðms þmbÞhK�ðp; ηðλÞÞjs̄γ5bjB̄ðpBÞi

⇒ hK�ðp; ηðλÞÞjs̄γ5bjB̄ðpBÞi ¼
�

PP · q
ms þmb

�
VPðq2Þ ¼

�
2mK�ðη� · qÞ
iðms þmbÞ

�
A0ðq2Þ; (B4)

is at the origin of the subscript P. The reason for not
choosing 0 as a subscript is to avoid confusion with the zero
helicity label. We observe that the pole 1=q2 disappears as it
should.
For the reader’s convenience we give here the relations

between the D1;2;3;P (12) and d, d1;� as used in [26]:

D1 ¼ 2d;

D3 ¼
−2
q2

ðd1 þ dþðm2
B −m2

K� ÞÞ;

D2 ¼
þ2d1

m2
B −m2

K�
;

DP ¼ þ2

q2
ðd1 þ d−q2 þ dþðm2

B −m2
K�ÞÞ; (B5)

whereDP þD3 ¼ þ2d− is the combination that is free of a
pole of the form 1=q2.
The leading heavy quark form factorsDð0Þ

k , k ¼ 1; 2; 3; P
obtained by replacing the QCD field b by the correspond-
ing heavy quark field are defined using an identical Lorentz
decomposition as the QCD form factors Dk, Eq. (12).

2. The B → K form factors

For completeness we give the definition of the B → K
form factors as well as the derivative form factors:

hKðpÞjs̄iqνσμνbjB̄ðpBÞi ¼ Pμ
TfTðq2Þ;

hKðpÞjs̄γμbjB̄ðpBÞi ¼ Pμ
TvT þ qμvs;

hKðpÞjð2iD⃖ÞμjB̄ðpBÞi ¼ Pμ
TDTðq2Þ þ qμDsðq2Þ; (B6)

where

Pμ
T ¼ 1

mB þmK
fðm2

B −m2
KÞqμ − q2ðpþ pBÞμg (B7)

and vs;T relate to the standard form factors f0;þ as follows:

vs ¼
m2

B −m2
K

q2
f0ðq2Þ; vT ¼ −ðmB þmKÞ

q2
fþðq2Þ:

(B8)

We note that f0ð0Þ ¼ fþð0Þ for the same reasons that
A0ð0Þ ¼ A3ð0Þ for the vector form factors. When applied to
the e.o.m., the first equation in (11), one obtains two
relations for the Pμ

T and qμ directions:

fTðq2Þ ¼ −ðms þmbÞvT −DTðq2Þ;

0 ¼
�

q2

mb þms
− ðms þmbÞ

�
vs −Dsðq2Þ: (B9)

Adding these two, and using the standard form factors f0;þ
one obtains

fTðq2Þ ¼ ðmB þmKÞðmb þmsÞ

×
�
fþðq2Þ − f0ðq2Þ

q2
þ f0ðq2Þ
ðmb þmsÞ2

�

−
�
DTðq2Þ þ

Dsðq2Þ
mB −mK

�
; (B10)

where both terms in square brackets are finite in the q2 → 0
limit for the same reasons as for the vector form factors
discussed below Eq. (17).

3. Subtracted form factors

Using A3ð0Þ ¼ A0ð0Þ we write

D3ðq2Þ ¼
þc3A3ð0Þ

q2
þD3ðq2Þ;

DPðq2Þ ¼
−c3A3ð0Þ

q2
þDPðq2Þ; (B11)

where D0;3ðq2Þ are regular as q2 → 0. Defining Ā0;3ðq2Þ ¼
A0;3ðq2Þ − A0;3ð0Þ one obtains the expressions
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T3ðq2Þ ¼
c3
q2

Ā3ðq2Þ −D3ðq2Þ;

0 ¼
�
cPA0ðq2Þ −

c3
q2

Ā0ðq2Þ
�
−DPðq2Þ: (B12)

These differ from Eqs. (15) by the fact that both terms on
the right-hand side are separately regular.

APPENDIX C: LCSR TREE-LEVEL ANALYSIS

We illustrate the power suppression of D1;2;þð0Þ as
discussed in Sec. III B 1 through explicit LCSR results
at tree level. Consider the following LCSR representation
of the form factors:

Fðq2Þ ¼ 1

m2
BfB

Z
sF
0

m2
b

dseðm2
B−sÞ=M2

FρFðs; q2Þ;

F ∈ fT1;2; V; A1;D1;2;…g; (C1)

where M2
F and sF0 are in general form-factor-dependent

Borel parameters and continuum thresholds, respectively.
Note that the decay constant fB has to be taken from a QCD
sum rule to the same OðαsÞ accuracy in order to cancel
radiative corrections appropriately; see e.g., [10]. ToOðα0sÞ
up to twist-3 and ms ¼ 0 and at q2 ¼ 0 one obtains, using
for instance the results given in [10],

c1ρVðs; 0Þ ¼
3m3

b

2s3
ð2f⊥K�mbðs −m2

bÞ þ f∥K�mK� ½m2
b − ðs −m2

bÞ�Þ þOðαs; higher twistÞ;

c2ρA1
ðs; 0Þ ¼ 3m3

b

2s3
ð2f⊥K�mbðs −m2

bÞ þ f∥K�mK� ½m2
b þ ðs −m2

bÞ2=s�Þ þOðαs; higher twistÞ: (C2)

The symbols f⊥;∥
K� denote the longitudinal and transversal decay constant of the K� meson, respectively. Here, the twist-2

and twist-3 parts correspond to f⊥;∥
K� , respectively. Using (20) this implies

ffiffiffi
2

p
ρDþðs; 0Þ ¼

ð14Þðc1ρVðs; 0Þ − c2ρA1
ðs; 0ÞÞ ¼ðC.2Þ − 3m3

b

2s3
f∥K�mK� ðs −m2

bÞð2 −m2
b=sÞ þOðαs; higher twistÞ: (C3)

We note that the leading term in 1=mb cancels as anticipated. The scaling Dþð0Þ=Vð0Þ ∝ Dþð0Þ=A1ð0Þ ∝ Λ=mb is now
almost manifest as ðs −m2

bÞ ∼OðΛmbÞ at best at the upper boundary of integration in (C1). The exponential factor does
not change anything as the scaling of the Borel parameter (C4) is arranged to keep it finite in the mb → ∞ limit. Let us
be more specific and implement the heavy quark limit [52] which amounts to the replacements

mB→mbþΛ̄; s0→m2
bþ2mbω0; M2→2mbτ: (C4)

Here, Λ̄, ω0 and τ are all hadronic quantities of the order of Λ out of which Λ̄ is known rather precisely through the
experimental value of mB. Using fB → ðfBÞstatm−1=2

b , e.g., [75], we obtain

c1Vð0Þ≃ c2A1ð0Þ≃ ð3f∥K�mK�ω0 þ 12f⊥K�ω2
0hziÞ

ðfBÞstatm3=2
b

;
ffiffiffi
2

p
Dþð0Þ≃ −6f∥K�mK�ω2

0hzi
ðfBÞstatm5=2

b

; (C5)

where ≃ stands for the above mentioned higher twist OðαsÞ and, by now, also OðΛ=mbÞ corrections. Furthermore

hfðzÞi ¼ R
1
0 e

ðΛ̄−ω0zÞ
τ fðzÞdz is a quantity which is Oð1Þ as it has no mb dependence.

The power suppression of the D1;2ð0Þ with respect to the standard form factors at Oðα0sÞ follows analogously from

ρT1
ðs; 0Þ ¼ 3m3

b=ð2s3Þð2f⊥K�mbðs −m2
bÞ þ f∥K�mK�m2

bÞ þOðαs; higher twistÞ (C6)

together with Eqs. (C2) and (14).
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