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The description of the VV 0P form factors (V; V 0 stands for vector particles and P for a pseudoscalar
meson) for different particles virtualities remains a challenge for the theory of strong interactions. While
their chiral limit is well understood, recent measurements of the γ�ωπ0 and γ�γπ0 form factors at high
photon virtualities seem to depart from the simplest scaling behavior suggested by QCD. Here we attempt
to describe them in their whole measured energy regimes within the resonance chiral theory, a framework
which naturally incorporates the chiral limit constraints and extends to higher energies by including the
resonances as active fields. Specifically, we obtained an accurate description of the data up to 2 GeVon the
former form factor by including three multiplets of vector resonances. Good agreement with measurements
of the latter was possible even in the single resonance approximation, although we propose to measure the
eþe− → μþμ−π0 cross section and dimuon invariant mass distribution to better characterize this form
factor. We have then evaluated the pion exchange contribution to the muon g − 2 obtaining ð6.66� 0.21Þ ×
10−10 with an accurate determination of the errors. We have also recalled that approximating the whole pion
exchange by the pion-pole contribution underestimates the corresponding result for the anomaly [by (15,
20)%)]. Based on these results, we have predicted the ηð0Þ transition form factors obtaining good agreement
with data and obtained their respective contributions to the muon anomaly. In this way, the contribution of
the three lightest pseudoscalars to it yields ð10.47� 0.54Þ × 10−10, in agreement with previous evaluations
but with smaller error.
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I. INTRODUCTION

The form factor describing the γð�Þγð�Þπ vertex (also
called the pion transition form factor, πTFF) has played an
important role in establishing QCD as the dynamical theory
of strong interactions [1,2] and the role of the anomaly for
the gauge theory [3]. In the chiral limit, the prediction for
this vertex [4] has been beautifully confirmed by the
measured rate of π0 → γγ decays [5]. The isospin related
weak vertex γW−�πþ has also been proven to obey the
chiral limit prediction [6] from measurements of the vector
form factor in radiative weak decays of pions [5]. On the
other hand, the QCD predictions for very large photon
virtualities [1] seem to be at odds with recent measurements
at B factories experiments [7,8]. These predictions for the
πTFF in the infrared and ultraviolet limits have traditionally
provided a guide to build the vertex in the intermediate
energy region, where the effects of hadronic degrees of
freedom play a prominent role. This transition energy
region is particularly relevant for testing the Standard
Model of elementary particles. As a significant example,
the evaluation of the hadronic light-by-light (HLbL)
scattering contribution to the anomalous magnetic moment

of the muon (aμ) is dominated by the pion exchange
diagrams which require the γγπ vertex with all the particles
off their mass-shells (see [9] and references therein1). It is
worth mentioning that the hadronic contributions to the
muon g − 2 provide the main source of current theoretical
uncertainties in the Standard Model prediction for this
observable,2 which exhibits a pertinacious discrepancy at
the three sigma level between the Standard Model pre-
diction and the Brookhaven National Laboratory (BNL)
measurement [11]. This disagreement attracts more atten-
tion given the lack of new physics signals at the LHC and,
together with the forthcoming experiments at Fermilab and
J-Parc [12] aiming to improve the current uncertainty of aμ
by a factor 4, pushes the theoretical community to try to
reduce the corresponding theoretical error of aμ (which
matches the present experimental accuracy). Along these
lines, decreasing the error of the hadronic vacuum

1The hadronic (vacuum polarization and LbL) contributions to
aμ are introduced in more detail in Sec. VIII.

2A recent account, with an updated list of references, can be
found in Ref. [10].
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polarization and HLbL scattering contributions to aμ turns
out to be the main target.
In this paper we use the present experimental informa-

tion on the related γ�ωπ form factor at large photon
virtualities to constrain the behavior of the transition form
factor in the resonance region. The γ�ωπ0 interaction has
been probed in ωπ0 production in electron-positron colli-
sions at energies ranging from threshold up to the Υð5SÞ
center-of-mass energies [8,13–16]. The isospin related
vertex, W�ωπ−, has been measured from threshold up to
the tau lepton mass in the τ− → ωπ−ντ decays [17].
Previous attempts to constrain the short-distance behavior
of this form factor [18,19] relied on theoretical constraints
based on the asymptotic behavior predicted by QCD on the
basis of the BJL theorem [20]. Here, we use recent
experimental data on the γ�ωπ0 form factor in the asymp-
totic regime as a more realistic high-energy constraint to
complement the behavior at lower scales. The intermediate
energy region of the transition form factor is described in
the framework of the resonance chiral theory [21,22] (RχT)
which already incorporates the chiral constraints [23]. The
remaining free parameters involved in the form factor are
fixed from a fit to experimental data for photon virtualities
up to the 2 GeV region.
After getting rid of the form factor in the full energy

regime covered by current experimental data, we propose to
use it to predict the eþe− → π0μþμ− process3 which is
driven by the TFF with virtual timelike photons (to the best
of our knowledge, this process has not been measured yet
nor has it been studied before).4 Conversely, its measure-
ment, which seems to be at the reach of present and
forthcoming eþe− colliders, would provide valuable infor-
mation on the πTFF and an unambiguous test of the RχT
prediction. As a natural use of our γ�γ�π0 form factor, we
evaluate its contribution to the HLbL piece of the muon
g − 2 paying special attention to a careful evaluation of the
associated errors. Using our πTFF it is possible to predict
the η and η0 TFF. Their comparison with the data validates
our approach and we are thus able to evaluate the
corresponding contributions to the HLbL scattering muon
anomaly. In this way, we obtain the contribution of the three
lightest pseudoscalars to the HLbL scattering g − 2.
The paper is organized as follows. In Sec. II we explain

our theoretical setting, namely RχT, and introduce the
relevant pieces of the Lagrangian that will be employed
throughout. Next, in Sec. III we present the RχT results for

the γ⋆ωπ form factor and discuss the QCD short-distance
constraints that apply to the involved couplings in Sec. III
A. In Sec. IV we confront this form factor to the available
data below 2 GeV obtained from eþe− collisions and τ
decays (Sec. IVA) and find that three multiplets of
resonances are required to obtain good accuracy fits to
data, in agreement with Ref. [14]. Our best fit results yield
small violations of the high-energy constraints. The obser-
vation that our best fit form factor does not show a sizable
disagreement with data in the charmonium region moti-
vates us to study the possible extension of our description
to higher energies in Sec. IV B. We find that, although this
is possible up to the Ψð2SÞ region, the RχT description
cannot be extended up to larger energies even including an
infinite tower of resonances per quantum number, as
predicted by large-NC arguments [24]. We discuss the
possible interpretation of this result and extend our RχT
form factor to higher energies by matching it to a simple
ansatz in Sec. IVC, in such a way that data in the
bottomonium region can be accommodated. Unfortunately,
we have not been able to find an explanation for these data in
the 10 GeV region.5 At this point we turn to the πTFF, whose
derivation within RχT is recalled in Sec. V, where formulas
are given both for the virtual and real pion cases. This is done
by considering, in addition to the pseudo-Goldstone bosons,
the lightest multiplet of pseudoscalar and vector resonances,
a choice which is motivated by the study of consistent short-
distance constraints in the odd-intrinsic parity resonance
chiral Lagrangian [25]. Noteworthy, all involved couplings
are predicted in the case with a real pion, while only one of
them is not in the virtual pion case and needs to be fixed
phenomenologically. Data on the πTFF is analyzed in
Sec. VI; a good agreement with data is found with tiny
violations of the asymptotic QCD constraints. In Sec. VII we
propose the study of a new observable involving the πTFF,
namely the eþe− → μþμ−π0 cross section and dimuon
invariant mass distribution, and discuss the experimental
signatures and the feasibility of these measurements at
present and near future facilities. This reaction can provide
complementary information for the πTFF of timelike pho-
tons from its threshold up to bottomonium energy scales. As
an application of these analyses we evaluate in Sec. VIII the
dominant pion exchange contribution to the HLbL piece of
aμ and discuss our result comparing it to other predictions in
the literature. We also comment on the assumption of
considering the pion-pole contribution instead of the whole
pion exchange contribution, which underestimates the result
way beyond the quoted errors. The η and η0 exchange
contributions to aHLbLμ can also be computed using our
results for the πTFF, which is done in Sec. IX. In this way
we come up with an evaluation of the leading pseudoscalar

3Analogous processes involving the η and η0 mesons can be
considered as well.

4The most important piece of information on the πTFF is
obtained from σðeþe− → eþe−π0Þ, measured in a kinematical
configuration that singles out the t-channel contribution which, in
turn, can be readily related to the πγ�γ vertex with good accuracy.
We will confront the resonance chiral Lagrangian prediction to
available data on this observable to fix as much as possible the
VV 0π form factor.

5Data on the πTFF only extend up to ∼6.3 GeV, so they
cannot help settle this issue. Fortunately, the impact of this energy
region on aπ

0;HLbL
μ is completely negligible.
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exchange contributions to aHLbLμ . Finally, we summarize our
findings and present an outlook on aHLbLμ in Sec. X. An
appendix giving relevant formulas for the evaluation of
aP;HLbLμ in Secs. VIII and IX completes our present work.

II. THEORETICAL SETTING

The γ�ωπ0 form factor and the πTFF cannot be derived
analytically from first principles since they span diverse
energy regions, some of them belonging to the nonpertur-
bative regime of QCD. This quantum field theory of the
strong interactions predicts the behaviors of these form
factors at the two extremes of the energy region. On the one
hand, the approximate chiral symmetry of light-flavored
QCD yields definite corroborated predictions on the very
low energy end. On the other hand, perturbative QCD
allows one to derive the asymptotic behavior of the form
factors under study. The resonance chiral Lagrangians are
thought of as a useful tool to interpolate between these two
known behaviors.
The effective field theory dual to QCD at low energies is

chiral perturbation theory [23] (χPT), which is based on an
expansion in powers of the momenta and/or masses of the
lightest pseudoscalar mesons (which have status of pseudo-
Goldstone bosons of the spontaneous chiral symmetry break-
down) over the chiral symmetry breaking scale, of order
1GeV.Around this typical hadronic scale, the chiral expansion
will no longer be convergent. In fact, χPT ceases to be
applicable much earlier, at E≲Mρ [withMρ the mass of the
ρð770Þmeson], where new degrees of freedom corresponding
to the lightest light-flavored resonances become active.
When these resonances are introduced as dynamical

fields in the action of the theory the inverse of the number
of colors of the QCD gauge group, 1=NC [24], becomes a
useful expansion parameter [26] for a perturbative approach
to the meson resonance dynamics. At leading order (LO) in
this expansion the spectrum of the theory includes infinite
(excited) copies of every meson with definite quantum
numbers and these states are free and stable. Next-to-
leading order (NLO) corrections explain the (rather wide)
widths of (many) mesons and their decays by tree-level
contact interactions described by an effective Lagrangian.
A realization of these ideas is provided by the resonance

chiral theory [21,22], RχT, which is built requiring chiral
symmetry for the pseudo-Goldstone bosons (spontaneously
broken by the quark condensate and explicitly by the small
light quark masses), unitary symmetry for the resonance
multiplets and the discrete symmetries of the QCD
Lagrangian, without any dynamical assumption on the role
of any type of resonances in the theory. In this respect, the
well-known notion of vector meson dominance [27]
emerges as a dynamical result [21] and not as a priori
assumption. The coefficients of the resonance chiral
Lagrangians are not restricted by this procedure and all
of them are free parameters until compatibility with QCD
short-distance information is required.

The matching of the RχT Green functions and asso-
ciated form factors to the QCD expressions for these
quantities yields restrictions among the resonance cou-
plings that ensure a right asymptotic behavior of the RχT
expressions and increase the predictability of the theory.
Within the antisymmetric tensor formalism, it has been
shown that a consistent set of short-distance QCD
constraints on the RχT even- and odd-intrinsic parity
couplings can be found including only the lightest
multiplet of resonances with given quantum numbers
[21,25].6 In this way, the minimal hadronic ansatz [28]—
corresponding to including as many resonance multiplets
as needed to achieve consistent high-energy constraints
on the resonance couplings—reduces to the single res-
onance approximation. The discussion of the asymptotic
QCD constraints on the RχT couplings relevant for this
work can be found in Sec. III A.
It should be pointed out, however, that there is no

limitation in RχT with respect to the number of meson
multiplets to be included in the theory. As a guiding
principle, the fact that the low-energy dynamics is mostly
determined by the lightest states suggests that it is a
sound approximation to include only those degrees of
freedom that can be excited in the considered process,
which is the basis of the effective field theory approach.
The addition of more resonance multiplets will increase
the number of participating couplings, reduce the pre-
dictability of the theory, and modify the short-distance
constraints obtained in the single resonance approxima-
tion. However, when data are precise enough to probe
the physics of the excited resonances, these should be
added as active fields to the action, as suggested by the
NC → ∞ limit.
The RχT Lagrangian relevant for this article is [only the

lightest multiplet of pseudoscalar and vector resonances is
included; see the discussion below Eq. (11) for the
introduction of a second meson multiplet]

LRχT ¼ LOðp2Þ
χPT þ LOðp4Þ

WZW þ Lkin;R
RχT þ LV

RχT þ LP
RχT þ LVJP

RχT

þ LVVP
RχT þ LP;rest

RχT ; (1)

where

LOðp2Þ
χPT ¼ F2

4
huμuμ þ χþi (2)

is the lowest order χPT Lagrangian, with

uμ ¼ i½u†ð∂μ − irμÞu − uð∂μ − ilμÞu†�;
χ� ¼ u†χu† � uχ†u; χ ¼ 2B0ðsþ ipÞ; (3)

6Analogous studies within the vector field formalism were
pioneered by Moussallam and Knecht and Nyffeler for the VVP
Green function [4].
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and h…i is short for a trace in the flavor space. The pseudo-
Goldstone nonet of pseudoscalar fields is realized non-
linearly into the unitary matrix u (which includes the
familiar exponential of the matrix with the π, K, and ηð0Þ
meson fields) in the flavor space and the external Hermitian
fields s, p, lμ, and rμ promote the global chiral symmetry
to a local one, enabling the introduction of the electroweak
interactions (through lμ and rμ) and the explicit chiral
symmetry breaking (via s) by means of these auxiliary
fields (see Ref. [21] for details). F (the pion decay constant)
and B0 (related to the quark condensate) are the two lowest
order χPT low-energy constants in the chiral limit.
The leading action in the odd-intrinsic parity Lagrangian

is given by the chiral anomaly of QCD, which is explicitly
fulfilled by the Wess-Zumino-Witten [29] functional that

can be read in Ref. [30]. LOðp4Þ
WZW contains all anomalous

contributions to electromagnetic and semileptonic meson
decays at order Oðp4Þ in the chiral expansion.

The terms LOðp2Þ
χPT þ LOðp4Þ

WZW make evident that the RχT
Lagrangian, Eq. (1), reproduces by construction the LO χPT
Lagrangian both in the odd- [Oðp4Þ] and even-intrinsic
[Oðp2Þ] parity sectors. The use of the antisymmetric tensor
representation for the spin-one fields is convenient because
the NLO chiral low energy constants (in both sectors) are
saturated upon integration of the resonance fields. Therefore,
the χPT Lagrangian at NLO in both parity sectors does not
have to be included in Eq. (1) to avoid double counting.

Contributions generated by loops including LOðp2Þ
χPT þ

LOðp4Þ
WZW , which are NLO in both sectors, can be included

through the off-shell meson widths [31], requiring analytic-
ity [32] and by the renormalization procedure in χPT.
The “kinetic” terms (which also include interactions

bilinear in the resonance fields through the covariant deriva-
tive) for the resonances, Lkin;R

RχT , can be found in Refs. [21].
The resonance chiral Lagrangians with one vector or pseu-
doscalar resonance nonet and an Oðp2Þ chiral tensor are

LV
RχT ¼ FV

2
ffiffiffi
2

p hVμνf
μν
þ i þ i

GVffiffiffi
2

p hVμνuμuνi;

LP
RχT ¼ idmhPχ−i;

(4)

wherefμν� ¼ uFμν
L u† � u†Fμν

R u andFμν
R;L are the fieldstrength

tensors associated with the external right- and left-handed
auxiliary fields. Hereafter, all couplings will be taken as real
parameters.
The odd-intrinsic parity resonance Lagrangian with two

vector objects and anOðp2Þ chiral tensor is written (here P
stands for a pseudoscalar meson, following the notation of
Ref. [33])

LVJP
RχT þ LVVP

RχT ¼
X7
i¼1

ciOi
VJP þ

X4
j¼1

diO
j
VVP; (5)

in terms of the following operators7:

O1
VJP ¼ εμνρσhfVμν; fραþ g∇αuσi;

O2
VJP ¼ εμνρσhfVμα; fρσþ g∇αuνi;

O3
VJP ¼ iεμνρσhfVμν; fρσþ gχ−i;

O4
VJP ¼ iεμνρσhVμν½fρσ− ; χþ�i;

O5
VJP ¼ εμνρσhf∇αVμν; fραþ guσi;

O6
VJP ¼ εμνρσhf∇αVμα; fρσþ guνi;

O7
VJP ¼ εμνρσhf∇σVμν; fραþ guαi; (6)

and

O1
VVP ¼ εμνρσhfVμν; Vραg∇αuσi;

O2
VVP ¼ iεμνρσhfVμν; Vρσgχ−i;

O3
VVP ¼ εμνρσhf∇αVμν; Vραguσi;

O4
VVP ¼ εμνρσhf∇σVμν; Vραguαi: (7)

An equivalent basis for the operators in Eq. (5) was given in
Ref. [22]. The relations between both operator basis can be
found in Ref. [25].
The remaining part of the odd-intrinsic parity

Lagrangian involving pseudoscalar and vector resonances
and chiral tensors was derived in Ref. [22]. We rewrite it as

LP;rest
RχT ¼

X5
i¼1

κPi εμναβO
Pμναβ
i þ

X3
j¼1

κPVj εμναβO
PVμναβ
j

þ εμναβOVVPμναβ; (8)

where

OPμναβ
1 ¼ hPffμν− ; fαβ− gi;

OPμναβ
2 ¼ ihPuαfμνþ uβi;

OPμναβ
3 ¼ ihPffμνþ ; uαuβgi;

OPμναβ
4 ¼ hPuμuνuαuβi;

OPμναβ
5 ¼ hPffμνþ ; fαβþ gi; (9)

OPVμναβ
1 ¼ ihfVμν; Pguαuβi;

OPVμναβ
2 ¼ ihVμνuαPuβi;

OPVμναβ
3 ¼ hfVμν; Pgfαβþ i; (10)

and

OVVPμναβ ¼ hVμνVαβPi: (11)

7The Lagrangian in Eq. (5) is complete for constructing
vertices with only one pseudoscalar [33].
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If additional heavier meson multiplets are required by
the data, in addition to the replication of the previous
Lagrangian for the corresponding excited multiplet (see
Ref. [34]) there will be additional operators too. For those
with two vector fields each of them can belong to a different
multiplet giving rise to new terms. This was worked out for
the VV 0P terms in Ref. [34] obtaining

LV1V2

RχT ¼
X

n¼a;:::;e

dnεμναβO
VV 0Pμναβ
n ; (12)

with

OVV 0Pμναβ
a ¼ hfVμν

1 ; Vαρ
2 g∇ρuβi;

OVV 0Pμναβ
b ¼ hfVμρ

1 ; Vαβ
2 g∇ρuνi;

OVV 0Pμναβ
c ¼ hf∇ρV

μν
1 ; Vαρ

2 guβi;
OVV 0Pμναβ

d ¼ hf∇ρV
μρ
1 ; Vαβ

2 guνi;
OVV 0Pμναβ

e ¼ hf∇βVμν
1 ; Vαρ

2 guρi: (13)

III. ωπγ⋆ FORM FACTOR

The cross section for the ωπ0 production in electron-
positron collisions can be written as [19]

σðeþe− → ωπ0Þ ¼ πα2

6s3
λ3=2ðs;M2

ω; m2
πÞjFωπ0

V ðsÞj2; (14)

with λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2ac − 2bc. The
electromagnetic hadronic form factor is defined from

hωðq;ϵÞπ0ðpÞj
X
q

eqq̄γμqj0i¼eFωπ0
V ðsÞεμναβðpþqÞνϵαqβ;

(15)

where s ¼ ðpþ qÞ2 is the center-of-mass energy squared.
An isospin rotation of this isovector hadronic matrix
element8 allows one to define the Fωπ−

V ðsÞ form factor
which drives the τ− → ωπ−ντ decay. This decay has been
studied in Ref. [35] (see also Refs. [36,37] for other studies
of this form factor focusing at lower energies), where it was
concluded that a sensible description of the corresponding
data for the vector spectral function was possible only by
including two multiplets of vector resonances in the
spectrum of the theory.9 In complete analogy to
Ref. [35], the relevant form factor reads10

Fωπ0
V ðsÞ ¼ 2

ffiffiffi
2

p

FMVMω
ðc1235m2

π − c1256M2
ω þ c125sÞ

−
4FV

FMω
½d123m2

π þ d3ðsþM2
ωÞ�DρðsÞ

−
2FV1

FMω
ðdmm2

π þ dMM2
ω þ dssÞDρ0 ðsÞ; (16)

where the following combinations of couplings—in terms
of those in Eqs. (5) and (12)—were defined [33,35,39]

c1235¼c1þc2þ8c3−c5; c1256¼c1−c2−c5þ2c6;

c125¼c1−c2þc5; d123¼d1þ8d2−d3;

dm¼daþdb−dcþ8df; dM¼db−daþdc−2dd;

ds¼dcþda−db: (17)

Along the present study we will always assume ideal
mixing for the ω and ϕ mesons. Departures from this
scheme have been studied in Ref. [38] for τ− → ωπ−ντ and
other related decays.
The resonant shape factors in Eq. (16) are

DRðxÞ ¼
1

M2
R − x − iMRΓRðxÞ

: (18)

Since the ρð770Þ and ρð1450Þ states are rather wide
resonances, the energy dependence of their decay widths
becomes relevant. In the case of the ρð770Þ meson this
question has been studied within the theory yielding [31]

ΓρðsÞ ¼
sMV

96πF2

�
σ3πðsÞθðs − 4m2

πÞ þ
1

2
σ3KðsÞθðs − 4m2

KÞ
�
;

(19)

where σPðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

P=s
p

. In this way, the on-shell
ρð770Þ width is fixed in terms of the resonance mass
and known couplings. On the contrary, there is no guidance
from the chiral limit that applies to the ρð1450Þ case (and,
eventually, to higher excitations). For simplicity, we will
assume its off-shell width is given by [40]

Γρ0 ðsÞ ¼ Γρ0
s

M2
ρ0

σ3πðsÞ
σ3πðM2

ρ0 Þ
θðs − 4m2

πÞ; (20)

with the mass(es) and on-shell width(s) of the ρ-like
resonance(s) as given by the PDG [5]. Even though this
does not need to be the case, we anticipate that the good
agreement found with data does not seem to require them to
be free parameters.

A. Short-distance constraints on the RχT couplings

Although a Brodsky-Lepage [1], ∼s−1, asymptotic
behavior is usually demanded to the πTFF at high energies,

8G-parity forbids an isoscalar contribution to eþe− → ωπ0.
Thus, only the isovector ðI ¼ 1Þ part of the electromagnetic
current contributes.

9This and other related analyses have been updated and
refined very recently; see Ref. [38] for details.

10In case a third multiplet of resonances is required by the data,
the term − 2FV2

FMω
ð ~dmm2

π þ ~dMM2
ω þ ~dssÞDρ00 ðsÞ should be added to

Eq. (16). The new couplings FV2
, ~dm;M;s are defined in analogy to

the respective ρ0 ¼ ρð1450Þ couplings.
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this may be argued.11 The eþe− → ωπ0 cross-section data
collected by Belle [8] in the Υð4SÞ − Υð5SÞ region cast
doubts on the validity of the Brodsky-Lepage [1] conditions
for the Fωπ0

V ðsÞ form factor (assuming ∼10.5 GeV is a high
enough asymptotic energy scale). In particular, data fall
faster than the Brodsky-Lepage prediction, approaching the
s−2 behavior in the bottomonium region [8]. Since the
Brodsky-Lepage conditions do not seem to be enough to
warrant a proper asymptotic behavior, the use of accurate
high-energy data to determine the remaining free couplings
seems the only alternative to solve the puzzle. We assume
that they are necessary (but not sufficient) conditions to
meet the asymptotics hinted by Belle’s data [8].
Therefore, we shall start demanding the Brodsky-Lepage

behavior to the form factor in Eq. (16). The relations
obtained from this condition must be (and are) compatible
with those found by studying the two- and three-point
Green functions and associated form factors within RχT
[21,22,33–35,39,40,42,43]. In agreement with general field
theory considerations, a consistent set of high-energy
constraints can be found for all these processes [21,25].
Those that play a role in our study are

FV ¼
ffiffiffi
3

p
F; c125 ¼ 0;

c1256 ¼ −
NCMV

32
ffiffiffi
2

p
π2FV

∼ −3.26 × 10−2; c1235 ¼ 0;

d123 ¼
F2

8F2
V
¼ 1

24
; d3 ¼ −

NCM2
V

64π2F2
V
∼ −0.112;

ds ¼
ffiffiffi
2

p
MVc1256 − 2d3FV

FV1

¼ 0; (21)

where the last equation was obtained demanding a
Brodsky-Lepage behavior to Fωπ0

V ðsÞ. We point out that
the short-distance large-NC predictions for d3 and ds were
not realized in Refs. [35,38], where they were assumed to
be free parameters. Our constraint is the first one showing
that ds vanishes in the NC → ∞ limit.12 The results
obtained for d3 in Refs. [35,38] are roughly twice as large
as our prediction, while their values for ds, ds ∈
½−0.32;−0.08� are nonvanishing.
For later use, we point out that the above condition for d3

is equivalent to [25]

d3 ¼ −
NC

64π2
M2

V

F2
V
þ F2

8F2
V
þ 4

ffiffiffi
2

p
P2

FV
; (22)

provided the pseudoscalar resonance coupling P2 ≡ dmκPV3
fulfills [22]

P2 ¼ −
F2

32
ffiffiffi
2

p
FV

¼ −
F

32
ffiffiffi
6

p ; (23)

which belongs to the consistent set of short-distance
constraints on the odd-intrinsic parity RχT couplings
[25]. The vanishing of P1 ≡ dmκP5 is also derived in
Ref [22] by requiring the matching of the hVVPi RχT
Green function to the corresponding operator product
expansion result.
The parameters in Eq. (16) that remain free after applying

the short-distance constraints, Eqs. (21), will be fixed from
the fit to available data on Fωπ0

V ðsÞ in the resonance region.
This is our departing strategy which will be slightly modified
from the goodness of the fit requirement.

IV. COMPARISON TO EXPERIMENTAL DATA ON
THE ωπ FORM FACTOR

A. Data below 2 GeV

In the energy region below the τ lepton mass, the γ�ωπ
form factor can be obtained either from τ decays or eþe−
annihilations. The vector spectral function can be extracted
from the τ− → π−π−πþπ0ντ decays measured by CLEO
[17], by isolating the ωð782Þ meson contribution from its
three-pion decay channel. This was done by rescaling the
3π invariant mass distribution with the BRðω →
πþπ−π0Þ ¼ ð89.2� 0.7Þ% fraction [5]. A complementary
piece of information in this energy region comes from the
eþe− → π0π0γ cross section, which has been measured
with good precision by SND collaboration [13,14] from
threshold up to 2 GeV.13 Since these final states are
dominated by the intermediate ωð782Þ resonance, one
needs to rescale the data by the BRðω → π0γÞ ¼ ð8.28�
0.28Þ% in order to obtain the ωπ0 cross section.14

In order to fit the SND and CLEO data using the form
factor in Eq. (16), tau decay data needs to be isospin-rotated
to obtain the eþe− cross section. In terms of the vector
spectral function, Vωπ−ðsÞ measured in tau decays, and

11It is known that the imaginary part of the spin-one correlators
goes to a constant value at infinite momentum transfer when
evaluated at the parton level [41]. A local duality interpretation
usually leads to the assumption that every one of the infinite
number of form factors contributing to these spectral functions
must vanish at infinite momentum transfer.

12This result has been obtained neglecting the effect of the
third and higher vector multiplets, otherwise the condition reads
dsFV1

þ ~dsFV2
þ � � � ¼ 0.

13The KLOE Collaboration [44] measured this observable in a
window of 30 MeV around the ϕð1020Þ meson peak, where the
effects of this resonance pop up through the interference with the
dominant ωð782Þ meson contribution. Since the study of this
interference is not among our purposes, we will not consider
these data in our analysis.

14The energy dependence of the ωð782Þ decay can be
neglected. This assumption is supported by the CVC analysis
of Ref. [14], which shows a nice agreement of the ωπ data
produced in τ and eþe−. We thank Leonid Kardapoltsev for
conversations on this topic.
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rescaling it by the three-pion branching fraction of the
ωð782Þ meson decay, one gets

σωπ0ðsÞ ¼
4π2α2

s
Vωπ−ðsÞ

100

BRðω → πþπ−π0Þ : (24)

After the consistent set of short-distance constraints (21)
has been imposed to Eq. (16), this only depends on three
unknown couplings: FV1

, dm, and dM. Floating these
couplings is not sufficient to obtain a good agreement
with data and the introduction of the third multiplet of
resonances does not have enough influence to change this
result. We understand this because the relations (21) have
an associated error of order one third. Therefore, we shall
allow variance of the couplings involved in the last of these
relations15 in an according range.
This increase in the number of fitted couplings makes the

fits unstable. From our previous study we have noticed that
dm of order unity influences σðeþe− → ωπ0Þ very slightly.
We will fix it to −1 for definiteness, as done in Ref. [35].
Also, since the coupling FV1

can be determined rather
accurately [35] we will follow this evaluation and set it to
ð−0.10� 0.01Þ GeV. Variations within the error do not
affect substantially the results. Within this setting, we will
first consider only the contributions from the first and
second resonance multiplets only and then will treat the
addition of the heavier excitations.
Under the above approximations, the eþe− → ωπ0 cross

section depends on four unknown coupling constants:
c1256, d3, dM, and ds. We have fitted them to SND and
CLEO data obtaining

c1256 ¼ −0.037� 0.002; d3 ¼ −0.174� 0.004;

dM ¼ 0.41� 0.09; ds ¼ −0.27� 0.02; (25)

with χ2=ndf ¼ 3.9. This fit is represented by the blue
dashed-dotted line in Fig. 1. While the description of the
data is quite good in the lower half of the spectrum,
disagreement is seen for

ffiffiffi
s

p
> 1.5 GeV, which seems to

require the contribution of a third multiplet of vector
resonances to achieve a better description of the data.
This feature is not visible in tau data according to the
analysis of Refs. [35,38] because using only tau data there
are scarcely three points in this region with clearly larger
errors than in the electron-positron cross section. We note
that these numerical values violate the relations for c1256
and d3 in Eqs. (21) very little, although the violation for the
last relation in Eq. (21) is around 50%.
Next we have included a third multiplet of resonances, as

indicated in footnote 1. As in the previous case, we will
assume ~dm ¼ −1 so that we are introducing three new free

parameters: ~FV1
, ~dM, and ~ds. The best fit result to SND and

CLEO data yields

c1256 ¼ −0.055� 0.004; d3 ¼ −0.180� 0.005;

dM ¼ 0.86� 0.12; ds ¼ −0.33� 0.04;

~FV1
¼ 0.079� 0.004; ~dM ¼ 2.05� 0.17;

~ds ¼ −0.42� 0.04; (26)

with χ2=ndf ¼ 1.2. The corresponding curve is shown as a
solid purple line in Fig. 1, where good agreement with
measurements can be appreciated in the whole data range.
The violations of the short-distance constraints for c1256
and d3 continue to be reasonable and the two terms
FV1

ds þ ~FV1

~ds compensate each other enough to yield a
small violation of the last short-distance relation which is
within expectations.
Small variations in the values of the couplings not fitted

in Eqs. (26) should yield a reasonable estimate of our
systematic error. We have found that this uncertainty
estimate is completely dominated by the value of FV . FV ¼ffiffiffi
3

p
F has been obtained in a variety of analyses

[21,22,39,49–52]. In the context of tau decays, the deter-
mination of this parameter using TAUOLA, the standard
Monte Carlo generator for tau lepton decays, fitting three-
and two-pion invariant mass distributions in τ− →
πþπ−π−ντ decays [53,54], is compatible within the 5%
quoted error with this result and does not indicate a sizable
deviation due to the presence of excited resonance multip-
lets. Since its value will be the dominant source of
systematic error, we will consider a 10% variation around
this prediction to estimate conservatively our errors.

1 1.2 1.4 1.6 1.8 2
E (GeV)

0

5

10

15

20

σ(
e+ e-  -

>
 ω

π0 ) 
(n

b)

SND 2000
SND 2013
CLEO 2000
Fit with two multiplets (E<2GeV)
Fit with three multiplets (E<2GeV)
Fit with three multiplets + QQ data
Fit with three multiplets + cc data

FIG. 1 (color online). SND [13,14] and isospin-rotated CLEO
data [17] for σðeþe− → ωπ0Þ are confronted to the best fit results
including two (blue dashed-dotted line) or three resonance
multiplets (solid purple line). Fits obtained including data in
the charmonium region (orange dashed line) as well as in the
bottomonium region (grey dotted line) are also displayed. Higher-
energy data can be seen in Fig. 2.

15Since many phenomenological studies have described data
accurately using the remaining relations [22,33–35,39,45–48] we
will stick to the values in Eqs. (21) for them.
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B. Data above 2 GeV: An approach with
heavier resonances

A few experimental data points for the ωπ0 form factor
above 2 GeV have been obtained from electron-positron
annihilation experiments. In Fig. 2 we have included these
data points: three of them have been obtained using CLEO
Collaboration data in the ψ region [15,16] and three more
of them were very recently reported by Belle Collaboration
in the ϒ region [8]. It is observed that the result of the fit
with three ρ-like resonances (see previous subsection)
crosses well above these data points. Since the difference
with data in the cc̄ region is not very large one could expect
that, by including additional resonances, a reasonable good
agreement may also be obtained eventually in this region.
Disagreement with data in the bottomonium region is much
worse and does not hint for such a possibility.
A natural way to approach to the infinite tower of

resonance states is provided by the large-NC limit of QCD
[24]. Still, there is an obliged model dependence in the
spectrum of the theory. The study of meson form factors
within this limit has been undertaken, for the pion case, in
Refs. [55,56]. Our results, Eqs. (25) and (26), suggest that a
sensible approximation to this problem is to approach the
large-NC meson masses and widths by their Particle Data
Group (PDG) values [5]. However, we have no guidance on
heavier states belonging to the fourth and heavier multiplets.16

For this reason we will restore for definiteness to the
Veneziano model [58] for dual-QCDNC¼∞ which predicts a
Regge trajectory for the ρ-like states where the squared
masses rise linearly with the radial quantum number, n.
String-inspired models also derive a linear relation between
the mass and width of a given ρ excitation (see [56] and
references therein). To accommodate the known meson
masses wewill allow for a subleading dependence in 1=n [59]

M2
n ¼ Aþ Bnþ C

n
; (27)

and fit A, B, and C to the PDG masses of the first three
ρ-like states. AssumingMn=ΓnðM2

nÞ to be a constant, we will
have at large n

ΓnðM2
nÞ ¼ E

ffiffiffi
n

p þ F; (28)

with E and F chosen to reproduce the ρ and ρ0 on-shell
widths. In this way the excited states overlap more and more
with increasing energy, as predicted by the NC → ∞ limit of
QCD. From our results in Eqs. (25) and (26) one may guess
that dsi can be assumed to be a constant as first approxima-
tion, while FVi

—which has the largest impact—decreases
slightly with i (perhaps alternating sign) and the opposite for

dMi
(dmi

will have no influence whatsoever). We have
assessed that the emerging picture is basically independent
on our assumptions on the couplings of the excited reso-
nances.17 The largest impact is due to the precise value of FV
that we will discuss at the end. We present our results for18

FVn
¼ ð−Þn FVffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p ; (29)

assuming the remaining parameters of the higher excitations
to be constant. Specifically, we consider the form factor

Fωπ0
V ðsÞ ¼ 2

ffiffiffi
2

p

FMVMω
ðc1235m2

π − c1256M2
ω þ c125sÞ

−
4FV

FMω
½d123m2

π þ d3ðsþM2
ωÞ�DρðsÞ

−
2FV1

FMω
ðdmm2

π þ dMM2
ω þ dssÞDρ0 ðsÞ

−
2FV2

FMω
ð ~dmm2

π þ ~dMM2
ω þ ~dssÞDρ00 ðsÞ

−
XN∞

i¼4

2FVi−1

FMω
ð ~dmm2

π þ ~dMM2
ω þ ~dssÞDρi−1ðsÞ;

(30)

0 5 10
E (GeV)

1×10-05

1×10-06

0.0001
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e+ e-  -

>
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π0 ) 
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SND 2013
CLEO 2000
Quarkonium data
Fit with three multiplets (E<2GeV)
Fit with three multiplets + QQ data
Fit with three multiplets + cc data

FIG. 2 (color online). SND [13,14], isospin-rotated CLEO data
[17], CLEO data in the charmonium region [15,16], and Belle [8]
data in the bottomonium region for σðeþe− → ωπ0Þ are con-
fronted to the best fit results including three resonance multiplets
(solid purple line) as well as data in the charmonium region
(orange dashed line) and also in the bottomonium region (grey
dotted line).

16Moreover, there can appear unphysical poles in a large-NC
approach to the Minkowskian region [57] which prevents one
from relating all poles to the resonance parameters for highly
excited states.

17For instance, the best fit results and couplings do not change
assuming alternating or definite sign for FVi

, or allowing for a
variation of dMi

with i.
18FV1

denotes the coupling of the n ¼ 2 resonance, namely the
ρð1450Þ meson. Analogous notation will be employed for the ρi
resonances in Eq. (30).
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where N∞ is chosen such that it includes all states with
masses up to the maximum energy of the considered data.
With this large-NC form factor we have attempted to fit all
available data, up to E ∼ 11 GeV. Although it can be seen in
Fig. 2 that the form factor (grey dotted line) can be forced to
agree with the data in the ϒ region, this is at the price of a
worse fit to data at low and intermediate energies in Fig. 1.
This suggests that the resonance approach cannot be naively
extended into higher energy regions. On the contrary, if we
only include data in the charmonium region, a good fit is
possible in both energy regimes (shown as orange dashed line
in Figs. 1 and 2), giving

c1256 ¼ −0.051� 0.002; d3 ¼ −0.181� 0.003;

dM ¼ 0.82� 0.06; ds ¼ −0.31� 0.02;

~dM ¼ 1.53� 0.12; ~ds ¼ −0.31� 0.03; (31)

with χ2=ndf ¼ 1.1.
We interpret this fact through the understanding that light-

flavored resonance exchanges can explain σðeþe− →
hadronsÞ at most up to the opening of mesons made up of
heavy quarks,19 where new degrees of freedom that we are
ignoring—and that should contribute to the considered
process—become dynamical. In this way, our fit Eq. (31)
should be matched with a curve describing the charmonium
data around the J=Ψ region and extending up to the data in the
ϒ region. In this way we would have a form factor capable of
describing the ωπ cross section from threshold up to 11 GeV.
In Table I we compute the effects on our fitted param-

eters produced by letting FV vary 10% around the pre-
diction FV ¼ ffiffiffi

3
p

F. As we have mentioned before, the
value of FV is, by far, the most important source of
uncertainty within our approach. As it can be observed,
the values of resonance couplings are compatible with the
results obtained in Refs. [35,38], in particular taking into
account that we have included data at higher energies
provided by the SND Collaboration. Another interesting

feature concerns the fact that, focusing in the low- and
intermediate-energy data (as in [35,38]), the fit does not
change considerably the values of the lightest resonance
couplings of the theory.

C. Data in quarkonium region: Matching the
resonance and perturbative regimes

Although our best fit result in Eq. (31) follows data
closely from threshold up to ∼3.5 GeV, and the results at
low and intermediate energies are largely independent on
the modelization of our large-NC approach, the resonance
contributions are not able to provide the suppression required
by the data at higher energies. Therefore, we assume there is a
squared energy scale, s0, which splits the resonance-driven
physics from the perturbative regime around which we can
match both descriptions. However, we admit that we have not
come up with a theoretical description capable of giving the
observed suppression in the bottomonium region. As a
consequence, we will consider equation (30) for s ≤ s0
and use the simple ansatz20

Fωπ0
V ðsÞ ¼ A

sb
; (32)

for s ≥ s0, in such a way that the complex number A is
determinedbydemandingcontinuity forFωπ0

V ðsÞ,while s0 and
b are fitted to data. We expect b ∼ 2, according to Belle’s
analysis [8],s0 ≥ 2 GeV,becauseofour results inEq. (31) (see
also Fig. 2) and s0 < MJ=Ψ ∼ 3.1 GeV since new degrees of
freedom thatwe are ignoring become excited at these energies.
In order to preserve good agreement with data it is

necessary to keep the contribution of the ρð1700Þ reso-
nance. On the other hand, it is not clear whether we should
maintain the contribution given by the sum over the tower
of higher resonances simultaneously with the asymptotic
contribution of Eq. (32). Therefore, we present both groups

TABLE I. Best fit values obtained varying FV around its
predicted value of

ffiffiffi
3

p
F.

FV 0.9F
ffiffiffi
3

p
F

ffiffiffi
3

p
1.1F

ffiffiffi
3

p

c1256 −0.045� 0.001 −0.051� 0.002 −0.056� 0.002
d3 −0.199� 0.003 −0.181� 0.003 −0.164� 0.003
dM 0.99� 0.06 0.82� 0.06 0.68� 0.06
ds −0.36� 0.01 −0.31� 0.02 −0.27� 0.02
~dM 1.45� 0.11 1.53� 0.12 1.57� 0.13
~ds −0.29� 0.03 −0.31� 0.03 −0.32� 0.03
χ2=ndf 1.2 1.1 1.1

TABLE II. Best fit values obtained by adding the asymptotic
behavior of Eq. (32) to the large-NC description of Eq. (30). The
results of the three columns correspond, respectively, to the cases
when b is taken as a free parameter or b ¼ 2 or 3 in the fit.

c1256 −0.045� 0.006 −0.052� 0.003 −0.047� 0.004
d3 −0.158� 0.007 −0.200� 0.005 −0.156� 0.008
dM 0.40� 0.12 0.84� 0.19 0.38� 0.14
ds −0.15� 0.04 −0.45� 0.05 −0.14� 0.05
~dM 1.99� 0.26 0.02� 0.10 2.15� 0.18
~ds −0.40� 0.05 −0.08� 0.01 −0.43� 0.04
b 2.86� 0.10 2 3ffiffiffiffiffi
s0

p
(GeV) 1.74� 0.03 1.87� 0.03 1.77� 0.02

χ2=ndf 1.2 1.6 1.2

19Obviously, the fact that there is no data in the 2 − 3 GeV
region restricts the determination of the dynamics associated to
the fourth and heavier multiplets. If some data points were
measured there, it would help to refine our large-NC approach.

20This kind of power suppression is expected from the operator
product expansion of QCD. From this point of view, A will
encode nonperturbative physics parametrized in terms of some
hadronic matrix elements.
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of results in Tables II and III. According to them, a more
robust description is obtained by considering that the
ρð770Þ, ρð1450Þ, and ρð1700Þ resonances essentially sat-
urate all resonance contributions to the process,21 while the
nonresonant dynamics can be parametrized well by means
of a contribution to Fωπ0

V ðsÞ that falls as 1=s2, as pointed out
in the Belle analysis [8]. The matching scale for both
descriptions, s0, is not determined with precision due to
the lack of data in the 2 − 3 GeV region, but according to
the orange dashed line in Fig. 2, it should lie just below the
J=Ψ. The good agreement between the values shown in
Table III and fit (26) supports the consistency of the picture.
In Table IV we consider the error associated with the choice
of FV for a 1=s2 damping of the asymptotic contribution.
The error introduced by the variation of b in Eq. (32)
around 2 (b ¼ 1.96� 0.07 in Table III) is negligible
compared to that induced by FV. We will consider the
errors shown in Table IVas those of our best fit form factor
given by the second column in Table III. Our best fit results
are plotted in Figs. 3 and 4.

V. THE πγð⋆Þγð⋆Þ FORM FACTOR IN RχT

The πγð⋆Þγð⋆Þ form factor is defined in terms of the
vector-vector-pseudoscalar QCD three-point Green func-
tion [22,33],

ΠVVP
ðabcÞ
μν ðp; qÞ

¼
Z

d4x
Z

d4yeiðp·xþq·yÞh0jT½Va
μðxÞVb

νðyÞPcð0Þ�j0i; (33)

with vector and pseudoscalar currents defined as

Va
μðxÞ ¼

�
Ψ̄γμ

λa

2
Ψ

�
ðxÞ; PaðxÞ ¼

�
¯Ψiγ5

λa

2
Ψ

�
ðxÞ:
(34)

In the SUð3ÞV limit it reads

ΠVVP
ðabcÞ
μν ðp; qÞ ¼ εμναβpαqβdabcΠVVPðp2; q2; r2Þ; (35)

where rμ ¼ −ðpþ qÞμ has been defined as the momentum
of the pseudoscalar density. In terms of this Green function,
one can define the γγπ form factor (in the chiral limit)

F π0γγðp2; q2; r2Þ ¼ 2

3

r2

F
ΠVVPðp2; q2; r2Þ

B
: (36)

A priori, the contribution of pseudoscalar resonances to
the VVP Green function cannot be neglected. In fact, it has
been shown [22] that their presence is necessary to fulfill
consistently all operator product expansion constraints on
this function and related form factors (see Ref. [25] for
more details). Consequently, we will take this contribution
into account in what follows.
If all particles are virtual, the function ΠVVPðp2; q2; r2Þ

[22,33] allows us to write the γ�ðpÞγ�ðqÞπ�ðrÞ form
factor as22

F π0γγðp2; q2; r2Þ ¼ 2r2

3F

�
−

NC

8π2r2
þ 4F2

V
d3ðp2 þ q2Þ

ðM2
V − p2ÞðM2

V − q2Þr2 þ
4F2

Vd123
ðM2

V − p2ÞðM2
V − q2Þ

−2
ffiffiffi
2

p FV

MV

r2c1235 − p2c1256 þ q2c125
ðM2

V − p2Þr2 − 2
ffiffiffi
2

p FV

MV

r2c1235 − q2c1256 þ p2c125
ðM2

V − q2Þr2 þ 64P1

M2
P − r2

−
16

ffiffiffi
2

p
P2FV

ðM2
V − p2ÞðM2

P − r2Þ −
16

ffiffiffi
2

p
P2FV

ðM2
V − q2ÞðM2

P − r2Þ þ
16F2

VP3

ðM2
V − p2ÞðM2

V − q2ÞðM2
P − r2Þ

�
; (37)

which displays the symmetry under the exchange of the
photon momenta. In addition to the lightest vector reso-
nances and pseudoscalar mesons we have also included the
contribution from the lightest pseudoscalar resonances in

Eq. (37) following Ref. [22]. The effect of excited pseu-
doscalar and vector resonances has been neglected. It is
straightforward to check that our fully off-shell form factor,
Eq. (37), is identical to the Kampf and Novotny’s form

21Measurement of data in the [2, 3] GeV region may demand
the contribution of a fourth resonance, as it appears to be the case
in the eþe− → πþπ− Babar analysis [60].

TABLE III. Best fit values obtained adding the asymptotic
behavior of Eq. (32) to the contribution of the first three ρ-like
states in Eq. (30). The results of the two columns correspond,
respectively, to the cases when b is taken as a free parameter or
b ¼ 2 in the fit.

c1256 −0.055� 0.004 −0.055� 0.004
d3 −0.180� 0.005 −0.180� 0.005
dM 0.86� 0.12 0.86� 0.13
ds −0.33� 0.04 −0.33� 0.04
~FV1

0.11� 0.07 0.11� 0.07
~dM 1.44� 0.04 1.50� 0.04
~ds −0.29� 0.08 −0.30� 0.09
b 1.96� 0.07 2ffiffiffiffiffi
s0

p
(GeV) 2.70þ0.92

−0.38 2.76þ1.12
−0.39

χ2=ndf 1.2 1.2

22We have defined P3 ≡ dmκVVP in Eq. (37), see Eq. (8). P1

and P2 were defined in the discussion around Eq. (23). Unlike P1

and P2, P3 is unrestricted by high-energy relations and so it needs
to be determined phenomenologically, as it is done in Eq. (39).
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factor, after using Eqs. (35) and (43) in Ref. [22] and Eq. (3)
in Ref. [25].
Assuming the pion to be on shell yields (we are working

in the chiral limit)

F π0γγðp2; q2; 0Þ ¼ 2

3F

�
−
NC

8π2
þ 4F2

Vd3ðp2 þ q2Þ
ðM2

V − p2ÞðM2
V − q2Þ

þ 2
ffiffiffi
2

p FV

MV

p2c1256 − q2c125
M2

V − p2

þ 2
ffiffiffi
2

p FV

MV

q2c1256 − p2c125
M2

V − q2

�
: (38)

We note that, if the on-shell condition for the pion is
assumed, the form factor in Eq. (38) depends on the
couplings FV , c125, c1256, and d3, all of them constrained
by the short-distance QCD information. The main
differences between our analysis of the πTFF and the
one reported in Ref. [22] are first that in this reference the
short-distance constraint FV ¼ ffiffiffi

3
p

F was not realized, but
instead, the phenomenological value FV ¼ Fρ ¼ ð146.3�
1.2Þ MeV was used, and second, that we will include
Belle’s data on the πTFF, which was published after
Ref. [22] was released. We note however that the violation
of the high-energy restriction for FV is ∼8.4% within its
10% range of variation that we have been using to estimate
the main error of our approach coming from the precise
value of FV . We therefore expect to agree reasonably with
Ref. [22] in our fit of this form factor in Sec. VI and on its
effect in aπ

0;HLbL
μ in Sec. VIII.

The form factor with a virtual pion depends, additionally,
on the five coupling combinations: c1235, d123, P1, and P2,
which are restricted by asymptotic QCD constraints, (21)
and (23), and P3 which shall be fixed phenomenologically.
Indeed, the combined analyses of the πð1300Þ → γγ and
πð1300Þ → ργ decays in Ref. [22] allows us to fix κVVP.
Following this procedure, we obtain

P3 ¼ ð−1.2� 0.3Þ × 10−2 GeV2: (39)

From this discussion, a controlled uncertainty in the form
factor in Eq. (37) can be expected, since all but one of the
participating couplings are predicted from short-distance
QCD constraints and the other one is determined within a
25% accuracy. This will translate to our evaluation of the
pion exchange contribution to the anomalous magnetic
moment of the muon in Sec. VIII. It will be interesting to
use both form factors, Eqs. (37) and (38), in order to
estimate the error associated with assuming a real pion
exchanged in the loop, i.e. to obtaining the pion-pole
contribution as an approximation to the whole pion
exchange contribution [61,62].

VI. ANALYSIS OF DATA ON THE πγ⋆γ
FORM FACTOR

The πTFF has been measured by the CELLO [63],
CLEO [64], Babar [7], and Belle [65] collaborations in
eþe− → eþe−π0, where the π0 is produced by two photons
exchanged in the t channel [66]. Only one of the final-state
leptons was tagged and the other one escaped the detector
in a small-angle emission, ensuring a high virtuality for one
of the photons and almost on-shellness for the other.
Therefore, this is considered to be a measurement of the
πγ⋆γ form factor. Since the momenta of both photons are
Euclidean in those experiments, we should replace
q2 → −Q2, p2 → −P2 in Eq. (38) to obtain the form
factors with an on-shell pion, and assume P2 ¼ 0 as an
accurate approximation to the experimental detection con-
ditions. These data, particularly the Babar and Belle
measurements with photon virtualities up to Q2 ∼
40 GeV2 and thus probing the (pre)asymptotic limit of
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Fit with three multiplets plus continuum

FIG. 3 (color online). SND [13,14] and isospin-rotated CLEO
data [17] for σðeþe− → ωπ0Þ below 2 GeV are confronted to
our best fit results. The form factor includes the contribution of
three ρ-like resonances and the continuum. The data in the
quarkonium region, which can be seen in Fig. 4, are taken into
account in the fit.

TABLE IV. Best fit values obtained when we allow a 10%
variation of FV around its predicted value FV ¼ ffiffiffi

3
p

F. We
assume an asymptotic behavior of Fωπ0

V ðsÞ given by Eq. (32)
with b ¼ 2 together with the contribution of the first three ρ-like
states in Eq. (30).

FV 0.9F
ffiffiffi
3

p
F

ffiffiffi
3

p
1.1F

ffiffiffi
3

p

c1256 −0.054� 0.004 −0.055� 0.004 −0.056� 0.004
d3 −0.200� 0.005 −0.180� 0.005 −0.163� 0.004
dM 0.92� 0.12 0.86� 0.12 0.80� 0.12
ds −0.34� 0.03 −0.33� 0.04 −0.32� 0.03
~FV1

0.10� 0.08 0.11� 0.07 0.12� 0.06
~dM 1.55� 0.05 1.50� 0.04 1.41� 0.04
~ds −0.31� 0.01 −0.33� 0.04 −0.29� 0.08ffiffiffiffiffi
s0

p
(GeV) 2.67þ0.56

−0.31 2.76þ1.12
−0.39 2.85þ0.55

−0.49
χ2=ndf 1.2 1.2 1.2
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QCD, have triggered a lot of attention recently and a
number of analyses using various approaches [67].
Once the short-distance QCD constraints for FV, c125,

c1256 (21) and d3 (22) are implemented into Eq. (38), the
form factor can be conveniently rewritten as

F π0γγðQ2Þ ¼ −
F
3

Q2ð1þ 32
ffiffiffi
2

p P2FV
F2 Þ þ NC

4π2
M4

V
F2

M2
VðM2

V þQ2Þ ; (40)

in agreement with Ref. [22]. It should be pointed out that
the dependence on the pseudoscalar resonance coupling P2

in Eq. (40) is introduced through the use of Eq. (22)
because the πTFF depends only upon vector resonance
couplings and F (for the pseudo-Goldstone dynamics).
We observe, however, that sticking to the Brodsky-

Lepage constraint for P2, Eq. (23), does not yield a
satisfactory description of the data. We find, in accordance
with Ref. [22], that a small violation of this equation, ∼4%,
yields the best fit to the πTFF data, as shown in Fig. [5].
Specifically, we obtain

P2 ¼ −ð1.13� 0.12Þ × 10−3 GeV; χ2=dof ¼ 1.01;

(41)

where the error is dominated by the 10% variation of FV
around its predicted value of

ffiffiffi
3

p
F (21) (c1256 and d3

change according to its value). This result is compatible
with the value in Ref. [22]23

P2 ¼ −ð1.21� 0.03Þ × 10−3 GeV; (42)

where the errors are those stemming from the minimization
procedure only.
We point out that fits of similar quality could be obtained

by neglecting pseudoscalar resonance effects and consid-
ering the first excited vector multiplet instead. In particular,
fitting only gc1256 (defined in analogy to the coupling c1256
for the first multiplet) yields gc1256 ¼ −ð1.75� 0.01Þ ×
10−3 with again a χ2 per degree of freedom of order unity.
This ambiguity may explain why one can find in the
literature approaches where pseudoscalar resonances are
ignored and two vector multiplets are considered instead or
settings where only the first multiplet of pseudoscalar and
vector resonances is accounted for. It does not seem
possible to settle this issue soon, even with more precise
data on the πTFF. Our argument to prefer the description
including the pseudoscalar mesons and only the lightest
multiplet of pseudoscalar and vector resonances is the
consistency of short-distance constraints in the odd-intrin-
sic parity resonance chiral Lagrangian that can be achieved
in the single resonance approximation [25].
In any case, more accurate measurements of this form

factor at large momentum transfer are needed to elucidate
whether the Brodsky-Lepage-like asymptotic behavior
(approached by Belle) or its violation (hinted by Babar)
describe the high-energy data. In the next section we will
propose an ideally suited observable to probe F π0γγ with
both photons off their mass shell.

VII. A GENUINE PROBE OF THE πγ⋆γ⋆
FORM FACTOR

In the previous sections we have seen that the γγ�P and
γ⋆ωπ0 form factors, require the contributions of one and
three multiplet of vector resonances, respectively, to
account for experimental data. The reason for this behavior
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FIG. 5 (color online). CELLO [63], CLEO [64], Babar [7],
and Belle [65] data for the πTFF are compared to our best fit
result using the form factor in Eq. (38) as explained in the main
text. The error band associated with the 10% variation of FV
cannot be appreciated.
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FIG. 4 (color online). SND [13,14], isospin-rotated CLEO data
[17], CLEO data in the charmonium region [15,16], and Belle [8]
data in the bottomonium region for σðeþe− → ωπ0Þ are com-
pared with our best fit results. The form factor includes three
ρ-like resonances plus a continuum contribution.

23It must be noted that Belle data [65], which seems to agree
better with the Brodsky-Lepage asymptotic prediction than
Babar data [7], was not available when Ref. [22] was published.
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is that the specific on-shell particles involved in the process
determine the possible VV 0P couplings that are necessary.
In this section we shall study some processes involving the
pseudoscalar TFF with two virtual photons which, even-
tually, may provide information on the couplings of excited
vector resonances.
The πγ⋆γ⋆ form factor can be probed in the process

eþðqþÞe−ðq−Þ → γ⋆ðkÞ → π0ðpπÞγ⋆ðk0Þ → π0ðpπÞμþðpþÞ
μ−ðp−Þ which, to our knowledge, has not been studied or
searched for previously.24 This decay can be measured by
the KLOE Collaboration for k2; k02 ≲ 1 GeV2 and in
Belle-II for photon virtualities up to some ð10.5 GeVÞ2.
In this process both photons are timelike as opposed to the
t-channel extraction of the πTFF discussed in Secs. V and
VI. It should also be noted that the form factor that takes

part in the evaluation of the aπ
0;HLbL

μ also has both timelike
photons. The additional uncertainty induced by the non-
vanishing ΓρðsÞ for s > 4m2

π should not be in principle a
limitation to probe the πTFF studying eþe− → π0μþμ−.
At the present level of precision for πTFF, any possible
quark-hadron duality violation [68] in relating the
Euclidean and Minkowskian regions shall be neglected.
In terms of suitable invariants [69],

s≡ k2; s1 ≡ k02; t0 ≡ ðqþ − pπÞ2;
t1 ≡ ðqþ − pþÞ2; u1 ≡ ðk − pþÞ2; (43)

the corresponding spin-averaged and unpolarized squared
matrix element reads

X
jMj2 ¼ 512α4π4

s2s21
jF π0γγðk2; k02Þj2f−2m4

μs2 þm2
μs½m4

μ þm2
μðm2

π þ sþ s1 − 2t0 − 4t1 þ 2u1Þ

þm4
π þm2

πð−3sþ s1 − 3t0 − 2t1 þ u1Þ þ 3s2 − 4ss1 þ 5st0 þ 6st1 − 3su1 þ s21 − 3s1t0

−2s1t1 þ s1u1 þ 3t20 þ 4t0t1 − 2t0u1 þ 4t21 − 4t1u1 þ u21� þ
1

4
½2sðs1 − 2m2

μÞðsþ t1 − u1Þ
×ð−m2

μ −m2
π þ sþ t0 þ t1Þ þ 4ðm2

μ − t1Þðsþ t1 − u1Þðm2
μ þm2

π − s − t0 − t1Þ
×ðs − s1 þ t0 þ t1 − u1Þ þ sðs1 − 2m2

μÞð−m2
μ −m2

π þ sþ t0 þ t1Þ2 − 2ðsþ t1 − u1Þ2
×ð−m2

μ −m2
π þ sþ t0 þ t1Þ2 − 2s2ðs1 − 2m2

μÞ2 − 2ðm2
μ − t1Þ2ðs − s1 þ t0 þ t1 − u1Þ2

þsðs1 − 2m2
μÞðs − s1 þ t0 þ t1 − u1Þ2 þ 2sð2m2

μ − s1Þðm2
μ − t1Þðs − s1 þ t0 þ t1 − u1Þ

þsðs1 − 2m2
μÞðsþ t1 − u1Þ2 þ sðs1 − 2m2

μÞðm2
μ − t1Þ2�g; (44)

where we have neglected the electron mass. Since the flavor facilities can measure this cross section at very small values of
k2—close to the threshold of ð2mμ þmπÞ2—we kept mμ ≠ 0 and mπ ≠ 0 in Eq. (44) as we have done in the numerics. The
cross section can be written [69]

σ ¼ 1

27π4s2

Z ð ffiffi
s

p
−mπÞ2

4m2
μ

ds1
λ1=2ðs; s1; m2

πÞ
Z

tþ
0

t−
0

dt0ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p Z
uþ
1

u−
1

du1
λ1=2ðs;m2

μ; u1Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p Z
tþ
1

t−
1

dt1jMj2ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p ; (45)

with the definitions

ζ ¼ ðω − ξηÞ½ð1 − ξ2Þð1 − η2Þ�−1=2; ω ¼ ðs −m2
μ − u1 þ 2t1Þλ−1=2ðs;m2

μ; u1Þ;

η ¼ ½2ss1 − ðsþm2
μ − u1Þðsþ s1 −m2

πÞ�λ−1=2ðs;m2
μ; u1Þλ−1=2ðs; s1; m2

πÞ; ξ ¼ s −m2
π − s1 þ 2t0

λ1=2ðs; s1; m2
πÞ

; (46)

and the t0, u1, and t1 integration limits

t�0 ¼ m2
π −

sþm2
π − s1
2

� λ1=2ðs;m2
π; s1Þ

2
; u�1 ¼ sþm2

μ −
sþ s1 −m2

π

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1ðs1 − 4m2

μÞλðs; s1; m2
πÞ

q
2s1

;

t�1 ¼ m2
μ −

sþm2
μ − u1
2

þ λ1=2ðs;m2
μ; u1Þ

2
½ξη�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ξ2Þð1 − η2Þ

q
�: (47)

24This process occurs only via the s channel. A similar contribution to eþe− → π0eþe− is suppressed by experimental kinematical
considerations.
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Measurements of the differential cross section dσ=ds1 for
different values of s can be used to measure the full π0γ�γ�
form factor in a clean way.
The cross section for eþe− → π0μþμ− can be predicted

using the form factor in Eq. (38) with p2 → s, q2 → s1 and
ðM2

R − xÞ−1 → DRðxÞ [see Eq. (18)] by employing the
values of the couplings discussed in the previous section:

FV ¼
ffiffiffi
3

p
Fð1.0� 0.1Þ;

c125 ¼ 0; c1256 ¼ −
NCMV

32
ffiffiffi
2

p
π2FV

;

d3 ¼ −
NCM2

V

64π2F2
V
þ F2

8F2
V
þ 4

ffiffiffi
2

p
P2

FV
;

P2 ¼ −ð1.13� 0.12Þ × 10−3 GeV: (48)

The central curve and the corresponding error bands
(almost indistinguishable) are plotted in Fig. 6. The
ρð770Þ peak shows neatly and, at higher energies, the
cross section seems to approach a plateau. The possible
contribution of the ρð1450Þ resonance (and higher excita-
tions) and its associated uncertainties are negligible with
the linear scales used in the plots of this section.
As it was pointed out previously, the differential cross

section as a function of the muon pair invariant mass can be
measured at different values of the center-of-mass energy,
s. The characteristic shape of this distribution is shown in
Fig. 6. This profile makes its measurement at KLOE-2
especially appealing and, for this reason, it is plotted for
s ¼ M2

ϕ in Fig. 7. The analogous plot at s ¼ M2
ϒð4SÞ,

corresponding to B-factories is not shown. However, it
will be very valuable to measure some points at high
virtualities in the muon pair invariant mass distribution to
check the predicted asymptotic behaviors.
The proposed observables of the eþe− → π0μþμ− proc-

ess can provide complementary information on the πTFF

data. Measurements of the μþμ− invariant mass distribution
at KLOE-2 and Belle-II and new, more precise data at high
Q2 on σðeþe− → π0eþe−Þ, would be most beneficial in
improving our understanding of the pion exchange con-
tribution to aHLbLμ , which is evaluated in the next section
according to our findings in Secs. III to VI.
Similar processes with η, η0 replacing the π0 meson

production could in principle provide measurements of the
γ�γ�ηð0Þ form factors. The relationship between the
ðη; η0ÞTFF and the πTFF is given in Sec. IX. The results
for the total and differential cross sections shown in Figs. 8
and 9 are obtained using Eqs. (54–56) and the πTFF
discussed in the paragraph above Eq. (48). The effect of the
contribution of higher excited states is negligible in
the dσ=ds1 distributions and is at the same level induced
by the uncertainties on the η-η0 mixing in the cross-section
plot. They are of order 30(20)% for the ηðη0Þ cases. With
respect to the observable considered in Fig. 9, we point out
that at KLOE-2 (s ¼ M2

ϕ ¼ 1.04 GeV2) the η distribution
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FIG. 6 (color online). Our predictions for σðeþe− →
π0μþμ−ÞðsÞ are plotted using the values of the couplings in
Eq. (48). The very small error band cannot be appreciated.
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FIG. 7 (color online). Our predictions for μþμ− distribution at
s ¼ ð1.02 GeVÞ2 are plotted using the values of the couplings in
Eq. (48). The error band cannot be appreciated.
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FIG. 8 (color online). Our predictions for eþe− → ηð0Þμþμ−
cross section are plotted using the values of the couplings in
Eq. (48) and Eqs. (54–56) for the η-η0 mixing.
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will be less prominent and no hadronic structure will show
up because there is not enough phase space available, while
the corresponding process for the η0 could not even be
produced at these energies. The μþμ− distribution at
s ¼ 4 GeV2 that we present in Fig. 9 shows a characteristic
structure produced by the ρð770Þ meson contribution and
can nevertheless be measured either using energy scan at
the Novosibirsk CMD and SND experiments or using the
radiative return method [70] at B-factories, like Belle-II.

VIII. CONSEQUENCES FOR THE PION
EXCHANGE CONTRIBUTION TO THE

HADRONIC LIGHT-BY-LIGHT MUON g − 2

For more than a decade, the anomalous magnetic
moment of the muon aμ has shown a persistent discrepancy
between the BNL measurement [11] and the theoretical
predictions [71–73] (both of them have a similar uncer-
tainty of ∼6.3 × 10−10) at the three sigma level. The
Standard Model value of aμ receives contributions from
QED, electroweak, and QCD processes. Although
the first one accounts for most of the anomaly [74], the
theoretical uncertainty is completely dominated by the
hadronic contributions. The latter is essentially saturated
by the hadronic vacuum polarization at LO, which at
present can be better obtained via eþe− hadroproduction
or hadronic tau decays (via isospin rotation [75–77]; see
also [78–80]). The hadronic light-by-light HLbL contribu-
tion, although smaller, contributes to aμ with a similar
uncertainty as the LO hadronic vacuum polarization. While
the error bar in the latter would in principle be reduced with
more accurate measurements of the hadronic cross section,
the second one is fully theoretical (see however Ref. [81]),
coming from the various models used to evaluate this
contribution [82,83] (see Ref. [9] for an updated report on
this problem). The need to reduce the uncertainty of the
hadronic contribution to aμ, particularly the one due to

HLbL, is increased in view of the upcoming experiments at
Fermilab and J-Parc that expect to improve the current
accuracy by a factor of four [12], down to 1.6 × 10−10,
clearly smaller than the error of the Standard Model
determination.
The HLbL scattering contribution to aμ involves the

hVVVVi Green function connected to three off-shell
photons [62,71]. The nontrivial interplay of different
regions of momenta leads to a mixing of long- and
short-distance contributions in which its splitting in parts
to be computed in terms of quarks and hadrons, respec-
tively, is cumbersome and avoiding double counting
becomes a problematic issue. A classification of the
different contributions relying on the chiral and large-
NC countings was put forward in Ref. [84]. According to
it, the dressed25 charged pion loop is leading in the chiral
counting but subleading in the 1=NC expansion. At NLO
in the chiral expansion, but leading in 1=NC, there appear
the pseudoscalar meson exchanges dominated by the π0

contribution. Also leading in 1=NC but next-to-next-to-
leading in the chiral expansion there are contributions
from other resonances (f0; a1;…) and from the dressed
quark loop [84]. Although the separation of the different
contributions is ambiguous and model dependent, there is
consensus in the literature that the pseudoscalar exchange
contributions (and in particular, that of the π0) give the
most of the aHLbLμ value, a feature which is not understood
on the basis of the combined chiral and 1=NC counting
introduced above.
We will evaluate this dominant aπ

0;HLbL
μ contribution

employing the πTFF derived in Sec. V. For this, the fully
off-shell form factor in Eq. (37) is needed. To illustrate the
error due to assuming a real pion (this corresponds to
pinning down the pion-pole contribution from the whole
pion exchange contribution) we will also employ the
corresponding form factor in Eq. (38), with an on-shell
pion.26 The main formulas needed for this evaluation (two-
and three-dimensional integrations, respectively) are given
in the Appendix. The form factor with a real pion will be
fixed using Eq. (48). For the fully off-shell form factor,
short-distance constraints (21) will be employed to deter-
mine c1235 and d123 as well as P1 ¼ 0, which is also
required by consistency with QCD asymptotics. Finally P3

will be set to Eq. (39). The error will be estimated by the
quoted variations of FV and P2, using F ¼ ð92.20�
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FIG. 9 (color online). Our predictions for the μþμ− distribution
in the eþe− → ηð0Þμþμ− processes are plotted at s ¼ 4 GeV2

using the values of the couplings in Eq. (48) and Eqs. (54–56) for
the η-η0 mixing.

25In general, all interactions of hadrons and quarks with
photons are dressed by form factors, e.g. via ρ − γ mixing.

26Melnikov and Vainsthein (in [83]) pointed out that this
procedure violates momentum conservation at the external vertex
and propose to use the constant form factor derived from the
Wess-Zumino-Witten action to obtain consistently the pion-pole
contribution to aπ

0;HLbL
μ . Since many references in the literature

use momentum-dependent form factors to obtain the on-shell
pion-pole contribution (thus violating momentum conservation at
the external photon vertex), we have used this approach to
illustrate the effect of the associated error.
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0.14Þ MeV [5] and by the uncertainty on the value of the
form factor at the origin, discussed below Eq. (50).
In this way, using the (incorrect momentum-dependent)

form factor for the external vertex we obtain

aπ
0;HLbL

μ ¼ ð5.75� 0.06Þ × 10−10; (49)

for the pion-pole contribution, and

aπ
0;HLbL

μ ¼ ð6.66� 0.21Þ × 10−10 (50)

for the whole pion exchange contribution, which implies
that putting the pion on-shell underestimates the value of
aπ

0;HLbL
μ by ∼14% and the corresponding error by a factor

of 4 (similar numbers are obtained using other approaches).
Contrary to what happens in all observables that we have
considered, the error of our evaluation of aπ

0;HLbL
μ in

Eq. (49) is not dominated by the value of FV (the error
induced by P2 is also negligible). The uncertainty quoted in
Eq. (49) is essentially given by a contribution encoding the
very low-energy physics: the chiral corrections to πTFF at
the origin. We have evaluated the latter using [33]

F πγγð0Þ ¼ −
NC

4π2F
ð1 − ΔÞ; (51)

with

Δ ¼ 4π2

3

F2

M2
V

m2
π

M2
V
∼ 5.9 × 10−3; (52)

where the short-distance QCD constraints for c1235 and d123
in Eq. (21) were used. This value of Δ implies a shift in
aπ

0;HLbL
μ of −0.07 · 10−10. For this reason, the central value

of Eq. (49) has been allocated in the center of the error
band. Corrections to Eq. (52) should be suppressed by
further powers ofm2

π=M2
V and shall be neglected. If, instead

of relying on the RχT prediction, Eqs. (51) and (52), we
restored to the measured value of Γðπ0 → γγÞ, the bound on
Δwould be a factor of 5 (3) larger according to the PDG [5]
(the PrimEx experiment [85]). Its forthcoming measure-
ment at KLOE-2 [86] should provide soon a determination
capable of testing Eq. (52) and, therefore, of reducing the
uncertainty on the determination of aπ

0;HLbL
μ within a given

approach. The error of another low-energy quantity, F, has
a much smaller influence on the error in Eq. (49):
�0.02 × 10−10.
The uncertainty quoted in Eq. (50) for the virtual pion

case, on the contrary, receives three comparable contribu-
tions: from fFV; P2g, from P3, and fromF πγγð0Þ (the effect
of the error of F is ∼1=3 with respect to the others and the
influence of the precise value of the pseudoscalar resonance
mass is marginal). Since the error of fFV; P2g is deter-
mined by the range allowed for FV, more precise phe-
nomenological analyses may help to reduce this
uncertainty. The incertitude on P3 is given by the limit
BRðπ0 → γγÞ < 72 eV, set by Belle [87]. A more stringent
bound on this decay width will also help to reduce the error
of Eq. (50). The prospects for reducing the error on F πγγð0Þ
were already discussed in the previous paragraph.
Our result, Eq. (50), is compared to other determinations

in Table V, where the method employed in each of them is
also given for reference.

IX. η AND η0 EXCHANGE CONTRIBUTIONS
TO THE HADRONIC LIGHT-BY-LIGHT

MUON g − 2

In this section we evaluate the contributions of the next
lightest pseudoscalar mesons (η and η0) to aHLbLμ . In order to
do that we need to relate the respective TFF to the πTFF.
We will treat the η-η0 mixing in the two-angle mixing
scheme (consistent with the large-NC limit of QCD [93])
and work in the quark flavor basis [94] where

TABLE V. Our result for aπ
0;HLbL

μ in Eq. (50) is compared to other determinations. The method employed in each
of them is also given. We specify those works that approximate aπ

0;HLbL
μ by the pion-pole contribution. It is

understood that all others consider the complete pion exchange contribution.

aπ
0;HLbL

μ × 1010 Method and reference

5.58� 0.05 Extended NJL model [88] (Bijnens, Pallante, and Prades in [83])
5.56� 0.01 Naive VMD model (Hayakawa, Kinoshita [and Sanda] in [83])
5.8� 1.0 Large-NC with two vector multiplets, π-pole contribution [82]
7.7� 1.0 Large-NC with two vector multiplets, π-pole contribution (Melnikov and Vainshtein in [83])
7.2� 1.2 π-exchange contribution corresponding to [82] evaluated in [71] (Jegerlehner and Nyffeler)
6.9 Holographic models of QCD [89]
6.54� 0.25 Holographic models of QCD [90]
6.58� 0.12 Lightest pseudoscalar and vector resonance saturation [22]
6.49� 0.56 Rational approximants [91]
5.0� 0.4 Nonlocal chiral quark model [92]
6.66� 0.21 This work, short-distance constraints of [22] revisited and data set updated
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diagðuÞ ¼
�
π0 þ Cqηþ Cq0η

0ffiffiffi
2

p ;
−π0 þ Cqηþ Cq0η

0ffiffiffi
2

p ;−Csηþ Cs0η
0
�
; (53)

in which

Cq ≡ Fffiffiffi
3

p
cosðθ8 − θ0Þ

�
cos θ0
f8

−
ffiffiffi
2

p
sin θ8
f0

�
; Cq0 ≡ Fffiffiffi

3
p

cosðθ8 − θ0Þ

� ffiffiffi
2

p
cos θ8
f0

þ sin θ0
f8

�
;

Cs ≡ Fffiffiffi
3

p
cosðθ8 − θ0Þ

� ffiffiffi
2

p
cos θ0
f8

þ sin θ8
f0

�
; Cs0 ≡ Fffiffiffi

3
p

cosðθ8 − θ0Þ

�
cos θ8
f0

−
ffiffiffi
2

p
sin θ0
f8

�
: (54)

The values of the pairs of decay constants and mixing
angles are [94]

θ8 ¼ ð−21.2� 1.6Þ∘; θ0 ¼ ð−9.2� 1.7Þ∘;
f8 ¼ ð1.26� 0.04ÞF; f0 ¼ ð1.17� 0.03ÞF:

(55)

We will consider these errors as independent in the
following.
Within this mixing scheme, the η and η0 TFF can be

easily related to the πTFF

F ηγγðp2; q2; r2Þ ¼
�
5

3
Cq −

ffiffiffi
2

p

3
Cs

�
F πγγðp2; q2; r2Þ;

F η0γγðp2; q2; r2Þ ¼
�
5

3
Cq0 þ

ffiffiffi
2

p

3
Cs0

�
F πγγðp2; q2; r2Þ:

(56)

We have therefore predicted the η and η0 TFF using our
results for the πTFF. The corresponding error is completely
dominated by the η-η0 mixing. In Figs. 10 and 11 we
confront them to Babar [95], CELLO [63], and CLEO [64]

data. In the case of the ηTFF good agreement can be seen,
although Babar data tend to lie in the border of our
predicted lower limit. Even though data from different
experiments on the η0TFF show slight tension, the overall
agreement of our prediction with them is quite good. We
observe that our πTFF-based prediction tends to show a
slightly larger slope than the η and η0 TFF data. This feature
may be caused by Babar data on the πTFF. It remains to be
seen if new, more accurate, measurements of these TFF
confirm this tendency or not. As a rule of thumb, the
comparison of our result for aπ

0;HLbL
μ (both with Babar and

Belle data on the πTFF) with the one in Ref. [22] (only with
Babar data) suggests that this effect is accounted for in the
quoted error.
Then we have evaluated the η and η0 pole and pion

exchange contributions to aHLbLμ as explained in Sec. VIII
with the results

aη;HLbLμ ¼ ð1.44� 0.26Þ × 10−10;

aη
0;HLbL
μ ¼ ð1.08� 0.09Þ × 10−10

(57)

for the pole contribution and
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FIG. 10 (color online). Our predictions for the ηTFF using the
values of the couplings in Eq. (48) and the η-η0 mixing in Eq. (55)
are compared to Babar [95], CELLO [63], and CLEO [64] data.
The error band is completely dominated by the uncertainty on the
η-η0 mixing.
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FIG. 11 (color online). Our predictions for the η0TFF using the
values of the couplings in Eq. (48) and the η-η0 mixing in Eq. (55)
are compared to Babar [95], CELLO [63], and CLEO [64] data.
The error band is completely dominated by the uncertainty on the
η-η0 mixing.
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aη;HLbL
μ ¼ ð2.04� 0.44Þ × 10−10;

aη
0;HLbL
μ ¼ ð1.77� 0.23Þ × 10−10

(58)

for the whole exchange contribution. As it happened in the
π0 case, the ηð0Þ-pole approximation underestimates clearly
the HLbL contribution, by ∼30ð45Þ%, and the error, by a
factor of roughly 2. This is confirmed by comparing our
results in Eq. (57) with those obtained in Ref. [96]

aη;HLbLμ ¼ ð1.38� 0.16Þ × 10−10;

aη
0;HLbL
μ ¼ ð1.22� 0.09Þ × 10−10;

(59)

which agree within errors.
Taking into account our determinations of aπ

0;HLbL
μ (50),

aη;HLbLμ , and aη
0;HLbL
μ (58), we obtain for the contribution of

the three lightest pseudoscalars

aP;HLbLμ ¼ ð10.47� 0.54Þ × 10−10: (60)

This number is compared to other determinations in the
literature in Table VI. Again, the method employed in each
determination is also given for reference.

X. CONCLUSIONS AND OUTLOOK

In the framework of the RχT, we have studied the γ�ωπ
and γ�γ�π form factors which have some common free
parameters arising from the VV 0P Green function in the
resonance region. When compared to experimental data,
these two form factors can provide complementary and
useful information to predict the HLbL contribution to the
anomalous magnetic moment of the muon, aμ.
We have first considered the energy region below 2 GeV

for the γ�ωπ form factor and have found that, in agreement
with Ref. [14], the inclusion of three ρ-like resonances is
sufficient to describe well the experimental data. We have
also analyzed whether the RχT form factor could be
extended to higher energies and explain all existing data.

It was found that, within the large-NC approach, the
resonance contributions can describe well the data up to
the J=ψ region but it fails to account for the data beyond
this energy scale without assuming further degrees of
freedom. Data on this form factor in the bottomonium
region [8] falls much faster than the 1=s asymptotic
behavior expected in QCD. In comparison with a similar
approach that uses τ decay data [35,38], our present study
has improved the understanding of the [1.5, 2] GeVenergy
region thanks to the use of the eþe− data and the
implementation of two short-distance constraints (one of
them we derived here for the first time) which were missed
in the quoted references.
In the second part of the paper we have studied the πTFF

within RχT in close analogy with Ref. [22]. Our improve-
ment with respect to this previous analysis is two-fold: on
the one hand we have included a high-energy constraint
which was not realized in that reference and, on the other,
we have used Belle data, which appeared after Ref. [22]
was published. Our error estimate is also more robust since,
in addition to the errors on the resonance couplings, we
have also included the (dominant) uncertainty introduced
by the value of the πTFF at the origin. We have shown that
it is possible to describe the πTFF data adding to the
pseudo-Goldstone bosons only the lightest multiplet of
pseudoscalar and vector resonances with tiny violations of
the asymptotic constraints. We have proposed that a check
of this πTFF can be done through observables associated
with eþe− → μþμ−π0 and we have discussed the feasibility
of their measurements at KLOE-2 and Belle-II. The two
photons involved in this process are timelike; therefore, it
can provide an alternative measurement of the γ�γ�π vertex
to the one done by the “traditional” t-channel dominant
contribution to eþe− → eþe−π0 [66].
Finally, we have applied our results to compute the

pseudoscalar exchange contribution to aHLbLμ . Our result,
aπ

0;HLbL
μ ¼ ð6.66� 0.21Þ × 10−10, is compatible with that

in Ref. [22] but has a larger error as a result of including the
uncertainty on the value of the πTFF at the origin. We have

TABLE VI. Our result for aP;HLbLμ in Eq. (60) is compared to other determinations. The method employed in each
of them is also given. We specify those works that approximate aP;HLbLμ by the pseudoscalar pole contribution. It is
understood that all others consider the complete pseudoscalar exchange contribution.

aP;HLbLμ × 1010 Method and reference

8.5� 1.3 Extended NJL model [88] (Bijnens, Pallante, and Prades in [83])
8.27� 0.64 Naive VMD model (Hayakawa, Kinoshita [and Sanda] in [83])
8.3� 1.2 Large-NC with two vector multiplets, P-pole contribution [82]
11.4� 1.0 Large-NC with two vector multiplets, P-pole contribution (Melnikov and Vainshtein in [83])
9.9� 1.6 π-exchange contribution corresponding to [82] evaluated in [71] (Jegerlehner and Nyffeler)
10.7 Holographic models of QCD [89]
9.0� 0.7 Rational approximants [96] using half-width rule [97], P-pole contribution
5.85� 0.87 Nonlocal chiral quark model [92]
11.4� 1.3 Average of various approaches (Prades, de Rafael, and Vainshtein in [83])
10.47� 0.54 This work, lightest pseudoscalar and vector resonance saturation
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also recalled that approximating the contribution of pion
exchange by that of the pion pole underestimates aπ

0;HLbL
μ

by ½15 ∼ 20�%, which artificially increases the discrepancy
with the BNL measurements of aμ (the corresponding error
is also undervalued). Then, using our study of the πTFF, we
have predicted the η and η0 transition form factors on the
basis of the η − η0 mixing scheme in the quark flavor basis.
Our predictions obtained for aη

ð0Þ;HLbL
μ are

aη;HLbLμ ¼ ð2.04� 0.44Þ × 10−10;

aη
0;HLbL
μ ¼ ð1.77� 0.23Þ × 10−10:

In these cases, it is also shown that approximating the
pseudoscalar exchange by the pseudoscalar pole contribu-
tion clearly underestimates the results and their associated
errors.
As the main result of our analysis we find that the

contribution of the three lightest pseudoscalar mesons
(π0, η, and η0) to the muon anomaly is

aP;HLbLμ ¼ ð10.47� 0.54Þ × 10−10; (61)

in good agreement with the two reference values:
ð9.9� 1.6Þ × 10−10 (Jegerlehner and Nyffeler [62]) and
ð11.4� 1.3Þ × 10−10 (Prades, de Rafael, and Vainshtein in
[83]). The smaller error bar of our result would decrease the
uncertainty in the prediction of aHLbLμ , and sligthly increase
the muon g − 2 discrepancy. If the results for the π, K loops
and from the contribution of scalar and axial-vector
resonances27 are added to our result, we find

aHLbLμ ¼ ð11.8� 2.0Þ × 10−10; (62)

which basically coincides with the Jegerlehner and
Nyffeler’s central value, aHLbLμ ¼ ð11.6� 4.0Þ × 10−10

[71]), and with the result of Prades, de Rafael, and
Vainshtein, aHLbLμ ¼ ð10.5� 2.6Þ × 10−10 in [83]. There
is a good agreement within errors with both of them. The
current theoretical uncertainty of aμ,�6.2 × 10−10, has two
dominant sources: the one coming from the hadronic
vacuum polarization contribution at LO, �4.7 × 10−10,
and the one induced by computations of the HLbL
scattering contribution, �4.0 × 10−10 [62]. If, instead of
the latter, our error estimate for the HLbL scattering
contribution is used, the total uncertainty would be �5.1 ×
10−10 with the central value remaining basically the same.
While lattice is progressing towards a reliable evaluation

of aHLbLμ [98] only a close collaboration between theory and
experiment (see in particular Ref. [81]) can lead to a
reduction of the current error on this quantity. On the theory

side, a deeper study of short-distance relations derived from
perturbative QCD can be helpful for this purpose. In
particular, the study of the hVVVVi Green function in
the resonance region may clarify if the asymptotic con-
straints demanded to the πTFF are complete or not.28 Also
the (subdominant) contribution of scalar and axial-vector
resonances needs further studies, since its relative error is
still quite large (see however Ref. [102]).
On the experimental side, the error of the dominant

pseudoscalar exchange contribution can be reduced by
more precise measurements of hadronic processes at
s≲ 4 GeV2: the pseudoscalar (π0, η, and η0) TFF, the
two-photon pseudoscalar decay widths, and the eþe− →
μþμ−π0 observables that we have proposed in this work.
Although indirectly, a more accurate determination of the
η-η0 mixing can also allow us to reduce the uncertainty on
the corresponding contributions to the muon anomaly
through their relation with the more precise πTFF mea-
surements. More accurate data on the eþe− → Vπ0 proc-
esses and on the πTFF at high energies may shed some light
on the fulfillment of the asymptotic QCD predictions in
hadronic processes. Among all these, the earliest improve-
ment can be expected from the KLOE-2 measurement of
π0 → γγ [86], which should be capable of reducing the
error associated with the value of the πTFF at the origin by
a factor of 4, at the 1 × 10−11 level.
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APPENDIX

This appendix collects some formulas used for the
evaluation of the pion-pole and exchange contribution to
the hadronic light-by-light muon anomalous magnetic
moment in Sec. VIII. We will follow the notation of
Ref. [82], where angular integrations of the relevant
two-loop integrals were first performed analytically using
the method of Gegenbauer polynomials. The remaining
two-dimensional integrations can be readily performed
numerically provided the πTFF can be written

27The heavy-quark loop contribution is taken from Jegerlehner
and Nyffeler’s evaluation (which coincides with the Bijnens,
Pallante, and Prades value in [83]), because the Prades, de Rafael,
and Vainshtein number only accounts for the c-quark loop.

28There are also some issues concerning the evaluation of the
other contributions to aHLbLμ : the dressed pseudo-Goldstone and
quark loop contribution. In the first one, much larger values are
found (up to a factor of 4) in Ref. [99]. Four to five times larger
contribution for the latter is obtained in Refs. [100,101].
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F π0γγðq21; q22Þ ¼
F
3

�
fðq21Þ −

X
MVi

1

q22 −M2
Vi

gMVi
ðq21Þ

�
: (A1)

Then, the hadronic light-by-light contribution to aμ reads

aπ
0;HLbL

μ ¼
�
α

π

�
3

½aπ0ð1Þ;HLbLμ þ aπ
0ð2Þ;HLbL

μ �; (A2)

with

aπ
0ð1Þ;HLbL

μ ¼
Z

∞

0

dQ1

Z
∞

0

dQ2

�
wf1ðQ1; Q2Þfð1ÞðQ2

1; Q
2
2Þ þ

X
MVi

wg1ðMVi
;Q1; Q2Þgð1ÞMVi

ðQ2
1; Q

2
2Þ
�
; (A3)

and

aπ
0ð2Þ;HLbL

μ ¼
Z

∞

0

dQ1

Z
∞

0

dQ2

X
M¼mπ ;MVi

wg2ðM;Q1; Q2Þgð2ÞM ðQ2
1; Q

2
2Þ: (A4)

In the previous equation, wff=ggiðq21; q22Þ are weight factors, whose expressions can be found in Ref. [82]. ff=ggðiÞ are
generalized form factors given by

fð1ÞðQ2
1; Q

2
2Þ ¼

F
3
fð−Q2

1ÞF π0γγð−Q2
2; 0Þ; gð1ÞMVi

ðQ2
1; Q

2
2Þ ¼

F
3

gMVi
ð−Q2

1Þ
M2

Vi

F π0γγð−Q2
2; 0Þ;

gð2Þmπ ðQ2
1; Q

2
2Þ ¼

F
3
F π0γγð−Q2

1;−Q2
2Þ
�
fð0Þ þ

X
MVi

gMVi
ð0Þ

M2
Vi
−m2

π

�
; gð2ÞMVi

ðQ2
1; Q

2
2Þ ¼

F
3
F π0γγð−Q2

1;−Q2
2Þ

gMVi
ð0Þ

m2
π −M2

Vi

: (A5)

Our expressions for the πTFF in the case of virtual (37) and real pion (38) can indeed be written according to Eq. (A1),

fðq2Þ¼ 2

F2

�
−2

ffiffiffi
2

p
c1256FVðM2

V−2q2Þ
MVðM2

V −q2Þ −
NC

8π2
−

4d3F2
V

M2
V −q2

�
; gMV

ðq2Þ¼ 2

F2

�
2

ffiffiffi
2

p
c1256FVMVþ4d3F2

V
M2

Vþq2

M2
V −q2

�
; (A6)

for on-shell pion, and the additional contributions

Δfðq2;r2Þ¼2r2

F2

−16
ffiffiffi
2

p
P2FV

ðM2
V −q2ÞðM2

P−r2Þ ; ΔgMV
ðq2;r2Þ¼2r2

F2

�
4d123F2

V

M2
V−q2

−
16

ffiffiffi
2

p
P2FV

M2
P−r2

þ 16F2
VP3

ðM2
V −q2ÞðM2

P−r2Þ
�

(A7)

for the general situation in which the pion is off its mass shell. The predicted vanishing of the c1235, c125, and P1 couplings
according to asymptotic constraints has already been taken into account to simplify Eqs. (A6) and (A7).
In the latter case, Eqs. (A2–A4) should be replaced by [71]

aπ
0;HLbL

μ ¼−
2α3

3π2

Z
∞

0

dQ1

Z
∞

0

dQ2

Z þ1

−1
dt

ffiffiffiffiffiffiffiffiffiffiffi
1− t2

p
Q3

1Q
3
2

�
F1ðQ2

1;Q
2
2; tÞ

Q2
2þm2

π
I1ðQ1;Q2; tÞþ

F2ðQ2
1;Q

2
2; tÞ

Q2
3þm2

π
I2ðQ1;Q2; tÞ

�
; (A8)

where Q3 ¼ ðQ1 þQ2Þ, t ¼ cosð dQ1; Q2Þ,

F1ðQ2
1;Q

2
2; tÞ ¼F πγγð−Q2

1;−Q2
3;−Q2

2ÞF πγγð−Q2
2;0;−Q2

2Þ; F2ðQ2
1;Q

2
2; tÞ ¼F πγγð−Q2

1;−Q2
2;−Q2

3ÞF πγγð−Q2
3;0;−Q2

3Þ;
(A9)

and the integration kernels I1ðQ1; Q2; tÞ and I2ðQ1; Q2; tÞ can be found in Ref. [71].
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