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We argue that no notion of flavor is necessary when performing amplitude calculations in perturbative
QCD with massless quarks. We show this explicitly at tree level, using a flavor recursion relation to obtain
multiflavored QCD from one-flavor QCD. The method relies on performing a color decomposition, under
which the one-flavor primitive amplitudes have a structure which is restricted by planarity and cyclic
ordering. An understanding of SUð3Þc group theory relations between QCD primitive amplitudes and their
organization around the concept of a Dyck tree is also necessary. The one-flavor primitive amplitudes are
effectivelyN ¼ 1 supersymmetric, and a simple consequence is that all of tree-level massless QCD can be
obtained from Drummond and Henn’s closed form solution to tree-level N ¼ 4 super Yang-Mills theory.
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I. INTRODUCTION

Fixed-order theoretical predictions for jet cross sections
at the Large Hadron Collider (LHC) require the calcu-
lation of scattering amplitudes in perturbative QCD
involving light QCD partons—gluons and quarks of
different flavor. For inclusive quantities, all possible par-
tonic contributions must be computed and summed; for
example, for 6 jet production at tree level, amplitudes for
gg→gggggg, dd̄→gggguū, gg→uūuūuū, gg → dd̄ss̄cc̄,
etc. are all needed.
What is the difference between the amplitudes describing

gg → uūuūuū and gg → dd̄ss̄cc̄ in pure QCD, in the limit
that all quarks can be treated as massless? Since all flavors
of quark have the same color interactions, the only differ-
ence comes from the restriction that flavor conservation
imposes on the possible factorization channels of the
amplitudes. The amplitudes for the one-flavor case can
be obtained from the amplitudes for the distinct-flavor case
via a permutation sum over quark indices,

Mðgg→uūuūuūÞ¼
X

Pðd;s;cÞ
ð−1ÞsgnPMðgg→dd̄ss̄cc̄Þ; (1)

where P gives permutations of momentum and color
indices of the quarks, and the ð−1ÞsgnP accounts for
Fermi statistics. For this reason, it is taken that the dis-
tinct-flavor case is the more general one which should be
calculated.
In this paper we show that it is possible to reverse Eq. (1)

for massless QCD amplitudes at tree level—more specifi-
cally, for tree-level primitive amplitudes. That is, we can
recover the distinct-flavor case using primitives involving
only one flavor of quark line. The result follows from an
understanding of SUð3Þc group theory relations between
the QCD primitives, and a generalization of the Dyck basis

for quark amplitudes found in Ref. [1]. It means that all of
tree-level massless QCD can be rendered effectivelyN ¼ 1
supersymmetric and can as such be obtained from the
known solution to N ¼ 4 SYM at tree level. It is interest-
ing that no notion of flavor is needed at the level of the field
theory amplitude calculation (we will argue this is true at
any loop order, using unitarity based methods to obtain
loop amplitudes from tree-level amplitudes); rather it can
be reinstated through combinatorics of the one-flavor tree-
level amplitudes alone.
A crucial step is to use a color decomposition to define

primitive amplitudes. By considering a theory where all
particles, including quarks, are in the adjoint representa-
tion, they can be defined at tree level as [2,3]

Mtree ¼
X
σ∈Sn−1

trðλ1λσ1 :::::λσn−1ÞAð1σ1:::::σn−1Þ; (2)

where the λa denote SUð3Þc fundamental representation
matrices, and the A denote purely kinematic primitive
amplitudes. Since only the color part of the quark inter-
actions change when putting them into the adjoint repre-
sentation, the purely kinematic primitive amplitudes are the
same as in usual QCD, so we shall refer to them simply as
QCD primitives—algorithms exist to relate these primitives
back to the full amplitude with fundamental quarks [4–7]
(at both tree and one-loop levels). The primitive amplitudes
inherit a number of properties from the color decomposi-
tion [Eq. (2)]. They are gauge invariant and, with reference
to their Feynman diagram representation, they only receive
contributions from graphs (once drawn in a planar fashion)
with a cyclic ordering of the external legs that is the same as
the labeling of the primitive, giving them a simplified
kinematic structure. The color decomposition with all
particles in the adjoint representation makes it clear that
general QCD primitive amplitudes satisfy the same group
theory relations as do all-gluon amplitudes—these are
known as Kleiss-Kuijf (KK) relations [8]. However, as*thomas.melia@cern.ch
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was explained in [1], the quark lines present in the amplitude
impart further structure on these relations, modifying them
with the effect that fewer than ðn − 2Þ! primitives are
independent for n particle scattering. In the pure quark
and antiquark case considered, with all-distinct-flavor quark
lines, the number of independent primitiveswas shown to be
ðn − 2Þ!=ðn=2Þ!. In this paper we generalize this statement
to QCD primitive amplitudes with any number of gluons as
well as quarks. Independence for most of this paper will be
taken to mean independent over the field of real numbers
[Bern-Carrasco-Johansson (BCJ) relations [9] take into
account the further possibility of multiplying primitive
amplitudes by kinematic invariants].
In one of the landmarks of the recent progress in the

uncovering of the structure of scattering amplitudes, a
solution to tree-level N ¼ 4 SYM was written down by
Drummond and Henn [10], which provides a closed form
for the primitive amplitudes of this theory. That such a
remarkable formula exists is made possible by the high
degree of symmetry present in the theory. But it has long
been understood that some amplitudes in QCD are effec-
tively supersymmetric at tree level [11,12], and, in a recent
paper [13], it was shown that all QCD amplitudes with up
to four quark lines of distinct flavor (four also being the
number of gluino flavors in N ¼ 4 SYM) can be obtained
from the formula of Drummond and Henn. In this paper we
show that in fact all of massless QCD can be obtained from
N ¼ 4 SYM, even though there are only four flavors of
gluino inN ¼ 4 SYM (seemingly less than what is needed
to describe QCD) as well as possible contributions from
scalar particle exchange (seemingly more than what is
needed to describe QCD).
A main motivation for the study of these amplitudes is to

be able to make fixed-order theoretical predictions with
which to compare to collider data. The ATLAS and CMS
experiments have presented data with up to as many as 10
hard QCD jets [14,15], and this presents an enormous
challenge for such computations (at around this number of
jets, they are also expected to break down). At leading order
(LO) in QCD, calculations with up to 8 jets are avail-
able [16], and there are next-to-leading order (NLO)
descriptions of processes involving up to 5 jets [17,18].
QCD tree-level primitive amplitudes can be considered
as fundamental gauge-invariant building blocks of such
calculations—as well as describing tree-level contributions,
they arise naturally in unitarity based methods for obtaining
the one-loop part of the NLO corrections to jet cross
sections at the LHC [19–26] (see e.g. [4] for a review), and
also in calculations of QCD amplitudes at higher loop
orders [27–33]. Primitive amplitudes can also be used
explicitly in subtraction schemes, as formulated within the
colorful [34] Frixione-Kunszt-Signer framework [35]. Both
a knowledge of a general basis and the flavor recursion
described in this paper should be useful for multileg QCD
calculations at leading and next-to-leading orders.

Although, for inclusive light jets, multiquark contribu-
tions are less important numerically than the more gluonic
ones, more exclusive multiquark final states can be exper-
imentally defined by tagging the quark-like contributions.
Bottom quarks (and, with less efficiency, charm quarks) can
be identified by displaced vertices—as many as 4 b-tags are
used in ongoing experimental analyses—and jet substruc-
ture techniques [36,37] can statistically distinguish between
jets originating from a light quark and those originating
from gluons [38–41], and are increasingly being used, for
example, in searches for supersymmetric particle hadronic
cascade decays. The definition of jet flavor can be made
infrared safe for calculations at the parton level [42]. For
LHC phenomenology, the addition of electroweak bosons
into amplitudes, as well as considering massive top (and
possibly bottom) quarks, is important.
The outline of this paper is as follows. Sec. 2 describes

the construction of a general basis of QCD primitive
amplitudes for gn−2kðq̄qÞk scattering with all-distinct quark
flavors, which is of the size ðn − 2Þ!=k!. The notion of a
rooted oriented Dyck tree is introduced and the connec-
tion with quark line structure is made. Sec. 3 presents the
flavor recursion, which enables a k-flavor primitive to be
expressed in terms of one-flavor primitives, and discusses
how N ¼ 4 SYM amplitudes can be used to completely
specify all of tree-level massless QCD. We discuss moving
away from massless QCD, the role of BCJ relations, and
further directions in Sec. 4, and we conclude in Sec. 5.

II. A GENERAL TREE-LEVEL QCD
PRIMITIVE BASIS

The use of Dyck words in understanding the number of
independent primitives for purely multiquark scattering
with distinct flavors of quarks was presented in [1]. In this
section we will generalize these results to QCD primitives
of the form gn−2kðq̄qÞk, i.e. with k distinct-flavor quark
lines and n − 2k gluons. Throughout this section, we will
use the convention that the quarks and antiquarks are
labeled by the numbers 1…2k, with antiquarks given odd
labels, quarks given even labels, and flavor pairs labeled by
consecutive numbers: ð1; 2Þ; ð3; 4Þ; ..., ð2k − 1; 2kÞ. The
gluons are labeled by the numbers 2kþ 1…n. There is no
loss of generality in using this convention for the purposes
of this section. It will, however, be necessary to introduce
additional notation in the following section to distinguish
different flavor pairings.
We will first state the result: for k-flavor quark

QCD primitive amplitudes gn−2kðq̄qÞk, a basis of primitives
is the set

Að1…σ1…σ2… …σ2k−2…2Þ; (3)

where the … stand for all possible insertions of the gluons
2kþ 1;…; n in between the labels σ ¼ fσ1;…; σ2k−2g
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which are “Dyck permutations” of the set of quark
indices f3; 4; 5; 6;…; 2k − 1; 2kg.
The Dyck permutations needed are obtained as follows

(each step is described in detail below): (i) consider all Dyck
topologies arising fromDyckwords of length 2k − 2, (ii) for
each Dyck topology, consider all possible assignments of
flavor pairs, and (iii) for each flavor pair assignment, include
only one orientation of each of the flavor pairs.
The Dyck topologies needed for step (i) are obtained

from Dyck words. Dyck words of length 2k − 2 are strings
of k − 1 letter Xs and k − 1 letter Ys with the requirement
that the number of Xs is always greater than or equal to the
number of Ys in any initial segment of the string. For each
of these words, the Dyck topology is obtained by identify-
ing pairs of ðXi; YiÞ in the following way: reading the word
left to right, pairing each Y that you come across with the
closest unpaired X to the left. There are k − 1 pairs
constructed in this way for each Dyck word, labeled with
i ¼ 1;…; k − 1.
The different flavor pair assignments needed for step (ii)

are simply the ðk − 1Þ! different possible ways of assigning
the flavor pairs (3,4),(5,6), etc. to the k − 1 Dyck topology
pairs ðXi; YiÞ. This is done for each Dyck topology.
Finally, in step (iii) above, the Dyck permutations are

obtained for each of these flavor pair assignments by
choosing the orientation of the flavor pair. This means
placing the label of each quark and antiquark pair into the
Dyck word either as q̄ → Xi, q → Yi, or q → Xi, q̄ → Yi,
where ðq̄; qÞ is whichever flavor pair is assigned to the
Dyck topology pair ðXi; YiÞ. Only one orientation of each
quark line is included for each of the flavor assignments
arising from the Dyck topologies. We can introduce the
concept of the signature of the permutation, which is a
string of k − 1 þ=− signs depending on whether ðq̄; qÞ is
assigned as q̄ → X, q → Y (a þ sign) or q → X, q̄ → Y (a
− sign). So we obtain a vector ð�;�;…;�Þ, where the ith
entry corresponds to the orientation for the pair ðXi; YiÞ.
As an example, for k ¼ 3, there are twoDyckwords of the

length 4ð¼ 2k − 2Þ:XYXY,XXYY. For the first Dyckword,
the pair assignment isX1Y1X2Y2. For the flavor assignments
ð3; 4Þ → ðX1Y1Þ; ð5; 6Þ → ðX2Y2Þ, the permutations

ð3; 4; 5; 6Þ; ð4; 3; 5; 6Þ; ð3; 4; 6; 5Þ; ð4; 3; 6; 5Þ (4)

are obtained with signatures ðþ;þÞ; ð−;þÞ; ðþ;−Þ; ð−;−Þ,
respectively; from the second possible flavor assignment
ð5; 6Þ → ðX1Y1Þ; ð3; 4Þ → ðX2Y2Þ, the permutations

ð5; 6; 3; 4Þ; ð6; 5; 3; 4Þ; ð5; 6; 4; 3Þ; ð6; 5; 4; 3Þ (5)

are obtained with signatures ðþ;þÞ; ð−;þÞ; ðþ;−Þ; ð−;−Þ,
respectively. For the second Dyck word the pair assignment
is X2X1Y1Y2. For the flavor assignments ð3; 4Þ → ðX1Y1Þ;
ð5; 6Þ → ðX2Y2Þ, the permutations

ð5; 3; 4; 6Þ; ð5; 4; 3; 6Þ; ð6; 3; 4; 5Þ; ð6; 4; 3; 5Þ (6)

are obtained with signatures ðþ;þÞ; ð−;þÞ; ðþ;−Þ; ð−;−Þ,
respectively; from the second possible flavor assignment
ð5; 6Þ → ðX1Y1Þ; ð3; 4Þ → ðX2Y2Þ, the permutations

ð3; 5; 6; 4Þ; ð3; 6; 5; 4Þ; ð4; 5; 6; 3Þ; ð4; 6; 5; 3Þ (7)

are obtained with signatures ðþ;þÞ; ð−;þÞ; ðþ;−Þ; ð−;−Þ,
respectively. A basis then consists of four permutations, one
chosen from each of Eqs. (4)–(7). The four permutations do
not have to have the same signature as each other.
A diagram showing the quark line structure of the

primitive can be drawn for each of these permutations;
see Fig. 1. A quark line is drawn between each of the
identified pairs ðXi; YiÞ. The ðk − 1Þ! flavor pair allocations
change the flavor of these quark lines, and the 2k−1 different
signatures for each of these allocations are all possible ways
of drawing the direction of the arrow on each of the quark
lines. Gluons can be inserted in any position between the
quark lines, so at all points around the circle, except
between 1 and 2 which have been fixed using the KK
relations as always consecutive, as described below. These
gluons are not drawn on the quark line graphs. A particu-
larly useful feature of these graphs is that if the quark lines
cross then the primitive has to vanish, since with only
planar contributions, the quark lines are forced to intersect,
which results in a flavor-violating vertex.
This is a generalization of what was found in [1] in two

directions. There is the addition of gluons, and also the
freedom in choosing the signature of the Dyck permuta-
tions describing the quark line structure. We now discuss
each of these generalizations in turn.

A. Addition of gluons

Considering first just the quark line structure, the number
of permutations σ is given by the number of Dyck words of
length 2ðk − 1Þ, which is given by the Catalan number
Cr ¼ ð2rÞ!=r!ðrþ 1Þ!, with r ¼ k − 1, multiplied by the
number of flavor allocations, ðk − 1Þ!. Next, the counting
of all possible insertions of the gluons can be done by
considering all possible distributions of an ordered set of
the p ¼ n − 2k gluons into 2k − 1 slots between the quark
lines [excluding between ð1 → 2Þ], which is given by a
binomial coefficient ð2k − 2þ pÞ!=ð2k − 2Þ!=p!, and then
considering all ordered sets, given by the p! possible gluon
permutations. That is, the number of independent k-flavor
gn−2kðq̄qÞk QCD primitive amplitudes is

ð#Dyck wordsÞð#flavor pair allocationsÞ
ð#gluon distributionsÞð#gluon permutationsÞ

¼ ð2k − 2Þ!
ðk − 1Þ!k! ðk − 1Þ! ðpþ 2k − 2Þ!

ð2k − 2Þ!p! p!

¼ ðpþ 2k − 2Þ!
k!

¼ ðn − 2Þ!
k!

: (8)
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This generalization coming from the addition of gluons to
amplitude is straightforward, since they impart no further
structure which can affect KK relations further than
beyond the impact of the quark line structure. The KK
relations allow for two labels to be fixed in consecutive
order—as in Ref. [1] we chose here to fix 1 and 2 to be

cyclically next to each other (i.e. we always consider
primitive amplitudes of the form Að1…2Þ). All of the
further information concerning relations between the
remaining ðn − 2Þ! primitives (after fixing 1 and 2) is
contained in the quark line structure, to which we
now turn.

FIG. 2. The quark line graph for the above Dyck word is shown on the left. The quark line directions have been chosen in accordance
with an all-positive signature. On the right is the associated rooted oriented Dyck tree, which can be seen as a dual graph to the quark line
graph once the line ð1 → 2Þ is removed and the circle representing the edge of the plane is identified as a node. The levels vi of the tree
are given on the far right.

FIG. 1. Constructing quark line graphs based around the Dyck words XYXY and XXYY. The first column shows the two Dyck
topologies, and the second column shows the two possible flavor pair allocations for each topology. Following the direction of the
arrows, each row then depicts the four possible choices of signature for each flavor pair allocation. Four permutations corresponding to
one graph out of each of these rows constitute the Dyck permutations which are then used to construct a basis of QCD primitives.
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B. A rooted oriented tree and the general signature

The second generalization concerns the signature of the
Dyck permutation—which way the quark lines are directed
in the quark line diagram for each primitive in the basis.
With the prescription described here, there are 2k−1 differ-
ent bases; in [1], only the basis in which each permutation
has an all-positive signature ðþ;þ;…;þÞwas proven. The
more general result comes from an iterative proof based
around rooted oriented trees. These trees are also used in
the organization of the flavor recursion in the following
section. A rooted oriented tree is a dual graph to the quark
line graphs with the edge ð1 → 2Þ removed, with the circle
identified as a node to which the edges of the quark line
graph (the quark lines) attach. Alternatively, a rooted
oriented tree can be drawn directly from the Dyck word
via a “snail climbing up a tree” path—every time there is an
X, the snail crawls up a branch, and every time there is a Y,
it crawls down the other side; see Fig. 2. The number of
rooted oriented trees for a given number of nodes is given
by the Catalan number, the same as the number of Dyck
words. The rooted oriented tree is composed of nodes at
different levels, labeled by vi, where 1 ≤ i ≤ k, and with
i ¼ k only being achieved for the Dyck word of the
form XX:::XYY:::Y.
An iterative procedure can be set up around the concept

of the “maturity” of a tree, which is determined by the
number of nodes ni the tree has at each level vi, with a more
mature tree having more nodes at higher levels. Concretely,
we can define a tree A to be more mature than a tree B if,
comparing the number of nodes at each level vi, starting at
i ¼ 1, some i is reached where nAi < nBi . It is possible that
distinct trees can have the same maturity.
We can show that the signature of a basis primitive can

be chosen at will. For clarity of presentation, we will make
a couple of simplifications. First, we will present the proof
for the pure-quark case, and point out the straightforward
generalizations to include gluons where necessary. Second,
we will ignore the effect of Fermi statistics, which gen-
erates negative signs for odd permutations of the labels
from the canonical form 1…n—these signs can be put in by
hand after all relations are taken into account. The main
ingredient is being able to show the following:

Að1;…; j; β; i;…; 2Þ ¼ −Að1;…; i; βT; j;…; 2Þ
þ ðtrees of higher maturityÞ; (9)

where β is some set of quark and antiquark labels, andwhere
βT denotes the set βwith the ordering reversed. The “+(trees
of higher maturity)” refers to primitives which have a
more mature rooted oriented tree than the primitive on
the left-hand side. The first primitive on the right-hand side
has equalmaturity to the primitive on the left-hand side—the
orientation of the quark pair ði; jÞ has been reversed, as has
the orientation of all the quark pairs contained within β, but

no other quark lines have had their orientation changed.
Eq. (9) follows from Eq. (A2) given in the appendix [with
gluons, this equation generalizes to Eq. (A4)], and is a
SUð3Þc group theory relation—it follows fromKK relations
modified by the quark line structure.
If the quark lines of a primitive are oriented in a different

way to the signature chosen for our basis vector for this
particular Dyck topology and flavor assignment, we can
apply Eq. (9) to each of the wrongly oriented flavor pairs,
starting with the pair sitting at the lowest level on the rooted
oriented tree (if there is more than one pair at this level, they
can each be oriented in turn, before orienting pairs further
up the tree). We can then work upwards through the tree,
each time rewriting the primitive up to higher maturity
terms, which we assume we can solve, until all of the quark
lines are oriented in the desired way, dictated by the
signature of this particular flavor assignment that we chose
for our basis. This iterative procedure terminates at ampli-
tudes which have a tree of the highest possible maturity—
these are based on the Dyck word of the form
XX:::XYY:::Y (see Fig. 3). These primitives can be ordered
simply, since Eq. (A2) in this case becomes [see Eq. (A4)
for the gluonic case]

Að1;…; j; β; i;…; 2Þ ¼ −Að1;…; i; βT; j;…; 2Þ: (10)

This completes the proof that the signature of each flavor
pair assignment can be chosen independently. As a simple
example of how the iteration works, consider the pure six
quark case, and choose as a basis from Eqs. (4)–(7) where
the first two have an all-positive signature, and the second
two have an all-negative signature:

Að1; 3; 4; 5; 6; 2Þ; Að1; 5; 6; 3; 4; 2Þ;
Að1; 6; 4; 3; 5; 2Þ; Að1; 4; 6; 5; 3; 2Þ: (11)

v1

v2

v3

vk−2

vk−1

vk

21

XX . . .XXY Y . . . Y Y

FIG. 3. The Dyck word and quark line graph of a primitive with
k quark lines, for which the rooted oriented Dyck tree has
maximum height, or maturity.
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We demonstrate how the primitive amplitude
Að1; 4; 3; 6; 5; 2Þ can be expressed in terms of this basis.
First, applying Eq. (A2),

Að1; 4; 3; 6; 5; 2Þ ¼ −Að1; 3; 4; 6; 5; 2Þ −Að1; 3; 6; 5; 4; 2Þ:
(12)

Neither of the resulting terms are yet in our chosen basis.
The iteration continues on the first of the primitives on the
right-hand side of Eq. (12) as

Að1;3;4;6;5;2Þ¼−Að1;3;4;5;6;2Þ−Að1;5;3;4;6;2Þ
¼−Að1;3;4;5;6;2Þ− ½−Að1;6;4;3;5;2Þ�;

(13)

where in the second equality the recursion acts on the
second primitive obtained after the first equality. The
iteration continues on the second of the primitives on
the right-hand side of Eq. (12) as

Að1; 3; 6; 5; 4; 2Þ ¼ −Að1; 4; 5; 6; 3; 2Þ
¼ −½−Að1; 4; 6; 5; 3; 2Þ�: (14)

At this point the recursion has terminated, and we have
expressed the primitive amplitude Að1; 4; 3; 5; 6; 2Þ in
terms of our basis:

Að1; 4; 3; 6; 5; 2Þ ¼ Að1; 3; 4; 5; 6; 2Þ −Að1; 6; 4; 3; 5; 2Þ
−Að1; 4; 6; 5; 3; 2Þ: (15)

The primitive amplitudes in the bases described in this
section are independent, since we have shown how to
express any primitive in terms of a set of size ðn − 2Þ!=k!—
this is the minimum size for a basis, since the one-flavor
case with ðn − 2Þ! independent primitives must be recov-
ered using a sum over the k! momentum permutations of
the distinct-flavor case. That is, since

Mone-flavor¼
X

Pðp2;p4;::;p2kÞ
ð−1ÞsgnPMdistinct-flavorðfpigÞ; (16)

the number of independent primitives is ≥ ðn − 2Þ!=k!. The
momentum permutations acting on the basis primitives of
Mdistinct-flavor bring them outside of the basis for a single
distinct-flavor amplitude. For instance, the momentum
swap p2↔p4 would mean that the antiquark with momen-
tum p1 ðp3Þ is no longer connected to the quark with
momentum p2 ðp4Þ. This is different to swapping the cyclic
positions of the quark with momentum p2 and the quark
with momentum p4, but keeping the same flavor pairing so
that p1 still connects to p2 and p3 still connects to p4. The
latter is what happens under the KK relations, and was the

subject of this section; different quark pairings, on the other
hand, are tied up with what happens when quark lines have
an identical flavor, and it is to these considerations we
now turn.

III. FLAVOR RECURSION AND ALL MASSLESS
QCD TREES FROM N ¼ 4 SYM

The idea behind the flavor recursion is simple—write a
k-flavor primitive of the formAnf¼kð1; σ; 2Þ as a one-flavor
primitive with the same labeling Anf¼1ð1; σ; 2Þ, and then
subtract any wrong quark line contributions using k-flavor
primitives with a different flavor pairing:

Anf¼kð1; σ; 2Þ ¼ Anf¼1ð1; σ; 2Þ −
X

A
nf¼k
wrong flavð1; σ; 2Þ:

(17)

We can then iterate this procedure on each of the sub-
traction terms, but, if this is to work, then these subtraction
amplitudes must be further down an iterative direction
which must eventually terminate. It follows that there must
exist some k-flavor primitive amplitudes that are simply
equal to one-flavor primitives,

Anf¼kð1; σ; 2Þ ¼ Anf¼1ð1; σ; 2Þ; (18)

and this happens for the permutations based around the
Dyck tree of the highest maturity (Fig. 3) and which have
an all-positive signature. We shall also see that the direction
in which to iterate is up the rooted oriented tree introduced
in the previous section. The reason that such a relation as
Eq. (18) exists is down to the role of planarity and cyclic
ordering in restricting the pole structure of the one-flavor
amplitude to be the same as that of the k flavor. Throughout
this section, we use one flavor to implicitly specify that all
quark lines have the same helicity, which is the most
general case (other helicity cases, and obtaining two-,
three- …ðk − 1Þ-flavor amplitudes from one-flavor ampli-
tudes follows trivially from this).
As a simple example of this planar-cyclic restriction,

consider the four-quark primitive amplitudes
Anf¼kð1; 3; 4; 2Þ and Anf¼1ð1; 3; 4; 2Þ. Although it is pos-
sible, by flavor considerations, for a quark line to run from
ð1 → 4Þ in the latter primitive, this is forbidden by
planarity and the specified cyclic ordering:
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The situation is different if we compare the k-flavor amplitude Anf¼kð1; 4; 3; 2Þ with the one-flavor amplitude with the
same cyclic labeling, Anf¼1ð1; 4; 3; 2Þ:

Now there is a difference between the amplitudes—in the
one-flavor case there is both an s- and a t-channel pole,
since nothing restricts the quark line to run from ð1 → 4Þ.
Again, for the sake of clarity, a simplification has been
made to ignore the minus signs arising from Fermi statistics
when the flavor pairing in the one-flavor amplitude
permutes from (1,2)(3,4) to (1,4)(2,3)—that is, a relative
þ sign has been used between the quark line graphs of the
one-flavor primitive above, rather than a − sign. Doing this
will make the structure of the flavor recursion in the next
section more transparent—the minus signs can easily be
reinstated in whatever method is used to calculate the one-
flavor amplitudes.
It is easy to see that planarity requires the one-flavor

primitive amplitudes with a quark line structure based on
XX:::XYY:::Y which has an all-positive signature to be
identical to k-flavor primitives which have the same highest
maturity tree:

Anf¼kð1q̄ q̄…q̄qq…q2Þ ¼ Anf¼1ð1q̄ q̄…q̄qq…q2Þ: (19)

There is no planar way in which to connect an antiquark to
a quark in the one-flavor case that is not the one it would

have connected to in the k-flavor case without giving rise to
crossed quark lines.
Theall-positive signature basiswill play a special role in the

following. We now present the flavor recursion, which starts
by acting on k-flavor primitives of an all-positive signature:
(1) Express an all-positive signature k-flavor primitive

as a one-flavor primitive which has the same cyclic
ordering of external particles, minus subtraction k-
flavor primitives which serve to remove the wrong
quark line contributions [see Eq. (17)].

(2) Re-express each of the subtraction primitives in
terms of all-positive signature k-flavor primitives
as discussed in the previous section.

(3) Repeat from step 1 on each of these k-flavor
primitives.

Step 2 is important in order to allow the recursion to terminate.
As a warm-up to the general case for the recursion,

consider again the purely six-quark primitive
A

nf¼k
ð3;4Þð5;6Þð1; 3; 4; 5; 6; 2Þ, which is an all-positive signature

primitive. We have used the subscripts (3,4)(5,6) to indicate
the flavor pairing used (in the previous section this pairing
would have been implicit). This primitive can be expressed
as a one-flavor primitive minus a subtraction as in the
following way:

Anf¼kð3;4Þð5;6Þð1; 3; 4; 5; 6; 2Þ ¼ Anf¼1ð1; 3; 4; 5; 6; 2Þ −Anf¼kð3;6Þð5;4Þð1; 3; 4; 5; 6; 2Þ: (20)

Again, we are ignoring the effect of Fermi statistics. This completes step 1. We now need to re-express the subtraction

primitiveA
nf¼k
ð3;6Þð5;4Þð1; 3; 4; 5; 6; 2Þ (which has a different flavor pairing as indicated by the subscripts) in terms of primitives

of an all-positive signature, as required by step 2 above. This is achieved through the group theory relation Eq. (A2) [or with
gluons Eq. (A4)],

GETTING MORE FLAVOR OUT OF ONE-FLAVOR QCD PHYSICAL REVIEW D 89, 074012 (2014)

074012-7



A
nf¼k
ð3;6Þð5;4Þð1; 3; 4; 5; 6; 2Þ ¼ −Anf¼k

ð3;6Þð5;4Þð1; 3; 5; 4; 6; 2Þ:
(21)

The recursion now iterates (step 3) by acting with step 1 on
this primitive:

A
nf¼k
ð3;6Þð5;4Þð1; 3; 5; 4; 6; 2Þ ¼ Anf¼1ð1; 3; 5; 4; 6; 2Þ: (22)

There are no further subtractions—this is an amplitude with
a Dyck tree of highest maturity—so the recursion termi-
nates here and the full result is obtained, via Eqs. (22) and
(21) into Eq. (20):

A
nf¼k
ð3;4Þð5;6Þð1; 3; 4; 5; 6; 2Þ ¼ Anf¼1ð1; 3; 4; 5; 6; 2Þ

þAnf¼1ð1; 3; 5; 4; 6; 2Þ: (23)

Using this method, we have succeeded in expressing a
three-flavor primitive in terms of one-flavor primitives.
As discussed at the end of the previous section, the

intermediate primitive A
nf¼k
ð3;6Þð5;4Þð1; 3; 5; 4; 6; 2Þ is outside

the basis of k-flavor primitives with flavor pairs (3,4)(5,6),
since it specifies that pairs of equal flavor are ð3 → 6Þ
and ð4 → 5Þ.

A. The flavor recursion for the general case

The direction in which the general flavor recursion will
iterate is based around the rooted oriented tree introduced
in Sec. II B. We introduce a more streamlined notation to
indicate the flavor structure of each primitive—as in the
above example, we will be dealing with k-flavor primitives
with different flavor pairings to the usual convention. We
can label a primitive with a subscript f ¼ ff1; f2;…; fkg
being a permutation of f2; 4;…; 2kg to denote the flavor
pairing ð1 → f1Þ; ð3 → f2Þ;…; ð2k − 1 → fkÞ. Under this
notation, we can rewrite Eq. (17) more precisely as

A
nf¼k
f ð1;σ;2Þ¼Anf¼1ð1;σ;2Þ−

X
f0∈Sk

ð1−δff0 ÞAnf¼k
f0 ð1;σ;2Þ;

(24)

where the δff0 removes the amplitude on the left-hand side
from the sum on the right-hand side, and where we have
again ignored minus signs coming from Fermi statistics. In
considering the full sum over Sk we are taking into account
all possible flavor pairings, but they will not all be nonzero,
since some of these pairings will give rise to crossed
quark lines.
Now consider a general all-positive signature k-flavor

primitive, for example, the one shown in Fig. 2. Which
primitives in the sum on the right-hand side of Eq. (24) are
zero? When we are dealing with an all-positive signature
permutation on the left-hand side, the reader can convince

herself or himself that if the pairing ð1 → 2Þ is not present,
then the amplitude must be zero: if the flavor pairing is
ð1 → fiÞ, then there will be either an odd number of quarks
or an odd number of antiquarks between the position fi and
1 in the cyclic order, Anf¼kð1;…; fi;…; 2Þ.
A more careful consideration reveals the following

result: for the k-flavor subtraction primitives to be nonzero
in Eq. (24), the flavor permutations can only swap quark
flavors at the same level of the Dyck tree. Consider any two
nodes on the Dyck tree corresponding to the all-positive
signature primitives on the left-hand side of Eq. (24), one
node at level vi and the other at level vj. Next, consider the
path to each node from the root node at level v1 (these paths
are unique, but they could overlap up to some node vmax

overlap
from which point onwards they differ—in this case in
everything that follows, the node at v1 should be taken to
represent vmax

overlap); see Fig. 4. Let q̄a → qb denote the quark
line which is the dual line passing through the edge above
the node vi and q̄c → qd be the quark line which is the dual
line passing through the edge above the node vj. The
primitive amplitude has the form

A::ða;bÞ::ðc;dÞ::ð…q̄a…qb…q̄c…qd…Þ: (25)

The second set of ellipses in this primitive contains quark
and antiquark labels which are dual quark lines to edges in
the tree above the node vi. They stand for an equal number
of quarks and antiquarks. Similarly, the fourth set of
ellipses in the primitive contains an equal number of quarks
and antiquarks with quark lines dual to edges above the
node vj. In between this, the third set of ellipses could be

FIG. 4. Path back to the lowest node below two different nodes
of the tree, one at level vi, associated with quark line q̄1 → q2,
and the other at level vj, associated with the quark line q̄3 → q4.

TOM MELIA PHYSICAL REVIEW D 89, 074012 (2014)

074012-8



any number of quarks and antiquarks coming from two
possible origins. First, they can come from lines dual to
other edges of the Dyck tree which branch off to the right of
the path to vi or lines dual to edges which branch off to the
left of the path to vj—this origin gives rise to an equal
number of quarks and antiquarks. Second, they can be
quarks from the quark lines which cross the path to vi
(labeled qv1 ;…; qvi−1 in Fig. 4) or they can be antiquarks
from the quark lines which cross the path to vj (labeled
q̄v1 ;…; q̄vj−1). The fact that it is always quarks crossing the
path to vi whereas it is antiquarks crossing the path to vj is a
consequence of having a primitive with an all-positive
signature—in this way it is an important feature of the
recursion. There are i − 1 quarks and j − 1 antiquarks from
this second origin.
Now consider what happens when the quark lines q̄a →

qb and q̄c → qd mix, so that we have q̄a → qd and q̄c → qb.
The number of quarks and antiquarks in between q̄a and qd
needs to be equal for the primitive A::ða;dÞ::ðc;bÞ::
ð…q̄a…qb…q̄c…qd…Þ to be nonzero, so it is a necessary
condition that vi ¼ vj.
We can use this information to split up the sum over all

mixings in Eq. (24) as follows. Separate the labeling of the
flavor structure into lists of those at equal levels of the tree:
f1…fh, where h is the highest level of the tree, so that the
primitive can be labeled A

nf¼k
f1…fh

. We can then write the
permutation sum by splitting it up so that only permutations
within each level are considered:

A
nf¼k
f1f2::fh

ð1; σ; 2Þ ¼ Anf¼1ð1; σ; 2Þ −
X

f0
1
∈Sn1

X
f0
2
∈Sn2

� � �

×
X

f0h∈Snh

�
1 −

Yh
i¼1

δfifi 0

�
A

nf¼k
f0
1
f0
2
::f0h

ð1; σ; 2Þ:

(26)

Again, the product of delta functions serves to remove the
amplitude on the left-hand side from the sum. It is just the
quark line structure which is important for the recursion; no
reference to the gluon position is needed. In the sum on the
right-hand side some of the amplitudes are still zero, but
splitting the sum up explicitly as above makes it clear that a
quark at a higher level of the tree cannot pairwith an antiquark
at a lower level of the tree, and as such all of the k-flavor
amplitudes appearing on the right-hand side of Eq. (26) have a
Dyck tree of higher maturity than the primitive on the left-
hand side. Again, this feature is a consequence of having an
all-positive signature primitive on the left-hand side.
Equation (26) is the master equation for the recursion.

After it is applied, the recursion continues by next express-
ing each of the subtracted k-flavor amplitudes on the right-
hand side of Eq. (26) in their all-positive signature Dyck
basis. As discussed in the previous section, in doing this the
only primitives of higher maturity are created. This

completes one iteration of the recursion. After it, all
remaining k-flavor amplitudes are of higher maturity than
the one of the left-hand side of Eq. (26). The recursion
eventually terminates at the amplitude of maximum height,
Fig. 3, through Eq. (19).
If a different helicity configuration is chosen from the

one where all quarks have equal helicity, the recursion
proceeds in exactly the same way, so that the same
expressions are reached, except now some of the
“one-flavor” amplitudes can be zero (owing to the fact
that opposite helicity quark lines cannot mix). Finally, since
two-, three-, …ðk − 1Þ-flavor amplitudes can be expressed
as permutation sums over k-flavor amplitudes, it follows
that they can also all be expressed in terms of one-flavor
amplitudes, via the above recursion.

B. Obtaining QCD from N ¼ 4 SYM

We do not present the details of Dummond and Henn’s
formula for the solution to N ¼ 4 SYM at tree level, and
instead refer the reader to the original publication [10]. The
solution is given in terms of a super wave functionΦ, which
in terms of on-shell gluon (gþ, g−), gluino (~gA, ~̄g

A), and
scalar (ϕAB) states, and Grassmann variables ηA, is

Φðλ; λ̄; ηÞ ¼ gþðλ; λ̄Þ þ ηA ~gAðλ; λ̄Þ þ
1

2
ηAηBϕABðλ; λ̄Þ

þ ηAηBηCϵABCD ~̄g
Dðλ; λ̄Þ

þ ηAηBηCηDϵABCDg−ðλ; λ̄Þ; (27)

with A ¼ 1; 2; 3; 4. In [10] it was discussed how to perform
the Grassmann integrations so as to project the formula
onto specific external states, and, in [13], all-n formulas
were derived for the projection onto n external particles—
gluons and gluinos of the four possible flavors,
A ¼ 1; 2; 3; 4. These amplitudes then begin to resemble
QCD amplitudes, with gluinos identified as quarks—
because they are color stripped primitives, gluinos have
the same interactions with gluons as quarks do. The
problem in relating these amplitudes to the QCD ampli-
tudes lies in avoiding non-QCD interactions involving
scalars, which couple two gluinos of different flavors—
see Fig. 5. This was achieved for specific cases in [13] by
careful choices of external flavor and by summing over
different flavor permutations so that scalar contributions
were eliminated—either not being present or canceling
against each other—so that all QCD amplitudes with up to
four distinct-flavor quark lines were shown to be obtainable
from Drummond and Henn’s solution. It was left as an open
problem as to whether amplitudes with more quarks could
also be obtained—clearly a necessary issue to deal with is
the one of flavor, since there are only four flavors of gluino
and if the N ¼ 4 SYM solution were able to describe five-
flavor amplitudes then these would have to be obtainable
from at least four-flavor amplitudes.
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It follows directly from the flavor recursion described in
the previous section that in fact the whole of massless QCD
at tree level is obtainable from N ¼ 4 SYM, since one-
flavor amplitudes are identical in QCD and N ¼ 4 SYM.
This is because if a scalar exchange is created, we can trace
it to its termination point at some quark line (it has to
terminate, because no external scalars are specified in the
amplitude); see Fig. 5. However, for this to be nonzero, it
necessarily creates two different flavored quarks which will
eventually leave the amplitude, contradicting the original
specification of a one-flavor amplitude. In other words,
when all quark lines are of the same flavor, no scalars can
be exchanged between the quark lines, since they couple to
different flavored quarks as ϕAB ~gA ~gB; A ≠ B. (This is
similar reasoning to that which asserts that all-gluon tree
amplitudes are identical in QCD and N ¼ 4 SYM).
So, in order to obtain all of massless QCD at tree level,

the most difficult primitives to obtain, the all-distinct-flavor
cases, are expressed through the flavor recursion in terms of
a particular set of one-flavor QCD primitives. These can
then be directly obtained from the one-flavor N ¼ 4 SYM
amplitudes, once projected onto gluon and one-flavor
gluino external states, as described in [13]. One feature
of this particular set of one-flavor primitives is that the
external quark and antiquark labels are fixed into a Dyck
word, with Xs identified with antiquark labels and Ys
identified with quark labels. The discussion above has
implicitly assumed that the helicities of the quark lines in
the k-flavor primitives are equal. However, this is all that is
needed to obtain massless QCD from the N ¼ 4 SYM
formulas, since all other helicity cases can be obtained from
them via the charge parity equation,

Að…i�̄q…j∓q …Þ ¼ −Að…i�q…j∓̄q …Þ: (28)

It is also possible to set up a second recursion from which
to obtain QCD trees fromN ¼ 4 SYM trees. This is a two-
flavor recursion, and is described briefly in Appendix B.

IV. DISCUSSION

Before concluding, we address issues surrounding
amplitudes beyond massless QCD, as well as the role of
BCJ relations between the one-flavor primitives, and the
counting of the number of one-flavor primitives needed to
produce the k-flavor primitives.

A. Beyond massless QCD

In this subsection we describe the behavior of amplitudes
involving electroweak bosons and massive quarks specifi-
cally under the KK relations and the flavor recursion.
Amplitudes involving Ws, Zs, and photons all require

external quark lines in tree-level amplitudes to couple to.
The electroweak particles do not carry color charge, and
these amplitudes satisfy the KK relations described
in previous sections as if there were no electroweak particle
present. When there is more than one weak boson present,
the amplitudes can be further ordered under their SUð2Þ
charge—seeRef. [43]. However, because quarks of different
flavors carry different electroweak charges, the flavor
recursion cannot apply once electroweak bosons are
present—they are sensitive to flavor in contrast to gluons
which are not.
Amplitudes involving massive quarks, top quarks for

example, also satisfy the same KK relations as those with
purely massless quarks—the presence of a massive quark
line does not affect the group theory factors from which the
relations follow. However, here too the flavor recursion
relation described above will not work, since a one-flavor
amplitude with external quark lines of differing mass is not
well defined.

B. BCJ relations and QCD primitives

Another interesting thing about being able to express all
of massless QCD in terms of one-flavor amplitudes is that
these amplitudes can be written in BCJ form, with
kinematic numerator factors satisfying Jacobi relations
such that the number of independent primitive amplitudes
is reduced to ðn − 3Þ! (relations hold between primitives
multiplied by kinematic factors).
This motivates a question as to how BCJ relations apply

in the distinct-flavor case. This would have to be reconciled
with the counting of the number of one-flavor primitives
needed to reconstruct a basis for the distinct-flavor case. We
perform this counting in Table I, where this number is
compared to the number of k-flavor independent primitives
under KK relations alone, and the ðn − 3Þ! one-flavor
primitives under BCJ. The second column was constructed
using examples up to the pure quark case n ¼ 10—i.e.
using the flavor recursion to find the one-flavor primitives
needed for every k-flavor amplitude and then taking the
union of this set—and the general formula is conjectured to
hold beyond this.

FIG. 5. The termination of a scalar ϕAB results in two external
gluinos ~gA and ~gB (to be identified as quarks) of different flavors,
since the coupling requires A ≠ B.
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Are there BCJ relations between the primitives in this
particular set of all the one-flavor primitives? If so, how
many independent amplitudes remain? These questions
will be interesting to address in future work.

C. Further discussion

We have shown that any tree-level massless QCD
amplitude can be expressed in terms of amplitudes that
possess effectiveN ¼ 1 supersymmetry. These amplitudes
might be expected to have nicer properties than the distinct-
flavor case, owing to this fact. Of course, one such
realization of this is that a closed form solution for them
is known, this in turn owing to the fact thatN ¼ 1 SYM is
a closed subset of N ¼ 4 SYM, for which this tree-level
solution is known.
The flavor recursion singles out a particular set of one-

flavor amplitudes needed to reconstruct the distinct-flavor
amplitudes. These are the ones with the external quarks and
antiquarks ordered as Dyck words, with antiquarks at X
locations and quarks at Y locations. One might wonder
whether these amplitudes could take a simpler form, given
that the underlying Feynman diagram representation for k-
flavor amplitudes is considerably simpler than the one-
flavor case. Interestingly, in Drummond and Henn’s proof
of their solution to N ¼ 4 SYM trees, the concept of a
rooted (but not oriented) tree was also used to define a
direction in which to perform Britto-Cachazo-Feng-Witten
(BCFW) recursion [44], and there is some freedom in this
choice of recursive direction. It would be interesting if
some alignment of the BCFW recursion with the Dyck tree
could result in expressions where the quark line structure
was easily identified in the analytic form. Another avenue
would be to investigate the use of the momentum twistor
variables [45,46] ðλ; μ; χÞ rather than the ðλ; ~λ; ηÞ of
Ref. [10], under which expressions for amplitudes involv-
ing fermions can take simpler form.
A further feature of the Kleiss-Kuijf relations worth

mentioning is that they do not depend on the dimensionality
of spacetime. Studies of amplitudes in different spacetime
dimensionsisof theoretical interest, inparticular ind ¼ 3and
d ¼ 6 (see e.g. [47] for a recent review), and dimensional

regularization is a common way of isolating infrared and
ultraviolet singularities in amplitudes. For phenomenologi-
cal applications, the techniqueofD-dimensional generalized
unitarity [25] is anapproach tobuildone-loopamplitudesout
of tree-levelprimitiveamplitudes indimensionsd > 4, and is
particularly suited to numerical evaluation.
Since then, the flavor recursion also does not depend on

the dimensions of spacetime, and given that unitarity based
techniques are able to construct any loop-order amplitude
purely out of trees (evaluated, in general, in higher
dimensions), it follows that any loop-order amplitude in
massless QCD is obtainable from tree-level amplitudes
calculated in one-flavor QCD. This means that the only
objects that actually require a field theory calculation (i.e.
the tree-level amplitudes) are done in a theory where there
is no notion of flavor. Rather, flavor comes about only in
the way we combine these objects, as we have seen for the
tree-level case studied in this paper.

V. CONCLUSION

In conclusion, we have studied the SUð3Þc group theory
relations between tree-level QCD primitive amplitudes
involving k quark lines of distinct flavor and n − 2k gluons,
and shown that they reduce the number of independent
primitives to ðn − 2Þ!=k!. We described how bases can be
constructed using the concept of a rooted, oriented Dyck
tree. Exploiting the planarity and cyclic ordering of a class of
these primitives which have an all-positive signature, and
using the SUð3Þc relations, we derived a flavor recursion
relation, also based around aDyck tree. This flavor recursion
can express a multiflavor tree-level QCD primitive in terms
of one-flavor tree-level QCD primitives, which possess
effective N ¼ 1 supersymmetry. In turn, this makes it
possible to use known formulas fromN ¼ 4 SYM to obtain
all of massless QCD at tree level. An interesting aspect is
that, using these results, no notion of flavor is needed when
making amplitude calculations in perturbative, massless
QCD, given that unitarity based techniques can construct
higher loop amplitudes out of tree-level amplitudes.
We expect that a knowledge of a minimal general QCD

basis, along with implementation of one-flavor N ¼
4 SYM results, will increase the performance of computa-
tional efforts to describe multijet events at fixed order in
perturbation theory (see [48] for a discussion of the
phenomenological use of the N ¼ 4 SYM analytic formu-
las, although the use of purely one-flavor formulas should be
investigated further).
In the final stages of the preparation of this script, the

preprint [49] appeared, which provides an independent,
multiflavor approach to obtaining QCD trees from
N ¼ 4 SYM, similar to the two-flavor one outlined in
Appendix B of this work. It would be interesting to fully
explore this connection, and the one between the fermion
flip identities defined in [49] and the SUð3Þc relations
presented in Ref. [1] and used here.

TABLE I. Counting of the number of independent primitive
amplitudes under KK relations for the distinct-flavor case, the
number of one-flavor amplitudes needed to construct a basis of
these amplitudes, and the number of independent primitive
amplitudes under BCJ relations for the one-flavor case.

n; k
# k-flavor
(no BCJ)

# one-flavor for
k-flavor (no BCJ)

BCJ
one-flavor

4,2 1 1 1
6,3 4 6 6
8,4 30 90 120
10,5 336 2520 5040
� � � � � � � � � � � �
n; k ðn − 2Þ!=k! ðn − 2Þ!=2k−1 ðn − 3Þ!
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APPENDIX A: GROUP THEORY IDENTITIES
BETWEEN QCD PRIMITIVES

A group theory identity for the pure multiquark case,
2k ¼ n, which can be used to further relate primitive
amplitudes of the form Að1;…; 2Þ was given in [1], where
a proof is also given—see this reference for a detailed
discussion. The identity is given with reference to a
primitive of the form

Að…xfα1gfα2g…fαm−1gjfβgifαmþ1g…fαsgy…Þ: (A1)

Here, the boundaries of the sets fαig are quark lines corresponding to a level one higher than the level of the quark line
ðx − yÞ in the Dyck tree for the above primitive. Each set fαig may contain further quark lines (i.e. they may be sets of
length greater than two). The quark line ðj − iÞ is also at a level one higher in the Dyck tree than the quark line ðx − yÞ.
There can be further quark lines between the positions of the labels j and i in the primitive—these are denoted as fβg (they
are all at a higher level in the Dyck tree than ðj − iÞ). A group theory identity satisfied by this primitive is

Að…xfα1g::fαm−1gjfβgifαmþ1g::fαsgy…Þ

¼ −
Xm
c¼1

� X
OPfDcgfEg

� X
OPfAcgfBg

A
�
…xfα1g::fαc−1gifαcg::fαm−1g|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

fAcg

fβTg|ffl{zffl}
fBg

j
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{fDcg

fαmþ1g::fαsg
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{fEg

y…

���
; (A2)

where OPfAgfBg stands for “ordered permutations” and is the shuffle product of the sets fAg and fBg, and where fβTg is
the set fβg with the ordering reversed. In all of the primitives on the right-hand side, the direction of the quark line ðj ¼ iÞ
has been reversed. Not all of the primitives generated by the ordered permutations are nonzero—the shuffle product can give
rise to some configurations with crossed quark lines. As with the expressions in the main body of this paper, Eq. (A2)
should be dressed with appropriate minus signs as dictated by Fermi statistics.
If gluons are also present, the identity generalizes as follows. Let g1 be the set of gluons in between x and the set fα1g, g2

be the set of gluons in between the set fα1g and fα2g, and so on. The most general primitive amplitude takes the form

Að…xg1fα1gg2fα2g::gm−1fαm−1ggmjfβgigmþ1fαmþ1g::gsfαsggsþ1y…Þ: (A3)

The first and last elements of the sets fαig are by construction quark labels, but we now allow for the possibility that any
other element of the sets fαig as well as any element of the set fβg is a gluon label. Denote the first i elements in the set gc
as the set gi

c, and the remaining nc − i elements as gnc−i
c , where nc is the number of gluons in the set gc. The generalization

of Eq. (A2) is
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Að…xg1fα1gg2fα2g::gm−1fαm−1ggmjfβgigmþ1fαmþ1g::gsfαsggsþ1y…Þ

¼ ð−1Þ1þngβ
Xm
c¼1

�Xngc
i¼0

� X
OPfDi

cgfEg

� X
OPfAi

cgfBg
Að…xg1fα1g::gc−1fαc−1g

× gi
cig

nc−i
c fαcg::gm−1fαm−1ggm|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fAi
cg

fβTg|ffl{zffl}
fBg

j
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{fDi

cg

gmþ1fαmþ1g::gsfαsggsþ1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{fEg

y…Þ
���

; (A4)

where ngβ is the number of gluon labels contained in the set
fβg. The proof of this equation is a straightforward
generalization of the proof of Eq. (A2), given in [1].
The quark line structure generated in Eq. (A4) is exactly
the same as the quark line structure generated in Eq. (A2),
the only difference being there are more terms involving
each quark line structure, with different placings of gluons
which now enter the shuffle. As in Eq. (A2), some of the
terms generated by the shuffle products will be zero
because of quark line constraints.

APPENDIX B: A TWO-FLAVOR RECURSION TO
OBTAIN QCD FROM N ¼ 4 SYM

In this appendix we briefly outline a flavor recursion
based on a different basis than the all-positive signature
recursion of Sec. III. The choice of signature for each Dyck
topology is the one which results in alternating quarks and
antiquarks for the external particles. In thisway the signature
of each primitive will depend on its Dyck topology. An

example graph is shown in Fig. 6. The reason for choosing
such a basis is that it is another way to prevent any possible
scalar exchange between gluino lines in the N ¼ 4 SYM
amplitudes. Consider following an internal scalar line up
until the point atwhich it terminates, as shown in Fig. 5.Now
we can relax the requirement that all external quarks (we use
quark in this section, but this should be identified with a
gluino in the N ¼ 4 SYM context) are the same flavor, so
that such a scalar contribution to the primitive could exist.
However, if the alternating basis is chosen, then since the
termination point is two quarks (or two antiquarks) therewill
remain either an odd number of quarks or an odd number of
antiquarks between the two shown in Fig. 5. These cannot
possibly be joined up in a planar way, and it follows that
there can be no such scalar contributions.
The flavor recursion proceeds in a similar fashion as the

one described in Sec. III. Since the direction of the quark
lines alternate between levels in the Dyck tree, now two
flavors must be used to stop the flavor mixing between odd

1 2

XXXY XY Y XY Y XXXXY Y Y XY XY Y XXXY Y Y

Level

v1

v2

v3

v4

v5

f2

f1

f2

f1

FIG. 6 (color online). The quark line graph on the left-hand side shows how to choose the signature of the Dyck permutation (i.e. quark
line direction) so as to create alternating quark and antiquark external states. The right-hand side is the corresponding Dyck tree. The
dotted lines drawn across the edges of the Dyck tree have an arrow to indicate the direction of the arrows on the quark lines which cross
them to create the quark line graph shown on the left, and have a flavor label f1 or f2 to indicate which flavor the quark lines should have
in the two-flavor recursion described in the text.
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and even levels of the Dyck tree. That is, the distinct-flavor
primitive in the alternating basis is expressed as a two-
flavor primitive of the same labeling, with one flavor, f1,
for quarks corresponding to odd levels of the Dyck tree,
and the other flavor, f2, assigned to even levels of the Dyck
tree—see the right-hand side of Fig. 6—minus distinct-
flavor subtraction primitives to subtract the wrong flavor
running. It is clear that flavor pairing cannot occur between
odd and even levels. Considering now just the odd levels,
the same arguments as explained in Sec. III (see Fig. 4)
apply to these quark lines of flavor f1, that is, the nonzero

permutations only occur at the same level of the Dyck tree.
The same applies to quark lines at even levels. Each of the
subtraction primitives is of higher maturity, and needs to be
re-expressed in terms of primitives of alternating basis
form. In this way, the recursion terminates at primitives of
the form

Að1f1qf2 q̄f1qf2 q̄f1…; qf1 q̄f2qf1 q̄f22f1Þ: (B1)

These are the primitives which have a Dyck tree of the
highest maturity (shown on the right-hand side of Fig. 3).
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