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We solve the BFKL equation in the leading logarithmic approximation numerically in the Yang-Mills
theory with the Higgs mechanism for the vector boson mass generation. It can be considered as a model for
the amplitude with the correct behavior of the s-channel partial waves at large impact parameters. The
Pomeron spectrum of the massive BFKL kernel in the ω space for t ¼ 0 coincides with the continuous
spectrum for the massless case although the density of its eigenvalues is 2 times smaller for ω > ω0, where
ω0 is a negative number. We find a simple parametrization for the corresponding eigenfunctions. Because
the leading singularity in the ω plane in this Higgs model for t ¼ 0 is a fixed cut, the Regge pole
contributions could be only for nonphysical positive t. Hence we can state that the correct behavior at large
b does not influence the main properties of the BFKL equation.
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I. INTRODUCTION

The fundamental theoretical problem that has not been
solved in the framework of the color glass condensate
(CGC)/saturation approach [1–4] is the large impact
parameter (b) dependence of the scattering amplitude.
As it has been discussed in Refs. [5–8], the scattering
amplitude at fixed b in this approach satisfies the unitarity
constraint being smaller than unity, but the radius of
interaction increases as a power of energy leading to the
violation of the Froissart bound [9]. Such powerlike
behavior of the radius is a direct consequence of the
perturbative QCD technique which is a part of the CGC/
saturation approach. It stems from large impact parameter b
behavior of the BFKL Pomeron [10,11] which has the form
Aðb ≫ 1=QsÞ ∝ sΔ=b2. Amplitude Aðb ≫ 1=QsÞ becomes
of the order of unity at typical b2 ∝ sΔ leading to σ ∝ sΔ in
the contradiction to the Froissart bound (σ < cln2s). Since
the lightest hadron (pion) has a finite mass (mπ) we know
that the amplitude is proportional to exp ð−2mπbÞ at large b
instead of the powerlike decrease. This exponential behav-
ior translates into the Froissart bound. Therefore, we have
to find how confinement of quarks and gluons being of
nonperturbative nature, will change the large b behavior of
the scattering amplitude. Since we are interested in the
behavior of the scattering amplitude at large b where this
amplitude is small, the nonlinear effects can be neglected
and one should introduce the nonperturbative corrections
directly to the BFKL kernel. It has been checked by
numerical calculations (see Refs. [12–16]) that if we
modify the BFKL kernel introducing by hand a function
that suppresses the production of the dipoles with sizes

larger than 1=μsoft, the resulting scattering amplitude has
the exponential decrease at large impact parameters.
In this paper we are going to try a different way of

modeling the true large b behavior of the BFKL kernel
coming back to the first papers on the BFKL Pomeron [17].
In these papers it is shown that the BFKL equation exists
for non-Abelian gauge theories with the Higgs mechanism
of mass generation. The kernel of the BFKL Pomeron,
which depends on the Higgs mass, falls down exponentially
at large b providing the finite radius of interaction that can
grow only logarithmically and recovering the Froissart
bound. Therefore, the BFKL equation with mass can be a
training ground for answering the question: how could the
exponential b dependence at large b change the general
features of the BFKL Pomeron and the CGC/saturation
approach that is based on the BFKL equation? It should be
stressed that the BFKL Pomeron with the Higgs mass is
closely related to the high energy asymptotic behavior of the
scattering amplitude in electroweak theory (see Ref. [18]).
In the next section we outline the derivation of the BFKL

equation in the non-Abelian theory with the Higgs mecha-
nism of mass generation. This derivation was given in
Ref. [17] and we include it in the paper for the complete-
ness in order to present a coherent picture of the approach.
In Sec. III we discuss the main properties of the massive
BFKL equation and prove that the maximum intercept of
the massive BFKL Pomeron is equal to the intercept of the
massless BFKL equation 4ᾱS ln 2, where ᾱS ¼ NcαS=π. We
find the numerical solution for the massive BFKL equation
and give the simple approximate formulas both for eigen-
values and eigenfunctions of this equation. It turns out that
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for values ω ≥ ω0 ≡− 1
2
ᾱS the spectrum of the massive

BFKL equation coincides with the spectrum of the mass-
less BFKL equation. For momenta of gluons larger than
mass, the eigenfunctions approach the eigenfunctions of the
massless BFKL equation while for momenta smaller than
mass, the eigenfunctions tend to be constant values. For the
massive BFKL equation we detect that the eigenvalues in
the vicinity of ω0 behave differently that for the massless
BFKL equation, and we propose the form of eigenfunctions
that corresponds to this eigenvalue. In Sec. IV we inves-
tigate the energy behavior of the average impact parameter
for the massive BFKL. Generally speaking, such an
equation could generate the slope for the Pomeron trajec-
tory since we introduce the dimensional parameter: mass.
Solving the equation we demonstrate that the massive
BFKL equation leads to average impact parameter that is
constant as a function of energy, repeating the behavior of
the massless BFKL equation. In conclusion we discuss the
main results of the paper.

II. MASSIVE BFKL EQUATION

The effective vertex for the gluon emission by the
Reggeized gluon in the Yang-Mills theory with the
Higgs mechanism was calculated in Ref. [17] and has a
form (all notations are shown in Fig. 1)

Γμðq1; q01Þ ¼ −q⊥1;μ − q0⊥1;μ þ p1;μ

�
− q21 þm2

p1 · k
þ p2 · k
p1 · p2

�

− p2;μ

�
−q021 þm2

p2 · k
þ p1 · k
p1 · p2

�
; (1)

where q2i ¼ jq⊥i j2 and kμ ¼ q1;μ − q01;μ is the momentum of
the emitted gluon.
The gluon production vertex for the conjugated ampli-

tude can be written as

~Γμðq2; q02Þ ¼ −q⊥2;μ − q0⊥2;μ þ p1;μ

�
− q22 þm2

p1 · k
þ p2 · k
p1 · p2

�

− p2;μ

�
−q022 þm2

p2 · k
þ p1 · k
p1 · p2

�
: (2)

Their product is equal to

Γμðq1; q01Þ · ~Γμðq2; q02Þ

¼ −2
�ðq21 þm2Þðq022 þm2Þ

k2 þm2
þ ðq021 þm2Þðq22 þm2Þ

k2 þm2

�
þ 2q2 þ 3m2; (3)

where qμ ¼ q1;μ − q2;μ ¼ q01;μ − q02;μ.
In the kernel of the BFKL equation (Ka0b0

ab ), correspond-
ing to the real particles in the intermediate state, this
product is multiplied by αS and by the corresponding color
factor with an additional term from the produced Higgs
particles in the singlet and adjoint representations accord-
ing to the model of Ref. [10] [see Fig. 1(b)]

Ka0b0
ab ∝ αS

�
− 1

2
Γμðq1; q01Þ · ~Γμðq2; q02Þfca

0b0fcab

þ rm2

�
δabδ

a0b0 þ dca
0b0dcab

Nc

2

��
; (4)

where fcab is the structure constant of the color group
SUðNcÞ, dabc is the d-coupling tensor and δab is the
Kronecker symbol. The coefficient r can be fixed from
the bootstrap relation [17]. Due to this relation in the
adjoint representation for the t-channel state the real
contribution after its partial cancellation with the virtual
contribution, corresponding to the Regge trajectories,
should be proportional to q2 þm2. Since the projector
on the adjoint representation is ð1=NcÞfcaa0fcbb0 we have

Ka0b0
ab

1

Nc
fcaa0fcbb

0
⟶ − 1

2
ð2q2 þ 3m2ÞNc

2

þ rm2
N2

c

4
∼ −ðq2 þm2Þ: (5)

From Eq. (5) we obtain

r ¼ 1

Nc
(6)

and the corresponding contribution to the kernel for the
color singlet state in the t channel (BFKL Pomeron) is
equal to

gluon Higgs

(q , q’ )1 1 (q , q’ )2 2

q2
q1

q’1 q’2

reggeized gluon

(a) (b)

FIG. 1. The massive BFKL equation (a) and its kernel (b).
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Kðq1; q2jq01; q02Þ ¼
αS
2π2

�
− 1

2
NcΓμðq1; q01Þ · ~Γμðq2; q02Þ þ

N2
c

4
m2

�
1

ðq021 þm2Þðq022 þm2Þ

¼ αSNc

2π2

�
1

k2 þm2

�
q21 þm2

q021 þm2
þ q22 þm2

q022 þm2

�
− q2 þ N2

cþ1

N2
c
m2

ðq021 þm2Þðq022 þm2Þ
�
: (7)

In the integral form the homogeneous BFKL equation at q ¼ 0 for the Yang-Mills theory with the Higgs mechanism is
given by

ωfðpÞ ¼ 2ωðpÞfðpÞ þ αSNc

2π2

Z
d2p0

�
2fðp0Þ

ð~p − ~p0Þ2 þm2
−

N2
cþ1

N2
c
m2fðp0Þ

ðp2 þm2Þðp02 þm2

�
; (8)

where we use the following notations: q1 ¼ q2 ¼ p and q01 ¼ q02 ¼ p0.
The gluon Regge trajectory [ωðpÞ] is calculated explicitly,

ωðjpjÞ ¼ −αSNc

4π2

Z
d2kðp2 þm2Þ

ðk2 þm2Þðð~p − ~kÞ2 þm2Þ

¼ −αSNc

2π2
jpj2 þm2

jpj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þ 4m2

p ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þ 4m2

p
þ jpjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jpj2 þ 4m2
p − jpj : (9)

Assuming that we search the rotationally symmetric solution, the kernel can be averaged over the azimuthal
angle ϕ:

Z
2π

0

dϕ
2π

1

p2 þ p02 þm2 − 2jpjjp0j cosϕ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þ p02 þm2Þ2 − 4p2p02p

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 − p02Þ2 þ 2ðp2 þ p02Þm2 þm4

p : (10)

Introducing the new variables1

κ ¼ p2

m2
; κ0 ¼ p02

m2
; E ¼ − ω

ᾱS
; ᾱS ¼

αSNc

π
; (11)

we obtain the one-dimensional BFKL equation

EϕðκÞ ¼ κ þ 1ffiffiffi
κ

p ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p ln

ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p þ ffiffiffi
κ

pffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p − ffiffiffi
κ

p ϕðκÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kinetic energy term

−
Z

∞

0

dκ0ϕðκ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ − κ0Þ2 þ 2ðκ þ κ0Þ þ 1

p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
potential energy term

þ N2
c þ 1

2N2
c

1

κ þ 1

Z
∞

0

ϕðκ0Þdκ0
κ0 þ 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

contact term

: (12)

III. SOLUTION TO THE MASSIVE BFKL EQUATION

A. General features of the equation

We start to discuss the solution to the equation considering the most general properties of solutions. At large κ solutions to
this equation should coincide with the solution to the BFKL equation with m ¼ 0 which has the following form:

1Besides variables E and ω we will use below the notation ~ω ¼ −E very often skipping tilde for simplicity. We hope that it will not
lead to misunderstanding since ~ω is not proportional to ᾱS.
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EϕBFKLðκÞ ¼ ln κϕBFKL −
Z

∞

0

dκ0ϕBFKLðκ0Þ
jκ − κ0j (13)

after an appropriate regularization of divergency at κ0 ¼ κ
(see [10]).
The eigenvalues and the eigenfunctions of this equation

are well known [10,11]. Therefore, the solution to Eq. (12)
has the following large κ behavior:

ϕðκÞ ⟶
κ→∞

ϕBFKLðκÞ ∼ κ−1
2
þiν with

EðνÞ ¼ χðνÞ ¼ ψ

�
1

2
þ iν

�
þ ψ

�
1

2
− iν

�
− 2ψð1Þ; (14)

where ψðzÞ ¼ d lnΓðzÞ=dz [see formula (8.36) in
Ref. [19]].
Looking at Eq. (12) one can conclude that ϕðκÞ should

be analytical functions with a cut at κ < −4 and pole
at κ ¼ −1.
We find it instructive to rewrite Eq. (8) in the coordinate

representation.
Using an identity

Z
d2p0

2π

ei~r·~p
0

p02 þm2
¼

Z þ∞

−∞
p0dp0J0ðrp0Þ
p02 þm2

¼ K0ðrmÞ; (15)

where J0ðzÞ and K0ðzÞ are the Bessel and Macdonald
functions [19], we can rewrite Eq. (8) in the form

EfðrÞ ¼ HfðrÞ (16)

with

H ¼ p2 þm2

jpj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4m2

p ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4m2

p
þ jpjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ 4m2
p − jpj

− 2K0ðjrjmÞ

þ N2
c þ 1

2N2
c

P̂

¼ TðpÞ þ VðrÞ þ N2
c þ 1

2N2
c

P̂; (17)

where P̂ is a shorthand notation for the projector onto the
state ∼m2=ðp2 þm2Þ:

P̂ϕðpÞ ¼ m2

p2 þm2

Z
d2p0

π

ϕðp0Þ
p02 þm2

: (18)

Let us introduce as a free Hamiltonian, the Hamiltonian for
the massless BFKL equation [see Eq. (13)]:

H0 ¼ lnp2 þ ln jrj2 − 2ψð1Þ

¼ 1

2
ðψð1þ x∂Þ þ ψð−x∂Þ þ ψð1þ x�∂�Þ

þ ψð−x�∂�Þ − 4ψð1ÞÞ: (19)

Since this Hamiltonian operates in the two-dimensional
transverse plane, it is convenient to deal with the compo-
nents of all vectors as real and imaginary parts of the
complex numbers, namely,

x ¼ r1 þ ir2; x� ¼ r1 − ir2;

~p ¼ −i ~∇ ¼ ð−i∂ − i∂�; ∂ − ∂�Þ;
(20)

where the indices 1 and 2 denote the two transverse axes.
The eigenfunctions with the conformal spin n ¼ 0 take

the form [see Ref. [11]]

f�ν
0 ðjrjÞ ¼ jrj−1�2iν (21)

with the eigenvalues EðνÞ given by Eq. (14). The eigen-
functions of Eq. (21) have the following orthogonality and
completeness properties:

Z
∞

0

djrj2fν0ðjrjÞfμ�0 ðjrjÞ ¼ 2πδðμ − νÞ; (22)

jrjjr0j
Z þ∞

−∞
dνfν0ðjrjÞfν�0 ðjr0jÞ¼2πδðlnjrj2− lnjr0j2Þ: (23)

The Green function for the free Hamiltonian satisfies the
following equation:

ðE −H0ÞG0ðr; r0Þ ¼
2π

jrjjr0j δðln jrj
2 − ln jr0j2Þ (24)

and it has the form

G0ðr; r0Þ ¼
1

jrjjr0j
Z þ∞

−∞
dν

E − EðνÞ
� jrj
jr0j

�
2iν
: (25)

The Green function for the general Hamiltonian of Eq. (16)
can be found as a solution to the integral equation

Gðr; r0Þ ¼ G0ðr; r0Þ þ
Z

dr00G0ðr; r00ÞðH −H0ÞGðr00; r0Þ:
(26)

Equation (26) gives a natural way for applying a perturba-
tive approach. In particular, in the lowest order of expan-
sion with respect to m2 we have
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H −H0 ¼
m2

p2

�
− ln

p2

m2
þ 2

�
þm2r2

4

�
ln
r2

4
− 2ψð2Þ

�

þ N2
c þ 1

2N2
c

P̂þOðm4Þ: (27)

At large distances (r → ∞) the potential energy in
Hamiltonian ðVðrÞ ¼ −2K0ðrmÞÞ is exponentially small,
the contribution from the projector P̂ in Eq. (16) is
proportional to 1=ðp2 þm2Þ and is also exponentially
suppressed, so the only relevant term in the Hamiltonian
is the kinetic energy

EðpÞ ¼ TðpÞ ¼ p2 þm2

jpj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4m2

p ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4m2

p
þ jpjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ 4m2
p − jpj

;

(28)

which is shown in the Fig. 2 and for which the eigenfunc-
tions have a form

fð~rÞ ∼ ei
ffiffiffiffi
p2

p
r; p2 > 0;

fð~rÞ ∼ e−
ffiffiffiffiffiffi
−p2

p
r; p2 < 0: (29)

The point p ¼ 0 is special since it separates two different
behaviors at large r. This point corresponds to energy E ¼
1
2
or ω ¼ ω0 ≡− 1

2
ᾱS. As we will see below, there are

qualitative changes in the shape of the wave functions near
this point. From the structure of the kinetic energy term (28)
we can see that the energy E is positive (ω < 0) for p2 > 0,
however for −4m2 < p2 < 0 the energy may have any
value from −∞ up to 1

2
. In reality the spectrum E is limited

from below by −4 ln 2, as shown in Secs. III B and III C.
In the small-r limit the eigenfunctions should approach

the eigenfunctions of the massless BFKL equations,
f�ν
0 ðjrjÞ Eq. (21), with the spectrum given by Eq. (14).
Combining Eqs. (21) and (28), we may get the relation

between the parameters ν and p, which control the small-r
and large-r asymptotic behavior,

E ¼ TðpÞ ¼ χðνÞ: (30)

B. Estimates from the variational method

In the variational approach the upper bound for the
ground state energy E0 of the HamiltonianHmay be found
minimizing the functional

Eground ≡ E0 ≤ F½fϕg� ¼ hϕ�ðrÞjHjϕðrÞi
hϕ�ðrÞjϕðrÞi : (31)

Equation (31) means that the functional F½fϕg� has a
minimum for function ϕ0ðrÞ which is the eigenfunction of
the ground state with energy E0.
For our Hamiltonian in the momentum space Eq. (31)

can be rewritten in the form

E0 ¼ min
ϕ

R∞
0 dκTðκÞjϕðκÞj2 − R∞

0 dκ
R∞
0 dκ0 ϕðκÞϕ�ðκ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðκ−κ0Þ2þ2ðκþκ0Þþ1
p þ N2

cþ1

2N2
c

���� R∞
0 dκ ϕðκÞ

κþ1

����2R∞
0 dκjϕðκÞj2 : (32)

The success of finding the value of E0 depends on the
choice of the trial functions in Eq. (32). We choose it in the
form

ϕtrialðκÞ ¼
1

ðκ þ a2Þγ : (33)

In the coordinate representation Eq. (33) corresponds to

ftrialðrÞ ¼
1

ΓðγÞ
�

r
2a

�−1þγ

K1−γðarÞ

→

�
r → ∞ ∝ r−γe−ajrj
r → 0 ∝ r−2þ2γ:

(34)

One can see that our trial function has the correct behavior
if a > 0 and b ¼ 2γ − 1 > 0.
Figure 3 shows the dependence of E0 on γ and a. At large

a and γ → 0.5, E0 reaches minimum value which is the

2 2 4 6 8 10 p2

4

3

2

1

1

2

T p

FIG. 2. The dependence of the kinetic energy [see Eq. (28)]
versus p2 for m ¼ 1.
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massless BFKL energy EBFKL. Therefore, we conclude that
the ground state energy E0 could be only smaller than
EBFKL but not larger than it. Figure 4 demonstrates the
global tendency in the dependence of E0 on the values of
parameters a and γ. Similar results were obtained for more
complicated parametrizations like

ϕðκÞ ¼ κ−δ
ðκ þ a2Þγ ; (35)

ϕðκÞ ¼ κ−δ

ðκ þ a2Þ3=2ðκ þ b2Þγ−3=2 : (36)

While from the variational principle we always obtained
the energy E > EBFKL, we believe that the true minimum of
the energy is E ¼ EBFKL (respectively the eigenvalue
ω ¼ ωBFKL), there is no indication that there are eigenval-
ues with ω > ωBFKL. Actually, with trial function of
Eq. (33) for a ≫ 1 we can perform the analytical calcu-
lation (see the Appendix) which shows that at γ ¼ 1=2 we
indeed have the minimum with ω ¼ ωBFKL.

C. Independence of the Pomeron
spectrum from the gluon mass

In this section we wish to prove that there are no
Pomeron states above the intercept of the massless
BFKL equation. As we have seen in the variational
approach, the best trial function that describes the BFKL
Pomeron takes the form

ϕ0
trial ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ a2

p : (37)

It gives EBFKL ¼ −4 ln 2 independently from a [see
Fig. 3(a)]. We wish to prove that

E ≥ EBFKL ¼ −4 ln 2: (38)

Since the energy contribution of the contact term is
positive, we neglect it below.
For the proof of (38) we rewrite the Hamiltonian of

Eq. (17) in the form

H ¼ TðpÞ þ VðrÞ ¼ fTðpÞ − T0ðpÞg þH0; (39)

where H0 is chosen from the condition

H0ϕ
0
trial ¼ ðT0ðpÞ þ VðrÞÞϕ0

trial ¼ EBFKLϕ
0
trial: (40)

If we verify that fTðpÞ − T0ðpÞg ≥ 0 for all values of p,
then inequality (38) is valid due to (40) because ϕ0

trial is
positive for the ground state of H0.
Neglecting the contact term, the kinetic energy T0ðpÞ

takes the form2

T0ðpÞ ¼ EBFKL − 1

ϕ0
trialðpÞ

VðrÞϕ0
trialðrÞ; (41)

where

FIG. 4 (color online). The dependence of the energy given by
Eq. (32) on the values of parameters a and γ.

1.0 2.0 2.5

2.5

2.0

1.5

1.0

0.5

100
20
10

BFKL 4 ln 2

4 6 8 10
a

2.0

1.5

1.0

0.5
0.55

EBFKL 4 ln 2

(a) (b)

FIG. 3 (color online). Dependence of E0 given by Eq. (32) on γ [see (a)] and a [see (b)]. The red straight line corresponds to the ground
state energy of the massless BFKL equation EBFKL ¼ −4 ln 2.

2The ordering in Eq. (41) is essential since ϕ0
trialðpÞ is an

operator in coordinate space.
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1

ϕ0
trialðpÞ

VðrÞϕ0
trialðrÞ ¼ −

Z
d2p0

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ a2

p
ðj~p − ~p0j2 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þ a2

p ¼ −
Z

1

0

dβffiffiffiffiffiffiffiffiffiffiffi
1 − β

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ a2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð1 − βÞp2 þ a2ð1 − βÞ þ β

p : (42)

The last expression can be written in terms of the elliptic integral in the Weierstrass form or in the Jacobi form after the
following transformation:

1

ϕ0
trialðpÞ

VðrÞϕ0
trialðrÞ ¼ −2

Z
1

0

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ a2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2ð1 − z2Þp2 þ a2z2 þ 1 − z2

p : (43)

For Eq. (43) we can find the asymptotic behavior for large and small p, viz.

1

ϕ0
trialðpÞ

VðrÞϕ0
trialðrÞ ⟶

p≫1 − 2

p
lnp − 4 ln 2þ lnp

p2

�
− 1

2
þ a

�
þOð1=p2Þ; (44)

⟶
p→0 − 2

ffiffiffiffiffi
a2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
þ

ffiffiffiffiffi
a2

p
Þ: (45)

In terms of fTðpÞ − T0ðpÞg it means that

fTðpÞ − T0ðpÞg⟶
p≫1 lnp

p

�
a − 5

2

�
; (46)

⟶
p→0 1

2
þ 4 ln 2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

a2 − 1

s
lnð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
þ

ffiffiffiffiffi
a2

p
Þ: (47)

As a result, it is plausible that TðpÞ − T0ðpÞ is positive for
all p providing that the parameter a lies in the interval

5

2
< a2 < a20; (48)

where a0 is found from the equation

1

2
þ 4 ln 2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a20

a20 − 1

s
lnð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 − 1

q
þ

ffiffiffiffiffi
a20

q
Þ ¼ 0 (49)

which gives a20 ¼ 5.26.
In Fig. 5 we calculated the difference TðpÞ − T0ðpÞ

using the integral of Eq. (42) and/or Eq. (43) without
expansion of Eqs. (46) and (47). One can see that for
5 > a2 > 0 at any values of p this difference is positive.
The condition of the minimum of jTðpÞ − T0ðpÞj should

be used in the variational approach for fixing the unique
wave function, because the minimum of energy is realized
on many configurations.
Figure 6 shows that the condition of Eq. (30),

E ¼ TðpÞ ¼ TðiaÞ, is fulfilled for a in the interval of
Eq. (48) (or Fig. 5). Thus, inequality (38) is proven.

FIG. 5 (color online). The dependence of TðpÞ − T0ðpÞ on the
values of parameter a and p.

0.5 1.0 1.5
a

8

6

4

2

T ia

FIG. 6. The dependence of TðiaÞ on the values of parameter a
(solid line) and E ¼ −χð0Þ ¼ −4 ln 2 (dotted line).
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D. Relation between energy and wave function

In this section we demonstrate that the value of energy
EðβÞ is completely determined by the asymptotic behavior
of the wave function at large p for a more general trial
function of the form

ϕtrialðpÞ ¼ ðp2 þ a2Þ−1
2
þiβ: (50)

This proof complements the proof given in Sec. III A, in
which we used properties of the massless BFKL equation
and argued that the spectrum of massless and massive
BFKL kernels should coincide at large p. The trial function
Eq. (50) is close to the wave functions which we will obtain
numerically in Sec. III E, so we find it instructive to repeat
the proof for these functions in a more transparent way.
For the trial function of Eq. (50), Eq. (48) takes the

form

VðrÞϕtrialðrÞ
ϕtrialðpÞ

¼ −
Z

d2p0

π

ðp2 þ a2Þ12þiβ

ðj~p − ~p0j2 þ 1Þðp02 þ a2Þ12þiβ
¼ −

Z
1

0

dxffiffiffiffiffiffiffiffiffiffiffi
1 − β

p ðp2 þ a2Þ12þiβ

ðβð1 − xÞp2 þ a2ð1 − xÞ þ xÞ12þiβ
: (51)

We introduced Feynman parameter x and integrated over p0 to obtain the last equation in Eq. (51).
For large p the essential region of integration is a2=p2 ≤ x ≤ 1. We introduce an intermediate parameter σ with its value

in the interval a2=p2 ≪ σ ≪ 1 and rewrite Eq. (51) in the form

VðrÞϕtrialðrÞ
ϕtrialðpÞ

¼ −
Z

σ

0

dx
x

1

ð1þ 1
xp2Þ12þiβ

−
Z

1

σ

dx
x

1

ð1 − xÞ12þiβ
¼ −

Z
∞

1þ 1

σp2

dz
ðz − 1Þ

1

z
1
2
þiβ

−
Z

1

σ

dx
x

1

ð1 − xÞ12þiβ

¼ −
Z

1− 1

σp2

0

dt
tð1 − tÞ t

1
2
þiβ −

Z
1−σ

0

dt
1 − t

t−1
2
−iβ ¼ − lnp2 −

Z
1

0

dt
t−1

2ðt−iβ þ tiβÞ − 2

ð1 − tÞ : (52)

Therefore,

EðβÞ ¼ ψ

�
1

2
þ iβ

�
þ ψ

�
1

2
− iβ

�
− 2ψð1Þ (53)

independently of the value of a. Moreover, the result for the
energy EðβÞ does not depend on the form of wave function
providing that it has the correct asymptotic behavior at
large p. For example, the wave function ϕðapproxÞ

n ðκÞ of

Eq. (62) that stems from our numerical estimates can be
written as the real part of the expression,

ϕðapproxÞ
n ðκÞ ¼ eiφffiffiffiffiffiffiffiffiffiffiffi

κ þ 4
p

� ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p þ ffiffiffi
κ

pffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p − ffiffiffi
κ

p
�−iβ

: (54)

The difference of energy for the wave functions of Eqs. (50)
and (54) takes the form

ΔEðβÞ ¼
Z

d2p0

π

p2ð1
2
þiβÞ

ðj~p − ~p0j2 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þ 4

p �
1

ðp02 þ 4Þiβ −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p02 þ 4
p

þ
ffiffiffiffiffiffi
p02pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p02 þ 4
p − ffiffiffiffiffiffi

p02p �−iβ�
: (55)

From the dimensional considerations ΔEðβÞ falls down as
1=p2 at large p and therefore, the energies EðβÞ for the
wave function of Eqs. (50) and (54) coincide.

E. Numerical solution

1. Direct method

General approach.—Equations (12) and (13) have the
following structure:

ωϕðκÞ ¼ ᾱS

Z
dκ0Kðκ; κ0Þϕðκ0Þ: (56)

Notice that we rewrite Eqs. (12) and (13) in terms of ω and
restore the coupling constant in front of the integral. In the
numerical calculation we replace the continuous variables κ
and κ0 by the discrete set of {κn} and {κ0n} using the
logarithmic grid (in κ ¼ k2=m2) with N þ 1 nodes,

κn ¼ κmin exp

�
n
N
ln ðκmax=κminÞ

�
; n ¼ 0;…; N; (57)

where the values of κmin, κmax were set to κmin ¼ 10−40,
κmax ¼ 1080, and N ¼ 1024.
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In the discrete variables Eq. (56) takes the form

ωϕðκnÞ ¼ ᾱS
XN
m¼0

Kðκn; κ0mÞκ0m
�
1

N
ln ðκmax=κminÞ

�
ϕðκ0mÞ;

(58)

where κn and κ0m are taken in the form of Eq. (57).
Introducing the notations ϕðκnÞ≡ ϕn and
Kðκn; κ0mÞκ0mð1N ln ðκmax=κminÞÞ≡Knm, we can rewrite
Eq. (58) in the matrix form

ωϕn ¼ ᾱS
XN
m¼0

Knmϕm or ω~ϕ ¼ ᾱSK~ϕ; (59)

where vector ~ϕ has N þ 1 components ϕn and K is
ðN þ 1Þ × ðN þ 1Þ matrix. To find the roots of the char-
acteristic polynomial pðωÞ of the matrix ᾱSK − ωI, where
I is the identity matrix, we need to solve the secular
equation,

pðωÞ ¼ detðᾱSK − ωIÞ ¼ 0: (60)

We use Eqs. (59) and (60) to find the eigenvalues and
eigenfunctions both for massive (12) and massless (13)
BFKL equations, using the analytic solution Eq. (14) to
control the accuracy of our numerical calculations. Due to
finite grid size, the spectrum is discrete, with a few positive
roots given in Table I and Fig. 7. Sensitivity to a number of
points is quite mild, so discretization error should be small.
As one can see from Fig. 7, when κmax grows up to infinity,
the distance between the roots decreases rapidly, with the
highest root asymptotically approaching the massless
BFKL value ωBFKL ¼ 4ᾱS ln 2 ≈ 0.56 for ᾱS ¼ 0.2, both
for the massive and massless cases. It should be stressed
that the relative difference between the highest eigenvalue
in our calculation for the massless BFKL equation and the
exact ωBFKL is negligibly small (of the order of 3 × 10−5),
which demonstrates a good accuracy of a chosen method.
We found that the eigenvalues of the massless BFKL
equation can be written in a familiar form:

ωnðm ¼ 0Þ ¼ ᾱS

�
2ψð1Þ − ψ

�
1

2
− iβnðm ¼ 0Þ

�

− ψ

�
1

2
þ iβnðm ¼ 0Þ

��
with βnðmÞ ¼ aðmÞn;

aðmÞ ¼ 2.9= ln ðκmax=ðκmin þm2ÞÞ; (61)

and κmax and κmin are the upper and lower cutoffs
introduced in Eq. (57).
In Fig. 8 one can see how the simple formula of Eq. (61)

describes the calculated spectrum (see solid and dashed
curves for m ¼ 0). For massive BFKL the situation is
different. A simple parametrization, Eq. (61), with nonzero
m may be used with a good precision only for ω ≥ ω0. The
point ω ≈ ω0 is special and will be discussed in more detail
below. For very large n the values of the intercepts become
smaller than ω0 and agree with Eq. (61), but the n
dependence of βn is no longer linear and will be discussed
in the following section.
Eigenfunctions and Green’s function: Eigenfunctions

with ω ≥ ω0.—The first three (unnormalized) eigenfunc-
tions corresponding to massless and massive BFKL are
shown in Fig. 9. As we can see, for large κ solutions of

TABLE I. The first twenty roots of the original (massless)

BFKL equation (column ωðBFKLÞ
n ) and BFKL with mass (column

ωðmassÞ
n ) found with the chosen method. Note that for the first root

for the massless BFKL, we get ωBFKL
0 ≈ 0.554504, whereas the

true value is 4ᾱ ln 2 ≈ 0.554518, i.e. the relative difference is of
order 3 × 10−5.

Root number ωðBFKLÞ
n ωðmassÞ

n

1 0.5545 0.554
2 0.553 0.551
3 0.551 0.547
4 0.548 0.540
5 0.545 0.532
6 0.540 0.522
7 0.535 0.511
8 0.529 0.498
9 0.522 0.485
10 0.515 0.470
11 0.507 0.454
12 0.499 0.437
13 0.489 0.420
14 0.480 0.402
15 0.470 0.383
16 0.459 0.365
17 0.448 0.346
18 0.437 0.327
19 0.426 0.308
20 0.414 0.289

50 100 150
ln kmax

2

0.25

0.35

0.40

0.45

0.50

0.55

FIG. 7 (color online). Dependence of the first five eigenvalues
on the maximal cutoff κmax ¼ k2max.
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NS, m 0

NS, m 10 20

NS, m 1

FIG. 8 (color online). Dependence of the eigenvalues on the number of zeros of the eigenfunction. The dashed lines describe the
numerical solution for ωn for the massive BFKL equation with mass m. m ¼ 0 corresponds to massless BFKL. The orange solid curves
show the values of ωn calculated using Eq. (61).
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FIG. 9 (color online). Absolute values of the first three eigenfunctions jψnðkÞj corresponding to massless BFKL (a) and BFKL with
mass (b). In the figure k2 ¼ κ.
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FIG. 10 (color online). Left: Dependence of the eigenfunction parameter βn on eigenfunction number n. Right: Dependence of the
eigenfuncton parameter φn on eigenfunction number n. In a chosen lattice ω ¼ ω0 ≡− 1

2
ᾱS corresponds to n ¼ 37.
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these equations coincide, however for κ ≲ 1 they are
different: the massless solution grows roughly as power
of momenta, κ−γ , whereas the solution in the massive case
is regular and reaches a constant. One can see that ψ2ðκÞ
has one zero while ψ3ðκÞ has two zeros. This behavior of
the wave functions has been expected from the general
analysis of the solution (see Sec. III A).
With a good precision the eigenfunctions with the

eigenvalues larger than ω0 can be parametrized as

ϕðapproxÞ
n ðκÞ ¼ αðnÞffiffiffiffiffiffiffiffiffiffiffi

κ þ 4
p sinðβnðm ¼ 1ÞLnðκÞ þ φnÞ

with LnðκÞ ¼ ln

� ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p þ ffiffiffi
κ

pffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p − ffiffiffi
κ

p
�
: (62)

The form of the parametrization in Eq. (62) is inspired by
the expression for the gluon trajectory ωðκÞ.
For κ ≪ 1 and for κ ≫ 1 the function (62) has an

asymptotic form:

ϕðapproxÞ
n ðκÞ ¼

8<
:

1
2
αðnÞ sinðφnÞ for κ ≪ 1;

αðnÞffiffi
κ

p sin ðβnðm ¼ 1Þ ln κ þ φnÞ for κ ≫ 1:

(63)

Since in the large-κ regime the massive BFKL coincides
with massless BFKL, for which the second line of Eq. (63)
is an exact solution, the parameters βn and φn are defined
for all possible values of n. For the case m ¼ 1 the
dependence of βn and φn on the number n is shown in
Fig. 10. We can see that in the small-n region both βn and
φn are linear functions of n, βnðmÞ ¼ aðmÞn and
φn ¼ aφðmÞn, where aðmÞ is given by Eq. (61), and

aφðmÞ ≈ 8.577
ln ðκmax=κminÞ

¼ bφβnðmÞ; (64)

bφ ≈ 1.865; (65)

so in this regime we may rewrite Eq. (62) in a form

ϕðapproxÞðκ; βÞ ¼ αðβÞffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p sinðβLnðκÞ þ bφβÞ (66)

which does not depend on lattice parameters. However, a
linear approximation for n dependence of ϕn is valid only
for very small n. In the vicinity of the point ω ¼ ω0 both
parameters freeze, and we will discuss this regime in more
detail in the next section. For very large n, the intercept ω
goes below ω0 and the parameters β, φ resume their
dependence on n (see e.g. Fig. 11), however in this regime
the oscillation period becomes comparable with period
of the lattice, so extracted parameters are not very reliable.
The normalization factor αðnÞ can be found from the
normalization condition of Eq. (22) and is irrelevant for
purposes of this paper since we are solving the linear
equation.
In order to demonstrate the quality of the fit (62), in the

left panel of Fig. 12 we directly compare the numerical

200 400 600
n

1

2

3

4

FIG. 11 (color online). Large-n dependence of the eigenfunc-
tion parameter β on the eigenfunction number n.
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10 8 10 5 0.01 10 104 107
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0.8

1.0
R

10

FIG. 12 (color online). Upper plot: Comparison of the approxi-
mate parametrization (62) (in red) with numerical result (blue) for
n ¼ 10. Lower plot: Check of accuracy of ϕðapproxÞðκ; βÞ. ωapprox

is given by Eq. (67) (see wavy lines) and ωexact (orange straight
lines) at different values of β.
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eigenfunction and parametrization (62). In the right panel
of Fig. 12 we plot the ratio

ωapprox ¼ r:h:s:ðϕðapproxÞðκ; βÞÞ
ϕðapproxÞðκ; βÞ (67)

which demonstrates that the deviations of the fit from
numerical solution are the largest in the region κ ∼ 1,
however even there do not exceed 10%.

Eigenfunctions and Green’s function: Eigenfunctions in
the vicinity of ω ¼ ω0.—As was discussed in previous
sections, the point ω ¼ ω0 is special. We would like to
investigate the behavior near this point both analytically
and numerically. The equation of motion, Eq. (12), for
ω ≈ ω0, or E ¼ 1

2
in the small-κ regime has a form

�
E − 1

2
− 5

12
κ

�
ϕðκÞ ¼ −N2

c − 1

2N2
c

Z
dκ0

k0 þ 1
ϕðκ0Þ þOðκ2Þ:

(68)

Introducing a new notation ϵ ¼ 12
5
ðE − 1

2
Þ one can see that

function ϕðκÞ should have a pole at κ ¼ ϵ,

ϕðκÞjκ→ϵ≪1 ¼
const
ϵ − κ

: (69)

A numerical calculation confirms our expectation. As
one can see from Fig. 13, the wave function indeed has a
pole at κ ≪ 1. The position of the pole is arbitrary and may
coincide with any node at κ ≪ 1. Due to large number of
nodes with κn ≪ 1, the spectrum Fig. 8 looks multiply
degenerate at the pointω ¼ ω0. In order to demonstrate that
this is not the case, we recalculated the eigenvalues in the
lattice which has a linear step in the region κ ≤ 1 and a
logarithmic step for κ ≥ 1,

κn ¼
8<
:

n
N<

with n ¼ 0;…; N<N< ¼ 200 for κ < 1;

exp

�
n
N>

ln κmax

�
with n ¼ 0;…; N>; N> ¼ 1024; κmax ¼ 1060; for κ > 1:

(70)

From Fig. 14 we may see that the spectrum in this case is
no longer degenerate. This happens because the typical
node values κn ∼ 10−2 − 10−1 are much larger than with
logarithmic grid and a deviation ω − ω0 ∼ κn is also larger.
In Fig. 15 we demonstrate that the deviation ωðnÞ − ω0

is proportional to the pole position κ0ðnÞ and in agreement
with Eq. (68) the ratio

R ¼ 5ᾱS
12

κ0ðnÞ
ω0ðnÞ − ω0

is close to 1 for ω0ðnÞ ≈ ω0. In the left panel, we have
shown results with logarithmic grid, and in the right panel
with grid Eq. (70). In the latter case, while results are close
to one, there are some deviations due to Oðκ2Þ terms
omitted in Eq. (68).
For κ > 1, all the wave functions in the vicinity

ω ≈ ω0 have a form given by Eq. (63) but with fixed

βn ¼ β0 ¼ 0.786 found from ωðβ0; m ¼ 1Þ ¼ − 1
2
ᾱS,

where ωðβ0; m ¼ 1Þ is given in Eq. (61).
In summary, the wave functions with ω ≈ ω0 may be

parametrized as

ϕðapproxÞ
n ðκÞ

¼
(
αðnÞ sinφnð1 − κ0ðnÞÞ=ðκ − κ0ðnÞÞ for κ ≤ 1;

αðnÞffiffi
κ

p sin ðβ0 ln κ þ φnÞ for κ > 1:
(71)

It is instructive to notice that Eq. (71) corresponds to the
energy spectrum which almost does not depend on n for
large range of n independently of the type of discretization.
This fact reflects in our calculation procedure the difference
of the continuous spectrum between ω > ω0 and ω < ω0.
The former is discreet with the cut at large κ while the latter
remains continuous with this cut.

10 40 10 20 1 1020 1040 1060

10 75

10 59

10 43

10 27

10 11

FIG. 13 (color online). The eigenfunction jϕðω0; κÞj with
ω ¼ ω0 ¼ − 1

2
ᾱS. The red curve corresponds to the positive

values of ϕðω0; κÞ while blue describes the negative ϕðω0; κÞ.
The approximate function jϕapproxðω0; κÞj ¼ j1=ðκ − κ0Þj with
κ0 ¼ 10−30 is shown by the thin line. We multiply the fit result
(ϕapprox) by some constant to see the difference (otherwise they
just coincide).
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Eigenfunctions and Green’s function: Eigenfunctions
with ω < ω0.—For large n (n > 550; see Figs. 8 and
14) ωn become smaller than ω0. In this kinematic region the
eigenfunction can be described by general formulas of
Eq. (62) with β that increases linearly with n (see Fig. 11)
but we need to add to this eigenfunction the term ∝ 1=ðκ −
κ0ðnÞÞ with κ0ðnÞ > 1. However, the difference ΔκðnÞ ¼
κ0ðnþ 1Þ − κ0ðnÞ turns out to be larger than ΔEðβðnÞÞ ¼
Eðβðnþ 1ÞÞ − EðβðnÞÞ of Eq. (53) for our discretization
procedure. The appearance of 1=ðκ − κ0ðnÞÞ in the eigen-
function is the consequence of the fact that the spectrum
remains continuous with the cut at large κ.
Note that evaluations in this region should be taken with

due care because of possible interplay of oscillation period
with period of the grid. The maximal value of β which may
be extracted with this method is controlled by the grid step

and is given by βmax ¼ N= logðκmax=κminÞ ¼ 3.7 [see
Eq. (57) for values of N, κmax and κmin].
Eigenfunctions and Green’s function: Green’s func-

tion.—We can calculate the Green function of the massive
BFKL Pomeron using Eq. (63). Indeed, the Green function
takes the general form

GðY; κfinj0; κinÞ ¼
X∞
n¼0

ϕnðκfinÞϕnðκinÞeωðnÞY; (72)

where functions ϕn should be normalized according to
Eq. (22).3 In the diffusion approximation we can expand the
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FIG. 15 (color online). The ratio R ¼ ᾱSð5=12Þκ0ðnÞ=ðωðnÞ − ω0Þ versus n. Part (a) shows this ratio in logarithmic discretization [see
Eq. (57)], while in (b) the ratio is plotted in linear-logarithmic discretization [see Eq. (70) for the description].
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FIG. 14 (color online). The eigenvalues of the massless and massive BFKL equation in the linear-logarithmic discretization [see
Eq. (70)]. The dashed lines describes the numerical solution for ωn for the massive BFKL equation with mass m. m ¼ 0 corresponds to
massless BFKL. The orange solid curves show the values of ωn calculated using Eq. (61).

3In our numerical solution we have a discrete spectrum in the
restricted region of κ (from κmin to κmax). Therefore, we need to
normalize not to the δ function as in Eq. (22) but to Kronecker’s
delta.
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eigenvalues of Eq. (61) at small n replacing Eq. (61) by the
simple expression

ωðnÞ ¼ ωBFKL −Da2n2 þOðn3Þ ¼ ωBFKL −Dβ2; (73)

where ωBFKL ¼ 4 ln 2ᾱS; D ¼ 14ζð3ÞᾱS.
Therefore in this approximation the Green function takes

the form

GðY;κfinj0;κinÞ¼eωBFKLY
X∞
n¼0

ϕnðκin;βÞϕnðκfin;βÞe−DYa2n2

→eωBFKLY

Z
∞

0

dβϕ0ðκin;βÞϕ0ðκfin;βÞe−DYβ2 :

(74)

The main contribution proportional to eωBFKLY stems from
small β’s where we can use Eq. (73). Taking the integral
over β in Eq. (74) we obtain the following Green’s function
at large values of Y:

GðY; κfinj0; κinÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðκfin þ 4Þðκin þ 4Þp 1

2
eωBFKLY

ffiffiffiffiffiffiffi
π

DY

r �
e−

ðLðκfinÞ−LðκinÞÞ2
4Da2Y − e−

ðLðκfinÞþLðκinÞþ2bϕÞ2
4Da2Y

�
: (75)

One can see that at large Y Green function
GðY; κfinj0; κinÞ ∝ ðDYÞ−3=2eωBFKLY , which should be com-
pared with the massless BFKL case for which
GðY; κfinj0; κinÞ ∝ ðDYÞ−1=2eωBFKLY . It is related to the fact
that in the massive case the diffusion approximation is valid
only at large positive κwith a boundary condition at fixed κ.

2. Evolution method

In this method the leading ω-plane singularity is
extracted using an evolution in rapidity Y,

∂Ψ
∂Y ¼ ᾱS

Z
d2k0Kðk; k0ÞΨðk0; YÞ; (76)

where

Ψðk; YÞ ¼
Z

ϵþi∞

ϵ−i∞
dω
2πi

eωYϕωðκÞ; (77)

and κ ¼ k2.

For asymptotically large Y at any initial condition
function ΨðY0; kÞ may be decomposed over the eigenfunc-
tions of the Hamiltonian H,

ΨðY; kÞ ¼
X
n

cnϕnðkÞeωnY : (78)

As has been mentioned the spectrum is discrete since on the
grid we always have a cutoff at large kT . From naive
counting for asymptotically large Y we have

ΨðY; kÞ ∼ c0ϕ0ðkÞeω0Y

�
1þ c1

c0
e−ΔωY

�
;

Δω ¼ ω0 − ω1 > 0;

however in reality the situation is more complicated since
we have inhomogeneous convergence and the limits do not
commute:

1 1020 1040

10 18

10 11

10 4

1000

1010

1 1020 1040 1060

16

10 5

106

1017

1028

m 0, Evolution
m 1, Evolution
m 0, Direct
m 1, Direct

10

(a) (b)

FIG. 16 (color online). Leading eigenfunctions for the massive and massless BFKL equation extracted with evolution method (a).
Comparison of leading eigenfunctions extracted with direct method and evolution (b). Note that the eigenfunctions extracted in both
methods have different normalization, so for comparison we have multiplied the direct solution by a normalization factor to match
massive BFKL with both methods at k ¼ 1.
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lim
kmax→∞

Δω ¼ 0; lim
kmax→∞;Y→∞

ΔωY ¼ 0 ·∞ ¼ undefined:

(79)

In the case of the massless BFKL equation the summation
over n in Eq. (78) leads to the asymptotic behavior at high
energy which has been discussed after Eq. (75).
For evolution we used a modified BK code [20] with

default conditions, ln k2min ∈ ð−20; 138Þ and N ¼ 1024
points in logarithmic grid. The corresponding leading
eigenvalues extracted with this method are ω0 ¼ 0.545
for the massless case and ω0 ¼ 0.537 for the massive case.
The results of the wave function are shown in Fig. 16(a). In
Fig. 16(b) we compare these wave functions with those
extracted with the direct method. For the massive case we

see that both functions are almost identical. For the
massless equation we can see that in both cases the
qualitative behavior is very similar, though quantitatively
the curves differ at large kT . Since the wave function is
suppressed there by a few orders of magnitude, we believe
that this uncertainty should not affect the physical
observables.

IV. BFKL EQUATION WITH MASS AT q ≠ 0

A. Large impact parameter dependence

The kernel of the BFKL equation at q ≠ 0 is given by
Eq. (7) which we rewrite using more symmetric notations
for gluon momenta:

~q1 ¼
1

2
~qþ ~p; ~q2 ¼

1

2
~q − ~p; ~q01 ¼

1

2
~qþ ~p0; ~q02 ¼

1

2
~q − ~p0; ~k ¼ ~p − ~p0: (80)

It takes the form

Kð~q; ~p; ~p0Þ ¼ ᾱS
2π

8>>>><
>>>>:

1

k2 þm2

� ð1
2
~qþ ~pÞ2 þm2

ð1
2
~qþ ~p0Þ2 þm2

þ ð1
2
~qþ ~pÞ2 þm2

ð1
2
~qþ ~p0Þ2 þm2

�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{emission kernel: Kemð ~q; ~p; ~p0Þ

− q2 þ N2
cþ1

N2
c
m2

ðð1
2
~qþ ~p0Þ2 þm2Þðð1

2
~qþ ~p0Þ2 þm2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

contact term∶Kctð ~q; ~p0Þ

9>>>>=
>>>>;

(81)

First, we rewrite this kernel in the impact parameter representation using the following formulas:

Kð~b; ~p; ~p0Þ ¼
Z

d2qei~q·~bKð~q; ~p; ~p0Þ (82)

Z
d2qei~q·~b

ð1
2
~qþ ~pÞ2 þm2

ð1
2
~qþ ~p0Þ2 þm2

¼ e2i~p·~b
�
− 1

4
∇2

b þm2

�
4

Z
d2lei~l·~b

1

ð~lþ ~kÞ2 þm2

¼ 4e2i~p·~b
�
− 1

4
∇2

b þm2

�
e2i~k·~bK0ð2mbÞ ¼ e2i~p

0·~b
�
k2K0ð2mbÞ þ 2im

~k · ~b
b

K1ð2mbÞ
�
; (83)

where KiðzÞ are the modified Bessel functions of the second kind.
Using Eq. (83) we can rewrite the first two terms of Eq. (81) [emission kernel Kemð~q; ~p; ~p0Þ] in the following

form:

Kemð~b; ~p; ~p0Þ ¼ ᾱS

�
k2

k2 þm2
cos ð2~p0 · ~bÞK0ð2mbÞ þ 2m

~k · ~b
b

sin ð2~p0 · ~bÞK1ð2mbÞ
�
: (84)

In the contact term of Eq. (81) we can replace ~q02 ¼ 1
2
~q − ~p0 and obtain the following expression:

Kctð~b; ~q02Þ ¼
ᾱS

q022 þm2

�
−∇2

b þ
N2

c þ 1

N2
c

m2

�
e~q

0
2
·~bK0ðmbÞ

¼ ᾱS
q022 þm2

ei~q
0
2
·~b

�
q022 K0ðmbÞ þm2

N2
c
K0ðmbÞ þ 2im

~q02 · ~b
b

K1ðmbÞ
�
: (85)

It is worthwhile mentioning that we can replace ~q02 by ~p0 in this part of the kernel since we have the integration
over q02.
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The part of the BFKL kernel that is responsible for the
gluon Reggeization for q ≠ 0 takes the following form [see
Eqs. (8), (9), and (80)]:

Kregð~q; ~pÞ ¼ ω

����� 12 ~qþ ~p

����
�
þ ω

����� 12 ~q − ~p

����
�
: (86)

Using Eqs. (9) and (83) Kregð~q; ~pÞ in b representation takes
the form

Kregð~b; ~pÞ ¼ ᾱSm2 cos ð2~p · ~bÞfK2
0ð2mbÞ þ 2K2

1ð2mbÞg:
(87)

Finally, the entire kernel in b representation looks as
follows:

Kð~b; ~p; ~p0Þ ¼ Kemð~b; ~p; ~p0Þ þ Kctð~b; ~p0Þ
þ Kregð~b; ~pÞδð2Þð~p − ~p0Þ (88)

and the massive BFKL equation takes the form

∂fð~b; ~pjYÞ
∂Y ¼

Z
d2b0d2p0Kð~b0; ~p; ~p0Þfð~b − ~b0; ~p0jYÞ:

(89)

At large b ≫ m kernel K falls down exponentially, namely
K ∝ exp ð−mbÞ which leads to fð~b; ~pjYÞ ∝ exp ð−mbÞ.
Indeed, assuming that b0 ∼ 1=m contribute to the integral
over b0 in Eq. (89), we can rewrite this equation in the form

∂fð~b; ~pjYÞ
∂Y ¼

Z
d2p0

�Z
d2b0Kð~b0; ~p; ~p0Þ

�
fð~b; ~p0jYÞ

þ
Z

d2p0Kð~b; ~p; ~p0Þ
�Z

d2b0fð~b0; ~p0jYÞ
�
.

(90)

Noticing that the largest asymptotic behavior at large b
stems from Kct we can rewrite Eq. (90) in the form

∂fð~b; ~pjYÞ
∂Y ¼

Z
d2p0

�Z
d2b0Kð~b0; ~p; ~p0Þ

�
fð~b; ~p0jYÞ

þ ᾱSe−mb

Z
d2p0 J0ðp0bÞ

p02 þm2

×

�Z
d2b0fð~b0; ~p0jYÞ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

solution at q2¼0

. (91)

As we have discussed, our solution at q2 ¼ 0 behaves as
ðp2Þ−1

2
þiν at large p but it is constant at p → 0. The integral

over p0 in the nonhomogeneous term in Eq. (91) is
concentrated at small values of p0 ∼ 1=b ≤ m leading only

to mild powerlike dependence on b. Therefore, searching
solution in the form fð~b; ~pjYÞ ¼ exp ð−mbÞ ~fð~b; ~pjYÞ we
see that for ~fð~b; ~pjYÞ we obtain an equation with the
nonhomogeneous term that only weakly (powerlike) falls at
large b.
Hence we can conclude that at large impact parameters

the solution to the BFKL equation with mass falls down as
exp ð−mbÞ as it was expected.

B. Equation for hjb2ji
In this section we are going to derive the equation that

will allow us to calculate hjb2ji as a function of Y. In the
parton model this observable is proportional to the number
of emissions due to Gribov’s diffusion [21] which is
sketched in Fig. 17.

0

1

23

n

n − 1

n − 2

i
i −1

i +1

T
2 2

n
2 2

2< b  >n

FIG. 17 (color online). Gribov’s diffusion for emissions in the
parton model (blue line) and in QCD (red line).
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FIG. 18 (color online). The contour with constant kΨðk; YÞ (see
dotted line) for the massless BFKL equation and for the BFKL
equation with mass (see solid red line).
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The average b2 after n emissions is equal

hjb2nji ¼ Δb2n ¼ 1

hjp2
T ji

n: (92)

Since the average number of emissions at given Y is
proportional to Y and the average hjp2

T ji is a constant
independent from Y in the parton model, hjb2ji ¼ 4α0IPY
where α0IP is the slope of the Pomeron trajectory. In QCD
the average transverse momentum increases with energy Y.
We plot in Fig. 18 the contours on which function kΨðk; YÞ
[see Eq. (76)] is constant. One can see that for the massive
BFKL equation the average pT are larger than the values of

pT in initial conditions and they grow with Y. One can see
from Eq. (92) that Δb2 decreases at large Y leading to

hjb2nji →Y≫1
0 since hjp2

T ji increases faster than Y (see Fig. 18).
Therefore, we expect that in QCD hjb2ji for the massive
BFKL Pomeron does not depend on Y repeating the main
features of the massless BFKL Pomeron.
We would like to stress that this discussion is based on

the uncertainty principle ΔpTΔb ∼ 1. Figure 18 shows that
if we replace in Eq. (92) 1=hjp2

T ji by hj1=p2
T ji we can

expect that the massive BFKL equation will lead to
Gribov’s diffusion since hj1=p2

T ji ∝ 1=m2. Therefore, we
need to calculate hjb2ji for the massive BFKL Pomeron to
justify the simple picture that stems from Fig. 17.

The general expression for hjb2ji takes the form4

hjb2ji ¼
R
d2bb2fð~b; ~pjYÞR
d2bfð~b; ~pjYÞ

(93)

and forNð~pjYÞ ¼ R
d2bb2fð~b; ~pjYÞwe can write the equation using the expression for the BFKL kernel in b representation

[see Eq. (88)]. However, it turns out much simpler to derive this equation using that

Nð~pjYÞ ¼
Z

d2bb2fð~b; ~pjYÞ ¼
Z

d2b
Z

d2qð−∇2
qe−i~q·

~bÞfð~q; ~p; jYÞ ¼ −ð∇2
qΨð~q; ~pjYÞÞjq¼0; (94)

where Ψ is defined in Eq. (76).
Applying operator −∇2

q to both parts of the evolution equation in Y at q ≠ 0 we obtain

−∇2
q

�∂Ψð~q; ~pjYÞ
∂Y ¼

Z
d2p0Kð~q; ~p; ~p0ÞΨð~q; ~p0jYÞ

�
;

∂Nð~pjYÞ
∂Y ¼

Z
d2p0Kðq ¼ 0; ~p; ~p0ÞNð~p0jYÞ þ

Z
d2p0ð−∇2

qKð~q; ~p; ~p0Þjq¼0ÞΨð~p0jYÞ (95)

þ
�Z

d2p0ð−∇qKð~q; ~p; ~p0ÞÞjq¼0ð∇qΨð~q; ~pjYÞÞjq¼0

�
¼ 0. (96)
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FIG. 19 (color online). hjb2ji versus Y (a) and κ1 (b).

4Equation (93) determines the average b2 from the imaginary part of the scattering amplitude and gives the easiest way for
calculations. However, we can calculate hjb2nji from the elastic cross section: viz. hjb2nji ¼

R
d2bb2f2ð~b; ~pjYÞ= R d2bf2ð~b; ~pjYÞ. This

definition leads to hjb2nji in 2 times larger than from Eq. (93).
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Using the kernel of Eq. (7) and the notations of the momenta of gluons according to Eq. (80) we see that
ð∇qKð~q; ~p; ~p0ÞÞjq¼0 ¼ 0. Using Eq. (81) we obtain the following expression for ð−∇2

qKð~q; ~p; ~p0ÞÞjq¼0:

4K1ðp; p0Þ≡ ð−∇2
qKð~q; ~p; ~p0ÞÞjq¼0 ¼

2

ðp02 þm2Þðp2 þm2Þ þ
4m2

ðp02 þm2Þ2ðð~p − ~p0Þ2 þm2Þ

− 4m2

2ðp02 þm2Þðp2 þm2Þðð~p − ~p0Þ2 þm2Þ : (97)

Hence Eq. (95) gives the equation for Nð~pjYÞ:

∂NðκjYÞ
∂ᾱSY ¼ κ þ 1ffiffiffi

κ
p ffiffiffiffiffiffiffiffiffiffiffi

κ þ 4
p ln

ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p þ ffiffiffi
κ

pffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p − ffiffiffi
κ

p NðκjYÞ −
Z

∞

0

dκ0Nðκ0jYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ − κ0Þ2 þ 2ðκ þ κ0Þ þ 1

p − N2
c þ 1

2N2
c

1

κ þ 1

Z
∞

0

Nðκ0jYÞdκ0
κ0 þ 1

− 4

Z
∞

0

dκ0
�

1

2ðκ2 þ 1Þ2 −
2κ þ κ0 þ 2

2ðκ þ 1Þ2ðκ0 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ − κ0Þ2 þ 2ðκ þ κ0Þ þ 1

p �
Ψðκ0jYÞ

þ 2

� ð1 − 2κÞ
κðκ þ 4Þ2 þ

ð4þ 6κ − κ2Þ
2

ffiffiffi
κ

p ðκ þ 4Þðκ þ 1ÞωðκÞ
�
ΨðκjYÞ: (98)

Two remarks are needed: first, we substitute Nc ¼ 3 in the last two terms; and second, the last term stems from the
expansion of the gluon trajectory [see Eq. (9)] in the master equation [see Eq. (8)] where their contribution takes the
form ωð~p − ~q=2Þ þ ωð~p − ~q=2Þ.
Figure 19 shows hjb2ji of Eq. (93) in which we plug in the solution to Eq. (98). We can see two general features: hjb2ji

tends to a constant at large values of Y in accordance with the qualitative discussion (see Figs. 17 and 18); and hjb2ji does
not depend on κ for κ1 < 1 and κ2 < 1 but falls down for κ > 1.

C. Corrections of the order of q2

In this section we develop a systematic approach to the BFKL taking into account all corrections to the BFKL equation of
the order of q2. Such expansion is justified for all the eigenfunctions except those whose eigenvalues are in the vicinity of
the point ω ¼ ω0. As one can see from Eq. (68), near this point there is a cancellation of two leading order terms, so the
small corrections will affect position of the pole and thus cannot be treated in a perturbative approach.
Expanding the BFKL kernel of Eq. (7) we obtain

K ¼ K0 þ q2K1;

K1 ¼
ᾱS
2π

�
− 1

2ðp02 þm2Þðm2 þ p2Þ þ
m2

2ðð~p0 − ~pÞ2 þm2Þðp02 þm2Þðm2 þ p2Þ −
m2

ðð~p0 − ~pÞ2 þm2Þðp02 þm2Þ2

þ N2
c þ 1

N2
c

m4

2ðp02 þm2Þ3ðm2 þ p2Þ
	

(99)

þ ᾱS
2π

δð2Þð~p − ~p0Þ
�
m2ðm2 − 2p2Þ
p2ðp2 þ 4m2Þ2 þ

m2ðp4 − 6m2p2 − 4m4Þ log
� ffiffiffiffiffiffiffiffiffiffiffiffi

p2þ4m2
p

þpffiffiffiffiffiffiffiffiffiffiffiffi
p2þ4m2

p
−p

�
2p3ðp2 þ 4m2Þ5=2

	
; (100)

where K0 is the BFKL kernel at q ¼ 0. Equation (100) gives the emission part of the kernel, while Eq. (100) stems from the
Reggeization term of the kernel which has a general form ωðð1

2
~q − ~pÞ2Þ þ ωðð1

2
~qþ ~pÞ2Þ [see Eq. (9)]. Rigorously speaking

at small values of q the expansion has two types of corrections: the first contribution is proportional to q2 and the second one
which is proportional to ð~p · ~qÞ2. However, below we will assume that the wave function does not depend on orientation of
the vector q (this is a correct assumption since conformal spin is zero for the ground state), so after integration (averaging)
over the orientations of ~p we will get for such corrections ð~p · ~qÞ2 ¼ 1

2
q2p2. Deriving Eq. (100) we performed this

averaging assuming that the wave function does not depend on the orientation of vector q. The fact that we do not have the
term of the order of ð~p · ~qÞ in the expansion of the BFKL kernel supports our assumption.
Considering K1q2 as perturbation we obtain the following expression for the shift of the eigenvalue of the BFKL

equation:
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dωn

dq2

����
q¼0

¼
R
dκ1dκ2ϕnðκ1Þϕnðκ2ÞK1ðκ1; κ2ÞR

dκ1jϕnðκ1Þj2
: (101)

dωn=dq2 is plotted in Fig. 20 as a function of n where n is
the number of zeros in the eigenfunction. One can see that
at n ¼ 0 dωn=dq2 is equal to zero and at small n it behaves
as dωn=dq2 ¼ aqn2.

The corrections to the eigenfunctions look as follows:

dϕnðκ;qÞ
dq2

����
q¼0

¼
X
k≠n

ϕkðκÞ
ωn−ωk

R
dκ1dκ2ϕnðκ1Þϕkðκ2ÞK1ðκ1;κ2ÞR

dκ1jϕkðκ1Þj2
: (102)

Equations (101) and (102) allows us to calculate the elastic
slope of the scattering amplitude which is defined as

BðY; kfinÞ ¼
1

4
hb2i

¼ 2
dImAðY; kfinjqÞ

dq2

����
q¼0

=ImAðY; kfinjq ¼ 0Þ;

(103)

where AðY; kfinjqÞ is the scattering amplitude which is
equal to ΨðY; kfinÞ of Eq. (78) at q ¼ 0. Generally speak-
ing this observable depends on the initial condition for the
scattering amplitude at Y ¼ 0. However, in the diffusion
approximation this dependence factorizes and can be
canceled in Eq. (103).
Bearing this in mind we calculate B for the Pomeron

Green function: viz.

BGðY;kfin; kinÞ ¼ 2
dGðY;kfin; kinjqÞ

dq2

����
q¼0

=GðY;kfin; kinjq¼ 0Þ: (104)

Using the general definition of the Green function, we obtain

GðY; κfinj0; κin; qÞ ¼
X∞
n¼0

ϕnðκfin; qÞϕnðκfin; qÞeωnðqÞY (105)

which leads to the following expression for BG:

BGðY; kfin; kinÞ ¼
2

GðY; kfin; kinjq ¼ 0Þ
�X∞

n¼0

dω
dq2

Yϕnðκfin; q ¼ 0Þϕnðκfin;q ¼ 0Þeωnðq¼0ÞY

þ
X∞
n¼0

eωnðq¼0ÞY
�
dϕnðκfin; qÞ

dq2

����
q¼0

ϕnðκfin; q ¼ 0Þ þ ϕnðκfin; q ¼ 0Þ dϕnðκfin; qÞ
dq2

����
q¼0

	�
: (106)

The first term increases with Y and gives the main contribution at large values of Y. As one can see from Fig. 20 at small n
dωnðqÞ=dq2 ¼ aqn2 ¼ bqβ2. Using this expression and the diffusion approximation of Eq. (73) we can obtain the simple
formula for the first term in Eq. (106):

Bð1Þ
G ðY; kfin; kinÞ ¼

2

GðY; kfin; kinjq ¼ 0Þ
X∞
n¼0

dω
dq2

Yϕnðκfin; q ¼ 0Þϕnðκfin; q ¼ 0Þeωnðq¼0ÞY

¼ 2

GðY; kfin; kinjq ¼ 0Þ
Z

∞

0

dβbqβ2Yϕðκfin; β; q ¼ 0Þϕðκfin; β;q ¼ 0Þeωnðq¼0ÞY

¼ −2bq d lnGðY; kfin; kinjq ¼ 0Þ
dðDYÞ : (107)
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FIG. 20 (color online). The shift in the eigenvalues dωn=dq2

due to q2 dependence of the BFKL kernel. n is the number of
roots in the eigenfunctions.
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We can evaluate this contribution using Eq. (75). One can
see that at large Y Bð1Þ → ð3=2Þbq=D. Therefore, Eq. (106)
leads to B which is constant as far as Y dependence is
concerned in a agreement with our qualitative discussion in
Sec. IVA.

V. CONCLUSIONS

The main goal of this paper is to find out how the correct
impact parameter behavior could affect the spectrum and
the eigenfunctions of the BFKL equation. We choose the
BFKL equation in the non-Abelian gauge theory with the
Higgs mechanism of the mass generation as the model for
the correct b behavior at large b.
We found that the massive BFKL equation for all ω

larger than ω0 ¼ − 1
2
ᾱS leads to the same eigenvalues as the

massless BFKL equation, and the eigenfunctions of the
massive and massless equations coincide at large momenta.
At small momenta, the massive BFKL eigenfunctions
approach a constant. We suggest an approximate para-
metrization (62) for the eigenfunction which allows us to
calculate the Green’s function of the massive BFKL
equation.
Also, we found that in contrast to the massive case, there

is a special point ω ¼ ω0 in the spectrum. The eigenfunc-
tions in the vicinity of this point have a singularity, as one
can see from a simple parametrization, Eq. (71), and they
are different from the massless BFKL eigenfunctions.
However, we do not see how this contribution, which falls
down with energy, could contribute to the physical observ-
ables at high energy.
Hence, we can state that the correct behavior at large b

does not influence the main properties of the BFKL
equation. This fact gives us a hope that the modification
of the BFKL equation due to confinement would not
affect the main equations that govern the physics at high
energy (in particular, the nonlinear equations of the high
density QCD).

On the other hand, the massive BFKL equation that we
solved here describes the weak interaction at high energy in
the case of zero Weinberg angle. We plan to find the high
energy behavior of the scattering amplitude in electroweak
theory (see Ref. [18]) in our future publication.
Also, we investigated the dependence on energy for the

average hjb2jiwhich turns out to be constant at high energy
in accordance with our expectations. In other words, we do
not find that the massive BFKL Pomeron generates the
slope for the Pomeron trajectory. However, it turns out that
the eigenvalues with the intercepts smaller than ωðq2Þ <
ωL ¼ 4 ln 2ᾱS have this slope, namely, dωðq2Þ=dq2 ≠ 0
(see Fig. 20). This result supports our belief that correct
impact parameter behavior does not affect the main proper-
ties of the BFKL equation as far as it concerns the
scattering amplitudes at high energies.
In summary, we determined the physical impact param-

eter dependence of scattering amplitudes and investigated a
possible modification of the BFKL-like behavior of total
cross sections in QCD with massive gluons appearing as a
result of the Higgs mechanism. It turns out that for this
model the possible j-plane singularities above the BFKL
intercept are absent, but for another infrared regularization
of QCD we cannot prove this important fact and therefore
generally there could be the Regge poles or Mandelstam
cuts to the right of the BFKL intercept, which would
modify the behavior of the total cross sections.
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FIG. 21 (color online). The contour of integration over z in Eq. (A3) [see (a)] and the values of ω ¼ −Ea→∞ for the analytical estimates
given by Eq. (A3) [see (b)]. The red line shows the intercept of the BFKL Pomeron.
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APPENDIX: A APPENDIX

As we have mentioned, from the normalizability of functionΨ the trial function of Eq. (33) γ should be γ ≥ 1=2. Sending
a → ∞ we can take all integrals analytically. Indeed,

lim
a→∞

Z
dκjΨðκÞj2 ¼

Z
∞

0

dt
ðtþ a2Þ2γ ¼

1

2γ − 1

1

a4γ−2
;

lim
a→∞

Z
∞

0

dκTðκÞjΨðκÞj2 ¼ a2−4γ
�

ln a2

2γ − 1
þ
Z

∞

0

dt
ðtþ 1Þ2γ ln t

�
;

lim
a→∞

Z
∞

0

dκ
Z

∞

0

dκ0
jΨðκÞj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ − κÞ2 þ 2ðκ þ κ0Þ þ 1
p ¼ 2

Z
∞

0

dt
ðtþ a2Þ2γ

�
ln
tþ a2ffiffi

t
p þ

Z
∞

0

rdy ln y
ðyþ 1Þγþ1

�
: (A1)

Hence, the energy is equal to the following expression with this trial function:

Ea→∞ ¼ 2ð2ga − 1Þ
Z

∞

0

dt
ðtþ 1Þ2γ ln

t
tþ 1

− 2γ

Z
∞

0

dt
ðtþ 1Þγþ1

ln t: (A2)

Equation (A2) can be rewritten in a different form, viz.

Ea→∞ ¼ 2ð2γ − 1Þ
�
− 1

ð2γ − 1Þ2 þ
Z
L

dz
ðzþ 1Þ2γ

ln2ð−zÞ
−4πi

�
− 2γ

Z
L

dz
ðzþ 1Þγþ1

ln2ð−zÞ
−4πi

�

¼ 2ð2γ − 1Þ
�
− 1

ð2γ − 1Þ2 þ
Z −1
−∞

sin 2πγdz
ð−z − 1Þ2γ

ln2ð−zÞ
2π

�
− 2γ

Z −1
−∞

sinðγ þ 1ÞzÞdz
ð−z − 1Þγþ1

ln2ð−zÞ
2πi

�

¼ 2ð2γ − 1Þ
�
− 1

ð2γ − 1Þ2 þ
Z

1

0

sin 2πγt2γ−2dt
ð1 − tÞ2γ

ln2t
2π

�
− 2γ

Z
1

0

sinðγ þ 1Þπtγ−1dt
ð1 − tÞγþ1

ln2t
2π

�
¼ 2ðψðγÞ − ψð2γÞÞ: (A3)

The values of ω ¼ −Ea→∞ are shown in Fig. 21. One can see that the maximum of the intercept from the variational
method is reached at γ ¼ 1=2 and it is equal to the intercept of the BFKL Pomeron.
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