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In Denicol et al. [Phys. Rev. D 85, 114047 (2012)], the equations of motion of relativistic dissipative
fluid dynamics were derived from the relativistic Boltzmann equation. These equations contain a multitude
of terms of second order in the Knudsen number, in the inverse Reynolds number, or their product. Terms of
second order in the Knudsen number give rise to nonhyperbolic (and thus acausal) behavior and must be
neglected in (numerical) solutions of relativistic dissipative fluid dynamics. The coefficients of the terms
which are of the order of the product of Knudsen and inverse Reynolds numbers have been explicitly
computed in the above reference, in the limit of a massless Boltzmann gas. Terms of second order in the
inverse Reynolds number arise from the collision term in the Boltzmann equation, upon expansion to
second order in deviations from the single-particle distribution function in local thermodynamical
equilibrium. In this work, we compute these second-order terms for a massless Boltzmann gas with
constant scattering cross section. Consequently, we assess their relative importance in comparison to the

terms which are of the order of the product of the Knudsen and inverse Reynolds numbers.
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I. INTRODUCTION AND CONCLUSIONS

Relativistic fluid dynamics has found widespread appli-
cations in heavy-ion physics, in modeling nuclear colli-
sions at ultrarelativistic bombarding energies [1,2], in
astrophysics, for instance in modeling binary mergers of
compact stellar objects (see e.g. Ref. [3]), as well as in
cosmology [4-8]. In the past, in order to solve the
equations of motion of relativistic fluid dynamics, one
has often made the assumption that the fluid is ideal, i.e.,
one demands instantaneous local thermodynamical equi-
librium, which in turn allows to neglect all dissipative
effects. However, there are no ideal fluids in nature, as
can be seen for instance from the fact that the shear
viscosity coefficient may attain a lower limit, but never
vanishes [9-11].

A more realistic modeling of the dynamics of relativistic
fluids thus demands that one uses the equations of
relativistic dissipative fluid dynamics. The first attempts
to formulate such equations were made by Eckart [12] and
Landau and Lifshitz [13] based on a relativistic generali-
zation of the nonrelativistic Navier-Stokes equations.
However, their equations suffer from instabilities and
acausal signal propagation [14]. The reason for this is
the (erroneous) assumption that the dissipative quantities,
like bulk viscous pressure I1, particle diffusion current n*,
and shear-stress tensor #*¥, react instantaneously to the
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thermodynamic forces, like gradients of the fluid velocity
or temperature and chemical potential. If one relaxes this
assumption by introducing certain time scales zyy, 7,, and
7., on which the dissipative quantities are allowed to
approach the values determined by the corresponding
thermodynamic forces, these problems can be cured (pro-
vided the relaxation times fulfill certain conditions [15]).
Similar to earlier works by Grad [16] and Miiller [17-19] in
the nonrelativistic context, Israel and Stewart (IS) were
among the first to suggest equations of motion for relativ-
istic dissipative fluids that were stable and causal [20-22].

In recent years, relativistic dissipative fluid dynamics
based on the IS formulation was extensively applied to
describe the dynamics of nuclear collisions. At the same
time, the theoretical foundations of this theory were further
explored both from kinetic theory [23-40] and from
irreversible thermodynamics [41-51]. In particular, in
Refs. [23-25] it has been investigated how to derive the
equations of motion for the dissipative quantities using the
Boltzmann equation as the underlying microscopic theory.

In Ref. [24] a derivation of the equations of motion of
relativistic dissipative fluid dynamics was presented, which
is based on a systematic power-counting scheme in the
Knudsen and inverse Reynolds number. The Knudsen
number, Kn = A/L, is the ratio between a characteristic
microscopic time/length scale, 4 (e.g., the mean-free path
between collisions), and a characteristic macroscopic scale
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of the fluid L. In this context, the inverse Reynolds
numbers are the ratios of dissipative quantities and (local)
equilibrium values of macroscopic fields, e.g. Rp!' =
1|/ Py, R, = |n#|/ngy, or R;! = |z#|/ Py, where P is
the thermodynamic pressure and n, is the particle density in
equilibrium. The time scales 7, 7,, and 7, are identified
with the slowest microscopic time scales of the Boltzmann
equation.

The physical picture that emerges is that microscopic
processes (i.e., in the case of the Boltzmann equation,
binary collisions) occur on time scales smaller than (or, at
most, as large as) 7y, 7,,, and 7. These processes affect that
the dissipative quantities I1, n#, and 7** approach the values
given by the (relativistic generalization of the) Navier-
Stokes equations on the time scales zyy, 7,,, and 7,. Since
microscopic physics influences the motion of the fluid only
on short time scales, the term “transient fluid dynamics”
was coined for such theories of relativistic dissipative fluid
dynamics. The fact that the microscopic dynamics of the
Boltzmann equation gives rise to relaxation-type equations
of motion for the dissipative quantities, i.e., where these
quantities exponentially decay towards the values given by
the Navier-Stokes equations, was confirmed in Ref. [52].
It was also shown in that paper that approaches based on
the AdS/CFT correspondence lead to equations of motion
which are of the type encountered for an underdamped
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harmonic oscillator. The relaxation towards the Navier-
Stokes values is then not exponential but oscillatory.

Let us recall the relaxation-type equations for the
dissipative quantities derived in Ref. [24],

Il + 1 =—(0+J + K+ R, )
Tﬂﬁ(ﬂ) +n# =kI* + JF + KF + RH, (2)
r,,ir<””> + 7" = 2not + JH + KH 4+ R*, 3)

where the overdot denotes the proper time derivative,
A= DA = u"d,A. Here, { is the coefficient of the bulk
viscosity, k the coefficient of particle diffusion (which is
related to that of heat conduction) and 7 the coefficient of
shear viscosity. Furthermore, with the fluid four-velocity u/
(chosen in the Landau frame), where u*u, = 1, with A* =
g —u'u” being the three-projector onto the subspace
orthogonal to u*, and with V¥ = A* (), being the three-
gradient, § = V,u" is the expansion scalar, 6" = Vi) =
L(VRu + VVul) —1OAM is the shear tensor, while [/ =
VHay is the gradient of oy = u/T, the ratio of chemical
potential ¢ and temperature 7.

In the above equations, the tensors 7, J#, and JH
contain all terms of first order in the product of the Knudsen
and inverse Reynolds number,

j = —fnnv N — TN F — 5nnH9 — /ln,,n -1 + ﬂn”ﬂ'ﬂyﬁﬂy,
TH = —z @ — 8, 10 — £,V + £, NV 7+ 7, TIFF — 1, 2 F, — A, n,0 + A q[I* — 4, 71,

T = 2,1t o — 5,70 — 16! 4 ATl — 1, nWFY) + £, V%) 4 ), n 1), )

where @ = J (V¥u” — V*u*) denotes the vorticity and we defined F* = VP, as the gradient of the thermodynamic
pressure. The tensors /C, K#, and C# contain all terms of second order in the Knudsen number,

K =81@,,0" +$,0,,0" +$36% + 4l -1+ CsF - F+ ol - F+ 5V -1+ &V - F,
,C” = IZ'IO'”UIZ/ + fcza””F,/ + 1?31/’!9 + lh("4F”9 + 1~<5a)’“’1,, + 12'6Agvy6/w + l?7v’46,

KW = ﬁla)ﬁ”a)”ﬂ + 7,006 + 7~730"1<"(7Z> + 7140/(1”(0””1 + 77 I 1Y) 4 R FHFY)

+ i I FY) 4 gV 4 g Ve EY)

Note that, in contrast to Ref. [24], we now write the term
proportional to ks with a three-gradient operator V, instead
of a partial derivative 0, . Finally, the tensors R, R¥, and
R contain all terms of second order in the inverse
Reynolds number,

R =@ \IP + @on - n + @377, (6)
R = pan,z + psTint, )
RM = @gllnt + (p7ﬂ’1<ﬂﬂj> + pgn'n?) . &)

(&)

|

These second-order terms follow from computing the
collision integral beyond linear order in the dissipative
quantities.

Observing the plethora of transport coefficients occur-
ring in Eqgs. (4)—(8), a natural question to ask is whether
all of them are of the same order of magnitude, or whether
some coefficients are larger and thus more important than
others. The goal of this paper is to answer this question.
The coefficients in Eqgs. (4) were explicitly computed in
Ref. [24] for a massless Boltzmann gas with constant
scattering cross section. We now supplement these results
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by computing the coefficients in Egs. (5)—(8). We restrict
ourselves to the 14-moment approximation. In this case, the
coefficients in Egs. (5) vanish identically (cf. Appendix I), and
we only need to focus on the coefficients ¢, ..., @5 in
Egs. (6)—(8). The derivation and calculation of these coef-
ficients is quite demanding and is presented in detail in the
remainder of this paper. For the rest of this introductory
section, we simply quote the results and draw our conclusions.

|
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For massless particles, the bulk viscous pressure van-
ishes identically, IT =0, and we do not have to solve
Eq. (1). Also, terms in Egs. (4)—(8) proportional to I1 can be
neglected, such that we do not need to compute the
corresponding coefficients. Moreover, as mentioned above,
in the 14-moment approximation all coefficients in Egs. (5)
vanish. Dividing Eq. (2) by n(, and Eq. (3) by Py, these two
equations can be written in the following form,

A H
o K Qg
no ng Ny
+ (Tna)lw - /Innalw - 6nnegﬂy) @
ny
£, ANt P,V P A HY
+ nm Aﬂy_<’l'mz 0Vy 0+ﬂvya()—(ﬂ4P0E>ﬂ—, (9)
Po Py Bo Py Po ny) Py
{uv)
L 2,
TPy Py Py
(u A
+ % <2Tﬂwy>/1 - Tim:abM - 57171'99”” + ¢7P07;) )
0 0
Vipy)  plu VY P nv)
+ enbo +— (ﬂnnﬂov”ao — Tpnllg o+ »sP3Po —> . (10)
no no 0 no

Here, we have made use of the equation of state of the
massless Boltzmann gas, Py = ng/py, with fy = 1/T. By
dividing the dissipative quantities by n, or P, respec-
tively, we immediately identify terms which are propor-
tional to the inverse Reynolds number. Furthermore, the
coefficients of terms involving gradients (or time deriv-
atives) all have dimension of time (or mean-free path)
and are thus proportional to the Knudsen number. In this
form, it is easy to apply power-counting arguments to
estimate the order of magnitude of the various terms. The
Navier-Stokes terms appearing in the first lines are of first
order in the Knudsen number. The second lines contain
terms proportional to the dissipative quantity that is evolved
in the respective equation (n* in the first and #*¥ in the
second equation), while the third lines contain cross terms
proportional to the other dissipative quantity that is not
evolved (#** in the first and n* in the second equation).
Terms in the second and third lines are of first order in the
product of the Knudsen and inverse Reynolds number as
well as of second order in the inverse Reynolds number.

At this point, one cannot draw any further conclusion
without making assumptions about the relative magnitude
of the Knudsen and inverse Reynolds numbers. In the
following, let us assume that all of them are of the same
order of magnitude, Kn~R,! ~R;! (situations where
this is no longer the case were studied, e.g., in
Ref. [53]). At least for asymptotically long times, when
the values of the dissipative quantities approach their
respective Navier-Stokes limits, this assumption is fulfilled.

|

Then we can simply assess the order of magnitude
(and thus the importance) of the various terms by compar-
ing the values of the coefficients accompanying them.
These are listed in Tables I [for Eq. (9)] and II [for Eq. (10)].
Note that the coefficients of terms containing a power of the
Knudsen number are given in units of the relaxation times
7, and 7, respectively.

One immediately observes that the coefficients in
the third line of Eq. (9) are (at least) an order of magnitude
smaller than the ones in the second line. If the Knudsen
and inverse Reynolds numbers are of the same order of
magnitude, it is then a reasonable assumption to drop these
terms altogether, including the last term in Eq. (9) that
arises from nonlinear terms in the collision integral.

In the 14-moment approximation, all terms in the third
line of Eq. (10), except for the last one, vanish identically.
We remark, however, that this is accidental; going beyond
the 14-moment approximation [24], all terms are of the same
order of magnitude. From the terms in the second line, the
last one (arising from the nonlinear terms in the collision

TABLE I. The coefficients in the particle diffusion equation for
a massless Boltzmann gas with constant cross section o in the
14-moment approximation (from Ref. [24]). Ay, = 1/(ngoy) is
the mean-free path.

% Hmfp} Tn Mmfp] ﬂnn [T;J 5nn [Tn} % [Tn] T";iif“ [Tn] % [Tn] (/)4P0
3 9 3 1 1 € € €L
16 4 5 20 80 20 25
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TABLE II. The coefficients in the shear-stress tensor equation for a massless Boltzmann gas with constant cross
section o7 in the 14-moment approximation (from Ref. [24]). Ay = 1/(ngor) is the mean-free path.

;—z [ﬂ«mfp] Tr [;mep] Trn [Tﬂ] 57[7: [Tﬂ] (,07P0 fnnﬁO [Tﬂ] lnnﬁo [Tﬂ] Tanllo [Tﬂ] (ﬂ8ﬁ3P0
8 0 4 9 8

3 % 17 3 70 0 0 0 5

integral) is an order of magnitude smaller than the other
second-order terms and hence can safely be neglected.

To summarize our results, we conclude that, in the 14-
moment approximation, for a massless Boltzmann gas, and
for situations where the Knudsen and inverse Reynolds
numbers are of the same order of magnitude, the equations
of motion for the dissipative quantities read, to good
approximation, as follows:

T, 4t = kVFay 4 (1,0" — Ao )n, — 8,00, (11)
7,7 4 g = 2ot 4 ﬂé” (27,0 — 7,,6%)
— 8,07 + pgntn®), (12)

In the application of relativistic dissipative fluid dynamics
to describe the dynamics of nuclear collisions, this form of
the equations should be applicable (far) above the QCD
transition, i.e., (deep) in the quark-gluon plasma phase,
where the velocity of sound is close to that of an ultra-
relativistic gas, 2 = 1/3, and the mass of the quasiparticles
can be neglected. Nevertheless, the values of the transport
coefficients may change from the values given in Tables I
and II when accounting for proper quantum statistics,
the correct number of degrees of freedom, as well as a
more realistic (angular-dependent) scattering cross section.
Closer to the QCD phase transition, however, the breaking
of conformality and the effect from nonvanishing bulk
viscous pressure I1 can no longer be neglected.

The remainder of this paper is organized as follows. In
Secs. IT A and II B we briefly recapitulate the derivation of
the equations of relativistic dissipative fluid dynamics from
the Boltzmann equation using the method of moments [24].
In Sec. II C we give a general derivation of the second-order
corrections to the collision integral. Explicit results will be
derived in Sec. III by reducing the number of moments to
14. Details of our calculations are relegated to several
Appendices.

We use natural units throughout this work, A = kz =
¢ = 1. Covariant, x, = (t,—x,—y,—z), and contravariant,
X = (t,x,y,z), four-vectors are related through the metric
of flat spacetime, ¢* =diag(l,—1,—1,-1)=g,, by
X, = gux* and x* = ¢"x,. Furthermore, the symmetriza-
tion and antisymmetrization operations are denoted by
parentheses or brackets around indices, AW =
(A" + A")/2 and AW = (A" — A¥) /2, respectively.

II. RELATIVISTIC FLUID DYNAMICS
FROM KINETIC THEORY

A. General variables

In relativistic kinetic theory of dilute single-component
gases, an ensemble of particles with mass m and four-momenta
k= (K°, k), with k® = vVk*> +m?, at a given spacetime
point x* = (¢,x), is characterized by the invariant single-
particle distribution function f (z, x) = f).. In the absence of
external forces or fields, the spacetime evolution of fy is
described by the relativistic Boltzmann equation [54,55],

k0, fx = CIf]. (13)

where C[f] is the collision term. In the case of binary elastic
collisions it is given by

1 o o
CUfl= [ AK'dPAP Wiy Sy TSl
(14)

Here f\ = 1 — afy, with a = 1(—1) for fermions (bosons)
and a = 0 for classical particles, dK = gd°k /[(27)3k"] is the
Lorentz-invariant momentum-space volume, where g denotes
the number of internal degrees of freedom, and Wyy,_,pp, 18
the Lorentz-invariant transition rate. The factor v = 2 takes
into account that the particles are indistinguishable, while
the transition rate satisfies detailed balance, i.e., it is sym-
metric for time-reversed states Wy, pp = Wppikis-

The conservation of particle number and of energy and
momentum in individual collisions leads to the following
continuity equations for the particle four-current, N*, and
energy-momentum tensor, 7+ [54,55]:

9,N# = / dKC[f] =0, (15)

8,1 E/de”C[f]IO. (16)

The currents N¥ = N*(z,x) and 7" = T*(t,x) are iden-
tified as the first and second moments of the single-particle
distribution function, respectively. Without loss of general-
ity, they can be tensor decomposed in terms of the fluid
four-velocity as

Nt = () = (Biu + (k9), (17)
T = (k'k*) = (Ef)utu’ + % A (APk kg) + (K“k),

(18)
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where (---) = [dK(---)fy. Here, Ex = k"u, and k¥ =

AWk, correspond to the energy and the three momentum,
respectively, of the particle in the local rest frame of
the fluid, such that k* = Eu¥ + k% [23,24,56-58].
Moreover, we denoted the orthogonal projection of a
first-rank tensor as A% = A A, while the symmetric,
traceless, and orthogonal projection of second-rank tensors
A" is defined as AW = = AGAYP, with AR =
(AHEAPY 4 AVOAPRY D — AHYAP | 3. In this work, the flow
velocity u* is defined according to the Landau prescription
[13] as the eigenvector of the energy-momentum tensor,
ie, TWu, = (E;)u". As a consequence, the energy-
momentum diffusion current vanishes, W* = (E, k*)) = 0.

Using Egs. (17)—-(18) we are able to identify the
fundamental fluid-dynamical quantities as
n = Ntu, = (Ey), (19)
e=T"u,u, = (Ey), (20)
1 1
P= —gT””AW =-3 (A% k kp), (21)
n' = NYAL = (kW) (22)
v = TPAN = (ki) (23)

where n is the particle number density, € is the energy
density, P is the local isotropic pressure, n* is the particle
diffusion current, and z*¥ is the shear-stress tensor.

It is customary to separate the isotropic pressure into
two components, P = Py +1II, with P, being the
thermodynamic pressure and IT the bulk viscous pres-
sure. The thermodynamic and bulk viscous pressures are
defined with respect to the local equilibrium distribution
function,

fox = [exp(BoEx — ag) +a] ™", (24)
and
1 aff
PO = _§<A k(lk/}>0’ (25)
1
H - —g <Aaﬂkakﬂ>5, (26)
where (---)g = [dK(--)fox and (---)s = [dK(---)5fx,

with 6fy = fx — fox- The temperature and chemical
potential, u = Tag, introduced in f(, are defined by
the so-called matching conditions which impose that the
particle number density and energy density are given by
their respective values in a fictitious local thermody-
namic equilibrium state, i.e., ng=(Ey),=n and
€y = (E3), = e. In this state, there is an equation of
state of the form Py(T,u), such that ny = 9Py/0u,

PHYSICAL REVIEW D 89, 074010 (2014)

§o = OPy/OT, and the fundamental thermodynamical
relation gy = T'sy + puny — Py is fulfilled.

It is also convenient to introduce the irreducible
moments of dfy,

PRt = (Ep kWL ki) s, (27)

Such irreducible moments are constructed to be symmetric,
traceless, and orthogonal to the four-velocity, with the sym-
metrized, traceless, and orthogonal projections being defined as
= APk ke (28)
The details of construction and the properties of such tensors
can be found in Appendix B. Note that the bulk viscous
pressure, particle diffusion current, and shear-stress tensor are
also irreducible moments of §fy,

m2

= ——po,

_ M _ v
3 =g =l

(29)

Furthermore, the matching conditions and the definition of
the local rest frame can also be expressed using irreducible
moments. The matching conditions correspond to

p1 = (Ex)s =0,

pr = (Ei); =0,

(30)
(€2Y)
while the Landau definition of the fluid four-velocity leads to

Pl = (kW E)s=0. (32)

B. Moment expansion of f and the equations of
motion for the irreducible moments

Following Ref. [24], Jf) is parametrized as

8k = fouf ok

The function ¢ is then expanded in terms of a series in the
irreducible tensors given in Eq. (28),

(33)

[Se]

b= Wk k.

=0

(34)

By expanding the tensor /1<” 1) using a set of orthogonal

polynomials, it is stralghtforward to prove that

Z Hknpm He

where N, denotes the order at which the expansion is
truncated (for the coefficient of rank #) and p,'** is the
1rredu01b1e moment defined in Eq. (27). The coefficients
Hk are found to be [24]

lll He)

35)
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w©) Ne
Hio) = > @mlPi: (36)

m=n

with Pf”)l being orthogonal polynomials in Ey,

P =" anlE;. (37)
r=0

The coefficients af,f) are determined from the orthonor-

mality condition

/ dKo )PP — 5. (38)

using Gram-Schmidt orthogonalization. The measure o)

depends on the rank # of the tensor being expanded and reads

w@)
o) =

26+ 1! (A kakg)" f ok fokc (39)

where W) is a normalization constant defined as
W = (=1)"(Jarr) " (40)

For more details, see Refs. [24,25].

Using the Boltzmann equation, one can derive the
general equations of motion satisfied by py'~*/. This is
accomplished by explicitly taking the comoving derivative
of the corresponding irreducible moment, i.e.,
pYar — AR D [ AKEL K" . k) 5fy, and using the
Boltzmann equation to express the comoving derivative of
Ofk in terms of the collision term, f, and its derivatives,
and spatial derivatives of §f. The details of this derivation
as well as the general form of the resulting equations
of motion are contained in Refs. [24,25]. For the three
lowest-rank moments, these equations of motion read

pr—C,_; = a0 + (nonlinear terms), (41)
p¥ — ¥ = aV 1" + (nonlinear terms),  (42)

,bﬁ” v _ Ci”_ ”1> Y (nonlinear terms). (43)

Here we define the following thermodynamic quantities:

@’ = (1=l = Lo = 5= (hoGar = Gy, (44)
20

a) =T =5 (45)

a) = Loy + (r—=1)15,, (46)

where hy = (9 + Py)/ng denotes the enthalpy per particle
and

PHYSICAL REVIEW D 89, 074010 (2014)
Gnm = JnOJmO - Jn—l,OJm+1,0’ (47)

an = JnJrl,qJnfl,q - (an)z' (48)

The variables 1, ,(ao. py) and J,,., (9. fy) correspond
to thermodynamic integrals defined as

(=1)1

n+r—2 a
Tring = g B ATk ), (49)

_ 8InJrr,q

Jr+n,q - aa
0

(50)

Po

More details can be found in Appendix A.

We also introduced the generalized irreducible collision
integral Chr# and its symmetric, traceless, and orthogo-
nal projection,

clt) = Ao = / dKE k. e C[f].
6D

Aswas shown in Ref. [24], the moment equations (41)—(43)
reduce to the fluid-dynamical equations for the dissipative
variables when the fast-varying modes of the Boltzmann
equation can be neglected and, simultaneously, the Knudsen
number(s) and inverse Reynolds number(s) are small. In this
case, the linear parts of the collision integrals introduced
above determine the relaxation times for the dissipative
variables, while their nonlinear parts give rise to the terms
that are of second order in the inverse Reynolds number(s),
i.e., the tensors R, R¥, and R* that appear in Egs. (6)—(8).
In Ref. [24] the existence of such nonlinear terms was
pointed out, but the explicit calculation of the corresponding
transport coefficients was left for future work. In the next
sections we shall complete this task.

C. Expansion of the collision integral

In this section we show how to express the collision
integrals in terms of irreducible moments of Jfy.
Substituting the expression of the collision term for binary
elastic collisions (14) into the expression for the irreducible
collision integral (51), one obtains

1

clte) = Z / AKdK'dPAP'W ey pp i kW1 KHE)
14

X (fpfp’}k}'k’_fkfk’}p}p’)' (52)

Substituting  the distribution function  fy = fox +
Sokfok®x into the above formula and using

fpfp' = fOpfOp’(l + }‘Op’(ﬁp’ +]~COp¢p)
+ fOpfOp’}Op}Op’¢p¢p’v (53)
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J}p}p’ = J}Op}‘Op’(1 - afOp’¢p’ - af0p¢p)
+ aszpfOp’}Op}OP’qﬁpd)p’? (54)

together  with the equality  fox fOk/fopfop, =
fOpfOp’fOkak" the part that is linear in ¢k reads

1
Liﬂ_ll.....uf) ‘/f Elr;lk _____ kﬂf (¢p ¢p’ — ¢k — ¢k,)
(55)

where we abbreviated ff = [dKdK'dPdP'Wyy,_pp

fox fOk/fopfop/ and used the fact that the collision term
vanishes for the local equilibrium distribution function
Cy "7 fo] = 0. Inserting the expression for ¢y from the
moment expansion (34) into the previous equation, we
obtain

K, k). (56)

It was shown in Ref. [24] that the linear part of the
collision integral simplifies to

PHYSICAL REVIEW D 89, 074010 (2014)

:l/ElV(—lk<ﬂ1___kﬂf>
vir

x (Hgﬁf)p@,] Pyt H;'/",?p’@] ...p’ym>

(A0

k) — HUK,

—H kg, .

LK) (58)

While using the properties of the irreducible projection
tensors, one can show that

A = [AGET M AR 69)

The coefficient A%) is the (rn) element of a (N, + 1) x
(N, + 1) matrix, A and, in the linearized case, contains
all the information of the underlying microscopic theory.
We remark that, for £ = 0, the second and third rows and
columns (r, n = 1, 2) and, for £ = 1, the second row and
column (r, n = 1) are zero, because the moments p;, p,,
and p/ vanish due to the matching conditions and our
choice of frame.

The computation of the nonlinear part of the collision
integral is analogous. Inspecting the previous formulas we
observe that the collision integral is a quartic function of
¢x - However, in this paper we shall restrict our calculations
to the case of Boltzmann statistics (a = 0), in which case
the dependence on ¢ becomes quadratic. The collision

w© N, integral can be written as
LY =37 (Aitoph
m=0 n=0
o N, Ciﬁi}]#/’> — Liﬂ_llﬂ/> + Nil‘_li<-ﬂ/’>’ (60)
=308 A, (57)

m=0 n=0 . . . P

where the quadratic contribution to the collision
where integral reads
1
Nﬁ’illmw> = ;~/f Elr(_lk kﬂf (¢p¢p ¢k¢k’)

© N, N,

[

X (Hi)V:lOHE) />p<a] .. ’p(l,,,>p/</jl

This nonlinear contribution can be further simplified to

N '

m

=

nm

Il
=}

0 n n’:O

where we defined the following tensor of rank ¢ + m + m':

; Z sz:/Eﬁ_lle..,k”f>le--~‘lnzpﬁIl---ﬁn,/

—HH K e Kay KooKy ) (61)
a, PP
rnn Z: I(Zn/}l P p mpil’ /m’ (62)
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1
(Nrnn’)/olz::::lolzfﬂ] N/ = /Elr( lk ‘k”f>
m m’ f

m')
X [Hyn Hips) Play -+ Pay Py,

ok 0K,

Hkn Hk/ ?k< <ﬁl ..

In comparison with Eq. (61), we have split the double sum

0 >_%_, into a double sum }"%,_  >""  and a double
sum Do o2 M _,and subtracted the superfluous term m =
m’ in the last sum with the help of a Kronecker delta. Then
we interchanged indices m<>m’, n<>n’ in the second sum.

Hi---pe : .
The tensor (N m”/)a].“am pi..p,, 1S symmetric under per

mutations of y—type, a—type, and f—type indices, and
depends solely on equilibrium distribution functions and
the corresponding cross section(s). The equilibrium dis-
tribution function contains only one four-vector, i.e., the
fluid four-velocity u*. Therefore, (N )i 47 5 5, must

PHYSICAL REVIEW D 89, 074010 (2014)

bl A (U= S VY H Pl oDl Pigy g,
(m) 5 (m')
ﬁm - (1 - mm )Hk/nHkn' k/(a] "'kizm>k<ﬁ1 ..'kﬁm/>}. (63)

[

For our purposes it is sufficient to calculate terms that are
of second order in the inverse Reynolds number, i.e., the
terms R, R¥, and R**. Therefore, we only need to consider
the cases =0, =1, and £ = 2. Since the actual
deduction of the nonlinear collision integrals is compli-
cated, this task is relegated to Appendix C and here we shall
only give the final results.

The scalar nonlinear collision integral from Eq. (62) is
given by

o m N, Ny
be constructed from tensor structures made of u* and the  p, | = Z Z N oit)er . 0" pﬂ} Pt
metric tensor ¢", or, equivalently, #* and A*. Furthermore, ol —0 m—0 =0 W'—0
N ot Vo 5 s, must be orthogonal to u*, which No Ny 00
implies that it can only be constructed from combinations = Cmn’, PP
of elementary projection operators, A*. This already n=0 n'=0
constrains the rank of the tensor, £ + m + m’, to be an o N, N, 0
even number. Finally, it must satisfy the following property: + Z Cr,(;’/m) o Pl ..y (65)
m=1 n=0 n'=0
Hy-eH, m NP1
All: ﬂiAZ] Z A 3 /}’ (Nm" )Zl (1,,,/)’] B
here C ) is the special case # = 0 of a more general
_ Mo w p g
=W r""’)rﬁ.uain/)”l..ﬂjn,' (64) coefﬁment
|
1 ¢
cllmmet) -~ pretple g [HUH D e ped pt Ll Pl
o am+20+ 1)), Ei [Hpn' Hyy ' P10 Pl oDl DL, P,
+¢
+(l - 5m m+f)HE:";)H£,rZ/ )p/<yl . -Pwm>p(;¢] «Pu,Puvy---Puv,)
(m+¢) nyy I /
—HHE ke Ky ki KK
+£
(1= Sy eV HUIH Rk ke ok Ky ey ) (66)
Similarly, the nonlinear collision term for £ = 1 becomes,
o m' Nm Nm' ﬂ ﬂ
= Z mn,)a e pl-e mp 1Pt
m'=0 m=0 n=0 n’:O
No N, 0 Ny Nuii N
— m,m+1) a Ay
- rnn’ pnp + Z Z Z Crnn 1 pn’,a]...a,,, ’ (67)
n=0 n'=0 m=1 n=0 n'=0

where the coefficient C (mm+1) 5

is the £ =1 case of the general coefficient C

(mm+€) introduced in Eq. (66).
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Finally, the rank-2 tensor terms are obtained taking
=2,

© m N, Ny
(2 - Oy /}1 ﬂm/
NE =200 D W)l . BoPr P
m'=0 m=0 n=0 n’=0
[ Nm+2 Nm
2 : 2(m,m+2) al Ly, U
Cr pn,aal”'am
m=0 n=0 n'=0
N, N
DU ¥ )
+ ran’ Pn Py
n=0 n'=0
© Ny Ny
mm) a...a,(p V)
+ Z : rnn n pn’,az...am’ (68)
=2 n=0 n'=0
+2
where C (mm+2) can be calculated from Eq. (66); we

mtroduce another coefficient,

1
i — L / - k)
d"v Jr
/

X (M Hy pupPert .. pP plply .l

_Hkn Hk’ ki, k, kP kﬂm>k< kﬂq+1 N

1) (69)

The normalization d™ is complicated and is discussed
in Appendix C together with other details of the derivation
of the nonlinear collision term.

III. TRANSPORT COEFFICIENTS IN THE
14-MOMENT APPROXIMATION

In this section we calculate the previously introduced
coefficients A%, C?,i':,m), Ci%’mﬂ), Ci(l'n",’mﬂ) nd D”YZ )
in the 14-moment approximation. As shown in
Refs. [24,25], this corresponds to the truncation Ny = 2,
N, =1, N, = 0. This implies that the following irreducible
moments appear: py = —3I1/m?, p; =0, p, =0, pfy = n*,
P} =0, and pf’ = 7. As one can see, they are uniquely
related to the dissipative quantities.

Before proceeding and for the sake of later convenience,
we reexpress the coefficients Hkn using Eqgs. (36) and (37)
as

kn= f' ZZ kraknEr

=n r=0

ZAm Ef + ZAW E.

r=n

(70)
where

rn = f' E ak, akn .

(71)
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Note that, for n = 0, the second sum in Eq. (70) identically
vanishes, which greatly simplifies the calculation of the
collision integral.

Furthermore, from the definition of the irreducible
moments and using Egs. (34)-(37) together with the
orthogonality condition (B8) we obtain the following
general result:

N
_ (—l)ff! Z%l ----- pe
n=0
n—1
(ZAH,,JWW S A )
’J

(72)

where we used Eq. (70) in the last step. Therefore,
truncating the above general result in the I14-moment
approximation we obtain

3.0 0 0
pr=7rpo = 7 (A0 0 + A, 110+ AT 0)IL,
(73)
P =1ipl = — (Al o + AWM nt, (T4)
o =vipy = (ZAE)%))Jr+4,2)7TW’ (75)

where for r = 0 we obviously have y{' = y# = y% = 1. The
coefficients Ag%), A<110), A(%), as well as AE)OO), Aﬁ%), Ag?)), are
calculated from Eq. (71) and listed in Appendix D. These
linear relations between the moments are the main result of
the 14-moment approximation, which was also obtained
in Ref. [25].

It is straightforward to show using Egs. (58), (59), and

(70) that the .Ag? coefficients of the linear collision term

can be expressed in terms of As?. For # = 0 where, in the

14-moment approximation, Ny = 2, the coefficient is

0 01 ,,
AY = A0 ) ) B (E} + % — E} — E})

= Aé%)X’(‘:ag)u Uy U g, (76)
where the integrals proportional to A(()%) [A+1—1-

0 .
1)=0 and AEO) J; (Ey + Ey — Ex — Ex) =0 vanish
due to particle number and energy conservation in binary
collisions. Here, we introduce the rank-4 tensor
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1
Xty = / Eik'k* (ppP + p'p” — kK — Kk7),
14

(77

which is symmetric upon the interchange of indices (u, v)
and (a, ), i.e., X’(‘f)"ﬂ - XE’:;’)(“/}), and it is also traceless in
the latter indices, Xi’f)“ﬁ Gap = 0.

Similarly, for # =1 we have

Al EA(IB)% | E )

X (Eppuy + Ey P,y — Exkyy — Exk),)

= A 3X0L Bty (78)
where A00 Jr (P + P — k) —k,y) = 0 vanishes due

to three- momentum conservation.
Finally, for £ = 2 we obtain

=A< /E )
X (Ppy) + PPy = kiky)

1 vay
= Al < X0 /’> A - (79)

a kl(ﬂ kIC))

Recalling thatL """ #e) Z Agi)pﬁ‘ """ #  these results
lead to the lmear collision terms in the 14-moment
approximation,

3
rl—ELMm= 0 P0 = —A% X3 1L (80)

1
colmm) _ /Er—l
mn 2m+ 1) k

KZAM Ej}, +ZA " E)

- <Z AME + nz_:AE,’? ) ( A
i=n i=0

As noted before, in the 14-moment approximation terms
proportional to 3"=1 A” vanish, hence Eq. (65) leads to

9 0000 0(11 0(22
Noy = ﬁcﬂgo e + Cr(()O )”””ﬂ + Cr(()O )”Wﬂﬂl/’ 87)
where we used Egs. (73)~(75) for the py'“’s. The
coefficients in the above equation are

PHYSICAL REVIEW D 89, 074010 (2014)
1

ﬂ ZA”

n=0

= Al X (g an. (81)

L) = Aot

== A(()%))XU_I)AJT”D. (82)

Here, we denote the different tensor projections as
X(r),l = X’(':)aﬂuﬂuyuauﬂ, X(r),3 = %Xl(l:)aﬂ
— /3
X4 =5X0)" Dysap-
Now, with the help of these formulas and using
Eqgs. (73)—(75), the coefficients of bulk viscosity, particle
diffusion, and shear viscosity, as well as the corresponding

relaxation times can be calculated,

U(uBy)(altp), and

r ar r Vr
C - (0) ’ TH = (0) ’ (83)
Azo X(r—3) 1 Azo (r=3),1
(1)
o p
K= =, (34)
AIOX(r 2),3 AIOX(r 2),3
(2) r
= g (5

2
A(()O)X(r—l),4

where aﬁo), agl), and a52> were defined in Eqs. (44)—(46)

while I, 7, and y7 are listed in Egs. (73)—(75).
We now compute the nonlinear collision terms. With
Eq. (70), the scalar contribution (66) is

~|—ZA > ..... k/‘m>k< ..... k|- (86)

2
C(r)o(go) = (A(1(()))) Yo_3)1 + (A( )) Ys3)1
0
+ (AY A X 3y + (AYA Y550, (88)

o(11 1, ()2 (1
o = —g( ) Ya(r3)1 + (A A Y33 5

2
+ (A Y5350 (89)
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0(22 2)\2
o = 2(A%) Y530, (90)
where the detailed derivation is given in Appendix E.
Comparing the above result to Eq. (6) and taking into
account the corresponding relaxation time from Eq. (1), we
obtain

9 11 ,0(00)
P = m4ﬁcroo ) oD
,z.r
2 =-—1C% 92)
Tr
93 = 0% (93)

Similarly, the vector term (67) in the 14-moment
approximation leads to the following formula:

N_ = rOO ‘nvnl _—CrOO “ 94)
where
1(12 1 2 1 2
Co = 2[(A(()0)A(()o))y3(r_z>,8 + (Ago)Ag)o))Yw—z),s], 95)
1(01 0 1
Cr(()o )= (Aoo A(1 )X (r—2), (A(IO)A(()O))Yl(r—Z)B
1)
( Ago )Y3
( A(()})))(3Y3 (r—2) 6+2Y3(r 2).8)
+ (AR AL Yo (96)
Now, recalling Eq. (7) we obtain
Tn
01 =2Cph 97)
7r
3 T
05 =—a - (98)

Finally, the tensor term (68) is

3 v
N2y =— Wc%gﬁz)nﬂw + D?(()?)’Z)”W”X + DE(()E)J)”W”D)v
99)
where
Cf(()(())z) = A(()%)> [AE)(()))X(r—l)A + A(l(())) Y3—na+ A<2(())) Yar—1)4ls
(100)

2
D25 = 8(A) Y5y, (101)
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211 1)\2 (1
Dr(()() )= (Af)o)) Y14+ 2(A(()0>A<10))Y3(r71).7

2
+2(A19) Y57, (102)
and a comparison with Eq. (8) yields
3 1
vo== 13 Cin (103)
o= 2D, (104)
Yr
w5 = 2D (105)

In order to calculate these coefficients we introduce five
new tensors, which are similar to X’(‘:)aﬁ and are given as
follows:

1
nw = / Egkk (p*p” + pp” — kK — ki),
vijs

(106)
v 1 r V[ ,a a
iy :;/f Egkk[pep” — k*k”]. - (107)
vapk 1 r V(5 (S o K
v zy/f Eg k' (pep”p™ + p"plp
_ kak/ﬁk/;c _ k/ak/ij)’ (108)
1
Y/“(’a)ﬁld / Er %% (pap/}p/xp//l + p/(lp///’p p
_ k(xkﬂklxk/l _ k/ak//}klckll)’ (109)
Yﬂua/}rd 1 Er kY ( /} /ﬂ ke k/} k< k//l 110
S0 p*p’p"p"” — ). (110)

Note that the Y;,); terms in the previous equations are
different contractions of these five tensors. Our notation is
such that the i index specifies the tensor while the j index
labels a particular contraction. More details are given in
Appendix F.

We have shown earlier that the coefficients in the
equations of motion depend explicitly on the choice of
the moment, i.e., the index r. Therefore, once the
14-moment approximation is enforced, any moment of
the Boltzmann equation leads to a closed set of equations,
but when calculating the coefficients of the nonlinear
collision integrals one has to account for the exact form of
the relaxation equations which follow from Eqgs. (41)-(43)
using Eqgs. (73)-(75). As an example we quote the equations
for the particle diffusion current and shear-stress tensor
for arbitrary r,
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2O re'2)
i) o 2T T
m r yr
=x"Vtay + -, (111)
r ) ry2(2,2)
Trﬂ.(;w) o+ +_T”Cr00 Iz — TﬂDrOO ﬂ'Mﬂﬂ?
i m* yr 7
r 2.1
_TTo0 y;oo n¥nt) =2 6" + (112)
7

Note that in order to recover Egs. (1)—(3) one must take
r=0, ie, (=0, k=« n=1", TH:T%, 7, = 10
and 7, = 79.

Using the above relations, it was already shown in
Ref. [25] how to derive the equations of motion and
calculate the transport coefficients for different choices
of the moments corresponding to the traditional method by
Israel and Stewart [22] and to the one proposed by Denicol,
Koide, and Rischke (DKR) [23]. Here, we shall follow this
recipe and calculate the coefficients of the nonlinear
collision integral in both cases.

The equations of motion derived by Israel and Stewart
[22] can be obtained by the choice p; = 2 Yo,
P =vin*, p; = yTx* in Egs. (73)—(75) and substltutlng
these values into the equations of motion (41)—(43).
Therefore, in the IS theory all coefficients need to be
calculated with r = 3 for the scalar moments, r = 2 for
vector moments, and r =1 for second-rank tensor
moments. In contrast, the choice of DKR is to use r =0
for all equations and coefficients.

We explicitly compute some of these coefficients in the
ultrarelativistic limit, mf, — 0, for a classical gas (a = 0)
with fixed cross section. Since in this limit IT = 0, we do
not need to compute the coefficients ¢, ¢,, and @3
appearing in the term R, Eq. (6), which enters the equation
of motion (1) for the bulk viscous pressure. Furthermore,
@s, ¢ are coefficients in terms which are proportional to I1,
and thus also need not be computed. The remaining,
nonvanishing coefficients corresponding to the DKR
choice r = 0 are simply denoted as ¢4, @7, and @g, while
the ones corresponding to the IS choice are denoted by (,0}1S
for r = 2, while ¢ and ¢ for r = 1. They read

1
404:%})51, (PE;S:ZPJI, (113)
9 1
o1=55P0"s @ =3P, (114)
8 4
o5 = 5ﬁ0P°’ s —S—ﬂ%Pal (115)

We observe that only ¢g (multiplying n*n*)) differs in sign
between the DKR and IS choices, with the absolute
magnitude of the latter being half as large. The coefficients
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@7 (multiplying ﬂ]”(”ﬂ'?) are approximately of the same
magnitude for both choices, while ¢, (multiplying n,z*") is
more than six times smaller in DKR than in IS theory. The
implications of these results have already been discussed in
the Introduction and Conclusions for the DKR choice.

Finally, for further reference, we also quote the coef-
ficients of particle diffusion and shear viscosity,

3 1

K= E n()/?'mfp’ KIS ] nO/lmfpa (1 16)
4 _ 6

n= gpo/lmfp, n's =3 = Polmip. (117)

where Ay, = 1/(ngor) is the mean-free path and o7 is
the total cross section. Note that all remaining transport
coefficients from Eq. (4) were already computed in
Ref. [25] for both the DKR and IS choices and it was
shown that the differences are of the order of 10%—30%.
Therefore, the only coefficients that change considerably
from one formalism to the other are ¢, and ¢g.

In closing we remark that the numerical solutions of both
the IS and DKR theories were compared to the numerical
solutions of the Boltzmann equation in various cases
[23,53,59-62]. These investigations showed the advantages
of the DKR choice for the corresponding coefficients,
which leads to a far better agreement with numerical
solutions of the Boltzmann equation than the IS theory.
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APPENDIX A: THERMODYNAMIC INTEGRALS

Following Refs. [22,28] we introduced the following
equilibrium moments of tensor rank 7,

074010-12



RELATIVE IMPORTANCE OF SECOND-ORDER TERMS IN ...

where n, g are natural numbers and [n/2] is the largest
integer not exceeding n/2, cf. Eq. (A8) in Ref. [22]. The
parentheses (...) around indices denote symmetrization.
For an arbitrary tensor of rank 7, this operation is defined
by AWi-ta) = %ZWA”I”Z """ #n, where ¢, denotes all
possible permutations of the y indices.

The b, coefficient is equal to the number of permuta-
tions in the set g,, which lead to identical tensor products
of the u* and A" projectors [22],

b = n! _ n!(2g—1)!!
M 2191 (n—29)! (29)!(n —29)!

see Eq. (A2) of Ref. [22].
The thermodynamic integrals I, and J,,, were defined
in Egs. (49), (50),

(_l)q n— 107
hi = oy [ AR, 43

—1)¢ ~
ng — ﬁ/dK(Ek)nZq(Aaﬁkakﬁ)qfOkak‘ (A4)

(A2)

Replacing (A%k,k;)4 = (m* — E )7 we get the following
recursion relations for 0 < g < n/2,

In+2.q = mzln,q + (Zq + 3)1n+2,q+l ’ (A5)

Jn+2,q = mzjn,q + (261 + 3)‘]11—&-2,11-5-1 ’ (A6)

while an integration by parts of Eq. (A3) leads to the
following relation:

ﬂOan = In—l,q—l + (n - 2Q)In—l,q- (A7)

Furthermore,

dl,,( ﬁ)=%d +alnqdﬁ
ng\ @05 Po _aao Qo b, 0s

= andao - JnJrl.qdﬂO’

(A8)

with a similar relation for dJ,,,(ao. fo)-

APPENDIX B: IRREDUCIBLE TENSORS
We define the following projection operator [54]:
[n/2]
B

where the coefficients are given by

g (n!)? (2n —2q)!
(2n)!q!(n —q)'(n —2q)!"

Cng = (_1) (B2)
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241\ 2
(D/(:l;l'j"”nbl ~~~~~ = (n— 2q)!( n('l > ZA#I#Z """" AF2-1H2

X AV Va1V Abagiivaget | N

(B3)

The summation is taken over all distinct permutations of
u- and v-type indices (without mutual exchange of these
types of indices). The prefactor is the inverse of the number
of distinct permutations. This can be seen as follows: the
total number of permutations of u- and v-type indices is
(n!)2. In order to obtain the number of distinct permuta-
tions, we have to divide this by the following three
numbers: (29)?> permutations lead to terms which only
differ by a trivial permutation of indices on the same
projector, e.g. A¥i#2 = AF#1; (g!)? terms just correspond to
a pairwise exchange of indices between projectors, e.g.
A2 AFsHs = AFsHs AMIF2; for any given distribution of
pu-type indices in the product AHz+1*2g+1  Aka¥n | there
are (n — 2q)! possible ways to distribute the v-type indices,
which lead to the same product of projectors.

The projection operator has the following properties
(for details, see Ref. [54]):

(1) It is separately symmetric upon interchange of - or

v-type indices,

(ii) It is traceless upon contraction of u- or v-type

indices,

Aﬂl """ Hnlp.--. Ung " — Aﬂl """ Hnlp ... Dng v 0’ (BS)
for any pair of indices u;, u; or v; v;, where
1<i,j<n.

(iii) The complete contraction is
Ay =260+ 1. (B6)

The irreducible tensors k%1.....k#) defined in Eq. (28)
are

ki) = ARk

(B7)

where AL = A1 He@nte gL Gy, Furthermore,

the tensors k%1 .....k#n) satisfy the following orthogonality
condition,
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where F) is an arbitrary scalar function of Ej.

Let us explicitly write down the projection operators
(B1) which are needed for our calculations. The first one
follows from Eq. (B1) for n =1, which defines the
elementary projection operator, A**1, and hence for any
four-vector we have

Al — AMIA, (B9)
The next one is given for n =2, which defines the
symmetric, traceless, and orthogonal projection in case
of arbitrary second-rank tensors,

AHIRviy — A1 AV2 )i _lAﬂlllel/lvz‘ (B10)
3

Hence for any second-rank tensor formed from the dyadic
product of two four-vectors, A*1 and A*2, we obtain
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1
Al Ar2) — Al) Al) _§AMIM2(A(lﬂA(1A/}). (B11)

The case n = 3 leads to

AHIH2p30 Vol — %(Aﬂl”l Allz(l/z A’/3)ﬂ3 + AH1V2 Aﬂz(”l Al/z)m

+ A#Y3 A#z(”zAW)M) — %A(FI#ZAM)(% Al/ll/z) ,
(B12)

and so for any rank-3 tensor formed from the dyadic
product of the four-vectors A*, A, and A" we
obtain

Al Are Al3) = Ali) Al2) A (13) _%(AMMA(M) o+ Atiks Alk2)

+ Aﬂzﬂ.%A(ﬂl))(A“/}AaAﬁ)_ (B13)

Finally, for n = 4 Eq. (B1) leads to

1 3
AHIHH3HaV Vo3V, — AHIVL AH2V2 AH3V3 AHaVs A(Mﬂz Am)(l’} AV AM)#A
> 14

41

T Ouu

3 3
N A(#lﬂz AM)(V} AW’QAM)M N A(#lﬂs Aﬂ4)(”3 AVi¥2 AV4)/42
14 14

3 3
- A(Mzﬂ} AM4)(U3 AViv2 AW)M — A(ﬂlﬂz Aﬂalht) A(Vll/z A1/3V4)
14 + 35 ’

and

(B14)

Al A2 A3 AHa) = A ) AH2) AH3) A (Ha) — iA(ﬂ1ﬂ2A<ﬂ3>)A<ﬂ4>(AaﬂAaAﬂ)

14

3 3
— T Amm AW A3 (ABA AL) — — Ama A1) A2 (APA A
14 ( a /}) 14 ( a /3)

3 3
— Al Am) A (AYPA A A Am) (APA A2

Note that we also use the notation with mixed indices
such as

A(ﬂlAM2>Aﬂ2yl — A<ﬂ1Ayl>’ (B16)

Al AH2 AM3 AH8) A

H3HaV V2

=AWARA, A, (B17)

APPENDIX C: REDUCTION OF
COLLISION TENSORS

In this Appendix, we show how to derive the general
structure of the collision integrals introduced in the main

(B15)

|
text. As already discussed, the tensor structure of

Hi-eeHe
N o Vg s,, can only be constructed from tensors

formed using projection operators A*. We start by collect-
ing all possible combinations of projection operators that

: HieeeeHe .
can appear in (N r,,n/)al ..... by

(i) Terms where all u—type indices pair up on projec-
tors, all a—type indices pair up on projectors, and
all f—type indices pair up on projectors, e.g.

At LAFEEN G e B, 0, BpipyeBp g
ChH
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All possible permutations of the u, a, f—type indices
among themselves are allowed. In this case, £, m, and
m’ must all be even.

(i) Terms where at least one y—type index pairs with
an a—type index on a projector, or one u—type
index pairs with a f—type index on a projector, or
one a—type index pairs with a f/—type index on a
projector, e.g.

(€2

H _
ALARHS AN B By By
(C3)

Do p A2 APBEN

X A(lm—l(lmAﬁ2/}3 ..... A/}’nL]/}m,. (C4)

Again, all possible permutations of the u—type,
a—type, and —type indices are allowed.

(iii) Terms where each u—type, a—type, and f—type
index pairs up with an index of another type. To
guarantee that the y—type indices have sufficiently
many partners among the other two types of indices,
one must have # < m + m'. Similarly, in order for
the a—type indices to pair up in this way, we have
to require m < ¢+ m'. Finally, for the f—type
indices we mneed the condition m' <Z#+ m.
In this case, only projectors of the type A%, A;;/

or A, 5, exist, with no leftover projectors containing
indices of the same type. Such terms have the
form
A% A;;fq Agp oo (C5)
Again, all permutations of the y, a, f/—type indices
among themselves are allowed.

It is important to emphasize that terms of the type (i) and
(i1) by themselves do not satisfy the property (64), since
they are not traceless. This can also be seen from the fact
that any term which contains at least one projector of the
type A%, A, 4, or Ag s vanishes when contracted with
A A A Thus, (N
not be solely constructed from terms of type (i) and (ii) and
there must be at least one term of type (iii).

Therefore, terms of type (iii) are of special importance in
this derivation and it is convenient to further discuss some
of their properties. The inequalities that constrain terms of
type (iii), i.e., £ <m+m',m <+ m', m' <€+ m, can
be solved and lead to

B can-

m

£=q+r, m=p-+r, m =p+q, (C6)

PHYSICAL REVIEW D 89, 074010 (2014)

with p, g, r =0, 1,2, .... Since the # index is always fixed
in the summations appearing in Eq. (62), one can reexpress
the above equations as

m=p—q+72, m' =p+gq, g<f¢. (CT)

For our purposes it is sufficient to calculate terms of second
order in the inverse Reynolds number in the terms R, R*,
and R*. Therefore, we only need to consider the cases
£=0,7=1,and £ = 2.

1.7=0
If £=0, the equalities (C7) imply that m' =m =
0,1, ... and, consequently, one must have
(Nrnn’>a] ..... Aoy 5mm’C(O)A(a1ﬂ1 ---- Aamﬂm)
+ [terms of type (i) and (ii)].

(C8)

Contracting Eq. (C8) with A% A%’ and using
Eq. (64), we prove that 1 v

(Nrnn’>a, ,,,,, AP :5mm’C(O)Aa] ..... L TR/ (€9)

Cloy = A7, Aty Al

X(Nrrm’)al ..... AP

1
e — r—1 (m) 4 4(m) { - ,
T /f E M H oo gl

—HH Kb k) K

(1 Him

The coefficient Cg =C0<m,m), is the £ =0 case of

rnn

Eq. (66). Thus, we obtain Eq. (65) for the scalar nonlinear
collision integral.

2.0=1

For # =1, Eq. (C7) imply that m' = m + 1, and,
consequently,

(Nmn/yz;l...amﬁl...ﬁm/ = 5m+1~m/c(l>Al(lﬂlAﬁ2al """ A/}/nJrl(lm)
+ [terms of type (i) and (ii)].
(C11)

All permutations of the « indices and f indices among
themselves are allowed, while permutations of the « indices
with the f indices are forbidden. Contracting Eq. (C11)

with A% A%% APPt and using Eq. (64), we prove
1 m m+1

(Nm"/)gl ----- AP -Ptr :C(UAZl ----- AP Puir (C12)
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The coefficient C;) is obtained from the trace of (A,,,/)p" 5" . i.e.,

_ a..... Ay AP P17 A Ope AP
C(1> = [Agl-l""ﬂerIAMlal """ a:'r'l] AMI 1 h (Nrnn/)gl ~~~~~ amﬂl """ ﬂnH»l

1
- - Er—lk
[M+Hwﬁk”
m+1 a a m m+1 a a
(Hpn H M )p<a ..... pam>p’<”p’ L....p/n) U >p’< ..... p;m>p</‘p L. Q)

1 pn-pn ai
~HHE 1)k<a1 ..... gy KR Ko — K K KR k). (C13)

|
Note that C(j) = C 1mm1)  Gefined in Eq. (66) in the main ~ All permutations of the « indices and f indices among

ran’

text. Thus, we obtain N_, as given in Eq. (67). themselves are allowed, while permutations of the « indices
with the f indices are forbidden. Contracting Eq. (C14) with
3.0=2 AZ;”/AZi:::a”’ A’ 1ﬁ’, and using Eq. (64), we prove that
For terms with Z =2, two solutions are possible: "
m=m=0,1,..., and m'=m-+2=2,3,.... There- (N )
fore, two different type (iii) tensors can be constructed, T By Pry
leading to = 5m+2.m’c(2) AI:,/ ..... A1 Brsa

+ 8 P AL i, S5 (C15)

( rnn )al .... APy 5m+2vmlc(2) A AﬁzAﬂsal """ AﬂerZaM)
+5mmrD<2>AEZIAZ)I Bpayee-Bpa) with the coefficients C(;) and D, being obtained from

. 1774
+ [terms of type (i) and (ii)]. the corresponding trace of (N rnn’)al ..... By s when
m' =m+ 2 and m' = m, respectively. That is, the coef-

€14 ficient C(y) is given by

T Apva.... S N SUPRTS Lo B
C(2) = [Azll/al/} ?2 Al“]/(ll ----- :;mjl AZII’ s - (Nrnn’)f;l: ..... AP Pmia
1

TR+ + 1
(Hp,, H m+2)p<al ..... p(,m>p’<”p’”p’“' ..... plm) 4 HH rzﬂ)p’( ..... pflm>p<”p”p"' ..... pan)

n p'n a
U H D K KRR LK) — HH K RVRR k), (C16)
while D,
Doy = [d ™) 878G AL N Vo,
= [dm]™! i /f B kK ke gy (M Hom plopho..... PPl Dl —HPHI Kk ... Kkl ok ), (C1T)

where we defined d™) = AJY ARt ng Al The coefficients Cr) and Dy can be identified

with the coefficients C mm” and Dm'zm , respectively, defined in the main text in Eqs. (66) and (69), respectively.
Thus,

oo N Nm/ o Nm Nm’
uw mm+2) a....a, pv 2(m,m) {(u U)Ageeedi
Nrfl - E : E E m+2 m’cmn Pn /)Z’al ..... a, + § : 5mm’Drnn /)n,/lz ..... im/)n’ ’ (Clg)
m=0 n=0 n'=0 m=1 n=0 n'=0

which was already presented in the main text in Eq. (68). Calculating the trace d™ for an arbitrary m can be
very complicated. In this paper, we shall only do it for the cases m = 1, 2, which are actually needed. It follows that, for
m=1,
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dV) = AVVAYAG AL = AT =5 (C19)
while for m = 2 one obtains
35
d(Z) = Aﬁ:zlAf/)/zalazAa My _ (C20)

haja, =P1P2 T E

APPENDIX D: EXPANSION COEFFICIENTS
In this Appendix, we construct the polynomials an), see
Eq. (37). For any Z > 0, we set

P =ay =1, (D1)
and obtain
P = a\VEy +aly). (D2)
P = ai)Ey + alg). (D3)
Piy = ay B} + a3 Ey + ay). (D4)

From the orthonormality condition [ dKa'” )Pf;)Pl(? =

5,-_,-, it follows that the measure, '), and the normalization
constant, W), are given in Egs. (39), (40). Therefore,
using the above equations together with the orthonormality
conditions, we obtain

a Jio o J3
=l @)= 09
aj 00 10
0 0
ay _Gp  dy Dy (D6)
aé ) Dy’ agg) Dy’
2 JooD
(af))* = W=10 Y
J20Dag + J30G 12 + J49D1g
(1) 2
a J » J
aj 21 31

where the G,, and D,, functions were defined in
Eqgs. (47), (48).

The coefficients H{f;) are defined in Eq. (36). In the
14-moment approximation we only need p, = —3I1/m?,
ph = n* and pjy’ = 7" with Ny =2, Ny = 1, and N, = 0.
Furthermore, p; =0 and p, =0 due to the matching

PHYSICAL REVIEW D 89, 074010 (2014)

conditions (30), while p} = 0 by the choice (32) of the
local rest frame. Hence,

0 0) p(0 0) (0 0) p(0
Hi = WO (ay Py + aig Py + asg PLy)

= Al + AV E, + AN EL, DY)

Hig = W (aly) P + alg P)) = Al + Al E,, (D10)
w®@

Hiy ==~ aly Py = Al . (D11)

where the Ag? were introduced in Eq. (71) and, in the
14-moment approximation, are given by

o 0)\2 0)\2
A9 = WO + (09 + (9))
D
_ 30 . (D12)
J20D20 + J30G12 + J4OD10
0 0) (0 0) (0
AY =wo Va9 + a0 al)y
G
_ 2 . (D13
J20D20 + J3OG12 + J4OD10
0 _ w0 (4040 — D2
Ay =W (aya,, ) = ’
20 (a3 azy) J20Doy + J30G1n + J40D10
(D14)
and
J
Al = WOl + (al))’] = 5 (013
31
J
A(I})) _ W(])(a(lz))a(lll)) — 3L (D16)
Dy,
(2) 1
@_W
RS D17
00 2 2/ I

Note that these coefficients closely resemble the ones
given in Egs. (108)—(113) of Ref. [25].

APPENDIX E: THE COEFFICIENTS
OF THE COLLISION TERMS

In this Appendix, we calculate the coefficients of the
nonlinear collision integral in the 14-moment approxima-
tion. The nonlinear scalar term N, from Eq. (65) is
expanded with the help of the following coefficients:
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0(00) __ 1 1 //(0) (0 0),(0
Ry P

1 (02 r, L. (02 ,
:;(A(IO)) /fEk ](EpEp’_EkEk’)JF;(Ago)) /fEk I(E%E;Z)’_EiEi’)

1

1
+- <A50>A;0>) / BB+ By — B~ E) + - ADAD) /f E\(E,E + EyEj — ExEy, — EgEy).  (El)

where terms proportional to (A(()%))2 and A(()%)Ag(()]) vanish on account of energy conservation in binary collisions. The above

result can be reexpressed using the X, and Y, tensors given in Egs. (77) and (106)-(110). Thus, after some calculation
we obtain

A AP, ity Yttt ATttty + A
(E2)
After this step we still need to evaluate the terms Y”m T Wl U, Y”mﬁ gluﬂu Ugltguity, etc. This is relegated to

Appendix F, for example Y ( )u Ugty = Yoy 1 as shown in Eq. (F9). In a similar fashion we repeat the calculation for
all components and later, in Appendlx H, we calculate them in the massless limit.

The next coefficient is

iy _ | r—1 (D41 o Hy
= [ B Ol ~ PR, )

:3—11/(A(()1)))2/fE{(1(p</‘>p’<ﬂ> —k<”>k’<ﬂ>)+3—1y(Af)i)>A( ))/E’ HE,p W pl + Ey p%) pl, — Ek¥K, >—Ek/k< k)
+3iy(A53>2 /f B (EyEy p pl, — ExEk"K),,). (E3)

so that
Co = % [(AS)) Y5 w10, A g+ (AGH AT YA 1058y + (ASS)) Y5 10,10 0B gy 0] (E4)

The last scalar coefficient is

0(22) _ 1 1 (2 , L o2 [ e )
c,g())Eg/fEkl(H( OH PP Pl Pl — Mg ook kK| k) = — () /fEkl( W p) pl, ply — KRR K. (ES)

Sv
therefore,
D = AR PP 0,8, (E6)
The vector coefficients are given by
o :3i / Ey ki (HY) K+ HOVHY pY) — Hg HibK W) — HiS Hg k%)
:%(A< Al >)/Er—lk< (Epp) - Eyp/ — Bk — B ki)

1
+5M%%m£EFMM%ﬂW+%mW—&W”—ﬁﬂw
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+—(AA) / E;kyy (EyEy p'™ + Ey Epp) — Ey EgkK%) — EEy k™)
f

1
3v
Lo, .
+3 (A A0 /f Ey ki (B2, p%) + E3p') — B3 kW) — ERK0))

1
+35 AW AG) /f Ey ki (B3 Ey p' + EXEyp%) — ER kW) — E2 Bk W), (E7)
hence

1o 1o ) () pua (0) (1) v
Coo = 3 (A0 A0 VX[ (o atts) + (AT Ao ) Yy o)t

A

0 1 vafix 0 1 vapfx 0 1 vy
+(A50>A<10))Yg fwZ)I/t(llAl’>(/3ul<) Ug + (A§0>A(()o))yl3l 72)A(l(ﬂub) uﬂuk+(Ago)A(10))YZ )M(MAD)(KMA) uauﬂ]' (E8)

(r (r (r—2

The second term is

1
iy = = /f Bk (M Hero oy 'Y 9+ HO MO Pl Y 0 — Hig Mok K kY — HiG HIG K, k¥ k)

1 1,02 — ' ) ) )
I (/i) /f E ki (P 0¥ 0™+ ply p¥p¥ — ki KWK — K ki)
1 1,02 . ' ) ) y
s (i) /f E ki (Eppy ¥ ) + Ey plyy p¥p¥) — Exk) KK — Eyk), ki), (E9)
hence
112 1 2 (1) oouvasc 1 e
o’ - gAé()) A Y B + EA(IO) Y B yyamatty + A, gt (E10)

The first tensor coefficient is given by

1
G = o [ B b G )+ HHE )~ WG — M)

1 0) 4(2 r— v v v v
=3 (AR AL) /f E ik, (¥ p™) + p¥p) — KWK — kW k)

1

- LA [ EC U B+ By~ B k)
1

+ 5, (A% AL /f E ik (B p' p') + B3, plp?) — ERKWRY) — Eg Kk, (E11)

and so,
202 1 2,0 vuvap 0) yuwapc 0) uvaficl

Cr(()O ) = gA(()O) [A(()O)X’(lr—])Allmﬁ + A<10) Yg(ril)u(lAﬂl/ﬁK + Ago) YZ(ril)uau/j’Aﬂwd]- (E12)

The Df(()(l)l) term is
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2
D

I

my _ 1 .

O)Es_/Ek Uk (OO H
_ L
Sv

—HH)

1
n U(A&)Agg) /f B ok (Ey p® p/®) + E, ) p/®) — E k)
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e

) /f Eikuky (pp") — kW0 K))

— E ki)

50
1
5—(A§Q)2 /f E[ k) (EyEy p) p'® — E Eg kW), (E13)
hence,
2(11 1 1\2 uve 1 1 vafi 1 1)\ 2 uvafxi
Dy :g[(Aéo)) Yo Byap + (Alg ALY g(ril)Aﬂva(ﬁuK)+E(A<10)) Vi (Bpuatettnyty + Duupttnita)).  (E14)
The last coefficient we need is
D2(22) 12 Er ek 'H( )H() (u H H ”k k/(ykm
0 =35, wkuy( soP ¥ payp’ P = Hig A )
_ 12 A(Z) 2 r—1 (u Hu 12 (u Hy 112
*E( 00 ) fEk ki ko (p¥ payp' p™ — KWk kI, (E15)
and so,
P _ 12 @y Ly A+ A, A LN E16
00 _g( 00) 5(r—1) §< e Rapy T Buv s aﬁK> 3 uvafp =2k | - ( )

APPENDIX F: TENSOR DECOMPOSITIONS

In this Appendix, we discuss the decompositions of
all collision tensors required in the 14—-moment approxi-

mation. The collision tensor X’(’;"ﬁ:XE’: ;’)(aﬁ ) from

Eq. (77) is symmetric upon the interchange of indices
(u,v) and (a,f), and it is also traceless in the latter
indices, X’(’f)“ﬁgaﬂ =0, which follows from the mass-

k'k, = p*p, = m*. Using these proper-
ties one can show that X’(‘f;’ b

shell condition,
is a spatially isotropic
tensor which can be constructed using the four-velocity

u*, the projector A*, and different scalar coefficients

uvop

. The most general decomposition of X< ) which is

symmetrlc upon the interchange of indices (u,v) and
(a.p) is
XW)(af) = Xpou u’ u®uf + xq ' u? A% + xp u®ul APV
—|—4x31u("A”)(“uﬂ) +X12AMVAaﬂ + 2x22Aﬂ(tXAﬁ)l/.
(F1)
The indices of the scalar coefficients x;; are chosen

such that the second index (j) denotes the number
of projection tensors belonging to the respective

coefficient while the first index (i) counts the number of
such coefficients. For example x;, is the coefficient
without any projection tensor, while x, is the first
coefficient which contains two elementary projection
tensors.

From the tracelessness relation, X*“*g. 5 =0, fol-
(r) Jop

lows that we only have four independent coefficients,
since

X 1
0 —= (X1 4+ 3x12).

=== 2 =5 (F2)
Thus we obtain
X’(‘f)“ﬁ = (xyouf'u” + x5 AM) (u“u/’ —%A"/’>
+ doxy u AV @Y — (xy) + 3xp,) AP (F3)
Introducing the notation X, = x50, X2 = X1,

X3 =x31, and X4 = 2xp, one can easily show
that these coefficients are the result of the following
contractions:

(F4)

X1 = X’(‘:)aﬂuﬂu,,uauﬂ = —X’(‘:)aﬁuﬂuDAa/,,
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1 1
_ va _ vafp
X2 = X0 Butaty = =3 X0 ey (FS)
Xia = 2 X% A F6
(03 = 3X( UB)altp): (F6)
X o 1 ;uza/}A F7
(N4 = 5%(r) Swap: (F7)

Similarly as shown here, the other rank-4 collision

tensors Y’fé’f’)ﬂ and Y’;E’f’)ﬁ from Egs. (106), (107) can be

decomposed taking into account the symmetry properties

Yﬂl"lﬂ — Y(l“’)(aﬁ) Yﬂl"lﬂ — Y(/“’)‘xﬁ

1) i Yo >0 and the tracelessness

PHYSICAL REVIEW D 89, 074010 (2014)

vaf

relations, Y’f(r) 9ap = 0, Y pe gaﬂ = 0. Here we list only

the coefficients which are needed for later calculations:

— l Yﬂvaﬂ

Y3 = 3710) Uy (attp), (F8)

Yo = VL wanuguy = Y5 uw,u,A s (F9)
Y ! VAR F10

2(r) 4 = 5 2(r) Suvap: ( )

In the following we will decompose the rank-5 collision
tensor Y’;’Zf)ﬁ" =Y g’z’r’))“w %) from Eq. (108),

Ygﬂl/)a(ﬂk) — y1ou” uuu/}ukua 4 yu“” u”A/}Ku" + oy u/)’uKA;wua + 4y31u(/4Ay)(/}uK) u
+ 2y u uP AOY 4 2y P ik U AT 4y, A AP - Dyo AP ARV

+ 293 A B ARE 4 Dy o AP AV 4 Ay ACWAVIBYR) 4 Ay AXP AR )

Using the tracelessness relation Y4 g, =0,

Y1io 1
= -, = —— —|— 3 s
i 3 Y22 ) (yzl )’12) (F12)
Y51 = —3y4 — 2ye),

thus the number of unknown coefficients is nine. We can
express them similarly as in the previous cases, however,
here we only list the ones which will be used later:

Y31 =yi0 = Vo wuuqupue,  (F13)
Y3ph3=yn = 3 g?f)ﬁku(ﬂAm(ﬁux)ua (F14)
1 uvapx
Y34 =2yn = 5 Y30y Buupeltar (F15)
1 uvafix
Y3(r),5 =Yq = g Y3(,«) uﬂubu(ﬂAK){l’ (F16)

1

Y306 =Y = 1573 ﬂfa)ﬂ'c [Ba(pBr)uity) + 2uptettBy)q],

(F17)
|

Yﬁ'ﬁg(aﬁ)(m = wiou uuul uu’

+ wy utu? [AP i u

(F11)
[
J— ! —YRRBA A A upA
307 =52 = 35 V3 BBaubupite) = Butt(pBal
1
vafk
=10 Y’3‘ A a(plhe)s (F18)
Y = 1 uvaf 3A A A
3(r).8 = V62 = 30 3(r) [ a(pRx) (uly) + Ul U, u)a]'
(F19)
Note that in Eq. (96) we made use of
1 vapK
ys; = 5Yg‘(rf U Aty = =336 — 2Y 35 (F20)
() (aB)(x2) _

The last two tensors we need are Y’“(’ “)ﬂ A = =Y, it =

pUED@D) o pmaed _ ) (@) (<)

4(r) 5(r) 5(r) , where the trace

relations are for example Y’;ﬁf‘)ﬂ G = mZX’(‘f;’ b
Y"’(’”’)ﬂ"’lgﬂ/1 = mzY’f(”:')K, and Y’S’?f’)ﬁ"’lgm = mng?f')K, as well

as Y '(’a)ﬂ K’Ig,dga/, = Y’S‘?f;ﬁ K’Ig,dga,; = 0. Although both rank-6

tensor are very similar, there are important differences due to
symmetry, and so we write down both decompositions,

+ AUl + wy uu AP uEut

+ 4wy [ APkt - u Ay P gy utut ul@ AP E )

+ Wi AP [ Ay

+ AU UP] + 2wa, [AFE AP <

+ AR AN 2y ]

_|_ 4W32A”DM<QA/})(KM/1) + 4W42[Aaﬁu<ﬂAy)<Ku/l> + A’du(/‘Ay)(auﬂ)]
+ 8W52M(KA/‘{)(”AD)(auﬂ> + 8W62[M(MAU)(aAﬂ>(KL{}') + u(”A”)(KAl)(auﬂ)]
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+ 2wy [APAHE AR 4 AFAFEAP] 4 Dypg5 AP A AV, (F21)
where A&HAV(@APL) — %( AREAV(@APIA 1AMk AV)(@ Aﬂ)x) and
Yglz’:))(aﬂ)(d) — Zlouﬂulxuauﬁuxuﬂ + leuuuuAaﬁuKuﬂ + Z/llu/luvAlduau[)’ + ZZIM(IM/SA;UJMK“&
+ 4z5 uW AV @y B) e 4Z/31u(ﬂAV)(Ku/1) uub + 4z, N CINIIG)
4 leAﬂuAa/}uKuﬂ + Z/le;wAlduauﬂ + 2222Aﬂ((1A/})vuKu/1 4 Zz/zsz(KAﬂ)uuau/}
+ Az AUl AP YD) 470 APy AV YA 4 A7, AR AV @ yP)
+ 8Z52M(KA/1)(”AD>({1M/))) + 8Z62M<'MAD)<(IA/})(KMA> + Szgzu(ﬂAy)(KA’i)(au/})
+ 2Z72uﬂuuAK(aA/i)i +z zuﬂuyAaﬂAK/l + 7 A;wAa/}AK/l + 8Z2 A(K(ﬂAy)(aA/;’)ﬂ) + 2z Aa/)’Aﬂ(KA/l)y
8 3 3 33
+ 225 A AR AP 4 27, AW ATKADP, (F22)
There are only a few coefficients which we will need to recall later; these are
Y _ _ 1 UVOPKA A _ 1 Y/,waﬂ)d A F23
403 = Wst = 3V Uy @ty ety = 3 Vo) Uy iy Ualtp: (F23)
1 VapK,
Y4(r),4 = 2W22 = g Z(r)ﬁ lAyy(l/}’ukuﬂv (F24)
1
_ o vafkA - vapki
Yas =ver = 3574 PGl Biaity) = Battuh)@ip)]s = 35 Yagy Buubalpwity = Bapitpdyuy],  (F25)
and
Y =z,0 = Yy uu uguu (F26)
5(r),1 = <10 5(r) utvhattphctty,
T (F27)
5(n:5 = 4l = 305 e aBh) (M)
1
_ _ VOoPKA
Ysiro =25 = 30 ’ém [But(eDiy (B attpy — DuttaBp)citay) (F28)
1 vapki vafKkA
Y5(r),9 =277 = % g(r)ﬂ [3AK(aAﬂ)ﬂuﬂul/ — AaﬂAMuﬂub] = E I;(r)ﬂ u/tul/Aaﬂld’ (F29)

1
_ _ VafKA
Y51 =23 = 310 Yg(,) 28,4580 + 9A Ay (@ Bp))]

It is easy to realize that in case the particles have the same
vafki

% BKA o
mass, YZ(r) Gy = szz’f)(/’), YZZ’;’)[K gy = mzY’l‘z)K, also
Y’;?f)ﬂ”gﬁi = Yg?;’)’ﬂ and so on. This means that we only

have rank-5 and -6 tensors to evaluate, Y’;?f;ﬂ - Y’Z’(’f’)ﬂ ’d
UVAPKA
Ys

B However, since it is much simpler to decompose
and project rank-4 tensors and then use them to check the

results through the trace relations for the rank-6 tensors, we
will keep using all of them.

1
4 Y/wa/)’lol [AaﬂA”(KA/l)u + Am,Aa(KAﬂ)ﬂ + AKﬂA”(QAﬂ)I/].

70 50
(F30)

APPENDIX G: COLLISION INTEGRALS
IN THE BOLTZMANN LIMIT

In this Appendix we calculate the previously defined
collision tensors Eqgs. (77)-(110) in the massless

Boltzmann limit. These tensors are based on the collision
integral C[f] defined in Eq. (14), where the Lorentz-
invariant transition rate, Wyy,_p,,, may depend only on
the following collision invariant:
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s = (K + K1) = (p + p™)*. G
In the center of mass (CM) frame, where the sum of three-

momenta vanishes k +k’ = p +p’ = 0and so k* = k¥ =

p® = p’, the scattering angle 6, is given with the help of
another collision invariant, t = (k* — p*)? = (kK" — p'*)?,
such that
2t K — k' —p!
cosf, = 1 + _ ! Wpu=pi)

s—4m> (K —kF)?
The above defined collision invariants, together with u=

(k# — p'")* = (k™ — p*)?, are the so-called Mandelstam

PHYSICAL REVIEW D 89, 074010 (2014)

Therefore, the total momentum involved in a
binary collision P7 = k" + k' = p# + p' is related to
the total energy P;=(/5,0,0,0), where s=
2(m* + kkj,) = (2k")%, in the CM frame. The Lorentz-
invariant transition rate is defined as

P Wikropp = (27)%50(5.,0,)8* (k* + k" — p* — p'). (G3)

The quantity o(s, O¢y,) is the differential cross section and
5*(k* + K" — p* — p'*) enforces energy and momentum
conservation in binary collisions. Furthermore, we also
define the total cross section o7(s)as the integral of the

variables, satisfying s + 7 + u = 4m?, where m is the mass  differential cross section over the solid angle,
of the particles. = [37dy [T sin6,db,,
|
1 z
=— [ dQo(s,6y). (G4)
vJjo
For later purposes, let us define the rank-n tensor
1 d3 d3 !
Ottt = — —(? /I(: so(s,0,)ph....p"mSH(kH + kKM — pt — p'*)
v pp
[n/2]
- Z )by Bug A o A PR P, (G5)

where we assumed that the differential cross section is isotropic, i.e., o(s,0;) =

Eq. (A2) and

(=1)7 d3pd3
(ZQ+1)”V p’ p°
_ 1 GT( )

(2q + 1)1 2n+1

Bnq =

s12(s —

Here we defined the projection orthogonal to the total momentum, A;ﬂ

202 (s,0,)(P)

4m?)Ca+1)/2,

o(s). The b, coefficients are given in

)n_zq(A(fl’/;’papﬁ)q’
(G6)

= ¢" — PP% /s, hence the particle four-momentum

can be decomposed as p* = P7(P§p,)/s + po Al and thus A?fi Papp = m* — s/4. Similarly as in the previous integral we

Hy-eeee Hn—mVn—m+1---- Un

define a slightly different rank-n tensor F( )

l"/’t] """ Hn—mVn—m+1-+-- Un 1 d3p d3p/

(n.m) 5

= (-

p

where we replaced p"* =

E—/ o p’O 56(8,0cp) pHr.....pHta=m p'lu-mir [ p

l)n_m®ﬂl ----- Hn—mVn—m+1-++-+ Un + (_1)”_"1_1P;f’®ﬂl ~~~~~ Hn—mVn—m+1-- Un—1 + PN

P% — p* to obtain the above result.

/vn54(kﬂ + K — pt— p/ﬂ),

P PRt

APPENDIX H: COEFFICIENTS IN THE MASSLESS LIMIT

Using the results from Appendix G we can express the collision integrals from Eqs. (77)—(110) as a function of particle

momenta and the metric tensor. As an example, here we discuss the X’ "

uvaf /wa/)’
cy X

1 parts as X{] Q” vap E’(‘:aﬁ

) where

#h tensor, which we separate into gain gf(‘f)“ﬁ and loss
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g’ = % / dKdK'dPdP' f o foxs Wir—pp E KK (p* P + p'p'P).
=2 / dKdK'f o for EL k' k'@
and
Ly’ = % / dKdK'dPdP' f o foxs Wickr—pp Ex kMK (K* kP + K KP),

= / dKdK' for fow Ep kK (k°kP + K*k'P)®.

(HI)

(H2)

Here © =% \/s(s —4m?) = o7/ (k*kj,)* — m* is the invariant flux and @ = §[P7.P} — (s —4m?) A} ], cf. Eq. (G5).

The invariant flux can be expressed using the relative velocity between particles, ©® = v, k*k, where v =

(1—=v-v)"'/(v=v)? = (vx V)?and v = k*/k°, v/ = k' /k"°. Hence the total cross section is 6; = v,qo7(s). However,

in the massless limit, m — 0, the relative velocity is v, = 1.

From now on we will work in the massless limit m — 0. For example the solution for g’(‘;’)"/’ can be written formally as
g*(‘f;'/” = [(Ax — Bx/s)P}P4 + Bxg". After finding the coefficients Ay and By we replace Py = k* + k’*. Thus using the

above definitions and relations we obtain

20 4o 20
vaf T juvafx T yuvk(a 1) T yuvk  yaf af THVKA
gu I’(lr+5)1( 1k +T1(r+4)1( 2)k +Tll(lr+%)l<3) _§9 ﬂﬂ(lr+4)1(2)l<ﬁv
uvaff HvapK uvk  yaf
Lo = orlpisToe+orli )G
and hence,
vafp ua/)’lc yuvk(a 1f3) VK aﬂ VKA
X’(lr) 3 Il(lr+5) (Dx +Tl(r+4)1( 2)x 3 II(r+3) gaﬂlﬂr+4 2)Kkd>
where the I’(‘ - )" " tensors were defined in Eq. (Al).
Similarly, we obtain for the next rank-4 collision tensor
wafp ;wa[)’
Yiey = X
The last rank-4 collision tensor we need is
vaff vafk UT uvk(a 1f3) vk qaf vka pf} aff THUKA
Yﬂ() 6 Ilfr+5)l(1) 3 I(r+4)1( 2)x + 6 II(r+3)I(3)K _GTIl(r+4)I( 2)k + 6 ﬂl?r+4)l<2> KA

The only rank-5 tensor we have is

(uv)a (ﬂk) ;wa[)’ld uvda(p K) WUAKP 7o WA(f yk)a uvia Pk VA a[)’K
Y 6 = Ty + 2I(r+5) @1t i) 1)) +2 6 =20 Iy, + I TG+ sy )
or a(B 7K)uvAc K) Ma or a Mo‘ a vio val ypK VPKA 1o
+5 29 VIS Tovie + Tayd (73] — gﬁ s Lo + 1000w — ol Iy, + 1055 1))

where the solution is Y%”;a(ﬁk) [ (A3 —2Bs/s — Cs/s)PLPAPs + 233ga(/3P';) + C3g7 P4.
The rank-6 tensors are
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afikd ap ﬂ(; yuvo(af 1) yuvo(aff KA)
Vi = 15[1”:+17K W 46y L2)p T 6115 (3),

Ryt
)Puvop A)
_29a [ r+”6 "I12)0p T 1 3)0p

K/llw(i[)
ga ﬂ[ (r+6) I

3)op (r+5) r+5) (3

(r+5) r+5) *(3

IKm/o—p + IK

A
2)op T 1 (3)opl (1+5)

(3)op” (r+5)
g,d[ (lﬂ/ll/ﬁ/)

p (l;wr;/)
(r+6) )O'/’ +1 + ](l

(3)ap (r+5) (3)op” (r+5)

[;wk/la Iaﬂ

Hvafic yic),
orli, 51 L5l 3)00

T(r+5)"3)e

and

1
uvafikd __ -
Yo =5

Here the solution has the
Dy g PiLP% + Eyg*P2Ph + Fy g g,

In order to calculate the above collision tensors, we need

the following I’(‘ . )ﬂ " tensors from Eq. (A1):

1’(‘”1) =1y ou*, (H11)
1’&2) Laoutu? — 1, A, (H12)
Iy = rys o u'u® — 31,5 ,u¥ A, (HI3)
I’(‘:jﬁ) = I, 4 ou" v’ uu’
— 60,y u U’ AP 431, AWAYD) | (H14)
I’(‘:ig'; = I, 5o u uuPus — 101, 5 ulu? u® AP
+ 151, 5 u" AV APR), (H15)
I’(‘:i[;';i = I o' uuPuru* — 151, ¢ ,uu* u®ul A
+ 451, g uHu? AP AN — 151, 6 s AW AP A,
(H16)
[/(4:1173’)"17 =1, 7ou'u’u Pk utut —211,+7,1u(”u”u“uﬂu"Ai’>

+ 1051,+7_2u ”MvuaAﬂKAlﬂ

— 10517 s AW AP AF 7). (H17)

In the massless Boltzmann limit, we use the following
formula for the thermodynamic integrals:

Po(r+n+1)!
=024 (2 + 11

n+rq( 0- ﬂO) (H18)

yuvo(a I/}KA) + e

t 4 o

4) - qawop Auvop o Aa
)(,/,+I< +I< I Jop +I(>
Iﬂl‘”"/’ + I()ﬂl’(f/’lﬂ) + I(>)
I/l;w(i[) iy

I[)’m/o'/) ),

Y/wa/}lc/l — oy Iﬂzxa/}rf IK}L

(r+5)"(3)e
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afiki
(431 (5)]

op
I( r+4) ]

]

or X a Vo, 1
i) T30 29" + S FUC Gyope

K quvop
ol (4

af Hvop
@l ()

(H9)

+ o7 Iﬂwdo' Ia/} ]

(r+5)" (3)o (H10)

form  YHvobxi fAYPaPﬂ PK' P/l 4 2BY P(;gﬁ K pA) 4 PTga(KPl)) 4 2cyga(lcg/1)/}_|_

where Py = ge®fy*/ 7%, and we frequently use the recur-
sion relation (A5) in the nmassless limit, i.e.,
Ir+n,q = (2q + 3)Ir+n.q+]-

The coefficients for the linear part of the collision
integral are

O
- 3T U isolio+ 1yaol30 — 240, 041124]
_ _GTP%(}’—I—4)! (2

6ﬂr+2 +3r+2)’

(H19)
c
3T Lrisadio = Irisadzn — 4 ppanla]

o O'sz(r + 4)‘
- lgﬂr+2

X3 =x31 =

(r? +7r+6), (H20)

267"

_T[IrJrS,ZII,O+41r+4,212,l]

UTP(Z)(I’—FS)'

X(na=2xp=

(H21)

The other coefficients resulting from the rank-4 tensor are

Yins =—Xas (H22)
1

Yoryn ==5X0.0 (H23)
1

Yoya = _EX(r)A' (H24)

The coefficients of the rank-5 tensor are
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o orP:(r+4)!
Y31 =y = é[1r+6,011.0 =151, 50001 — 15141030 + 1ris0la0] = %(r—k D)(r+2)(r+10), (H25)
0
o orP3(r+4)!
Y33 =y = _FT[Ir+6.lIl.O =9, 5101 + 5040030 — 13 114] = _%(’"4‘ 1)(r* +8r+20),  (H26)
0
1 orP%(r+95)!
Y304 =2y = ?T U i60l10— 171,520 —21,44015,] = % (r? —4r—68), (H27)
0
1
Y35 =ya = _§Y3(r),1v (H28)
o orP3(r +4)!
Y36 =Ya2 = % Trv61li0 + 23151000 — 35041031 — Lrya0da] = %(F +1)(r? +40r + 180),  (H29)
0
o orP%(r+5)!
Y37 =y = 3—(T) Iri6alio+ Trsilyy +41,4015,] = % (r+10)%, (H30)
0
o orPi(r+4)!
Y38 =Yer = 3—(T) o110~ VT, ys oy + 151,44, 13, — Ir+3,114,1] = %(” + 1)(72 —20). (H31)
0
The coefficients from the rank-6 tensors are
O
Yyns=ws = _l_g (Irp71l10 + 100, 61001 — 231, y51031 = Lranday — 1iaals0]
orPi(r+4)!
= —%(w 1)(r® 4 3512 4 304r + 800), (H32)
or orP3(r+5)! 5
Yi(ra =2wyp = 75 [107,172010 = 201, 62051 — 4001, 55031 — 261, 4514,] = T osp (r+19)(r* —40), (H33)
0
O
Yins =we = ﬁ [107,72010 =401, 61 1o 1 + 141451131 + 28144114y — 21,3115,
O'TP%(" + 4)' 3 o)
=—————~(r+1)(r’ + 5r- — 86r — 400), H34
e ) 134)
and
O
Y51 =210 = 3—6 [Is70l10 + 48161151 — 1651, 51151 + 481, 41141 +91,3115,]
orPi(r +4)! 2
=—————(r+1)(r+2)(r +39r+ 200), H35
e ] ) a135)
c
YS(r),S =341 = —3—8 [1r+7,111,0 =4, 61100 — S50l — 4l alsg + 3Ir+3,115,1}
Pj(r+4)!
__or 0(’”:4 ) (r+ 1)(r +2)(#* + 197 + 100), (H36)
1808,
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o
Yshg =225 = é (51, 172010 + 401, 62001 + 1251, 550151 — 81,1 414,1]
UTP%(V + 5)‘ 3 )
=————"(r’ +29r* + 350r + 1240), H37
5005+ ( ) (H37)
O
Ysho=2n = é (51472010 =441 61001 + 950, 51150 — 441, 41 1ay + 31, 15.115,]
P2(r + 4)!
_ oo DY g 1612 — 342 — 200), (H38)
9004
O
Y511 =203 = _TTO U720y 0 =321, 60051 + 351, 452051 — 281, 45145]
P? 5)!
_ _orPolr Y s y1e 130, - 280), (H39)
63004,

We remark that to crosscheck some of our calculations
found in this Appendix we made use of the symbolic
computer algebra software CADABRA by Peeters [63,64], as
well as of the MATHEMATICA package FeynCalc developed
and maintained by Mertig and Orellana [65].

|
given in Ref. [24], so we decided to list them here for
further reference (note, however, that in the 14-moment
approximation, where Ny = 2, Ny = 1, and N, = 0, they
vanish identically):

Ny
APPENDIX I: COEFFICIENTS L= (¢ -0, an
OF THE K TENSORS r=3
In this Appendix, we list the coefficients of the tensors » Nom
K, KC#, and K* in Eq. (5), in the notation of Ref. [24]. They > B 2m” &~ (o) 0@\ %
can be derived following the derivation of the equations £ = 3 4 Fora(r+ 1)0n = Qgm) = ¢ @)
of motion for the dissipative quantities presented in that -
reference. For the sake of brevity, they were not explicitly
|
s X (o) 1% (0 0 m> =2 o 0
L= b Frlao.fo) +3 270 (r+ D& = Q00 =5 Y o) a(r + 16— 250, (13)
r=3 r=3 r=3
2 Ny—1
zo_m © (9 ng 9 (1)
=— — — -Q , 14
t=73 Z:; foret <8a0 €0 + Po 8,60) (kr = Qo %) 4
> 2(g0 + Po) + Pod30 5
= — , I5
- )
> (80 + Po)Jzo —noJ3 3 m? 1 = (0) (1) 8(’9 - Q(E) K)
=— -— 1 -Q —, 16
6 (6‘0 + P0)3 1 3 £ + PO rz:; TO,r+1 (I"—|— )(Kr r0 K) + 8lnﬂ0 ( )
2 No—
~ m
b= 20 (e, — QLK) a7)
r=2
; &
= . 18
b= (18)

where ¢ =%, k = k%, n = 1° in consistency with Egs. (1)-(3
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In Eq. (I3), we defined the function F,(ay, ;) through the relation

D, — QW) = F,(ap, )6 (19)

Furthermore,

-~ Ni—1 (1) 0 ny 0 @) 2m2N|72 W "
-2 ; T0,r+1 87(104_ € + P()aiﬁo (nr - QrO 7’]) +? Z To’r+2(r+ 1)(Kr — QrO K)

r=2
—gi W — 1)k, — Yk (110)
5 —~ Tor r r0 ™/
2 & g 0, On, —Qign)
- _ | —0 r 0 11
K> & + P() ; TO,r+1 |:(r+ )(’7)‘ 0 ’7) + alnﬁo :| ( )
r+2  OJH(a, po) ny  IH(a. po) (1)
—Q
; |: ao ﬂO ( 3 + 80{0 + =) + PO 8,30 (Kr r0 K)
2 Ni—1
o m (9 n 0 )
ZTOr+2(r+1 K) — Z;To,r+1<a—%+ma—ﬂo> (& —Q,0¢)
41
i 0\, oW 12)
2 0r 1 aa 80 +P0 aﬁo r al) )
_ 1 OH (a0 o)] K~ (1) = 0 o
Ky e+ Po { [H@lo’ﬁo) + 21n B, ;TOr (k, — rO )+ ; To,r | 7t +8lnﬂ0 (€ — Q¢
LR~ o 9 (0)
_WZ;TOJ_] r—|—2+alnﬁ0 (& —Q,00) ¢, 113)
N,
ks =2 1) (k, — QYK (114)
r=2
Ny-1
Ro =2 7)1 (. — Q). (11s)
r=1
RN Ni+1
y 5
Ry =—H(ao.f0) 5 — D 10y (=2 — Z ) (6 — 00, 116)
r=3
Here, we defined the function G, (ay, ;) through the relation
D(x, — Qig/x) = G, (ag. f)0- 117)
Moreover,
P _
Hay. fy) = £ OBDJ;? oo, 118)
Finally,
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Ny
=21 (n,— Qn). 119)
r=1
! @)
z a5 | H (ao. o) + 3 —(r+2)(n,—Qqyn)
2Nz @ m? N,—2 @ 0
+—Zfor+2 (r+ D00 = Q) + 5D 7670(r + 16— 20'0)
r=1 r=3
L& 0 O RS )
_gz or 2r+3)( =) + 55 ) To,2(r +2)(C; -0 C)}, (120)
r=3 r=3
-2 >0o @) )N 0 @
iy =5 |= ) 7o, (4r+3)(n = Qm) +4m> ) 7,5(r+ 1) (0 — Q) | @1
r=1 r=1
Ny = 21y, (122)
2NN o (2 n 9 (1) = (0 ng 0 )
s = — T —+ — | (%, —m? T —+ — | (k, —Qx)|, (123
s [,2 ot (6a0 &+ Po 3/50)( ; Orl <8a0 &+ Po 6[}0)( 0 )} (123)
- 2(eg+ Py) + Pol3o -
o= = e e (124)
p 2 5(e0+ Po)Joo —mod30 - R ) (1)
g 5(go + Po) {2 (€9 + Py)? n ; O Oln f, (x, 10 %)
Ny—1
Y (r Lt ﬁ())( K)} (125)
r=2
5 hatl 5 1 Ny—1 X |
fis = [Z oy (k= Q) = m > 7 (k, — Qﬁo)x)] : (126)
r=2 r=2
- M
== : 127
s =) + PO ( )
Here, we defined the function H,(ay, 3y) through the relation
D(n, — Q/n) = H,(ao. o)6. (128)
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