
Turbulent thermalization process in heavy-ion collisions
at ultrarelativistic energies

J. Berges,1,2 K. Boguslavski,1 S. Schlichting,3,* and R. Venugopalan3
1Institut für Theoretische Physik, Universität Heidelberg,

Philosophenweg 16, 69120 Heidelberg, Germany
2ExtreMe Matter Institute (EMMI), GSI Helmholtzzentrum für Schwerionenforschung GmbH,

Planckstraße 1, 64291 Darmstadt, Germany
3Physics Department, Brookhaven National Laboratory, Building 510A, Upton, New York 11973, USA
(Received 31 March 2013; revised manuscript received 23 January 2014; published 3 April 2014)

The nonequilibrium evolution of heavy-ion collisions is studied in the limit of weak coupling at very
high energy employing lattice simulations of the classical Yang-Mills equations. Performing the largest
classical-statistical simulations to date, we find that the dynamics of the longitudinally expanding plasma
becomes independent of the details of the initial conditions. After a transient regime dominated by plasma
instabilities and free streaming, the subsequent space-time evolution is governed by a nonthermal fixed
point, where the system exhibits the self-similar dynamics characteristic of wave turbulence. This allows us
to distinguish between different kinetic scenarios in the classical regime. Within the accuracy of our
simulations, the scaling behavior found is consistent with the “bottom-up” thermalization scenario
[R. Baier, A. H. Mueller, D. Schiff, and D. T. Son, Phys. Lett. B 502, 51 (2001)].
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I. INTRODUCTION

The nonequilibrium dynamics of the quark-gluon
plasma, and how it proceeds to thermalization, is an
outstanding problem in quantum chromodynamics
(QCD). This is partly because the coupling constant at
realistic collider energies may not be small enough for
reliable weak coupling computations, but also because of
the complex interplay of the different scales involved in the
thermalization process.
Significant progress has been achieved in our under-

standing of expanding non-Abelian plasmas in the two
limiting cases of very strong coupling and very weak
coupling. The former has been studied in supersymmetric
Yang-Mills theories employing the gauge-string duality.
The results in this case indicate the important role of
anisotropies in the longitudinally expanding system even at
the transition to the hydrodynamic regime [1]. Ab initio
computations are also feasible in QCD in the weak
coupling limit αS ≪ 1. In this paper, we will address the
early stages of the thermalization process in an expanding
non-Abelian plasma in the weak coupling limit.
The colliding nuclei in weak coupling asymptotics are

described in the color glass condensate (CGC) framework
[2]. In such a collision, a nonequilibrium Glasma [3] of
highly occupied gluon fields with typical momentum Q is
formed immediately after the collision. Since the character-
istic occupancies ∼1=αSðQÞ are large, the gauge fields are
strongly correlated even for small gauge coupling. In such
highly occupied systems, dynamical quantum effects are

suppressed at early times and the nonequilibrium quantum
dynamics can be accurately mapped onto a classical-
statistical problem. The latter can be rigorously solved
using real-time lattice simulation techniques.
This real-time computation in lattice gauge theory is a

formidable task. The work reported on here represents by
far the largest numerical effort in this respect to date. Many
of the details of the computation discussed here are given in
a longer companion paper [4] which considers non-Abelian
plasmas in both expanding and nonexpanding geometries.
In this paper, we restrict our attention to expanding non-
Abelian plasmas1 that are relevant to the collision of nuclei
at very high energies. Our focus will be on the key results
from the computations and the lessons one may draw with
regard to the thermalization process at weak coupling.
While much recent work has been devoted to the ab initio

calculation of initial conditions in heavy-ion collisions at
proper times τ ≲ 1=Q in the CGC framework [5–7], our
focus here will be to understand the dependence of the
evolution on the initial conditions at times τ ≳ 1=Q. The
properties of the system at these later times are markedly
different from the initial conditions at earlier times. This is
because the early time behavior of the Glasma is governed
by plasma instabilities as demonstrated by a large number
of studies in the literature [8–14].
In the background of the highly anisotropic Glasma

fields, plasma instabilities lead to a rapid growth of vacuum

*soeren@kaiden.de

1The expansion of the plasma in the longitudinal direction x3 at
time x0 is conveniently discussed in terms of the proper time
τ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0Þ2 − ðx3Þ2
p

and rapidity η≡ atanhðx3=x0Þ. We denote
the transverse coordinates by x⊥ ¼ ðx1; x2Þ.
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fluctuations of the initial state [15–19]. Even though these
vacuum fluctuations are “quantum” in origin, their dynam-
ics is classical statistical in nature and can be accurately
described in terms of Gaussian fluctuations around the
CGC determined background fields [5,7]. In each configu-
ration of this classical-statistical ensemble vacuum fluctu-
ations are generated by random seeds. While at initial times
τ ≲Q−1 these vacuum fluctuations are small, they become
on the order of the classical background fields at times
τ ∼Q−1 ln2ð1=αSÞ due to plasma instabilities [15–19].
Vacuum fluctuations then add to the classical background
field with random phase and comparable magnitude.
Consequently, the different gauge field configurations of
the ensemble become phase decorrelated by the time τ ∼
Q−1 ln2ð1=αSÞ and it is reasonable to conjecture that the
system smoothly transitions from a classical field domi-
nated ensemble to a fluctuation dominated regime at
this time.
In suitable gauges, these field configurations correspond

to a strongly correlated plasma characterized by a large
occupancy ∼1=αS of quasiparticle excitations. Thus while
classical-statistical field theory provides a valid description
up to times where the typical occupancy falls to order unity,
an equivalent description of the dynamics at times τ ≳
Q−1 ln2ð1=αSÞ can be achieved within the framework of
kinetic theory [20,21].
In kinetic theory, a number of different scenarios of how

thermalization proceeds at weak coupling have been devel-
oped [22–26]. These allow for different types of solutions of
the employed kinetic equations. There is a broad regime of
overlap between kinetic theory andnonperturbative classical-
statistical field simulations for occupancies that are less than
α−1S but greater than unity. In thisworkwe employ the latter to
resolve, within the precision of the numerical solutions, the
long-standing question [27] of which kinetic scenario is
realized in the thermalization process.

II. INITIAL CONDITIONS

In the following, we will discuss results of classical-
statistical field simulations of a weakly coupled but strongly
correlated non-Abelian plasma. We formulate our initial
conditions at the proper time τ0 ∼Q−1 ln2ð1=αSÞ, where the
classical-statistical field configurations are initialized as
a superposition of transversely polarized quasiparticle
modes,2

Aa
μðτ0;x⊥; ηÞ ¼

X
λ¼1;2

Z
d2k⊥
ð2πÞ2

dν
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðk⊥; ν; τ0Þ

p

× ½ck⊥ν
λ;a ξðλÞk⊥νþ

μ ðτ0Þeik⊥x⊥eiνη þ c:c:�; (1)

and the corresponding conjugate momenta are given by

Eμ
aðτ0;x⊥; ηÞ ¼ −τ0gμν

X
λ¼1;2

Z
d2k⊥
ð2πÞ2

dν
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðk⊥; ν; τ0Þ

p

×½ck⊥ν
λ;a

_ξðλÞk⊥νþ
ν ðτ0Þeik⊥x⊥eiνη þ c:c:�:

(2)

Here ξðλÞk⊥νþ
μ;a ðτÞ denote the (time-dependent) transverse

polarization vectors of modes with transverse momentum
k⊥, rapidity wave number ν and polarization index λ ¼ 1, 2
in the noninteracting theory3 and c.c. denotes complex
conjugation. The classical-statistical ensemble is defined
by the distribution of the coefficients ck⊥ν

λ;a , which satisfy

hck⊥ν
λ;a c�k⊥0 ν0

λ0;b i ¼ δλλ0δabð2πÞ3δð2Þðk⊥ − k0⊥Þδðν − ν0Þ; (3)

and hck⊥ν
λ;a ck⊥0 ν0

λ0;b i ¼ hc�k⊥ν
λ;a c�k

0⊥ν0
λ0;b i ¼ 0. These relations are

implemented by choosing the coefficients ck⊥ν
λ;a as complex

Gaussian random numbers in every simulation.
The field configurations in Eqs. (1) and (2) describe a

weakly coupled plasma of quasiparticle excitations whose
properties at the initial time are described by the gluon
distribution function fðpT; pz; τ0Þ. Instead of focusing on
one particular realization, we will attempt to capture a large
range of different initial conditions by employing a general
parametrization

fðpT; pz; τ0Þ ¼
n0

8παS
ΘðQ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ ðξ0pzÞ2

q
Þ; (4)

which describes the overpopulation of gluon modes up to
the momentum Q. As long as the dynamics of the non-
Abelian plasma at times τ ≳Q−1 ln2ð1=αSÞ is captured by
quasiparticle excitations, this parametrization, while per-
haps not exhaustive, should capture the physics faithfully.
The details of the evolution from earlier times τ ∼Q−1 up to
τ0 are hereby subsumed in particular values of the initial
occupancy n0, and in the anisotropy of the initial momen-
tum distribution captured by variations in ξ0.
The central result of this paper is that, for wide variations

of parameters in the above initial conditions, the classical-
statistical evolution of the system at late times demonstrates
a striking self-similar behavior independent of the initial
conditions. Such a self-similar behavior of distributions is
characteristic of wave turbulence and, as we shall elaborate
further, reflects universal properties of the space-time
evolution of the overoccupied non-Abelian plasma. An
unanticipated conclusion arises when the classical-
statistical simulations are compared to kinetic theory.

2Note that for simplicity we will consider a system that is
homogeneous in the longitudinal rapidity and in the transverse
coordinates.

3The detailed expressions are derived in Appendix A of the
companion paper [4].

BERGES, BOGUSLAVSKI, SCHLICHTING, AND VENUGOPALAN PHYSICAL REVIEW D 89, 074011 (2014)

074011-2



While the physics of plasma instabilities and free streaming
plays an important role in the dynamics at early times, they
do not govern the universal turbulent regime. Instead, as we
shall discuss, we observe that the first stage of the “bottom-
up” thermalization scenario [22] emerges as a (nonthermal)
fixed point of the evolution.

III. SIMULATIONS

Since the dynamics of the highly occupied plasma is
dominated by gluons, we consider a pure Yang-Mills
theory in 3þ 1 dimensions with longitudinal expansion.
We perform real-time simulations for the SU(2) gauge
group. Previous real-time simulations of non-Abelian
gauge theories have shown that the SU(2) Yang-Mills
dynamics is capturing the relevant dynamics of the
SU(3) case [28–30]. We employ the Kogut-Susskind lattice
Hamiltonian in Fock-Schwinger gauge (Aτ ¼ 0) and solve
the classical Hamilton equations of motion on an
NT × NT × Nη spatial lattice with periodic boundary
conditions.
In the lattice formulation, the continuum gauge fields

Aa
μðxÞ are represented in terms of the gauge link variables

UiðxÞ ¼ exp½iga⊥Aa
i ðxþ ι̂=2ÞΓa�;

UηðxÞ ¼ exp½igaηAa
ηðxþ η̂=2ÞΓa�; (5)

where Γa are the generators of the SU(2) Lie algebra in the
fundamental representation and g2 ¼ 4παS denotes
the gauge coupling. The symbol μ̂ ¼ x̂1; x̂2; η̂ denotes
the neighboring lattice site in the μ direction separated
by the lattice spacings a⊥ and aη in the transverse and
longitudinal directions respectively. The conjugate momen-
tum fields Eμ

aðxÞ are represented in terms of the dimension-
less electric field variables

~Ei
aðxÞ ¼ ga⊥Ei

aðxþ ι̂=2þ τ̂=2Þ;
~Eη
aðxÞ ¼ ga2⊥E

η
aðxþ η̂=2þ τ̂=2Þ; (6)

that are discretized at half-integer time steps. We then
numerically solve the equations of motion derived from the
lattice Hamiltonian, with the initial conditions for the real-
time evolution of the gauge fields and their conjugate
momenta provided at the initial time τ0 by Eqs. (1) and (2).
The numerical procedure closely follows that employed in
previous studies [15,18,19].
Gauge invariant observables are calculated from the

standard lattice plaquettesUμνðxÞ ¼ UμðxÞU†
νðxþ μ̂ − ν̂Þ×

U†
μðx − ν̂ÞUνðx − ν̂Þ, with μ; ν ¼ ðτ; x1; x2; ηÞ and gauge

invariant combinations of the electric field variables such as
E2
μðxÞ ¼

P
aðEa

μðxÞÞ2. When we extract gauge-dependent
quantities we use the residual gauge freedom to perform
time-independent gauge transformations to impose the

generalized Coulomb gauge condition ∂iAi þ τ−2∂ηAη ¼
0 (i ¼ 1, 2) at each readout time by use of standard lattice
gauge-fixing techniques [31].
We use this procedure to compute the gluon distribution

function fðp⊥; pz; τÞ, which describes the occupation
number of gluons per momentum mode averaged over
spin and color degrees of freedom. Since this quantity has a
direct analog in kinetic theory, it is particularly useful to
establish a comparison between the different methods. We
extract it using the Fock state projection,

fðp⊥; pz; τÞ ¼
τ2

NgV⊥Lη

XN2
c−1

a¼1

X
λ¼1;2

× hjgμν½ðξðλÞp⊥νþ
μ ðτÞÞ�∂τ

↔
Aa
νðτ;p⊥; νÞ�j2iCoul. Gauge; (7)

where the metric reads gμν ¼ diagð1;−1;−1;−τ−2Þ and the
longitudinal momentum at midrapidity is identified as pz ¼
ν=τ according to the kinetic term in the field equations.
Here the index λ ¼ 1, 2 counts the two transverse polar-
izations, Ng ¼ 2ðN2

c − 1Þ denotes the number of trans-
versely polarized gluon degrees of freedom and we write

A∂τ

↔
B ¼ A∂τB − B∂τA. The gauge field Aa

νðτ;p⊥; νÞ in
Eq. (7) is computed from the gauge fixed plaquette
variables by inversion of Eq. (5) and a subsequent fast
Fourier transformation is performed to obtain the result in
momentum space. Similarly, we obtain the time derivative
of the gauge field from the fast Fourier transform of the
gauge fixed electric field variables in Eq. (6).
The results presented in this paper are obtained for the

initial time chosen asQτ0 ¼ 100 to minimize discretization
errors.4 Since the longitudinal lattice momenta experience a
redshift due to the longitudinal expansion, the maximal
longitudinal lattice momentum pmax

z ∼ π=aητ decreases in
time. Starting the simulations at earlier times thus requires
very fine lattice spacing in the longitudinal direction in
order to properly resolve the physical scales of the problem.
Likewise, the proper resolution of small transverse
momenta on the order of the Debye mass mD requires
very large volumes in the transverse direction. Because the
physical scales change rapidly with proper time, shifting
the initial time Qτ0 of the simulation to earlier times
becomes numerically challenging.
We argued above that our initial conditions are applicable

at times τ0 ≃Q−1 ln2 α−1S . This corresponds to extremely
small values of αS ∼ 10−5 for Qτ0 ¼ 100. However, in this
regard, the following points should be noted:
(a) Within the realm of classical dynamics, all results

presented in this paper are independent of the value of
the coupling constant αS.

4We also explored different choices Qτ0 ¼ 20–1000. The
qualitative behavior observed at late times is very similar to
the results for Qτ0 ¼ 100.
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(b) Since αS scales out of the classical dynamics, it acts
primarily as a parameter to ensure that the occupancy
f ∼ 1=αS is larger than the quantum “1=2”—that this
be true for all relevant modes considered, and at all
times, is essential for classical-statistical dynamics to
provide an accurate description of the system on the
time scales of interest [32–34].

(c) As we shall discuss, for the small values of αS
considered, self-similar behavior is observed for
Qτ ∼ 102–103. For these values of αS, we will argue
that classical-statistical dynamics is valid up to
Qτ ∼ α−3=2S ∼ 108. As αS is increased to more realistic
values, all the dynamical regimes outlined shrink
rapidly. This includes the time scale controlling the
growth of plasma instabilities, the lifetime of the
classical regime, and possibly the lifetime controlling
a preequilibrium quantum regime that may follow. We
will return later to a more detailed discussion of this
point in the context of our understanding of the
thermalization process.

Before we proceed to the discussion of our simulation
results, we emphasize for the interested reader that further
discussion of details of the numerical implementation, the
employed lattice discretization as well as an analysis of
possible discretization errors can be found in the
companion paper [4].

IV. NUMERICAL RESULTS

We first study the time evolution of the bulk anisotropy
of the plasma, as described by the components of the
gauge invariant stress-energy tensor Tμν ¼ −gναFμδFαδ þ
gμνFγδFγδ=4. Specifically, we investigate the volume aver-
ages of the transverse and longitudinal pressures
PTðτÞ ¼ −hTx

xðτÞ þ Ty
yðτÞi=2, PLðτÞ ¼ −hTη

ηðτÞi, where
the brackets denote Monte Carlo averaging with respect
to the ensemble of initial field configurations.
In Fig. 1 we show the ratio of longitudinal to transverse

pressure PL=PT as a function of time on a double
logarithmic scale. The curves in the left graph are for
different initial anisotropies ξ0 and fixed initial occupancy
n0 ¼ 1. Starting from an isotropic initial distribution
(ξ0 ¼ 1), the system is seen to become more and more
anisotropic with time as a consequence of the longitudinal
expansion. In the right graph, the free streaming (dashed)
curve is shown for comparison, along with results for
different initial occupancies n0 for an initially isotropic
system. Indeed, the early time behavior is governed by free
streaming, whereas at later times the anisotropy of the
system increases more slowly as a consequence of inter-
actions. In contrast, for strong initial anisotropy such as
ξ0 ¼ 4 and 6 shown in the left panel, there is a short
transient regime where the bulk anisotropy decreases due to
plasma instabilities. Nevertheless, the evolution at later
times is unaffected and leads to an increasing anisotropy
regardless of the degree of initial anisotropy considered.

The most striking observations from Fig. 1 is that, after the
transient regime, all curves show very similar scaling with
time, irrespective of the choice of initial conditions.
We will now analyze this behavior in more detail by

studying the time evolution of the transverse and longi-
tudinal hard momentum scales ΛT and ΛL. These are gauge
invariant quantities computed from transverse and longi-
tudinal projections respectively of the square of the
covariant derivative of field strengths divided by the energy
density [35]. The detailed nonperturbative expressions for
the longitudinally expanding case and their lattice imple-
mentation are discussed in Ref. [4]. Approximating the
field strengths by only their Abelian terms, and relating the
gauge fields to the single particle distributions as in Eq. (7),
one can show that

Λ2
TðτÞ≃

R
d2p⊥dpz

p2
T
2
ωpfðp⊥; pz; τÞR

d2p⊥dpzωpfðp⊥; pz; τÞ
;

Λ2
LðτÞ≃

R
d2p⊥dpzp2

zωpfðp⊥; pz; τÞR
d2p⊥dpzωpfðp⊥; pz; τÞ

; (8)

where ωp ≃ pT is the relativistic quasiparticle energy in the
limit pT ≫ ν=τ. In this limit, it is transparent that ΛT and
ΛL characterize the typical momenta of hard excitations in
the system.
In Fig. 2, we show the time evolution of the longitudinal

hard scale Λ2
L for different initial anisotropies ξ0 and fixed

initial occupancy n0 ¼ 1. The different curves are rescaled
by an empirical factor of ξ7=80 , to obtain the same normali-
zation in the scaling regime. After the transient regime, for
Qτ ≳ 650, the typical longitudinal momentum decreases in
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FIG. 1 (color online). Ratio of longitudinal to transverse
pressure as a function of time. The left panel shows the result
for different initial anisotropies ξ0 and fixed initial occupancy
n0 ¼ 1. The right panel shows the same quantity for an initially
isotropic system (ξ0 ¼ 1) and different initial occupancies n0 in
comparison to the free streaming (dashed) curve.
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time and one clearly observes the same power-law behavior
irrespective of the initial condition employed.
This scaling behavior of the hard momentum scales can

be characterized in terms of the exponents γ and β as

Λ2
LðτÞ ∼ ðQτÞ−2γ; Λ2

TðτÞ ∼ ðQτÞ−2β: (9)

The comparison to the dashed curve ∼ðQτÞ−2=3 in Fig. 2
indicates an approximate value of γ ≃ 1=3. The inset of
Fig. 2 gives the scaling exponent 2γ extracted from the
logarithmic derivative of Λ2

L, as a function of time. Results
are shown for a set of four different initial conditions in
the range ξ0 ¼ 1–6 and n0 ¼ 0.25–2. To check for a
possible further dependence on the lattice discretization,
we also display results from the evolution for ξ0 ¼ n0 ¼ 1
using four different N2

T × Nη lattices in the range
NT ¼ 256–512, Nη ¼ 1024–4096 with QaT ¼ 0.5–1 and
aη ¼ ð0.625 − 2.5Þ × 10−3. By averaging over the data
points for Qτ ≳ 650 we obtain 2γ ¼ 0.67� 0.07.
In contrast, in this regime ΛT stays approximately

constant in time, which corresponds to β≃ 0. Indeed,
the exponent extracted from a fit to our data for Λ2

T
approaches zero monotonically with jβj < 0.06 for
800 ≤ Qτ ≤ 2000. In general, we observe that the errors
are not dominated by discretization errors but the remaining
dependence on the initial conditions for the available finite
times.5

As it is evident from the gauge invariant observables
considered, the dynamics becomes independent of the
underlying initial conditions at late times. It is a question
of general interest whether and how a system effectively

loses knowledge of the underlying initial conditions with
time. While any thermalization process requires such an
effective memory loss when thermal equilibrium is
reached, a partial loss of sensitivity to initial conditions
may already be observed at earlier stages of the non-
equilibrium time evolution. More specifically, a system
which is initially far from equilibrium may approach a
nonthermal fixed point of the evolution prior to the
approach to thermal equilibrium. When this occurs, the
subsequent nonequilibrium evolution becomes indepen-
dent of the details of the underlying initial conditions
and is characterized by a self-similar evolution in
time [35–41].
In terms of the gluon distribution function a self-similar

evolution for the longitudinally expanding system has to
fulfill the condition

fðpT; pz; τÞ ¼ ðQτÞαfSððQτÞβpT; ðQτÞγpzÞ; (10)

where fS denotes a stationary distribution independent of
time which describes the spectral properties of the non-
thermal fixed point. The scaling exponents α, β and γ are
pure numbers and characterize the self-similar scaling
in time.
The scaling exponents β and γ describe the evolution of

the characteristic momentum scales as discussed above in
the context of Eq. (9). The scaling exponent α describes the
overall decrease of the distribution amplitude in time. Even
though the latter is not a gauge invariant quantity, the linear
combination α − 3β − γ can be extracted in a gauge
invariant fashion from the scaling behavior of the energy
density. In the anisotropic scaling limit, one finds

α − 3β − γ ¼ d ln εðτÞ
d lnðτÞ ≡ −

�
1þ PLðτÞ

εðτÞ
�
: (11)

One extracts from the behavior of PL=ε that α − 3β − γ
approaches the value −1 monotonically from below.6 We
have established in Ref. [4] that the residual deviation is
jαðτÞ − 3βðτÞ − γðτÞ þ 1j < 0.05 for 800 ≤ Qτ ≤ 2000.
We will now investigate the emergence of self-similarity

in our simulations and directly study the time evolution of
the gluon distribution function fðpT; pz; τÞ extracted from
the Coulomb gauge fixed fields as in Eq. (7). Figure 3
shows the gluon distribution function at different times Qτ
of the evolution. The left graph displays the distribution as a
function of transverse momentum for modes with vanishing
longitudinal momenta pz ¼ 0 at different times. The
spectrum shows a 1=pT power law over a large range of
transverse momenta pT ≲ ΛT with a rapid falloff for large
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FIG. 2 (color online). Time evolution of the characteristic
longitudinal momentum scale for different initial anisotropies
ξ0. The inset shows the scaling exponent extracted for different
initial conditions and lattice discretizations. The average
2γ ¼ 0.67� 0.07 is indicated by gray lines.

5We also note that, as shown in [4], the Debye scale, which is
relevant also for the physics of plasma instabilities, is resolved for
all simulation times on the large lattices.

6Since ε ¼ 2PT þ PL for the classical theory this information
is already contained in Fig. 1, which shows that PL=PT
approaches zero monotonically at late times.
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momenta pT ≳ ΛT . It is interesting to note that a two-
dimensional Bose-Einstein distribution would exhibit the
same 1=pT behavior in the classical regime of low
momenta pT < T, where T is the temperature. The spec-
trum exhibits a self-similar evolution, where the position
of hard momentum scale ΛT demarcating the high momen-
tum falloff is seen to remain approximately constant in
time in accordance with our previous discussion of β≃ 0.
The overall amplitude of the distribution nHardðtÞ ¼
fðpT ¼ Q;pz ¼ 0; τÞ is seen to decrease in time.
The right graph in Fig. 3 shows the gluon distribution

for modes with pT ¼ Q as a function of rapidity wave
number ν ¼ τpz. The overall shape is well described by a
Gaussian distribution, with a decreasing amplitude and
increasing width in time. We emphasize that this behavior
is very different from free streaming, where the distribu-
tion function fðpT; pz ¼ ν=τ; τÞ would be time indepen-
dent when plotted as a function of transverse momentum
pT and rapidity wave number ν. Instead of such a constant
behavior in the noninteracting theory, one clearly
observes from Fig. 3 that interactions lead to a redis-
tribution of particles from smaller to higher rapidity wave
numbers.
The self-similarity of this process can be demonstrated

by investigating the scaling properties of the rescaled
moments of the single particle distribution. In the right
panel of Fig. 4 we show the rescaled gluon distribution as a
function of rescaled longitudinal momenta ðQτÞγpz for
modes with transverse momenta pT ≃Q. The left panel of
Fig. 4 shows the original data for comparison. Once the
distribution satisfies the self-similarity condition in
Eq. (10), this simple rescaling should account for the
dynamical evolution between the different times shown
in Fig. 4. Indeed, the rescaled data for different times in the
range from Qτ ¼ 750 to 4000 are seen to collapse onto a

single curve to high accuracy, which is a striking mani-
festation of the self-similarity of the evolution.7

V. KINETIC THEORY ANALYSIS

The self-similar scaling behavior extracted from both
gauge invariant and gauge fixed observables in the
classical-statistical field simulations of the expanding
non-Abelian plasma finds a simple a posteriori explanation
in the context of wave turbulence following a previous
analysis [36] in the context of scalar field theories. This
turbulence analysis is performed in the framework of a
kinetic equation

�
∂τ −

pz

τ
∂pz

�
fðpT; pz; τÞ ¼ C½pT; pz; τ; f�; (12)

for the single particle distribution fðpT; pz; τÞ with a
generic collision term C½pT; pz; τ; f� for n↔m scattering
processes. For the self-similar distribution in Eq. (10), the
scaling behavior of the collision integral

C½pT; pz; τ; f� ¼ ðQτÞμC½ðQτÞβpT; ðQτÞγpz; fS�; (13)

in this analysis is described in terms of the exponent
μ ¼ μðα; β; γÞ, whose precise form depends on the under-
lying interaction [36]. Substituting this form into the
Boltzmann equation (12) leads to the time-independent
condition
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7A detailed discussion of the scaling exponents inferred from
this self-similar behavior, taking into account systematic errors, is
provided in our companion paper [4].
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αfSðpT; pzÞ þ βpT∂pT
fSðpT; pzÞ

þ ðγ − 1Þpz∂pz
fSðpT; pzÞ ¼ Q−1C½pT; pz; fS�: (14)

The nonthermal attractor solution observed in our lattice
simulations corresponds to a nontrivial solution of this
equation when phrased in terms of a kinetic description.
Simultaneously, one obtains the scaling relation

α − 1 ¼ μðα; β; γÞ; (15)

which constrains the self-similar evolution along the
attractor. To obtain specific values of the scaling exponents
α, β and γ that agree with our classical-statistical lattice
results, one needs to determine the dominant type of
scattering processes in the kinetic theory analysis. At this
juncture, we shall follow the bottom-up thermalization
scenario [22] which, as we will shortly show, provides the
best agreement with our classical-statistical lattice results.
In the high-occupancy classical regime of the bottom-up
scenario, the interaction of hard quasiparticle excitations is
dominated by elastic scattering with small momentum
transfer. Inelastic interactions primarily affect the soft
sector as long as the occupancies of the hard excitations
are large ðnHard ≫ 1Þ and plasma instabilities were not
considered in that work. The effect of elastic collisions is to
broaden the longitudinal momentum distribution by multi-
ple incoherent small-angle scatterings. The collision inte-
gral can then be approximated to be of the Fokker-Planck
type,

CðelastÞ½pT; pz; f� ¼ q̂∂2
pz
fðpT; pz; τÞ; (16)

where the momentum diffusion parameter is approximated
as

q̂ ∼ α2SN
2
c

Z
d2pT

ð2πÞ2
Z

dpz

ð2πÞ f
2ðpT; pz; τÞ (17)

for high occupancies. Although this approximation may not
capture all details, it is expected to describe the relevant
physics necessary to determine the scaling exponents.
While the original work by Baier, Mueller, Schiff and

Son [22] (BMSS) determines the basic properties of the
kinetic evolution from self-consistency arguments, the self-
similar behavior observed from numerical simulations
indicates that the framework of turbulent thermalization
[36] can be applied. We continue this analysis by plugging
the self-similar distribution (10) into CðelastÞ½pT; pz; f� to
extract the scaling behavior μ ¼ 3α − 2β þ γ. The scaling
relation in Eq. (15) then reads 2α − 2β þ γ þ 1 ¼ 0. Since
elastic scattering processes are particle number conserving,
a further scaling relation is obtained from integrating the
distribution function over pT and rapidity wave numbers
ν ¼ pzτ. By use of the scaling form (10), particle
number conservation leads to the scaling relation

α − 2β − γ þ 1 ¼ 0. Similarly, approximating the mode
energy of hard excitations as ωp ≃ pT in the anisotropic
scaling limit, energy conservation yields the final scaling
condition α − 3β − γ þ 1 ¼ 0.
Remarkably, the above scaling relations are independent

of many of the details of the underlying field theory such as
the number of colors, the coupling constant as well as the
initial conditions. Instead, they only depend on the dom-
inant type of kinetic interactions (such as 2↔2 or 2↔3
scattering processes), the conserved quantities of the
system and the number of dimensions. More specifically,
the dynamics of small-angle elastic scattering, along with
the conservation laws of quasiparticle number and energy
provide the three equations to determine the scaling
exponents. These are straightforwardly extracted to be

α ¼ −2=3; β ¼ 0; γ ¼ 1=3; (18)

in good agreement with those extracted from our lattice
simulations of the temporal evolution of gauge invariant
observables.
The close agreement of the lattice simulations with the

bottom-up scenario appears surprising at first. While in the
latter, it is the Debye scale that provides the scale for
multiple incoherent elastic scatterings and the consequent
broadening of the longitudinal momentum, the one-loop
self-energy for anisotropic momentum distributions
could lead to plasma instabilities even at times τ≳
Q−1 log2ðα−1S Þ. The impact of plasma instabilities on the
first stage of the bottom-up scenario has been considered in
[23] (BD). In this scenario, plasma instabilities create an
overpopulation of the unstable soft modes fðp ∼mDÞ∼
1=αS, such that the interaction of hard excitations with the
highly populated soft modes becomes the dominant proc-
ess. This process leads to a more efficient momentum
broadening in the longitudinal direction and changes the
evolution of the characteristic momentum scales and
occupancies. Similar considerations, albeit including a
different range of highly occupied unstable modes,8 lead
to the detailed weak coupling scenario in [25] (KM). In this
scenario, plasma instabilities play a significant role for the
entire thermalization process in the classical regime and
beyond. Yet another scenario of how highly occupied
expanding non-Abelian fields proceed toward thermaliza-
tion was proposed in [26]. In this scenario, it is conjectured
that the combination of high occupancy and elastic scatter-
ing can generate a transient Bose-Einstein condensate. The
evolution of this condensate together with elastically
scattering quasiparticle excitations is argued to generate
an attractor with fixed PL=PT anisotropy parameter δs.

8The range of highly occupied unstable modes in this scenario
is determined within the hard-loop framework in Ref. [24] and
parametrically given by modes with momenta pT ≲mD and
pz ≲mDΛT=ΛL.
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While all of these effects can in principle be realized and
have interesting consequences for the subsequent space-
time evolution of the strongly correlated plasma, the
infrared physics of momenta around the Debye scale is
crucial in all these scenarios. The properties of this highly
nonlinear non-Abelian dynamics can be resolved conclu-
sively through nonperturbative numerical simulations, such
as those performed here.
A compact summary of our results in comparison with

the different weak coupling thermalization scenarios is
shown in Fig. 5 describing the space-time evolution in the
occupancy-anisotropy plane. The horizontal axis shows the
occupancy nHard and the vertical axis the momentum-space
anisotropy in terms of the typical longitudinal and trans-
verse momenta ΛT;L. The gray lines indicate the attractor
solutions of the different thermalization scenarios, while
the blue lines show our simulation results for different
initial conditions. One immediately observes the attractor
property, which appears to be in good agreement with the
analytical discussion of the BMSS kinetic equation in the
high-occupancy regime [4].
As noted previously, similar attractor solutions were

discovered in relativistic scalar theories that purport to
describe the highly occupied postinflationary thermaliza-
tion phase of the early universe. Scaling analyses of kinetic
equations, identical to those in studies of weak wave
turbulence, demonstrated that the scaling exponents char-
acterizing the attractor could be classified on very general
grounds of dimensionality, conservation laws and boundary
conditions for the evolution [36,37]. Systems on diverse
energy scales ranging from the discussed early universe
inflaton dynamics of relativistic scalar fields to tabletop
experiments with cold atoms have universal scaling

exponents that characterize self-similar attractor solutions
[37–39]. The observation here of such a self-similar scaling
solution of the expanding non-Abelian plasma is a powerful
indication for universal behavior far from equilibrium.
In light of this discussion, one can conclude that the
bottom-up scenario correctly captures the universal proper-
ties of the turbulent thermalization process observed in our
simulations. However, it is also conceivable that there are
processes besides small-angle elastic scattering which lead
to the same scaling behavior.

VI. SUMMARY AND CONCLUSIONS

In this paper, we discussed a first principles study of
the dynamics of a highly occupied non-Abelian plasma
using large-scale numerical simulations. The discovery of a
universal attractor in a temporal regime where the occu-
pancy of the plasma is still large, and the emergent self-
similar behavior provide unprecedented insights into the
dynamics of the longitudinally expanding plasma. We have
also established for the first time a link between non-
perturbative classical-statistical field simulations and
weak coupling thermalization scenarios formulated in
kinetic theory. Somewhat surprisingly, we found that,
within their range of applicability, the simulation results
show a clear preference for the bottom-up thermalization
scenario [22] where the quasiparticle dynamics is governed
predominantly by elastic scattering.
The emergent picture of the thermalization process at

weak coupling is illustrated schematically in Fig. 6 at the
example of the bulk anisotropy of the plasma. Following a
transient regime dominated by plasma instabilities and free
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streaming, an effective memory loss is observed already at
rather early times of the evolution and leads to a turbulent
attractor solution for different initial conditions. Our results
also suggested that the plasma, albeit strongly interacting at
all times, becomes increasingly anisotropic in the classical-
statistical regime of high occupancies. Consequently, the
system is still far from equilibrium at the transition from
the classical regime to the quantum regime.9 Using the
observed scaling behavior, this is expected to occur on a
time scale τ ∼Q−1α−3=2S . Since classical-statistical simu-
lations are no longer applicable beyond this point, this
leaves several open questions that need to be addressed in
the future to deepen our understanding of the thermal-
ization process.
Most importantly, the questions of how and on what time

scales the system may isotropize and approach thermal
equilibrium in the quantum regime are beyond the validity
of classical-statistical simulations. Kinetic approaches are
however valid, and a more detailed description of isotrop-
ization and thermalization can be based on such frame-
works. In the bottom-up scenario, 2↔3 scattering
processes become increasingly important in the quantum
region and lead to isotropization and thermalization on a
time scale τ ∼Q−1α−13=5S , which corresponds to Qτ ∼ 20
for αS ≃ 0.3 (τ ∼ 2 fm=c for Q ¼ 2 GeV). Interestingly, it
has been shown recently that such radiative 2↔3 processes
also generate a self-similar cascade [42]. If so, turbulent
dynamics will be responsible for the entire nonequilibrium
evolution of the plasma, from far off equilibrium to

thermalization. This possible scenario is also sketched
in Fig. 6.
Of course, it would also be interesting to extend the use

of classical-statistical simulations to larger couplings and
earlier initialization times to achieve a direct description of
heavy-ion collisions starting at earliest times. However, this
is not unambiguous given the conceptual limitations of the
classical-statistical approach. Indeed the primary objective
of working at very weak coupling is to cleanly separate the
dynamics of classical modes from quantum evolution
effects. While classical-statistical field theory provides a
solid description for highly occupied modes f ≫ 1, quan-
tum evolution effects are extremely important for modes
with f ≲ 1. While initially the single particle occupancies f
are ∼1=αS shortly after Qτ0 ∼ ln2 α−1S , the occupancy of
typical modes rapidly decreases with time. Unless the
single particle occupancies f are initially very large
(corresponding to very small values of αS), quantum effects
quickly become important. The extrapolation of the
classical-statistical field theory to larger couplings must
thus be done with great care to ensure robust results. While
larger couplings also imply the relevance of earlier time
scales Qτ0, numerical simulations at these early times may
require lattices that are significantly larger than those in the
present study in order to resolve all relevant modes.
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