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We present the analysis of the renormalization-based evolution of the CP-violation observables obtained
from the C matrix introduced by Jarlskog. We show that the observables j detCj and TrC2 decrease very
fast with the energy and their value is reduced at the Planck scale by 5 and 3 orders of magnitude,
respectively, with respect to their low-energy values. On the other hand, the Jarlskog Cabibbo-Kobayashi-
Maskawa matrix rephasing invariant J increases with energy and at the Planck scale is 25% larger than at
low energy. The absolute value of the coefficient aCP ∼ detC=ðTrC2Þ3=2 decreases with energy, and at the
Planck scale it is 12% smaller than at low energy. We also find that the pattern of the eigenvalues of the
C matrix is such that two eigenvalues almost cancel each other and their absolute values are much bigger
than the absolute value of the third eigenvalue. The low rate of CP violation is a consequence of this
pattern of the eigenvalues.
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I. INTRODUCTION

The discovery of the Higgs boson and the measurement
of its mass [1] determine the last unknown parameter of the
Standard Model [2]. In such a way, the Standard Model
becomes a fully predictive theory.1 In this paper, we study
the renormalization group evolution of the CP-violation
parameters in the Standard Model.
The CP violation in the Standard Model has its origin in

the complex values of the quark Yukawa couplings, which
result in a complex Cabibbo-Kobayashi-Maskawa (CKM)
matrix,with a phasewhich cannot be eliminated by the quark
rephasing freedomof the StandardModel [3]. The condition
for the presence of the CP violation in the Standard Model
in terms of the mass matrices (or quark Yukawa couplings)
has been given by Jarlskog [4]. She considers the commu-
tator of the quark mass matrices

i ~C ¼ ½M;M0�; det ~C ≠ 0 for CP violation (1)

(M andM0 are the mass matrices of the up and down quarks,
respectively) and shows that a nonvanishing det ~C signifies
thepresenceofCPviolation in theStandardModel.Basedon
this analysis, we consider the renormalization group evolu-
tion of all parameters that describe the properties of CP
violation in the Standard Model. The first renormalization
group analysis of detC [5] was performed almost 30 years
ago, and it was donewith one-loop equations. The first study
of the evolution of Jwas done almost 25 years ago [6], and it
was based on the renormalization group equations for the
absolutevalues of theCKMmatrix elements.Our analysis of
CPviolation is basedon the two-loop equations for the quark
Yukawa couplings, and it is the first complete analysis
based on the Jarlskog matrix C.
In Sec. II, we briefly recapitulate the renormalization

group equations (RGEs) in the Standard Model. Section III
is devoted to the discussion of the Jarlskog analysis of CP
violation, and in Sec. IV we discuss the renormalization
group equations for the CP-violation observables.
Section V contains the main results of the paper, and in
Sec. VI we give a general view of the obtained results.

II. RENORMALIZATION GROUP EQUATIONS

Renormalization group (RG) analysis in the field theory
is the most important method for the asymptotic analysis
of the theory at high energies [7]. In the Standard Model
(SM), the RGEs were used to find the behavior of gauge
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1This is not true for extensions of the Standard Model, which

usually contain additional unknown parameters. The known value
of the Higgs mass can, at best, put some constraints on these
additional parameters.
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couplings at high energies (asymptotic freedom [8]), to
justify the grand unified extensions of the SM [9], and also
to obtain limits on the Higgs boson mass and for the
determination of the range of validity of the SM, imposing
the conditions of triviality and stability of the model (see
[10] and references therein). With the complete knowledge
of the parameters of the SM, one can now give precise
answers about the energy evolution of the parameters of
the model.
The generic form of the RGE equation for an observable

x is the following:

dx
dt

¼ βx; (2)

where t is the renormalization point energy in suitable units
[we use t ¼ lnðE=mtÞ, andmt is the top quark mass] and βx
is the beta function of the parameter x, which has the
generic form of a perturbative series

βx ¼
1

16π2
βð1Þx þ 1

ð16π2Þ2 β
ð2Þ
x þ � � � : (3)

Here βðiÞx are the i-loop contributions to the βx function.
In the SM the βðiÞx functions are fully known up to two loops
[11]. There are some partial results with more loops, but we
do not include them, since they are not complete, so they do
not improve the precision of the analysis.
In the SM the full set of parameters x of the RG evolution

is given in Table I. The RGEs for g1, g2, g3, Yu, Yd, Ye, and
λ do not depend on m2, so we do not have to consider the
RGE for m2.
The one-loop βð1Þx functions in the SM are equal to

βg1 ¼
41

10
g31; βg2 ¼ − 19

6
g32; βg3 ¼ −7g33; βYu

¼ Yu

�
3

2
ðY†

uYu − Y†
dYdÞ þ Y2ðSÞ−

�
17

20
g21 þ

9

4
g22 þ 8g23

��
;

βYd
¼ Yd

�
3

2
ðY†

dYd − Y†
uYuÞ þ Y2ðSÞ−

�
1

4
g21 þ

9

4
g22 þ 8g23

��
; βYe

¼ Ye

�
3

2
Y†
eYe þ Y2ðSÞ − 9

4
ðg21 þ g22Þ

�
;

βλ ¼ 12λ2 −
�
9

5
g21 þ 9g22

�
λþ

�
27

100
g41 þ

9

10
g21g

2
2 þ

9

4
g42

�
þ 4λY2ðSÞ − 4HðSÞ: (4)

Here Y2ðSÞ and HðSÞ are auxiliary functions equal to,
respectively,

Y2ðSÞ ¼ Trð3Y†
uYu þ 3Y†

dYd þ Y†
eYeÞ;

HðSÞ ¼ Trð3ðY†
uYuÞ2 þ 3ðY†

dYdÞ2 þ ðY†
eYeÞ2Þ:

The explicit form of the two-loop beta functions is rather
long, so we do not repeat them here, but we use the two-
loop beta functions from Ref. [11].
From Eq. (4), one can see that the one-loop RGEs for g1,

g2, g3, Yu, Yd, and Ye do not depend on the quartic coupling
constant λ, so they are insensitive to the Higgs mass. This is
not the case for the two-loop equations. This is the reason
for which the complete RG analysis of the SM should
be performed at a higher level than the one-loop
approximation.
In Sec. IV, we will use Eq. (4) and the two-loop RGEs for

the determination of the evolution of the CP-violating
observables.

III. JARLSKOG’S DESCRIPTION
OF CP VIOLATION

The quark Yukawa couplings are the only source of CP
violation in the Lagrangian of the SM. The quark Yukawa
couplings are described by two complex 3 × 3 matrices Yu
and Yd for the up and down quarks, respectively. The quark
mass matrices are expressed by the Yukawa couplings in
the following way:

M ¼ vffiffiffi
2

p Yu; M0 ¼ vffiffiffi
2

p Yd;

where v is the vacuum expectation value of the Higgs field
and M and M0 are mass matrices of the up and down
quarks, respectively. Quark running masses are the eigen-
values of the quark mass matrices, and the Cabibbo-
Kobayashi-Maskawa matrix V is obtained from the left
biunitary diagonalizing matrices Uu;d

L :

Uu
RMUu

L
† ¼ Diagðmt;mc;muÞ;

Ud
RM

0Ud
L
† ¼ Diagðmb;ms;mdÞ;
V ¼ Uu

LU
d
L
†:

TABLE I. Parameters of the SM.

x Description

g1; g2; g3 Gauge couplings
Yu; Yd Quark Yukawa coupling matrices
Ye Lepton Yukawa coupling matrix
m2; λ Parameters of the Higgs scalar potential;

λ is the Higgs quartic coupling
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The matrices Uu;d
L are also obtained from the diagonaliza-

tion of the Hermitian matrices Y†
uYu and Y

†
dYd, and we have

Uu
LY

†
uYuUu

L
† ¼ Diagðy2t ; y2c; y2uÞ;

Ud
LY

†
dYdUd

L
† ¼ Diagðy2b; y2s ; y2dÞ;

where yt, yc, yu, yb, ys, and yd are the eigenvalues of the
quark Yukawa couplings, corresponding to the top, charm,
up, bottom, strange, and down quarks, respectively.
The condition for the presence of CP violation given

by Jarlskog in Eq. (1) is equivalent to the one given in terms
of the matrix C, which is the commutator constructed from
the quark Yukawa couplings

iC ¼ ½Y†
uYu; Y

†
dYd�; detC ≠ 0 for CP violation:

(5)

The determinant detC is equal to

detC ¼ −2ðy2t − y2cÞðy2c − y2uÞðy2u − y2t Þ
× ðy2b − y2sÞðy2s − y2dÞðy2d − y2bÞJ; (6)

and J is the Jarlskog rephasing invariant of the CKMmatrix
defined by

Im½VijVklV�
ilV

�
kj� ¼ J

X
m;n

εikmεjln: (7)

Thus the CP violation is present in the SM if J ≠ 0 and the
quark masses in the up and down sectors are not equal.
Let us now analyze the properties of the matrix C. From

definition (5), it follows that C is Hermitian and traceless.
The roots of the characteristic polynomial wðrÞ of C,

wðrÞ ¼ detðC − I · rÞ ¼ −r3 þ A2r2 − A1rþ A0;

A2 ¼ TrC ¼ 0; A1 ¼ − 1

2
TrðC2Þ;

A0 ¼ detC ¼ 1

3
TrðC3Þ; (8)

are the eigenvalues of C, and, since C is Hermitian, the
eigenvalues must be real. From this we obtain the following
condition for the coefficients A1 and A0:

aCP ¼ − 3
ffiffiffi
3

p
A0

2A1

ffiffiffiffiffiffiffiffiffi−A1

p ¼ 3
ffiffiffi
6

p
detC

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðC2Þ

p
Þ3 ¼

ffiffiffi
6

p
TrðC3Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðC2Þ

p
Þ3 ;

−1 ≤ aCP ≤ 1: (9)

The parameter aCP and the inequality in (9) were intro-
duced by Jarlskog [12]. From definition (9), one can see
that aCP depends only on the eigenvalues ðr1; r2; r3Þ of the
matrix C:

aCP ¼ 3
ffiffiffi
3

p
r1r2r3

2ð−ðr1r2 þ r1r3 þ r2r3ÞÞ32
: (10)

Moreover, using the condition TrC ¼ r1 þ r2 þ r3 ¼ 0
and dividing the numerator and denominator of Eq. (10)
by r33, we find that aCP is a function of only one parameter2:

aCP ¼ − 3
ffiffiffi
3

p
ξð1þ ξÞ

2ð1þ ξþ ξ2Þ32 ; ξ ¼ r1
r3
: (11)

In Fig. 1, we draw the dependence of aCP on ξ. One can see
that aCP has one maximum, two minima, and two zeros.
They are marked in the figure by the letters ei and zi, and
their meaning is given in Table II. From this table, we see
that the value of aCP (which is invariant under the rescaling
of the eigenvalues) characterizes the relative distribution of
the eigenvalues of the matrix C. The structure of the
eigenvalues (possibly after the relabeling) at the maximum
and at two minima is the same and is ðr; r;−2rÞ, and at
zeros it is ð0; r;−rÞ.
We conclude our discussion of the Jarlskog description

of CP violation by listing the observables sensitive to the
CP violation built from the C matrix:
(1) detC ¼ 1

3
TrðC3Þ;

(2) TrðC2Þ;
(3) aCP ¼

ffiffi
6

p
TrðC3Þ

ð
ffiffiffiffiffiffiffiffiffiffi
TrðC2Þ

p
Þ3;

(4) Jarlskog’s phase invariant J;
(5) eigenvalues of the C matrix.

We will analyze the renormalization group evolution of
these observables to determine the properties of the CP
violation at the Planck scale.
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-6 -4 -2  0  2  4  6

a
C

P

ξ

Variation of aCP

e1

e2 e3

z1 z2

FIG. 1. The dependence of aCP on ξ. The values of aCP are
contained in the range ½−1; 1�, and aCP → 0 for jξj → ∞.

2We can assume that r3 ≠ 0, because at least two eigenvalues
are not equal to 0 and we can relabel the eigenvalues in such a
way that r3 is nonvanishing.
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IV. RENORMALIZATION GROUP EVOLUTION
OF CP VIOLATION

The renormalization group evolutions for our observ-
ables are obtained from the RGEs for the parameters of the
SM that are listed in Table I. Let us write the RGEs for these
parameters in the generic form3:

dgi
dt

¼ g3i ~βgi ; i ¼ 1; 2; 3;

dYu

dt
¼ Yu

~βYu
;

dYd

dt
¼ Yd

~βYd
;

dYe

dt
¼ Ye

~βYe
;

dλ
dt

¼ βλ:

(12)

Here ~βgi and βλ are scalar functions, and ~βYu
, ~βYd

, and ~βYe

are 3 × 3 Hermitian matrices that do not commute with Yu,
Yd, and Ye. The ~β functions are polynomials of gi, λ, Y

†
uYu,

Y†
dYd, and Y†

eYe. The power of the polynomials increases
with the number of loops. The RGEs in the SM are thus a
set of coupled, nonlinear ordinary differential equations.
The exact solution of these equations is, in general, not
possible.
We are interested in the evolution of the CP-violating

observables discussed in the previous section. All these
observables are obtained from the C matrix. The RGEs
for the matrix C can be obtained from Eq. (12), and it is
equal to

dC
dt

¼ f~βYu
þ ~βYd

; Cg − if½ ~βYu
; Y†

dYd�; Y†
uYug

− if½Y†
uYu; ~βYd

�; Y†
dYdg: (13)

The right-hand side of this equation depends on gi, λ, Y
†
uYu,

and Y†
dYd, so it requires that the solutions of Eq. (12)

are known. From the solution of Eq. (12), one can compute
the matrix C directly, so we will not use Eq. (13) in our
analysis, and we will numerically solve Eq. (12).
To solve Eq. (12), we need the initial values, for which

we choose the representation in which Ydð0Þ is diagonal
and Yuð0Þ contains the CKM matrix:

Yuð0Þ ¼ Diagðyt; yc; yuÞ · VCKM; (14)

Ydð0Þ ¼ Diagðyb; ys; ydÞ: (15)

The initial values of all the parameters are taken from the
PDG Book of Particle Properties [13].
The initial values of the CKMmatrix and the eigenvalues

of the quark and lepton Yukawa couplings exhibit a strong
hierarchy, which may have influence on the precision of the
numerical analysis. To confirm the numerical calculations
we have calculated the leading terms for the C matrix and
detðCÞ:

C12 ∼ −iy2t y2bV11V�
21;

C13 ∼ −iy2t y2bV11V�
31;

C23 ∼ −iy2cy2bV21V�
31;

detðCÞ ∼ −2y4t y4by2cy2sJ; (16)

and we found that the results based on approximate
formulas agree with very high precision with the numerical
calculations.

V. DISCUSSION OF THE RESULTS

In this section, we will present the numerical results of
the study of all characteristic parameters of the matrix C
that were analyzed in the energy range from mt
to 1016 GeV.
The renormalization group method is the tool to deter-

mine the range of the validity of the SM. We will start by
showing the evolution of the Higgs quartic coupling λ,
which must be positive for a stable theory. The evolution of
λ is shown in Fig. 2, in which we see that, around

TABLE II. Extrema and zeros of aCP.

ξ Type Eigenvalues

e1 −0.5 Maximum ðr; r;−2rÞ
e2 −2.0 Minimum ð−2r; r; rÞ
e3 þ1.0 Minimum ðr;−2r; rÞ
z1 −1.0 Zero ðr; 0;−rÞ
z2 0.0 Zero ð0; r;−rÞ

-0.15
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-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

104 106 108 1010 1012 1014 1016

λ

Energy (GeV)

Evolution of λ

One loop
Two loops

FIG. 2. The dependence of the Higgs quartic coupling λ on
energy. Only the region of energy where λ is positive has stable
vacuum and is physically acceptable. The top mass is equal to
mt ¼ 173.07. The difference for one- and two-loop evolution is
significant.

3This form of the RGE equations is valid for any number of
loops with the corresponding β functions.
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106–107 GeV, λ becomes negative and the threshold of new
physics should be below this energy, when considering the
observed value for mt.

4

The evolution of λ depends strongly on the value of the
top quark mass. In Fig. 2, the top quark mass was taken
from Ref. [13] as the directly measured mass, which is
equal to mt ¼ 173.07 GeV (we do not show the influence
of the top quark mass experimental errors in the evolution).
In Fig. 2, we compare the one- and two-loop evolutions.
The difference in the evolutions is significant, and for more
precise predictions one should use the two-loop evolution.
The Particle Data Group [13] also quotes the M̄S top

quark mass from cross section measurements which is
equal tomt ¼ 160þ5−4 GeV. In Fig. 3, we show the two-loop
λ evolution for the two values of the top quark mass: mt ¼
160 GeV andmt ¼ 173.07 GeV.We notice that for the M̄S
top quark mass the quartic coupling λ is positive for the

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

104 106 108 1010 1012 1014 1016

λ

Energy (GeV)

Evolution of λ

Direct top mass
MS value of top mass

FIG. 3. The dependence of the Higgs quartic coupling λ on
energy for two values of top quark mass: directly measured
mass mt ¼ 173.07 GeV and M̄S mass mt ¼ 160 GeV. Here we
include only two-loop evolution of λ.

Evolution of det(C)
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C
)

(a) One loop
Two loops

-10-27

-10-26

-10-25

-10-24

-10-23

-10-22

-10-21

104 106 108 1010 1012 1014 1016

de
t(

C
)

Energy (GeV)

(b) Direct top mass
MS value of top mass

FIG. 4. RG evolution of detC. In (a) we show the dependence
of detC on the number of loops, and in (b) we show the two-loop
evolution of detC for two values of the top quark mass: mt ¼
173.07 GeV and mt ¼ 160 GeV.

Evolution of Tr(C2)
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10-7

T
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C
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(a) One loop
Two loops
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T
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C
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(b) Direct top mass
MS value of top mass

FIG. 5. RG evolution of TrC2. In (a) we show the dependence
of TrC2 on the number of loops, and in (b) we show the two-loop
evolution of TrC2 for two values of the top quark mass:
mt ¼ 173.07 GeV and mt ¼ 160 GeV.

4The exhaustive discussion of the vacuum stability is contained
in a recent paper [14]. One should notice that the value of the
energy where λ becomes negative is lower in our case than in
Ref. [14]. This may be due to a different approximation used in
[14] than in our analysis. We do not neglect any terms in our
computations.
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whole range of energy up to the Planck scale. This fact may
suggest that the range of validity of the SM may be larger
than the one obtained from the directly measured top
quark mass.
Let us now start the discussion of the evolution of the

CP-violation observables with the detC. In Fig. 4, we
display the RGE evolution of detC for one- and two-loop
cases and for the top quark masses mt ¼ 160 GeV and
mt ¼ 173.07 GeV. The variation of detC is very signifi-
cant, because its absolute value is reduced by 5 orders of
magnitude in the considered range of energies. The non-
vanishing of detC is the criterion of CP violation in the
SM, so such a dramatic reduction of detC might indicate
that at the unification energy the rate of CP violation in the
SM is also reduced. From Eq. (6), we know that detC is the
product of the Jarlskog J and of the quark mass differences,
so we must study other parameters of the C matrix to be
able to interpret the evolution of detC. The other informa-
tion contained in Fig. 4 is the dependence of detC on the
number of loops and on the top quark mass. The depend-
ence of the evolution of detC on these two parameters is
well marked, but the overall physical picture does not
depend strongly on these parameters: the absolute value of
detC is decreasing by 5 orders of magnitude between the
top mass and the Planck scale.

The next important parameter of the matrix C is TrC2,
which as detC is the rephasing invariant of the quark
fields, but it does not vanish, when CP is conserved, but it
is used in the ratio with detC to determine the normalized
rate of CP violation. In Fig. 5, we show the evolution of
TrC2, whose variation is also very significant. The value
of TrC2 is reduced by 3 orders of magnitude in the
considered energy range. The explicit formula for TrC2 in
terms of quark masses and the CKM matrix is rather
complicated, so there is no simple interpretation of such
an evolution in terms of other observables. The depend-
ence of TrC2 on the number of loops and on the top quark
mass is also well marked, but again the physical picture is
similar in all cases.
Another important parameter to study is aCP, defined in

(9), which is the ratio of detC and ðTrC2Þð3=2Þ. In Fig. 6, we
show the evolution of aCP. The parameter aCP is invariant
upon the rescaling of the Yukawa couplings (and quark
masses). From Fig. 6, we see that aCP has rather slow
energy dependence and the fast evolution of detC and TrC2

mostly cancel each other in aCP. Note that the scale in
Fig. 6 is linear, while in Figs. 4 and 5 it is logarithmic. The
overall change of aCP is approximately 6%, but the
difference between the one- and two-loop evolution is
very small. The initial values of aCP for the top quark

Evolution of aCP
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-3.9*10-10

-3.8*10-10

-3.7*10-10

-3.6*10-10
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a C
P

Energy (GeV)

(b) Direct top mass
MS value of top mass

FIG. 6. RG evolution of aCP. In (a) we show the dependence of
aCP on the number of loops, and in (b) we show the two-loop
evolution of aCP for two values of the top quark mass:
mt ¼ 173.07 GeV and mt ¼ 160 GeV.

Evolution of Jarlskog’s J
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4.0*10-5

104 106 108 1010 1012 1014 1016
J

Energy (GeV)

(b) Direct top mass
MS value of top mass

FIG. 7. RG evolution of the Jarlskog parameter J. In (a) we
show the dependence of J on the number of loops, and in (b) we
show the two-loop evolution of J for two values of the top quark
mass: mt ¼ 173.07 GeV and mt ¼ 160 GeV.
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masses mt ¼ 173.07 GeV and mt ¼ 160 GeV differ, but
the pattern of the evolution for both quark masses is similar.
From Fig. 6, we also notice that the value of the

dimensionless parameter aCP is of the order of 10−10,
and it is very small. From the analysis of the parameter aCP
in Sec. III, we deduce that the scenario for the eigenvalues
of the matrix C that is realized is the one that is close to the
zero value of aCP ’ i.e., there are two eigenvalues that
almost cancel each other, and the third eigenvalue is much
smaller than the remaining two. In Fig. 7, we show the
evolution of the Jarlskog phase invariant J. We see that J
grows with the energy, and the overall increase of J up to
the Planck scale is approximately 30%. The two-loop
modification of J is very small. The growth of J for the
M̄S top quark mass mt ¼ 160 GeV is slower than for the
directly measured mt ¼ 173.07 GeV.
Finally, in Figs. 8 and 9, we show the evolution of the

eigenvalues of the matrix C. The structure of the evolution
of the eigenvalues is consistent with the discussion of the
evolution of aCP, detC, and TrC2:
(1) From the small value of aCP, it follows that there

are two large and one small eigenvalue of the
matrix C.

(2) The absolute values of the eigenvalues are quickly
decreasing with energy.

The dependence of the evolution on the number of loops
and on the top quark mass is important but does not bring
in new physical effects.

VI. CONCLUSIONS

Let us start our conclusions with the analysis of the range
of validity of the SM. The sign of the Higgs quartic
coupling is the criterion of the vacuum stability. For
negative values of λ the model is unstable. In Figs. 2
and 3, we compare the evolution of λ for one- and two-loop
renormalization group equations and for two different
values of the top quark mass reported by PDG [13].
From Fig. 2, one can see that the evolution of λ is sensitive
to the number of loops and the difference at the Planck
scale for the two cases is significant. The dependence of
the evolution of λ on the top quark mass is very strong. In
Fig. 3, we see that for the M̄S top quark mass mt ¼
160 GeV the quartic coupling λ is positive in the whole
energy range up to the Planck mass. On the other hand, for
the directly measured quark mass mt ¼ 173.07 the model
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FIG. 8. RG evolution of the two large eigenvalues of the matrix
C. In (a) we show the dependence of the eigenvalues on the
number of loops, and in (b) we show the two-loop evolution
of the eigenvalues for two values of the top quark mass:
mt ¼ 173.07 GeV and mt ¼ 160 GeV.
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the eigenvalue for two values of the top quark mass:
mt ¼ 173.07 GeV and mt ¼ 160 GeV.
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becomes unstable at ∼107 GeV. In our opinion, the results
of the renormalization group analysis of the model based on
the MS top quark mass should be taken on equal footing
with the ones obtained from the directly measured top
quark mass. The subject of the stability of vacuum has been
extensively discussed in the recent paper [14], and we will
not delve into it further, because it is not the main subject of
our paper. We just conclude that it is justified to consider
the renormalization group evolution of the SM up to the
Planck energy.
The renormalization group evolution of the CP observ-

ables has two patterns: very fast variation of detC and TrC2

and relatively slow dependence on energy of Jarlskog’s J
and aCP. The absolute values of detC and TrC2 decrease
with the energy 5 and 3 orders of magnitude, respectively.
Jarlskog’s J and aCP are invariant upon rescaling of the
quark Yukawa couplings, because they are the ratios of
detC and the suitable powers of the eigenvalues of the
quark Yukawa couplings. These parameters have slow
variation with energy, and one can conclude that the
diagonalizing matrices of the Yukawa couplings and
the CKM matrix also have slow dependence on energy.
The evolution of J is very remarkable: the one- and two-
loop evolution are almost identical, but the dependence
of J on the top quark mass is significant (see Fig. 7). The
coefficient J grows with the energy, and its value at the
Planck scale is approximately 25% larger than at the top
mass. Such a value is not sufficient for the explanation of
the cosmological analysis of the baryon asymmetry, and

new sources of CP violation are needed (see, e.g., a recent
paper on a discussion of the two Higgs doublet extension of
the SM, compatible with the observed value of the Higgs
boson [15]).
The next important result is the structure of the eigen-

values of the C matrix. If one expands the matrix C in
powers of the CKM matrix λCKM, then the leading order
term of detC vanishes. The approximate values of the
eigenvalues of the C matrix are equal to

ðy2t y2bλCKM;−y2t y2bλCKM; 2y2cy2sλ4CKMηCKMÞ; (17)

where λCKM and ηCKM are the parameters of the CKM
matrix in the Wolfenstein parameterization. Notice that the
first two eigenvalues cancel each other exactly in this
approximation. The smallness of aCP follows from the
smallness of the third eigenvalue of the matrix C, and this is
a consequence of the hierarchy of the quark Yukawa
couplings. Notice, however, that aCP would also be zero
if any of the two Yukawa couplings in the up or down quark
sectors were equal.
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