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BFKL Pomeron with massive gluons
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We solve the BFKL equation in the leading logarithmic approximation numerically in the Yang-Mills
theory with the Higgs mechanism for the vector boson mass generation. It can be considered as a model for
the amplitude with the correct behavior of the s-channel partial waves at large impact parameters. The
Pomeron spectrum of the massive BFKL kernel in the @ space for r = 0 coincides with the continuous
spectrum for the massless case although the density of its eigenvalues is 2 times smaller for @ > @, where
@, is a negative number. We find a simple parametrization for the corresponding eigenfunctions. Because
the leading singularity in the @ plane in this Higgs model for + = 0 is a fixed cut, the Regge pole
contributions could be only for nonphysical positive 7. Hence we can state that the correct behavior at large
b does not influence the main properties of the BFKL equation.
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I. INTRODUCTION

The fundamental theoretical problem that has not been
solved in the framework of the color glass condensate
(CGC)/saturation approach [1-4] is the large impact
parameter (b) dependence of the scattering amplitude.
As it has been discussed in Refs. [5-8], the scattering
amplitude at fixed b in this approach satisfies the unitarity
constraint being smaller than unity, but the radius of
interaction increases as a power of energy leading to the
violation of the Froissart bound [9]. Such powerlike
behavior of the radius is a direct consequence of the
perturbative QCD technique which is a part of the CGC/
saturation approach. It stems from large impact parameter b
behavior of the BFKL Pomeron [10,11] which has the form
A(b>1/Q,)  s*/b>. Amplitude A(b > 1/Q,) becomes
of the order of unity at typical b?> « s* leading to ¢ « s* in
the contradiction to the Froissart bound (¢ < cln’s). Since
the lightest hadron (pion) has a finite mass (m,) we know
that the amplitude is proportional to exp (—2m,b) at large b
instead of the powerlike decrease. This exponential behav-
ior translates into the Froissart bound. Therefore, we have
to find how confinement of quarks and gluons being of
nonperturbative nature, will change the large b behavior of
the scattering amplitude. Since we are interested in the
behavior of the scattering amplitude at large b where this
amplitude is small, the nonlinear effects can be neglected
and one should introduce the nonperturbative corrections
directly to the BFKL kernel. It has been checked by
numerical calculations (see Refs. [12—-16]) that if we
modify the BFKL kernel introducing by hand a function
that suppresses the production of the dipoles with sizes
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larger than 1/ugy, the resulting scattering amplitude has
the exponential decrease at large impact parameters.

In this paper we are going to try a different way of
modeling the true large b behavior of the BFKL kernel
coming back to the first papers on the BFKL Pomeron [17].
In these papers it is shown that the BFKL equation exists
for non-Abelian gauge theories with the Higgs mechanism
of mass generation. The kernel of the BFKL Pomeron,
which depends on the Higgs mass, falls down exponentially
at large b providing the finite radius of interaction that can
grow only logarithmically and recovering the Froissart
bound. Therefore, the BFKL equation with mass can be a
training ground for answering the question: how could the
exponential b dependence at large b change the general
features of the BFKL Pomeron and the CGC/saturation
approach that is based on the BFKL equation? It should be
stressed that the BFKL Pomeron with the Higgs mass is
closely related to the high energy asymptotic behavior of the
scattering amplitude in electroweak theory (see Ref. [18]).

In the next section we outline the derivation of the BFKL
equation in the non-Abelian theory with the Higgs mecha-
nism of mass generation. This derivation was given in
Ref. [17] and we include it in the paper for the complete-
ness in order to present a coherent picture of the approach.
In Sec. III we discuss the main properties of the massive
BFKL equation and prove that the maximum intercept of
the massive BFKL Pomeron is equal to the intercept of the
massless BFKL equation 4ag In 2, where ag = N .ag/n. We
find the numerical solution for the massive BFKL equation
and give the simple approximate formulas both for eigen-
values and eigenfunctions of this equation. It turns out that
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for values w > wy = —%5{3 the spectrum of the massive
BFKL equation coincides with the spectrum of the mass-
less BFKL equation. For momenta of gluons larger than
mass, the eigenfunctions approach the eigenfunctions of the
massless BFKL equation while for momenta smaller than
mass, the eigenfunctions tend to be constant values. For the
massive BFKL equation we detect that the eigenvalues in
the vicinity of wq behave differently that for the massless
BFKL equation, and we propose the form of eigenfunctions
that corresponds to this eigenvalue. In Sec. IV we inves-
tigate the energy behavior of the average impact parameter
for the massive BFKL. Generally speaking, such an
equation could generate the slope for the Pomeron trajec-
tory since we introduce the dimensional parameter: mass.
Solving the equation we demonstrate that the massive
BFKL equation leads to average impact parameter that is
constant as a function of energy, repeating the behavior of
the massless BFKL equation. In conclusion we discuss the
main results of the paper.

II. MASSIVE BFKL EQUATION

The effective vertex for the gluon emission by the
Reggeized gluon in the Yang-Mills theory with the
Higgs mechanism was calculated in Ref. [17] and has a
form (all notations are shown in Fig. 1)
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where g7 = [q;"*
the emitted gluon.
The gluon production vertex for the conjugated ampli-

tude can be written as

and k, = q, — ¢y , is the momentum of
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where qﬂ =4 M CI2/4 QI QZ

In the kernel of the BFKL equatlon (K& b” ), correspond-
ing to the real particles in the intermediate state, this
product is multiplied by ag and by the corresponding color
factor with an additional term from the produced Higgs
particles in the singlet and adjoint representations accord-
ing to the model of Ref. [10] [see Fig. 1(b)]
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where f.,, is the structure constant of the color group
SU(N,), dg. is the d-coupling tensor and &, is the
Kronecker symbol. The coefficient r can be fixed from
the bootstrap relation [17]. Due to this relation in the
adjoint representation for the #-channel state the real
contribution after its partial cancellation with the virtual
contribution, corresponding to the Regge trajectories,
should be proportional to >+ m?. Since the projector
on the adjoint representation is (1/N,)f e f<"? we have

K@ ‘b
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2+m?). (5)
From Eq. (5) we obtain
r=— 6)

and the corresponding contribution to the kernel for the
color singlet state in the ¢ channel (BFKL Pomeron) is
equal to
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The massive BFKL equation (a) and its kernel (b).
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In the integral form the homogeneous BFKL equation at ¢ = 0 for the Yang-Mills theory with the Higgs mechanism is
given by

_ aSNc / Zf(p/) NNJ;I m2f<p/)
wf(p) =2w(p)f(p) + ) /dzp ((1-»7 — PV +m - (P> + m?)(p? + m2>’ ®)

where we use the following notations: ¢; = ¢, = p and ¢} = ¢, = p’.

The gluon Regge trajectory [w(p)] is calculated explicitly,

agN, d*k(p* + m?)

wllph =G5 [ o
4= Sl m?) (P — k) + m?)
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9

Assuming that we search the rotationally symmetric solution, the kernel can be averaged over the azimuthal
angle ¢:

/2ﬂd¢ 1 B 1
o 2mp*+p?+m? —2|p||p’| cos ¢ \/(pz + p~? _|_m2)2 —4p*p”?

1
= . (10)
V(PP = PP +2(p7 + pPym® + m?

Introducing the new variables'

;K== E=-——; ag=—, (11)

we obtain the one-dimensional BFKL equation

Ep(x) = K+ 1 In VK +4 +\f / dK¢( ") +N%+l 1 w ¢(k")dK’ (12)
NN Ea i V&R 12k im) 11 2Nkt 1Jo KA1
kinetic energy term potential energy term contact term

III. SOLUTION TO THE MASSIVE BFKL EQUATION

A. General features of the equation

We start to discuss the solution to the equation considering the most general properties of solutions. At large « solutions to
this equation should coincide with the solution to the BFKL equation with m = 0 which has the following form:

'Besides variables E and @ we will use below the notation @ = —E very often skipping tilde for simplicity. We hope that it will not
lead to misunderstanding since @ is not proportional to ag.
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d
E¢BFKL( ) In kpgpxr, — / K¢BFKL (13)

after an appropriate regularization of divergency at ¥’ = k
(see [10]).

The eigenvalues and the eigenfunctions of this equation
are well known [10,11]. Therefore, the solution to Eq. (12)
has the following large x behavior:

K—00

(k) — Pprkr(K) ~KTEHY

E() = y(v) = w<%+ iu) +"”G_ w> Cop(1), (14

with

where y(z) =dInI'(z)/dz [see formula (8.36) in
Ref. [19]].

Looking at Eq. (12) one can conclude that ¢ (k) should
be analytical functions with a cut at k < —4 and pole
at k = —1.

We find it instructive to rewrite Eq. (8) in the coordinate
representation.

Using an identity

/dzp/ eﬁf” _ /+oo p’dp’Jo(rp’) -

e p’2—|—m2 - p’2+m2 = Ky(rm), (15)

where Jy(z) and Ky(z) are the Bessel and Macdonald
functions [19], we can rewrite Eq. (8) in the form

Ef(r) = Hf(r) (16)
with
e U M L YN
Iplx/p2+4m Pt amE — |p|
+N§1\21P
— T(p) + V(1) +N23N+% Lp, (17)

where P is a shorthand notation for the projector onto the
state ~m?/(p? + m?):

5 m? p $(p)
P¢(P):p2+m2/ P . (18)

Let us introduce as a free Hamiltonian, the Hamiltonian for
the massless BFKL equation [see Eq. (13)]:

PHYSICAL REVIEW D 89, 074002 (2014)
Ho =Inp? +1In|r|> —2y(1)
1
=3 (w(1 + x0) + w(—x0) + w(1 + x*0%)
+y(=x"0") —4y(1)). (19)
Since this Hamiltonian operates in the two-dimensional
transverse plane, it is convenient to deal with the compo-

nents of all vectors as real and imaginary parts of the
complex numbers, namely,

X =71 +iry; X" =r —ir;

- (20)
p=—iV=(-id—

i0*,0 —0%),
where the indices 1 and 2 denote the two transverse axes.

The eigenfunctions with the conformal spin n = 0 take
the form [see Ref. [11]]

) = I @n
with the eigenvalues E(v) given by Eq. (14). The eigen-

functions of Eq. (21) have the following orthogonality and
completeness properties:

|7 Pyt () = 2000- 0 22)

|r||r’|/_+oode6(|r|) 6 (I7])=2z5(In|r[>~In|[?).  (23)

The Green function for the free Hamiltonian satisfies the
following equation:

(E = Ho)Go(r,r') = S(In|r —In[r[)  (24)

|||’|

and it has the form

o) = [ e
r, r .
=1 B Ew Il

The Green function for the general Hamiltonian of Eq. (16)
can be found as a solution to the integral equation

G(r,r) = Gy(r,r) + / dr'Go(r,v")(H —Hy)G(r", 1).
(26)
Equation (26) gives a natural way for applying a perturba-

tive approach. In particular, in the lowest order of expan-
sion with respect to m?> we have
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T(p)

-4

FIG. 2. The dependence of the kinetic energy [see Eq. (28)]
versus p? for m = 1.

2.2 2
m p m-r I
_m P n= 202
p2< m? > 4 <n4 v )>

2
N2+,
P
+2N%+

O(m*). 27)

At large distances (r — oo) the potential energy in
Hamiltonian (V(r) = —2K(rm)) is exponentially small,
the contribution from the projector P in Eq. (16) is
proportional to 1/(p?+ m?) and is also exponentially
suppressed, so the only relevant term in the Hamiltonian
is the kinetic energy

E(p) = T(p) = — 221y VP A Fp
|p|\/p2+4m \/p +am? —|p|’
(28)

which is shown in the Fig. 2 and for which the eigenfunc-
tions have a form

PHYSICAL REVIEW D 89, 074002 (2014)

FE ~eVrT s,
fF ~e VP, pr<o. (29)

The point p = 0 is special since it separates two different
behaviors at large r. This point corresponds to energy E =
% or W= wy = —%5{5. As we will see below, there are
qualitative changes in the shape of the wave functions near
this point. From the structure of the kinetic energy term (28)
we can see that the energy E is positive (o < 0) for p? > 0,
however for —4m? < p> < 0 the energy may have any
value from —oo up to % In reality the spectrum E is limited
from below by —41n2, as shown in Secs. III B and III C.

In the small-r limit the eigenfunctions should approach
the eigenfunctions of the massless BFKL equations,

Zv(|r]) Eq. (21), with the spectrum given by Eq. (14).

Combining Egs. (21) and (28), we may get the relation
between the parameters v and p, which control the small-r
and large-r asymptotic behavior,

E=T(p)=x(v). (30)

B. Estimates from the variational method

In the variational approach the upper bound for the
ground state energy E of the Hamiltonian H may be found
minimizing the functional

Eground =E) < F[{qﬁH = % 31

Equation (31) means that the functional F[{¢}] has a
minimum for function ¢ (r) which is the eigenfunction of
the ground state with energy E,,.

For our Hamiltonian in the momentum space Eq. (31)
can be rewritten in the form

E, = min
0T

The success of finding the value of E, depends on the
choice of the trial functions in Eq. (32). We choose it in the
form

2
0 K)p* (K N 1
I TP e S ] et
32
J§° dxlg P 2
|
1 ro\
ftrial(”):—r(y) 2a Ky, (ar)
r—o o« r7ell
{ r — O o r72+2y. (34)

1

Gyl (k) = Gty (33)

In the coordinate representation Eq. (33) corresponds to

One can see that our trial function has the correct behavior
ifa>0and b=2y—1>0.

Figure 3 shows the dependence of E, on y and a. At large
a and y — 0.5, E; reaches minimum value which is the
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E(y)
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FIG. 3 (color online).
state energy of the massless BFKL equation Eppg; = —41n2.

massless BFKL energy Egpk; . Therefore, we conclude that
the ground state energy E, could be only smaller than
Egpxr, but not larger than it. Figure 4 demonstrates the
global tendency in the dependence of Ej, on the values of
parameters a and y. Similar results were obtained for more
complicated parametrizations like

K.—5
P(k) = PR (35)
Blx) = < (36)

(k+ )P (x + b2y 32

While from the variational principle we always obtained
the energy E > Eppky, we believe that the true minimum of
the energy is E = Eppg;, (respectively the eigenvalue
® = wgpg,), there is no indication that there are eigenval-
ues with @ > wgpgy. Actually, with trial function of
Eq. (33) for @ > 1 we can perform the analytical calcu-
lation (see the Appendix) which shows that aty = 1/2 we
indeed have the minimum with @ = @wgpgy .

FIG. 4 (color online). The dependence of the energy given by
Eq. (32) on the values of parameters a and y.
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Ea@) Epri.=—4 In(2)
o5 y=055
\ y=0.75

=1.25
—10F 14
XQ,

! ! ! !

4 [ 8 —0

(b)

a

Dependence of E, given by Eq. (32) on y [see (a)] and a [see (b)]. The red straight line corresponds to the ground

C. Independence of the Pomeron
spectrum from the gluon mass

In this section we wish to prove that there are no
Pomeron states above the intercept of the massless
BFKL equation. As we have seen in the variational
approach, the best trial function that describes the BFKL
Pomeron takes the form

1
P = ——- (37
W et @
It gives Egpxr, = —4In2 independently from a [see
Fig. 3(a)]. We wish to prove that
E> EBFKL = —4In2. (38)

Since the energy contribution of the contact term is
positive, we neglect it below.

For the proof of (38) we rewrite the Hamiltonian of
Eq. (17) in the form

H=T(p)+V(r) ={T(p) = To(p)} + Ho. (39
where H, is chosen from the condition
Hoboia = (To(p) + V(1)) bpia = EprxiPpa-  (40)

If we verify that {T'(p) — To(p)} > O for all values of p,
then inequality (38) is valid due to (40) because gb?rial is
positive for the ground state of H,.

Neglecting the contact term, the kinetic energy T(p)
takes the form®

To(p) = EgrkL — %()V(r) i (7))

trial

40D
where

*The ordering in Eq. (41) is essential since ¢0,,(p) is an
operator in coordinate space.
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1 dzp/

PHYSICAL REVIEW D 89, 074002 (2014)

L dp Vp?+d

07()‘/(’)45&2110) = —/

trial

T ([p-pP+DVP*+a

_ . 42
o VTSRO prraipip

The last expression can be written in terms of the elliptic integral in the Weierstrass form or in the Jacobi form after the

following transformation:

1 0 Vp? + a?
0 V(r)pgia(r) = =2 dz 3 N2 2.2 2" “3)
wiat (P) 0o VA=) + P+ 11—z
For Eq. (43) we can find the asymptotic behavior for large and small p, viz.
1 p>1 2 lnp 1
———V(r).,(r) —>——lnp—4ln2+—<——+a>+(9(1/p2); (44)
tial (P) i p P’ 2

2
ﬂ—jzilln(\/az—u\/&?). 45)
a p—

In terms of {T(p) — To(p)} it means that

As aresult, it is plausible that T(p) — T(p) is positive for
all p providing that the parameter a lies in the interval

5
S<a<a (48)

where ag is found from the equation

1 2
— 4402 =2y [0 In(y/ad — 1+ \/a2) =0 (49)
2 ag—1

which gives a3 = 5.26.

In Fig. 5 we calculated the difference T(p) — Ty(p)
using the integral of Eq. (42) and/or Eq. (43) without
expansion of Egs. (46) and (47). One can see that for
5> a® > 0 at any values of p this difference is positive.

The condition of the minimum of |7(p) — To(p)| should
be used in the variational approach for fixing the unique
wave function, because the minimum of energy is realized
on many configurations.

Figure 6 shows that the condition of Eq. (30),
E=T(p)=T(ia), is fulfilled for a in the interval of
Eq. (48) (or Fig. 5). Thus, inequality (38) is proven.

FIG. 5 (color online).

The dependence of T(p) — T(p) on the
values of parameter a and p.

FIG. 6. The dependence of T(ia) on the values of parameter a
(solid line) and E = —y(0) = —41n 2 (dotted line).
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D. Relation between energy and wave function

In this section we demonstrate that the value of energy
E(p) is completely determined by the asymptotic behavior
of the wave function at large p for a more general trial
function of the form

buia(p) = (p* + a®) 7. (50)

V(1) buia(r) —_ (p* + a®)stih

d)m'al (p)

dp
/)H(W—FP+U@”+fW”_

PHYSICAL REVIEW D 89, 074002 (2014)

This proof complements the proof given in Sec. III A, in
which we used properties of the massless BFKL equation
and argued that the spectrum of massless and massive
BFKL kernels should coincide at large p. The trial function
Eq. (50) is close to the wave functions which we will obtain
numerically in Sec. III E, so we find it instructive to repeat
the proof for these functions in a more transparent way.

For the trial function of Eq. (50), Eq. (48) takes the
form

I dx
0 VI=B(p(1—x)p?

(p* +a2>—5+iﬁ
+a*(1 —x) + x)t#’

&Y

We introduced Feynman parameter x and integrated over p’ to obtain the last equation in Eq. (51).
For large p the essential region of integration is a*/ p> < x < 1. We introduce an intermediate parameter ¢ with its value
in the interval a?/p? < ¢ < 1 and rewrite Eq. (51) in the form

V(”)fﬁmal(r)__/”@ 1 /‘@ __/°° dz 1 _/1@ 1
Puiar (P) o X (14 P Lyt o x (1 —x)t Lty (2= Dy x (1—x)5#
— dt l-o df U 4Py —2
=—| T——pgth— — 7P =—Inp? - / di . 52
A (-0 A -1 i, =) ©2)

Therefore,
1 1
E(p) :W<§+iﬂ) +W(§—iﬁ> —2y(1) (53)

independently of the value of a. Moreover, the result for the
energy E(f) does not depend on the form of wave function
providing that it has the correct asymptotlc behavior at
large p. For example, the wave function ¢, (approx) (k) of

p2+iB)

Eq. (62) that stems from our numerical estimates can be
written as the real part of the expression,

(aopron) ()

n

i —ip
el (\/K'f' +\/_> . (54)

Ve a \Vera- vk

The difference of energy for the wave functions of Egs. (50)
and (54) takes the form

|
aep = [

From the dimensional considerations AE(f3) falls down as
1/p? at large p and therefore, the energies E(f) for the
wave function of Egs. (50) and (54) coincide.

E. Numerical solution

1. Direct method

General approach.—Equations (12) and (13) have the
following structure:

wp(k) = &S/dK’K(K, K)p(K'). (56)

T ([p=PP+1DVp2+4

L (B, 55
W7 Vs a—

Notice that we rewrite Eqs. (12) and (13) in terms of @ and
restore the coupling constant in front of the integral. In the
numerical calculation we replace the continuous variables x
and «’ by the discrete set of {x,} and {«),} using the
logarithmic grid (in x = k*>/m?) with N + 1 nodes,

Ky = Kpmin €XP (%ln (Kmax/Kmin)), n=20,....,N, (57)

where the values of Kpyin, Kmax Were set to Ky, = 10740,
Ko — 1050, and N — 1024.
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The first twenty roots of the original (massless)

TABLE L
BFKL equation (column a)SLBFKL)) and BFKL with mass (column

™) found with the chosen method. Note that for the first root
for the massless BFKL, we get w58l ~ 0.554504, whereas the
true value is 4aln2 =~ 0.554518, i.e. the relative difference is of
order 3 x 1072,

Root number w KD ™)
1 0.5545 0.554
2 0.553 0.551
3 0.551 0.547
4 0.548 0.540
5 0.545 0.532
6 0.540 0.522
7 0.535 0.511
8 0.529 0.498
9 0.522 0.485
10 0.515 0.470
11 0.507 0.454
12 0.499 0.437
13 0.489 0.420
14 0.480 0.402
15 0.470 0.383
16 0.459 0.365
17 0.448 0.346
18 0.437 0.327
19 0.426 0.308
20 0.414 0.289

In the discrete variables Eq. (56) takes the form

<Kmax/:<mm>)¢<xm,

(58)

N
1
o) = 3> Kl
m=0

where x, and «), are taken in the form of Eq. (57).
Introducing the notations d(k,) = @, and
K (K, Ky )0 (310 (Kina/Kimin)) = K We  can  rewrite
Eq. (58) in the matrix form

0‘))1
0.55
0.50 E—
0.45 w2
—
0.40 —wy
— s

0.35

L

b

FIG. 7 (color online). Dependence of the first five eigenvalues
on the maximal cutoff x,, =

R AR lkz
100 150 M Kmax

2
kmax .

PHYSICAL REVIEW D 89, 074002 (2014)
N - -
op, =85y Kby or op=aKep, (59
m=0

where vector q?ﬁ has N 4+ 1 components ¢, and K is
(N + 1) x (N + 1) matrix. To find the roots of the char-
acteristic polynomial p(w) of the matrix asK — w1, where
I is the identity matrix, we need to solve the secular
equation,

p(w) = det(asK — wI) = 0. (60)

We use Egs. (59) and (60) to find the eigenvalues and
eigenfunctions both for massive (12) and massless (13)
BFKL equations, using the analytic solution Eq. (14) to
control the accuracy of our numerical calculations. Due to
finite grid size, the spectrum is discrete, with a few positive
roots given in Table I and Fig. 7. Sensitivity to a number of
points is quite mild, so discretization error should be small.
As one can see from Fig. 7, when «,,,, grows up to infinity,
the distance between the roots decreases rapidly, with the
highest root asymptotically approaching the massless
BFKL value wgpky, = 4a5In2 ~0.56 for ag = 0.2, both
for the massive and massless cases. It should be stressed
that the relative difference between the highest eigenvalue
in our calculation for the massless BFKL equation and the
exact wgpgy, is negligibly small (of the order of 3 x 1079),
which demonstrates a good accuracy of a chosen method.
We found that the eigenvalues of the massless BFKL
equation can be written in a familiar form:

a

and k., and kg, are the upper and lower cutoffs
introduced in Eq. (57).

In Fig. 8 one can see how the simple formula of Eq. (61)
describes the calculated spectrum (see solid and dashed
curves for m = 0). For massive BFKL the situation is
different. A simple parametrization, Eq. (61), with nonzero
m may be used with a good precision only for @ > w,. The
point @ = @, is special and will be discussed in more detail
below. For very large n the values of the intercepts become
smaller than @, and agree with Eq. (61), but the n
dependence of 3, is no longer linear and will be discussed
in the following section.

Eigenfunctions and Green’s function: Eigenfunctions
with @ > @wy.—The first three (unnormalized) eigenfunc-
tions corresponding to massless and massive BFKL are
shown in Fig. 9. As we can see, for large x solutions of
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_osl

FIG. 8 (color online). Dependence of the eigenvalues on the number of zeros of the eigenfunction. The dashed lines describe the
numerical solution for w,, for the massive BFKL equation with mass m. m = 0 corresponds to massless BFKL. The orange solid curves
show the values of w, calculated using Eq. (61).
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FIG. 9 (color online). ~Absolute values of the first three eigenfunctions |y, (k)| corresponding to massless BFKL (a) and BFKL with
mass (b). In the figure k> = k.
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FIG. 10 (color online). Left: Dependence of the eigenfunction parameter f, on eigenfunction number n. Right: Dependence of the

eigenfuncton parameter ¢, on eigenfunction number n. In a chosen lattice ® = wy = —%as corresponds to n = 37.
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Bu
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FIG. 11 (color online). Large-n dependence of the eigenfunc-
tion parameter # on the eigenfunction number 7.

these equations coincide, however for « <1 they are
different: the massless solution grows roughly as power
of momenta, k=7, whereas the solution in the massive case
is regular and reaches a constant. One can see that y, (k)
has one zero while w3 (k) has two zeros. This behavior of
the wave functions has been expected from the general
analysis of the solution (see Sec. Il A).

With a good precision the eigenfunctions with the
eigenvalues larger than @, can be parametrized as

\/a’?(ni)zsin(ﬂn(m = 1)Ln(x) + ¢,)
YSeiN)
Vera— Vi)

The form of the parametrization in Eq. (62) is inspired by
the expression for the gluon trajectory w(x).

For k <1 and for x> 1 the function (62) has an
asymptotic form:

¢S13ppr0x) (K) _

with Ln(k) = ln( (62)

Ta(n)sin(p,) fork <1,

¢£lappr0x) (K') _

(63)

Since in the large-x regime the massive BFKL coincides
with massless BFKL, for which the second line of Eq. (63)
is an exact solution, the parameters /3, and ¢, are defined
for all possible values of n. For the case m =1 the
dependence of f, and ¢, on the number n is shown in
Fig. 10. We can see that in the small-n region both 3, and
¢, are linear functions of n, p,(m)=a(m)n and
@, = a,(m)n, where a(m) is given by Eq. (61), and

8.577

In (Kmax /Kmin)

= byfu(m), (64)

aq,(m) ~

L\/"E)sin (B,(m=1)Ink + ¢,) forx> 1.

PHYSICAL REVIEW D 89, 074002 (2014)
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FIG. 12 (color online). Upper plot: Comparison of the approxi-
mate parametrization (62) (in red) with numerical result (blue) for
n = 10. Lower plot: Check of accuracy of ¢@P) (i, §). @*Prox
is given by Eq. (67) (see wavy lines) and o®*** (orange straight
lines) at different values of f.

b, ~ 1.865, (65)
so in this regime we may rewrite Eq. (62) in a form

a(p)
Viid

which does not depend on lattice parameters. However, a
linear approximation for n dependence of ¢, is valid only
for very small n. In the vicinity of the point @ = @, both
parameters freeze, and we will discuss this regime in more
detail in the next section. For very large n, the intercept @
goes below @, and the parameters S, ¢ resume their
dependence on n (see e.g. Fig. 11), however in this regime
the oscillation period becomes comparable with period
of the lattice, so extracted parameters are not very reliable.
The normalization factor a(n) can be found from the
normalization condition of Eq. (22) and is irrelevant for
purposes of this paper since we are solving the linear
equation.

In order to demonstrate the quality of the fit (62), in the
left panel of Fig. 12 we directly compare the numerical

PEPPox) (B = sin(BLn(k) + b,f)  (66)
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PK)

107"
10777
1074
107

107

10740 10720 1 1020 10 109
FIG. 13 (color online). The eigenfunction |¢(wy,x)| with
0 =wy= —%&s- The red curve corresponds to the positive
values of ¢(wy,x) while blue describes the negative ¢(wy, k).
The approximate function |¢p*PP™*(w,, k)| = |1/(k —Kg)| with
ko = 10730 is shown by the thin line. We multiply the fit result
(¢p*PP%) by some constant to see the difference (otherwise they
just coincide).

eigenfunction and parametrization (62). In the right panel
of Fig. 12 we plot the ratio

r.hus. (P (x, )
k. )

(@PProx —

(67)

which demonstrates that the deviations of the fit from
numerical solution are the largest in the region x ~ 1,
however even there do not exceed 10%.

N<

K, =
exp <Ni>ln1<max> withn =0,...,No, N. =1024, Ky, = 109,

From Fig. 14 we may see that the spectrum in this case is
no longer degenerate. This happens because the typical
node values k, ~ 107> — 107! are much larger than with
logarithmic grid and a deviation @ — @, ~ k,, is also larger.

In Fig. 15 we demonstrate that the deviation w(n) — w,
is proportional to the pole position x(n) and in agreement
with Eq. (68) the ratio

Sag  Kko(n)
a 12 wo(l’l) — @

is close to 1 for wy(n) =~ w,. In the left panel, we have
shown results with logarithmic grid, and in the right panel
with grid Eq. (70). In the latter case, while results are close
to one, there are some deviations due to (O(x?) terms
omitted in Eq. (68).

For x> 1, all the wave functions in the vicinity
o =~ wy have a form given by Eq. (63) but with fixed

PHYSICAL REVIEW D 89, 074002 (2014)

Eigenfunctions and Green’s function: Eigenfunctions in
the vicinity of @ = wy.—As was discussed in previous
sections, the point @ = @, is special. We would like to
investigate the behavior near this point both analytically
and numerically. The equation of motion, Eq. (12), for
w ~ wy, or E =1 in the small-x regime has a form

1 5 N:—1 [ dK ,
(-5 53x)ow) = ~Mt [ g + 006,

(68)

Introducing a new notation € = %2 (E —3) one can see that
function ¢(x) should have a pole at k = e,

const

¢(K> |K—>e<<1 = (69)

€—kK

A numerical calculation confirms our expectation. As
one can see from Fig. 13, the wave function indeed has a
pole at k < 1. The position of the pole is arbitrary and may
coincide with any node at x < 1. Due to large number of
nodes with x, < 1, the spectrum Fig. 8 looks multiply
degenerate at the point @ = @,. In order to demonstrate that
this is not the case, we recalculated the eigenvalues in the
lattice which has a linear step in the region xk <1 and a
logarithmic step for k > 1,

&+ withn=0,....N_.N_ =200 for«x < I;

(70)
for k > 1.

B, =p°=0786 found from w(f'm=1)=—}as,
where w(f°, m = 1) is given in Eq. (61).

In summary, the wave functions with @ & @, may be
parametrized as

¢l(1appr0x) (K')
a(n)sing, (1 —ky(n))/(k — ky(n)) fork < 1;
- {%’gs'n (B lnk+¢,) forx> 1.
(71)

It is instructive to notice that Eq. (71) corresponds to the
energy spectrum which almost does not depend on n for
large range of n independently of the type of discretization.
This fact reflects in our calculation procedure the difference
of the continuous spectrum between @ > @, and @ < wy.
The former is discreet with the cut at large x while the latter
remains continuous with this cut.
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FIG. 14 (color online).

The eigenvalues of the massless and massive BFKL equation in the linear-logarithmic discretization [see

Eq. (70)]. The dashed lines describes the numerical solution for w,, for the massive BFKL equation with mass m. m = 0 corresponds to
massless BFKL. The orange solid curves show the values of w, calculated using Eq. (61).

(@

FIG. 15 (color online).
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(b)

The ratio R = ag(5/12)kq(n)/(w(n) — wy) versus n. Part (a) shows this ratio in logarithmic discretization [see

Eq. (57)], while in (b) the ratio is plotted in linear-logarithmic discretization [see Eq. (70) for the description].

Eigenfunctions and Green’s function: Eigenfunctions
with @ < wy.—For large n (n > 550; see Figs. 8 and
14) w,, become smaller than @y. In this kinematic region the
eigenfunction can be described by general formulas of
Eq. (62) with f that increases linearly with n (see Fig. 11)
but we need to add to this eigenfunction the term « 1/(x —
ko(n)) with kg(n) > 1. However, the difference Ax(n) =
ko(n + 1) — ko(n) turns out to be larger than AE(f(n)) =
E(p(n+ 1)) — E(B(n)) of Eq. (53) for our discretization
procedure. The appearance of 1/(k — ky(n)) in the eigen-
function is the consequence of the fact that the spectrum
remains continuous with the cut at large «.

Note that evaluations in this region should be taken with
due care because of possible interplay of oscillation period
with period of the grid. The maximal value of # which may
be extracted with this method is controlled by the grid step

and is given by Sp. = N/10g(Kmax/Kmin) = 3.7 [see
Eq. (57) for values of N, k.« and kpinl-

Eigenfunctions and Green’s function: Green’s func-
tion.—We can calculate the Green function of the massive
BFKL Pomeron using Eq. (63). Indeed, the Green function
takes the general form

G(Y, Kfin

0, Kin) = Z ¢n (Kfin)d’n <Kin>ew(n)Yv (72)
n=0

where functions ¢, should be normalized according to
Eq. (22).? In the diffusion approximation we can expand the

*In our numerical solution we have a discrete spectrum in the
restricted region of x (from k., to k., ). Therefore, we need to
normalize not to the ¢ function as in Eq. (22) but to Kronecker’s
delta.

074002-13



EUGENE LEVIN, LEV LIPATOV, AND MARAT SIDDIKOV

d(x)
1017

1010

1 1 1 K
1 1020 1040 1060

(a)

FIG. 16 (color online).
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(b)

Leading eigenfunctions for the massive and massless BFKL equation extracted with evolution method (a).

Comparison of leading eigenfunctions extracted with direct method and evolution (b). Note that the eigenfunctions extracted in both
methods have different normalization, so for comparison we have multiplied the direct solution by a normalization factor to match

massive BFKL with both methods at k = 1.

eigenvalues of Eq. (61) at small n replacing Eq. (61) by the
simple expression

w(n) = wppg, — Da*n? + O(n?) = wgpgr. — DF*. (73)

where WBRFKL — 41n 2&3, D = 14(;(3)515
Therefore in this approximation the Green function takes
the form

1
G(Y, k5,0, K5,) =
(¥ ginl0- i) V (Kpin +4) (kin +4) 2
One can see that at large Y Green function

G(Y,Kfin|0, ki) o (DY) 73/2e@s.Y  which should be com-
pared with the massless BFKL case for which
G(Y ., Kfin|0, ki) & (DY) ™1/ 2e@srY Tt s related to the fact
that in the massive case the diffusion approximation is valid
only at large positive k with a boundary condition at fixed .

2. Evolution method

In this method the leading w-plane singularity is
extracted using an evolution in rapidity Y,

v
oY _ 4 / PIK (k)UK Y), (76)
oY

where

e+ico daw
U(k.Y) = — Y 77
)= [T e,
and k = k°.

— pwsrkLY

G(Y’Kfiﬂ O’Kin) = ewBFKLY qun (Kin vﬁ)¢n (Kfin ’ﬂ)e—DYaznz
n=0

(s3]
= et [ g Pl D)
0

(74)
The main contribution proportional to e“s.¥ stems from
small f’s where we can use Eq. (73). Taking the integral
over S in Eq. (74) we obtain the following Green’s function

at large values of Y:

7
—qe
DY

(L(xfin)—L (xin))?
4Day

4Day

(75)

(L(Kfin)+L (ki) +2b5)?
—e

For asymptotically large Y at any initial condition
function ¥(Y, k) may be decomposed over the eigenfunc-
tions of the Hamiltonian H,

U(Y. k)= cppu(k)e”.

n

(78)

As has been mentioned the spectrum is discrete since on the
grid we always have a cutoff at large ky. From naive
counting for asymptotically large ¥ we have

\I/<Y, k) ~ C0¢0(k)eu)oY <1 + ﬁeA(uY> ,

Aw =wy—w; >0,

however in reality the situation is more complicated since
we have inhomogeneous convergence and the limits do not
commute:
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Iim Aw =0, AwY = 0 - co = undefined.

kmax —

lim

kipax =00, Y > 00

(79)

In the case of the massless BFKL equation the summation
over n in Eq. (78) leads to the asymptotic behavior at high
energy which has been discussed after Eq. (75).

For evolution we used a modified BK code [20] with
default conditions, Ink%, € (—20,138) and N = 1024
points in logarithmic grid. The corresponding leading
eigenvalues extracted with this method are w, = 0.545
for the massless case and w, = 0.537 for the massive case.
The results of the wave function are shown in Fig. 16(a). In
Fig. 16(b) we compare these wave functions with those
extracted with the direct method. For the massive case we

PHYSICAL REVIEW D 89, 074002 (2014)

see that both functions are almost identical. For the
massless equation we can see that in both cases the
qualitative behavior is very similar, though quantitatively
the curves differ at large k;. Since the wave function is
suppressed there by a few orders of magnitude, we believe
that this uncertainty should not affect the physical
observables.

IV. BFKL EQUATION WITH MASS AT g # 0

A. Large impact parameter dependence

The kernel of the BFKL equation at g # 0 is given by
Eq. (7) which we rewrite using more symmetric notations
for gluon momenta:

> . . -/ ., > . 7
=5 5 x4 P> =3 5 =<4 — ; k= —p 80
G =549+p 9 =59-"P G@1=59+Pp h=74-p p=r (80)
It takes the form
emission kernel: K., (7.p,p")
1> 2>\2 2 1z =\2 2 4Nt N2 +1 2
KG.5.5) = 52 oo (e s L) . @)
P =5\ e G e em T G ) T @E e Qa T P )
contactterm: K (¢,p")
First, we rewrite this kernel in the impact parameter representation using the following formulas:
K(.5.5) = [ aeTK(G.5.5) (82)

)+m
2+

2 1
= g2ipb <—ZV§ + m2>4/

q+p
@§+p

o 7 1 > 2 o 7 k-b
= 4¢%Pb (—ZV% + m2> 2k Ko (2mb) = &P 'b{szO(Zmb) + 2im¥K1(2mb)}, (83)

where K;(z) are the modified Bessel functions of the second kind.

Using Eq. (83) we can rewrite the first two terms of Eq. (81) [emission kernel K., (g, p

P')] in the following

form:
- % kb ., -
Kem(b,p, p') = ag <k2 5cos (2p' - b)KO(Zmb) +2m m— = sin (2p"-b)K, (2mb)>. (84)
In the contact term of Eq. (81) we can replace g5 = %Z] — P and obtain the following expression:
- C_IS N% + 1 =/ Z
Ku(b,q3) = PR (—V%} + N—%mz) e27K(mb)
_ aS iq, ”2 2 b 2 q2 i l; b
—We b g K(mb)—i—NCKo(m )+ 2im 5 K,(mb) |. (85)

It is worthwhile mentioning that we can replace ¢, by p’
over ¢b.

in this part of the kernel since we have the integration
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The part of the BFKL kernel that is responsible for the
gluon Reggeization for g # 0 takes the following form [see

Egs. (8), (9), and (80)]:
) +w(‘%21—13 ) (86)

Using Eqs. (9) and (83) K¢, (g, p) in b representation takes
the form

- 1. -
Kies(q:p) = @ Jd+p

Kreg(b, B) = @gm? cos (2p - b){K2(2mb) + 2K3(2mb)}.
87)

Finally, the entire kernel in b representation looks as
follows:

K(b.p.p") = Kem(b. p. p') + Ker(b. P')
+ Ko (0. D)5 (P—F)  (83)
and the massive BFKL equation takes the form
af (b, plY N S,
UCT [ v yk(d. 5.6 -5 1)
(89)

At large b > m kernel K falls down exponentially, namely
K « exp (—mb) which leads to f(b, p|Y) o exp (—mb).
Indeed, assuming that b’ ~ 1/m contribute to the integral
over b’ in Eq. (89), we can rewrite this equation in the form

UOID [ ey [ @vrd. 5. }brb.51m)
- dzpvc@,;a,ﬁ'){ / Jlb’f@’,mm}.
(90)

Noticing that the largest asymptotic behavior at large b
stems from K., we can rewrite Eq. (90) in the form

Of (b, p|Y L o
%—/cﬂp’{/dzb%(b,p,p’)}f(b,pqy)

- Jo(p'D)
+ age b/dzp’—p/2+m2

x {/de’f(Z',[a’|Y)}.

solution at g>=0

oD

As we have discussed, our solution at q2 — (0 behaves as
(p*)~*" at large p but it is constant at p — 0. The integral
over p’ in the nonhomogeneous term in Eq. (91) is
concentrated at small values of p’ ~ 1/b < m leading only

PHYSICAL REVIEW D 89, 074002 (2014)

to mild powerlike dependence on b. Therefore, searching
solution in the form f(b, p|Y) = exp (—mb)f (b, p|Y) we
see that for f(b, p|Y) we obtain an equation with the
nonhomogeneous term that only weakly (powerlike) falls at
large b.

Hence we can conclude that at large impact parameters
the solution to the BFKL equation with mass falls down as

exp (—mb) as it was expected.

B. Equation for {|b?|)

In this section we are going to derive the equation that
will allow us to calculate (|b?|) as a function of Y. In the
parton model this observable is proportional to the number
of emissions due to Gribov’s diffusion [21] which is
sketched in Fig. 17.

<b2> = Ab?n

AP = 1/<p?>

FIG. 17 (color online). Gribov’s diffusion for emissions in the
parton model (blue line) and in QCD (red line).

oo

lag,o(l/x)

log (k)

FIG. 18 (color online). The contour with constant k¥ (k, ¥) (see
dotted line) for the massless BFKL equation and for the BFKL
equation with mass (see solid red line).
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FIG. 19 (color online).

The average b? after n emissions is equal

= Ab*n =

(1bl) n. 92)

1
(Ip7)

Since the average number of emissions at given Y is
proportional to Y and the average (|p%|) is a constant
independent from Y in the parton model, {|b?|) = 4a/pY
where ajp is the slope of the Pomeron trajectory. In QCD
the average transverse momentum increases with energy Y.
We plot in Fig. 18 the contours on which function k¥ (k, Y)
[see Eq. (76)] is constant. One can see that for the massive
BFKL equation the average p; are larger than the values of

The general expression for (|b2|) takes the form®

[ dbb*f (b, p|Y)

(|b?]) versus Y (a) and k, (b).

pr in initial conditions and they grow with Y. One can see
from Eq (92) that Ab? decreases at large Y leading to

(|b? |> Z'0 since (| p%|) increases faster than Y (see Fig. 18).
Therefore, we expect that in QCD (|b?|) for the massive
BFKL Pomeron does not depend on Y repeating the main
features of the massless BFKL Pomeron.

We would like to stress that this discussion is based on
the uncertainty principle ApyAb ~ 1. Figure 18 shows that
if we replace in Eq. (92) 1/(|p%|) by {|1/p2|) we can
expect that the massive BFKL equation will lead to
Gribov’s diffusion since (|1/p%|) « 1/m?. Therefore, we
need to calculate (|b?|) for the massive BFKL Pomeron to
justify the simple picture that stems from Fig. 17.

(10%) =

and for N(p|Y)

[ dbf(b.p|Y)

(93)

= f d*bb>f (E p|Y) we can write the equation using the expression for the BFKL kernel in b representation

[see Eq. (88)]. However, it turns out much simpler to derive this equation using that

N(p /szzﬁfb plY) = /aﬂb/d2 (~V2e 8b) £ (g,

where U is defined in Eq. (76).

Applying operator —V(ZI to both parts of the evolution equation in Y at ¢ # 0 we obtain

o2 [0V BIY)
oY

ON(H|Y)
aY

/ 2pK(3,
=/d2p’/C(q= . P> P')N(

; { / Pp (VK. 7

ﬁ/>>|qo<vq\v<a,ﬁ|y>>|qo} o

)\If(é,io’lY)},

Y) = —(V3¥(q. p|Y))| 0 (94)
#Y) + / PP (~V2K(G. 5. ) o) V(F']Y) 95)
(96)

Equatlon (93) determines the average b> from the imaginary part of the scattenng amghtude and gives the easiest way for

calculations. However, we can calculate (|b2|) from the elastic cross section: viz. {|b2])

definition leads to (|b2|) in 2 times larger than from Eq. (93).

a>bb*f2 (b, p|Y)/ [ dbf*( b p|Y). This
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Using the kernel of Eq. (7) and the notations of the momenta of gluons according to Eq. (80) we see that
(V,K(q.p.P"))ly4—0 = 0. Using Eq. (81) we obtain the following expression for (=VZK(q. p. p'))l,—o:

4m?

)7+ n) (P ) (p— P + )
4m?
2P+ m) (PP m?) (PP +m?)

4K (p.p") = (=VeK(q. p. P')lg=0 =

7

Hence Eq. (95) gives the equation for N(p|Y):

ON(|Y)  «+1 \/K-f— +\f N(x|Y) — dK’N(K'|Y) NG+ /N K'|Y)dx
dagY \/E\/IH- \/K+ \/K—K P+2(k+c)+1 2N k+1 K +1

® 1 _ 2k + k' +2 p
_4[) dK{Z(K2+])2 2(K+1)2(’(/4-1)\/(K—K/)2+2(K+K/)+l}\ll( I¥)

(1—2) (4 + 6K — K?)
+2{K(K+4)2+2ﬁ(x+4)(;<+ 1)“’(’<>}‘1’(K|Y). 98)

Two remarks are needed: first, we substitute N. = 3 in the last two terms; and second, the last term stems from the
expansion of the gluon trajectory [see Eq. (9)] in the master equation [see Eq. (8)] where their contribution takes the
form w(p — 3/2) + w(p — §/2).

Figure 19 shows (|b?|) of Eq. (93) in which we plug in the solution to Eq. (98). We can see two general features: (|h?|)
tends to a constant at large values of Y in accordance with the qualitative discussion (see Figs. 17 and 18); and (|b?|) does
not depend on « for k; < 1 and x, < 1 but falls down for x > 1.

C. Corrections of the order of ¢?

In this section we develop a systematic approach to the BFKL taking into account all corrections to the BFKL equation of
the order of g*. Such expansion is justified for all the eigenfunctions except those whose eigenvalues are in the vicinity of
the point @ = @,. As one can see from Eq. (68), near this point there is a cancellation of two leading order terms, so the
small corrections will affect position of the pole and thus cannot be treated in a perturbative approach.

Expanding the BFKL kernel of Eq. (7) we obtain

K = KO + qulv
K _ag 1 N m? m?
"2 | 22+ w4 ) 25— P+ mP)(p? w2+ p?) (7 = D)+ m?) (" + m)
N2 +1 4
e 99)
Ne 2(p” +m?)’(m* + p?)
24 _ 6m2p? — Am™) 1 \/ PP H4m*p
5( G m*(m* — 2p?) m*(p* — 6m*p m*) og( [+ am—p (100)
27r —p p2(p* + 4m?)? 2p3(p? + 4m?)>/? ’

where K is the BFKL kernel at ¢ = 0. Equation (100) gives the emission part of the kernel, while Eq. (100) stems from the
Reggeization term of the kernel which has a general form w((3 g — p)?) + w((3¢ + p)?) [see Eq. (9)]. Rigorously speaking
at small values of ¢ the expansion has two types of corrections: the first contribution is proportional to g> and the second one
which is proportional to (p - §)>. However, below we will assume that the wave function does not depend on orientation of
the vector ¢ (this is a correct assumption since conformal spin is zero for the ground state), so after integration (averaging)
over the orientations of p we will get for such corrections (p - q)* = %qz p?. Deriving Eq. (100) we performed this
averaging assuming that the wave function does not depend on the orientation of vector g. The fact that we do not have the
term of the order of (p - g) in the expansion of the BFKL kernel supports our assumption.

Considering K,q> as perturbation we obtain the following expression for the shift of the eigenvalue of the BFKL
equation:
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o da® The corrections to the eigenfunctions look as follows:
0.014
ol de, (k.q)
‘ qu q=0
0.010
_ bi(x) [ dridiygp, (k1) i(ia) Ky (K1, k2)
0.008 | = 3 . (102)
k#n Wy — Wy de1|¢k(Kl)‘
0.006 1
0.004} Equations (101) and (102) allows us to calculate the elastic
oo slope of the scattering amplitude which is defined as
0000 5 10 15 20 2 30" B(Y; kfin) = % (b?)
FIG. 20 2(color online). The shift in the eiger_lvalues do,/dq* B dImA(Y, kﬂn’ q) B
due to ¢*> dependence of the BFKL kernel. n is the number of =2 5 /ImA(Y , ksiylq = 0),

roots in the eigenfunctions. dq g=0

(103)

da); = [ drrdrd, (K1)¢"(K2)§1(K1’K2) . (101)  where A(Y,ky;,|q) is the scattering amplitude which is

dq° 1, J iy | ()| equal to W(Y, ki) of Eq. (78) at ¢ = 0. Generally speak-

ing this observable depends on the initial condition for the

scattering amplitude at ¥ = 0. However, in the diffusion

dw,/dq* is plotted in Fig. 20 as a function of n where nis  approximation this dependence factorizes and can be
the number of zeros in the eigenfunction. One can see that  canceled in Eq. (103).

atn = 0 dw, /dg? is equal to zero and at small n it behaves Bearing this in mind we calculate B for the Pomeron

as dw,/dq* = aqnz. Green function: viz.

dG(Y ., kgip, kip
Bo(Y:kyiy ki) =2 ( fz 19) /G(Y kg, kiylqg =0). (104)
dq q=0
Using the general definition of the Green function, we obtain
G(Y. Kpin|0,Kin; @) = > bu(Kpins @) o (Kpins @)™ DY (105)
n=0
which leads to the following expression for B;:
2 2. dw
B Y’k ins kin = —Y n insqd = 0 n insq = 0 w,,(q:())y
o(¥:ks ) G(Y, ki, kiylqg = 0) {;dqz PulKsini 4 J0nxsini 4 )e
d¢n (Kfin; CI)

Du(Kpin3 4 = 0) + by (fin g = 0)
q=0

— d n\Kfins
+Ze‘”n(40)Y[ ¢ (dqu q)
n=0

} } (106)
q=0

The first term increases with Y and gives the main contribution at large values of Y. As one can see from Fig. 20 at small n
dw,(q)/dq* = aqn2 = bqﬂz. Using this expression and the diffusion approximation of Eq. (73) we can obtain the simple
formula for the first term in Eq. (106):

dq2

M)y _ 2 Zw do Co o () 0 (g=0)Y
B Yvk in7kin - Y n in» =0 n in» =0 n\d
“ ( / ) G(Y, kfinvkin‘q = 0) =0 qu ¢ (Kf 1 )d) (Kf 1 )e
2

T T ba =0 s PP = 0l = O

dInG(Y. kg, kinlg = 0)
a d(DY) o

074002-19



EUGENE LEVIN, LEV LIPATOV, AND MARAT SIDDIKOV

PHYSICAL REVIEW D 89, 074002 (2014)

w(y)
300
)

250

L 2.0F

L L L5f — O
Vs
EAN 1.0F
— WBFKL
05F
0'8.5 06 07 08 09 o
(a) (b)
FIG. 21 (color online). The contour of integration over z in Eq. (A3) [see (a)] and the values of w = —FE,_, ., for the analytical estimates

given by Eq. (A3) [see (b)]. The red line shows the intercept of the BFKL Pomeron.

We can evaluate this contribution using Eq. (75). One can
see that at large ¥ B() — (3/2)b,/D. Therefore, Eq. (106)
leads to B which is constant as far as Y dependence is
concerned in a agreement with our qualitative discussion in
Sec. IVA.

V. CONCLUSIONS

The main goal of this paper is to find out how the correct
impact parameter behavior could affect the spectrum and
the eigenfunctions of the BFKL equation. We choose the
BFKL equation in the non-Abelian gauge theory with the
Higgs mechanism of the mass generation as the model for
the correct b behavior at large b.

We found that the massive BFKL equation for all @
larger than w, = — % ag leads to the same eigenvalues as the
massless BFKL equation, and the eigenfunctions of the
massive and massless equations coincide at large momenta.
At small momenta, the massive BFKL eigenfunctions
approach a constant. We suggest an approximate para-
metrization (62) for the eigenfunction which allows us to
calculate the Green’s function of the massive BFKL
equation.

Also, we found that in contrast to the massive case, there
is a special point @ = @ in the spectrum. The eigenfunc-
tions in the vicinity of this point have a singularity, as one
can see from a simple parametrization, Eq. (71), and they
are different from the massless BFKL eigenfunctions.
However, we do not see how this contribution, which falls
down with energy, could contribute to the physical observ-
ables at high energy.

Hence, we can state that the correct behavior at large b
does not influence the main properties of the BFKL
equation. This fact gives us a hope that the modification
of the BFKL equation due to confinement would not
affect the main equations that govern the physics at high
energy (in particular, the nonlinear equations of the high
density QCD).

On the other hand, the massive BFKL equation that we
solved here describes the weak interaction at high energy in
the case of zero Weinberg angle. We plan to find the high
energy behavior of the scattering amplitude in electroweak
theory (see Ref. [18]) in our future publication.

Also, we investigated the dependence on energy for the
average (|b?|) which turns out to be constant at high energy
in accordance with our expectations. In other words, we do
not find that the massive BFKL Pomeron generates the
slope for the Pomeron trajectory. However, it turns out that
the eigenvalues with the intercepts smaller than w(q?) <
w; = 41n2ag have this slope, namely, dw(q?)/dq* # 0
(see Fig. 20). This result supports our belief that correct
impact parameter behavior does not affect the main proper-
ties of the BFKL equation as far as it concerns the
scattering amplitudes at high energies.

In summary, we determined the physical impact param-
eter dependence of scattering amplitudes and investigated a
possible modification of the BFKL-like behavior of total
cross sections in QCD with massive gluons appearing as a
result of the Higgs mechanism. It turns out that for this
model the possible j-plane singularities above the BFKL
intercept are absent, but for another infrared regularization
of QCD we cannot prove this important fact and therefore
generally there could be the Regge poles or Mandelstam
cuts to the right of the BFKL intercept, which would
modify the behavior of the total cross sections.
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APPENDIX: A APPENDIX

As we have mentioned, from the normalizability of function W the trial function of Eq. (33) y should be y > 1/2. Sending

a — oo we can take all integrals analytically. Indeed,

a—oo

o dt 1 1
: 2 _ _ .
lim [ dk|U(x)|* = /0 ( = pra

t+a*) 2y—1la

o In a® o dt
: 2 _ 24 )
lim dkT(8)| P (k)| =a 7<2y 1 +/O N In t>,

a—oo 0

(s (s 2
lim dx d«’ [Pl
a=co Jo 0 VE—K)?+2(k+ 1)+ 1

Hence, the energy is equal to the following expression with this trial function:

o dt
E, e =2(2ga — 1)/

Equation (A2) can be rewritten in a different form, viz.

Epooo =22y — 1)( 27 =17 /(Z +Z1 2 —4:/71Z)>

0 (l+1

d In?(—
[t
L (z+ 1) —4xi

I sin2zydz In?(—z
=212y —1 —
-0 [
1 /1 sin 27yt ~2dt In*t
0 (1 — 1)2}/ 27

=200~ oy

The values of w =

0 dt t+a? © rdyIny
-2 1 raymy Al
I <r+a2>27(“ Vi b+ 1 (A1
t o dt
2 [T — A2
Er S 7’/0 TEN (A2)

)) oy /;1 s1(n_(];—|_— Bi):lz ln22(ﬂ—iz))

in at~'dtIn?
Als ({1+_1t))yil dflz_”’) =2(y(r) —w(2r)). (A3)

—E,_ are shown in Fig. 21. One can see that the maximum of the intercept from the variational

method is reached at y = 1/2 and it is equal to the intercept of the BFKL Pomeron.
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