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In a relativistic quark model we study the structure of the Nð1710Þ resonance, and the γ�N → Nð1710Þ
reaction focusing on the high momentum transfer region, where the valence quark degrees of freedom are
expected to be dominant. The Nð1710Þ resonance, a state with spin 1/2 and positive parity (JP ¼ 1

2
þ), can

possibly be interpreted as the second radial excitation of the nucleon, after the Roper, Nð1440Þ. We
calculate the γ�N → Nð1710Þ helicity amplitudes, and predict that they are almost identical to those of the
γ�N → Nð1440Þ reaction in the high momentum transfer region. Thus, future measurement of the helicity
amplitudes for the γ�N → Nð1710Þ reaction can give a significant hint on the internal structure of the
Nð1710Þ state.
DOI: 10.1103/PhysRevD.89.073010 PACS numbers: 13.40.Gp, 12.39.Ki, 14.20.Gk

I. INTRODUCTION

The understanding of the electromagnetic structure of
the hadrons, and its connection with the underlying degrees
of freedom in quantum chromodynamics (QCD), are
amongst two of the more interesting challenges in hadronic
physics. Through the nucleon electroexcitation reactions,
eN → e0N�, we can study the electromagnetic structure of
the nucleon (N) and the nucleon excitations (N�), including
also the Δ states. The excitation of nucleon resonances
occurs through the intermediate processes γ�N → N�,
where γ� is a virtual photon, and the cross sections of the
processes can usually be expressed in terms of the electro-
magnetic transition form factors, or helicity transition
amplitudes. Those functions depend on the four-momentum
transfer squared q2, and characterize the electromagnetic
structure of such resonant states.
The data extracted from experiments in facilities such as

Jefferson Lab (JLab) and MAMI (Mainz) allow us to
extract the electromagnetic transition form factors of
resonant states in the region Q2 < 5 GeV2 (Q2 ¼ −q2),
corresponding to the first and second resonance region
W < 1.6 GeV, with W being the γ�N invariant mass [1,2].
The planned JLab 12-GeV upgrade will enable us to make
a detailed study of the resonances in the third-resonance
region (W ≈ 1.7 GeV) [2,3].
There has been some evidence of the existence of a state

Nð1710Þ with quantum numbers JP ¼ 1
2
þ since the 1980s

[4,5]. [In the notation of the πN scattering it is labeled as
Nð1710ÞP11 [6].] The state Nð1710Þ1

2
þ is now classified as

a three-star resonance, and found by several groups [7–15]
in their partial wave analyses, and it is also included in
some baryon-meson reaction models [16–22]. The reso-
nance identified as Nð1710Þ1

2
þ has a small decay branching

ratio for the πN channel, but significant decay branching
ratios for the ηN, KΛ and ππN channels [6], and thus,
may have important roles in kaon [23] and hypernuclear

production [24]. However, in some partial wave analyses
like SAID (GWU), the resonance is not present [25]. Thus,
the clear existence of the Nð1710Þ state is still controver-
sial, although some authors defend that it should be
classified as a four-star resonance [9]. A state N1

2
þ with

a mass near 1.7 GeV collected also some interest as a
possible partner of the Θþ pentaquark, nonstrange anti-
decouplet state [26,27]. However, recent experimental
evidence on the existence of the Θþ pentaquark seems
to have been weakened [27]. Lattice QCD simulations
predict also N1

2
þ states that can possibly be related to the

Nð1710Þ state [28]. Future experiments, like the ones
planned at the JLab 12-GeV upgraded facility, will help
to establish or deny the existence of the Nð1710Þ state. If
the existence of the Nð1710Þ state is confirmed, measure-
ment of the γ�N → Nð1710Þ helicity amplitudes will be
possible. Thus, it is important to present predictions at this
stage for the reaction associated with Nð1710Þ, as we do in
the present study.
In the usual nonrelativistic quark models the resonances

Nð1440Þ (also called Roper) and Nð1710Þ can be classified
as N1

2
þ states with two different radial excitations of the

nucleon, although the masses are different from the
corresponding resonant poles [29,30]. The Roper has
intriguing properties that are difficult to explain in the
context of the quark model framework [1,2,29–33]. In a
nonrelativistic quark model description the mass of the
Roper is too heavy and the decay width is too narrow to be
compatible with a three-quark (qqq) system. Therefore,
several alternative descriptions were suggested, e.g., by
identifying the state as a quark bare core combined with
gluon states (qqqG), a molecular-type state (Nσ), or a
dynamically generated state by baryon and meson.
However, recent data from CLAS and MAID [34,35] for
Q2 > 2 GeV2 support the assumption that the Nð1440Þ is
predominantly the first radial excitation of the nucleon [1].
Estimates made by constituent and light-front quark models
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gave a good description for the high Q2 region data. For a
review concerning the Nð1440Þ resonance, see Ref. [1].
Based on the knowledge of the Roper, one can raise the

following question, whether or not the Nð1710Þ state can
be described as another radial excitation of the nucleon.
Some other works describe the state as a three-quark
system [36–41], as a baryon bare core with a meson cloud
[42], or σ-meson and glueball excitations [43]. There are,
however, suggestions that the state Nð1710Þ may be more
likely generated dynamically by baryon-meson states
[22,31,32,44]. The state Nð1710Þ is also predicted in
algebraic models of QCD [45,46] and in the large Nc
limit [47]. The wave function of the Nð1710Þ is also
estimated by lattice QCD simulations [48].
As already recognized for the Roper and several other

resonance cases, the meson cloud dressing for the transition
helicity amplitudes is expected to be important only in the
low Q2 region [1,2]. At high Q2 the valence quark degrees
of freedom are expected to dominate and the helicity
amplitudes follow the power laws, A1=2 ∝ 1=Q3 and S1=2 ∝
1=Q5 [49]. In this work focusing on the highQ2 region, we
predict the form factors and the helicity amplitudes of the
γ�N → Nð1710Þ reaction using a relativistic constituent
quark model and the assumption that the Nð1710Þ state is
the second radial excitation of the nucleon state. That is our
working hypothesis. In the near future our predictions can
thus be indeed tested in the JLab 12-GeVupgraded facility.
In the previous works the nucleon and Nð1440Þ struc-

tures were described in the covariant spectator quark model
[50,51] as analogous states with different radial excitation.
In there the Nð1440Þ wave function was determined
uniquely from the nucleon wave function by imposing
that the Nð1440Þ radial wave function is orthogonal to the
nucleon radial wave function, without any new adjustable
parameters in the model [51]. In the present work we
extend the procedure to the second radial excitation of the
nucleon (first radial excitation of the Roper), Nð1710Þ. In a
similar manner, the radial wave function of Nð1710Þ can be
determined by the two orthogonality conditions between
the Nð1710Þ radial wave function and both of the Roper
and nucleon wave functions, again without any new
adjustable parameters. The price we must pay for the
present prediction is that the estimates of the electromag-
netic properties are expected to be valid only in the highQ2

region, since the calculations are based exclusively on the
valence quark degrees of freedom.
We will conclude that the transition helicity amplitudes

for the γ�N → Nð1710Þ reaction have their magnitude and
falloff very similar to those for the γ�N → Nð1440Þ
reaction for Q2 > 4 GeV2.
This article is organized as follows. In Sec. II we define

the transition form factors and the helicity amplitudes. We
describe in Sec. III the covariant spectator quark model, and
present the baryon wave functions and the analytic expres-
sions for the transition form factors and the helicity

amplitudes. The numerical results are presented in
Sec. IV, and finally, the summary and the conclusions are
given in Sec. V.

II. ELECTROMAGNETIC FORM FACTORS
AND HELICITY AMPLITUDES

The electromagnetic transition between a nucleon (mass
M) and a resonance N� (mass MR) with JP ¼ 1

2
þ can be

described by the current (in units of the proton charge e)
[1,51]

Jμ ¼
�
γμ −

qqμ

q2

�
F�
1ðQ2Þ þ iσμνqν

MR þM
F�
2ðQ2Þ; (2.1)

which defines the Dirac (F�
1) and Pauli (F�

2) form factors.
The current operator Jμ can be projected on the Dirac
spinors of the resonance uRðPþÞ and of the nucleon uðP−Þ,
where Pþ (P−) is the final (initial) momentum, q ¼ Pþ −
P− and Q2 ¼ −q2. Spin projection indices are suppressed
in the spinors for simplicity.
The experimental data measured for hadron electromag-

netic reactions are usually reported in terms of the helicity
amplitudes in the final state (N�) rest frame. In this case the
current (2.1) is projected on the initial and final spin states
using the photon polarization states, εμλ , with λ ¼ 0;�
being the photon spin projection. In the N� rest frame, one
has the helicity amplitudes, A1=2 and S1=2, which are given
by [1,51]

A1=2ðQ2Þ ¼ K
�
N�;þ 1

2

����εþ · J

����N;−
1

2

�
; (2.2)

S1=2ðQ2Þ ¼ K
�
N�;þ 1

2

����ε0 · J
����N;þ 1

2

� jqj
Q

; (2.3)

where

K ¼
ffiffiffiffiffiffiffiffi
2πα

K

r
; (2.4)

with α ¼ e2
4π ≃ 1

137
, K ¼ M2

R−M
2

2MR
. jqj is the photon momen-

tum in the N� rest frame,

jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þQ2

−
p
2MR

; (2.5)

where Q2
� ¼ ðMR �MÞ2 þQ2.

The helicity amplitudes A1=2 and S1=2 can be related with
the form factors F�

1 and F�
2 via Eqs. (2.1)–(2.3) [1,51] as

A1=2ðQ2Þ ¼ RfF�
1ðQ2Þ þ F�

2ðQ2Þg; (2.6)

S1=2ðQ2Þ ¼ Rffiffiffi
2

p jqjMR þM
Q2

fF�
1ðQ2Þ − τF�

2ðQ2Þg; (2.7)
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where τ ¼ Q2

ðMRþMÞ2, and

R ¼ e
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

−

MRMK

s
: (2.8)

Note that the amplitude S1=2 is determined by the virtual
photons and not specified at Q2 ¼ 0. The analytic proper-
ties of the current (2.1) imply that F�

1ð0Þ ¼ 0 [51].

III. COVARIANT SPECTATOR QUARK MODEL

The covariant spectator quark model is derived from the
formalism of the covariant spectator theory [52]. In the
model a baryon B is described as a three-constituent-quark
system, where one quark is free to interact with the
electromagnetic fields and the other quarks are on mass
shell. Integrating over the on-mass-shell momenta, one can
represent the quark pair as an on-mass-shell diquark with
effective mass mD, and the baryon as a quark-diquark
system [2,50,53,54]. The structure of the baryon is then
described by a transition vertex between the three-quark
bound state and a quark-diquark state that describes
effectively the confinement [50,54].
The baryon wave function ΨBðP; kÞ is then derived from

the transition vertex as a function of the baryon momentum
P and the diquark momentum k taking into account the
properties of the baryon B, such as the spin and flavor.
Instead of solving dynamical equations to get wave
functions, the wave functions ΨB are built from the baryon
internal symmetries, with the shape determined directly by
experimental or lattice data for some ground state systems
[2,50,55,56]. The baryon mass MB is a parameter fixed by
the experimental value. In particular the parametrization of
the nucleon wave function was calibrated by the nucleon
electromagnetic form factor data [50].
In the past the covariant spectator quark model was

applied to several nucleon resonances such as Nð1520Þ
[57], Nð1535Þ [58], Δ resonances [55,56,59–61], and also
to other reactions [54,62–64].

A. Transition current

Once the baryon wave functions are written in terms of
the single quark and quark-pair states, one can write the
transition current between the baryons B and B0 in a
relativistic impulse approximation as [50,53,54]

JμB0B ¼ 3
X
Γ

Z
k
Ψ̄B0 ðPþ; kÞjμqΨBðP−; kÞ; (3.1)

where jμq is the (single) quark current operator, P− (Pþ) is
the initial (final) momentum, and Γ labels the scalar diquark
and vectorial diquark (projections Λ ¼ 0;�) polarizations.
The factor 3 takes account of the contributions from
the other quark pairs by the symmetry, and the integra-
tion symbol represents the covariant integration for the

diquark on-mass-shell state
R
k ≡

R
d3k

ð2πÞ3ð2EDÞ, with ED ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ k2
p

. Compared to Eq. (2.1), the current Jμ is in this
case projected on the initial and final states, and labeled
respectively by the indices B and B0.
The quark current operator is expressed in terms of the

Dirac (j1) and Pauli (j2) quark form factors [50,54]:

jμq ¼ j1ðQ2Þ
�
γμ −

qqμ

q2

�
þ j2ðQ2Þ iσ

μνqν
2M

: (3.2)

The inclusion of the terms − qqμ

q2 associated with the Dirac

component is equivalent with using the Landau prescription
for the current JμB0B [65,66]. This term restores current
conservation, but does not affect the results for the
observables [65]. For the case where the baryons are
composed only of u and d quarks, the quark form factors
ji (i ¼ 1; 2) can be decomposed into an isoscalar and an
isovector component given respectively by the functions
fiþ and fi−:

ji ¼
1

6
fiþðQ2Þ þ 1

6
fi−ðQ2Þτ3: (3.3)

The quark form factors are parametrized based on the
vector meson dominance mechanism [50,54,60,62]. The
functions fi� are constrained at Q2 ¼ 0 in order to
reproduce the quark charges and so as to properly para-
metrize the anomalous magnetic moments of the constitu-
ent quarks. The details are given in the Appendix.

B. Baryon wave functions

Next, we discuss the wave functions of the nucleon and
the nucleon radial excited states, Nð1440Þ and Nð1710Þ,
which will respectively be denoted by N0; N1 and N2. In
the covariant spectator quark model the nucleon and its
radial excitation can be described as a quark-diquark
system in an S-state configuration [50]. Following
Refs. [50,51], we can represent the Nj (j ¼ 0; 1; 2) wave
functions as

ΨNjðP; kÞ ¼
1ffiffiffi
2

p ½ϕ0
Iϕ

0
S þ ϕ1

Iϕ
1
S�ψNjðP; kÞ; (3.4)

where ϕ0;1
S and ϕ0;1

I represent respectively the spin (S) and
isospin (I) states corresponding to the total magnitude of
either 0 or 1 in the diquark configuration [50]. (See the
Appendix for details.) Again, we suppress the spin and
isospin projection indices for simplicity. The wave function
represented by Eq. (3.4) satisfies the Dirac equation [50,55].
The functions ψNjðP; kÞ are the radial wave functions
to be described next.
The radial wave functions ψNj depend on the angular

momentum and the radial excitation of the baryons. Since
the baryon and the diquark are both on mass shell, one can
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write the radial wave functions ψNj for the quark-diquark
system as a function of ðP − kÞ2 (or P · k) [50]. To take into
account the dependence on a generic baryon B, or its mass
MB, one can use the dimensionless variable:

χB ¼ ðMB −mDÞ2 − ðP − kÞ2
MBmD

: (3.5)

In the present study B ¼ N0; N1 or N2. For the nucleon
mass (MN0) we also use M for simplicity.
For the nucleon radial wave function, we use [50]

ψN0ðχNÞ ¼ N0

1

mDðβ1 þ χNÞðβ2 þ χNÞ
; (3.6)

where N0 is the normalization constant, and the parameter
values are β1 ¼ 0.049 and β2 ¼ 0.717, which were deter-
mined by the fit to the nucleon electromagnetic form factors
[50]. If we choose the momentum-range parameters such
that β1 < β2, β1 regulates the spacial long-range structure.
For the Roper (N1), we take the form [51]

ψN1ðχN1Þ ¼ N1

β3 − χN1

β1 þ χN1

1

mDðβ1 þ χN1Þðβ2 þ χN1Þ
; (3.7)

where N1 is the normalization constant, and β3 is a new
parameter fixed by the orthogonality condition with the
nucleon state. As explained in Ref. [51], the term ðβ3 −
χN1Þ represents the radial excitation in the momentum
space [term on ðP − kÞ2 or χN1].
Finally for the Nð1710Þ (N2), we define the radial wave

function as

ψN2ðχN2Þ ¼ N2

χ2N2 − β4χN2 þ β5
ðβ1 þ χN2Þ2

×
1

mDðβ1 þ χN2Þðβ2 þ χN2Þ
; (3.8)

where N2 is the normalization constant. In this case
we have two additional parameters β4 and β5 to be fixed.
The minus sign in the coefficient β4 is introduced by
convenience.
In our model the sign of the normalization constants Nl

(l ¼ 0; 1; 2) cannot be predicted. In the previous works
[50,51] the relative sign of N0 and N1 was determined by
the sign of the form factors. In the present case since there
are no available data for the high Q2 region, we have no
way of fixing the sign of N2 based on an experimental
basis. We assume here that N2 is positive. If future
experimental data reveal an opposite sign, we should
correct the signs of the corresponding amplitudes.
The normalization of the radial wave functions ψNj is

determined by the normalization of the wave function (3.4)
in order to obtain the corresponding charge of the state. The
explicit expression is

X
Γ

Z
k
Ψ̄NjðP̄;kÞj1γ0ΨNjðP̄;kÞ¼

1

2
ð1þτ3Þ

Z
k
jψNjðP̄;kÞj2:

(3.9)

In the above P̄ is the baryon momentum at its rest frame;
j1 ¼ 1

6
þ 1

2
τ3 is the quark charge operator in the Q2 ¼ 0

limit. In order to obtain the baryon charge 1
2
ð1þ τ3Þ

correctly, we need the normalization condition,Z
k
jψNjðP̄; kÞj2 ¼ 1: (3.10)

The orthogonality among the N0, N1 and N2 states is
derived from

X
Γ

Z
k
Ψ̄Nj0 ðP̄þ; kÞj1γ0ΨNjðP̄−; kÞ ¼ 0; (3.11)

where P̄þ and P̄− are the momenta of Nj0 and Nj
respectively, for Q2 ¼ 0.

C. Valence quark contributions for the
electromagnetic form factors

In order to write the expressions for the form factors, it is
convenient to project the quark current ji on the isospin
states using jAi ¼ ðϕ0

I Þ†jiϕ0
I , and jSi ¼ ðϕ1

I Þ†jiϕ1
I :

jAi ¼ 1

6
fiþ þ 1

2
fi−τ3; (3.12)

jSi ¼
1

6
fiþ −

1

6
fi−τ3: (3.13)

The results for the form factors are then given by

F�
1ðQ2Þ ¼

�
3

2
jA1 þ

1

2

3− τ

1þ τ
jS1 − 2

τ

1þ τ

MN2þM
2M

jS2

�
IðQ2Þ;

(3.14)

F�
2ðQ2Þ¼

��
3

2
jA2 −

1

2

1−3τ

1þτ
jS2

�
MN2þM

2M
−2

1

1þτ
jS1

�
IðQ2Þ;

(3.15)

with τ ¼ Q2

ðMN2þMÞ2, and

IðQ2Þ ¼
Z
k
ψN2ðPþ; kÞψN0ðP−; kÞ (3.16)

is the overlap integral between the initial and final radial
wave functions. The integral I is frame independent and is
discussed in the next section.
Equations (3.14) and (3.15) are equivalent to the ones

presented in the study of γ�N → Nð1440Þ [51], although
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they are shown in different forms. The analytic expressions
obtained for F�

1 and F�
2 are consistent with the results

obtained for other systems with the same spin structure
[50,62]. If we replace ψN2 → ψN andMN2 þM → 2M, we
recover the expressions for the nucleon elastic form factors
[50]. The expressions can also be related with the octet
baryon elastic form factors. Except for the fact that jAi and j

S
i

can depend also on the strange quark, the expressions are the
samewhen replacing ψN2;ψN→ψB andMN2 þM → 2MB,
with ψB and MB being the octet baryon radial wave
functions and their masses respectively [62].

D. Orthogonality between the states

The consequence of the condition (3.11) is that the
orthogonality between the states is replaced by the con-
dition for the radial wave functions [51]

Z
k
ψNj0 ðP̄þ; kÞψNjðP̄−; kÞ ¼ 0; (3.17)

where we recall that P̄� are the momenta for the
case Q2 ¼ 0.1

Since the zero overlap between the radial wave functions
is equivalent to the orthogonality between the radial wave
functions due to Eq. (3.17), to discuss how the orthogon-
ality is assured, and how the parameters of the wave
functions ψN1 and ψN2 given by Eqs. (3.7) and (3.8) are
determined, we define the integral function:

I j0jðQ2Þ ¼
Z
k
ψNj0 ðPþ; kÞψNjðP−; kÞ: (3.18)

Note that with the above notation one has from Eq. (3.16):
IðQ2Þ≡ I20ðQ2Þ. As for I, the integrals I j0j are covariant
and frame independent. In the following we will consider
only the case Q2 ¼ 0.
The orthogonality between N1 and N0 can be imposed

by the condition I10ð0Þ ¼ 0, which can be used to calculate
the value of β3. The result obtained by this condition is
β3 ¼ 0.1300 [51].
We discuss now the orthogonality between the N2 and

the other states, N1 and N0. Using the notation of
Eq. (3.18), we can write the orthogonality with N0 and
N1 by the two conditions:

I20ð0Þ ¼ 0; I21ð0Þ ¼ 0: (3.19)

Choosing proper frames for each integral, we can reduce
Eqs. (3.19) to a systemof two equationswith two unknowns,
β4 and β5. The results obtained by solving the set of the two
equations are β4 ¼ 0.3377 and β5 ¼ 0.00855.

IV. RESULTS

In the present work we consider only the reaction with
the proton (N ¼ p), since there are no data for the neutron
(N ¼ n) for finite Q2, and our model is expected to work
better in the region of large Q2. The results for the form
factors are presented in Fig. 1, and those for the helicity
amplitudes are presented in Fig. 2, both up to Q2 ¼
12 GeV2.
In Fig. 1, we also include the results for γ�N → Nð1440Þ

obtained in Ref. [51]. From Fig. 1, it is clear that both
reactions yield very close results for the form factors F�

1 and
F�
2, in the region Q2 > 2 GeV2. Recall that it is in the high

Q2 region that our model is more reliable, since the valence
quark degrees of freedom are expected to be dominant.
In Fig. 1 we also include the experimental data for the
γ�N → Nð1440Þ reaction from CLAS for comparison (data
set with the highest value for Q2). It is appreciable from
Fig. 1 that the agreement of the model (dashed line) and the
data is very good for the higher Q2 region (Q2 > 2 GeV2).
Only for the last Q2 data point we can observe for F�

2 a

0 2 4 6 8 10 12
0

0.1

0.2

F 2* 
(Q

2 )

N(1440)
N(1710)

0 2 4 6 8 10 12
Q

2
 (GeV

2
)

0

0.05

0.1

F 1* 
(Q

2 )

N(1440)
N(1710)

FIG. 1 (color online). γ�N → Nð1710Þ transition form factors
(solid line) compared with those for the Roper, γ�N → Nð1440Þ
(dashed line). Data for the Roper are from CLAS [34].

1Considering for instance the rest frame of the final state for
Q2 ¼ 0, one has

P̄þ ¼ ðMNj0 ; 0; 0; 0Þ; P̄− ¼
�M2

Nj0 þM2
Nj

2MNj0
; 0; 0;−

M2
Nj0 −M2

Nj

2MNj0

�

defining the three-momentum along z. The sign of the z
component is chosen in order to obtain q with a positive sign
along with the z axis.
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larger difference, about 2 standard deviations, between the
model result and the data. New data for the higher Q2

region are necessary to test the model in more detail. Other
data sets are not included since they are restricted to the low
Q2 region, the region dominated by the meson cloud
effects, and therefore we should expect deviations from
our results [1,51,67].
The results for the amplitudes in Fig. 2 are calculated

using the form factors given in Eqs. (2.6) and (2.7) for both
cases, Nð1440Þ and Nð1710Þ. The Particle Data Group
(PDG) result for the Nð1710Þ case A1=2ð0Þ ¼ ð24� 10Þ ×
10−3 GeV−1=2 [6] is not included, since we are focusing on
the larger Q2 region. Note that the amplitudes for the two
reactions are even closer than the results for the form
factors, particularly for Q2 > 4 GeV2.
It is possible that the closeness of the results for these

reactions in the higher Q2 region is a consequence of the
forms of the radial wave functions (3.6)–(3.8), where the
radial wave functions of the excited states are related with
the ground state nucleon radial wave function. Note that all
the radial wave functions are parametrized with the same
short-range structure given by the factor 1=ðβ2 þ χÞ, apart
from the mass differences in χ. Since the coupling with the
photon with highQ2 probes the short-range structure of the
baryon states it is expected that the form factors at high Q2

have the same shape since they are described by the same
parametrization.
In order to examine the above arguments in more detail,

we plot also the equivalent results for the nucleon case
(dotted line). Note that, according to Eqs. (2.6) and (2.7) the
amplitudes for the nucleon are proportional to GM (A1=2)
and GE (S1=2), but also there is an extra factorR depending

on K ¼ M2
R−M

2

2MR
, that vanishes and induces singularities in

the amplitudes in the elastic limit (MR ¼ M). In order to be
able to compare the results of the nucleon with those of the
Nð1440Þ and Nð1710Þ, we keep the expression of R given
for the Nð1440Þ and take the MR → M limit in the factor

jqjMRþM
Q2 , giving

ffiffiffiffiffiffi
1þτ
τ

q
, in the case of S1=2. From Fig. 2 we

can see that, apart from the magnitude (about 1=
ffiffiffi
2

p
smaller), the falloffs of the nucleon equivalent amplitudes
are about the same as those of the Nð1440Þ and Nð1710Þ.

A. High Q2 parametrization

To make a comparison easier with the expected future
experimental data, we parametrize our model results using
the simple analytic form,

A1=2 ¼ A

�
Λ2
1

Λ2
1 þQ2

�
3=2

; (4.1)

S1=2 ¼ S

�
Λ2
2

Λ2
2 þQ2

�
5=2

; (4.2)

which is consistent with the falloff expected for very large
Q2 [49]. In Eqs. (4.1) and (4.2), A and S are constants, and
Λ2
1 and Λ2

2 are cutoffs squared.
The numerical values for the parametrization are given in

Table I. The parameters are determined so as to reproduce
the results exactly at Q2 ¼ 6 GeV2, but provide also good
approximations for the values of Q2 up to 10 GeV2. The
exception is the parametrization for the amplitude S1=2 in
the γ�N → Nð1440Þ reaction that approaches zero very
fast. In this case the approximation is valid only around
Q2 ¼ 5 GeV2, and thus the respective parameters in Table I
are written in italic. Note that the expressions (4.1) and
(4.2) are only valid in the range of Q2 presented in the
figures. In general the covariant spectator quark model has
smooth logarithmic corrections for the form factors and
helicity amplitudes [50,51]. Therefore the parametrizations
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FIG. 2 (color online). γ�N → Nð1710Þ helicity amplitudes at
the resonance rest frame (solid line). Results are compared with
those for the γ�N → Nð1440Þ amplitudes (dashed line), and the
equivalent amplitude for the nucleon Nð939Þ (dotted line). See
the text for the explanation on the equivalent nucleon case.

TABLE I. Parametrization for the helicity amplitudes for the
higherQ2 region according to Eqs. (4.1) and (4.2). See discussion
in the main text.

Að10−3GeV−1=2Þ Λ2
1ðGeV2Þ Sð10−3GeV−1=2Þ Λ2

2ðGeV2Þ
Nð1440Þ 275.40 1.374 727.53 0.789
Nð1710Þ 122.17 2.783 210.71 1.531
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given by Eqs. (4.1) and (4.2) and Table I are not valid for an
arbitrary high Q2.
Since our results for the form factors are well approxi-

mated by the parametrizations (4.1) and (4.2) for the region
5–10 GeV2, we can expect evidences of asymptotic behav-
ior for Q2 > 5 GeV2.

B. Discussion of results

The γ�N → Nð1710Þ reaction was studied in the past
within several frameworks. We start discussing the results
from quark models, and later discuss other models.
Analytic expressions for the γ�N → Nð1710Þ helicity

amplitudes derived from an algebraic model of QCD, also
based on the quark degrees of freedom, can be found in
Ref. [45]. Estimates from quark models are given in
Refs. [37,40,41]. The magnitudes of those estimates are
consistent with our predictions. In general the amplitudes
A1=2 and S1=2 are positive. The exception is Ref. [40],
where S1=2 is negative.
Some other models describe theNð1710Þ state as a quark

bare core with some excitations [42,43]. In Ref. [42] a
coupled-channel formalism is combined with a description
of the baryon bare cores and meson production based on the
cloudy bag model. In Ref. [43] the Nð1710Þ state is
described by a baryon bare core with some radial excita-
tions combined with glueball and σ vibrational excitations.
In both cases [42,43], we can expect a dominance of the
bare core in the high Q2 region, since the meson cloud is
expected to be suppressed.
In other frameworks the Nð1710Þ state is dynamically

generated from some baryon and meson states [22,31,32,44].
The EBAC model [31,32] uses baryon-meson coupled-

channel formalism to describe the photo- and electropro-
duction of mesons by nucleons. In that framework the
Nð1710Þ identified as Nð1820Þ is a state that evolves from
an Nð1763Þ bare core state through its coupling with the
πN; ηN and ππN channels. The EBAC model is also used to
extract the amplitude A1=2 from the data, forQ2 < 1.5 GeV2

in Ref. [32]. Although their results cannot be compared with
our results which are reliable only for the high Q2 region,
we note that the real part of the amplitude they extracted is
positive, with the magnitude comparable with ours.
In Ref. [22] by solving the Faddeev equations with the

input of the two-body coupled-channel t matrices, the
Nð1710Þ state is explained as a dynamical generated
resonance dominated by the ππN component (the ππ
component can be also interpreted as a σ meson). Also
in Ref. [44] the Nð1710Þ emerges as the result of the pion
dressing of nucleon and Δ bare cores. The model param-
eters were fixed to reproduce masses and branching ratios.
In models that the Nð1710Þ state is generated by the

baryon-meson interactions as the ones mentioned above
[22,31,32,44], we can expect a much larger spatial
extended structure for Nð1710Þ, and consequently a faster
falloff withQ2 for the associated transition amplitudes [46].

From the discussions above, we conclude that we can
deduce the nature of the Nð1710Þ state by the Q2 behavior
of the helicity amplitudes, which may be revealed in future
experiments. Assuming a dominance of the valence quark
effects as we do, we expect A1=2 ∝ 1=Q3 and S1=2 ∝ 1=Q5

in the very large Q2 region. Instead, if the Nð1710Þ system
is dominated by qqq-ðqq̄Þ configurations, the falloffs
mentioned previously are modified by an extra 1=Q4 factor
according to perturbative QCD [49].
A few words are in order on the possible existence of

another N1
2
þ state with an invariant mass near 1.7 GeV.

PDG reports a fourth N1
2
þ state (two-star resonance)

denoted by Nð1880Þ. However, several partial wave analy-
ses and coupled-channel reaction models suggest the
existence of another N1

2
þ state near the mass 1.7 GeV.

See for instance Refs. [9–11,14,18,21]. If there exist two
N1

2
þ states with very close masses around 1.7 GeV, the

experimental determination of the individual contributions
will be very difficult. Then, the transition helicity ampli-
tudes extracted from the data would be a combination of
the two resonances, and our model, that assumes only one
radial excited state, would fail the description of the data.

V. SUMMARY AND CONCLUSIONS

The future JLab 12-GeV facility will open a possibility
of studying in detail the electromagnetic structure of the
resonances in the third-resonance region. There is then the
chance of exploring the resonances Nð1720Þ3

2
þ, Δð1720Þ3

2
−

(four-star resonances), Nð1710Þ1
2
þ and Nð1700Þ3

2
− (three-

star resonances). Among these the Nð1710Þ1
2
þ is a very

interesting system due to the significant branching ratios to
the ηN;KΛ and ππN channels. Some authors defend
even that the state should be reclassified as a four-star
resonance [9].
Future data for the invariant massW ≈ 1.7 GeVwill help

to clarify the nature of the stateNð1710Þ1
2
þ, namely, if it is a

radial excitation of the nucleon and the Roper, or a more
complex and/or exotic system. From the observation of the
measured helicity amplitudes in the large Q2 region, we
will be able to draw some conclusion on the dominant
degrees of freedom in the system at large Q2. If Nð1710Þ is
dominated by the valence quark degrees of freedom only,
we should observe the scaling behavior with Q2 as
A1=2 ∝ 1=Q3. In the case of baryon-meson molecular
system we expect a falloff of A1=2 faster than 1=Q3. In
addition, in principle it will also be possible to answer the
question if there is another N1

2
þ state close to the one that

we study in this work.
In this work we have used the covariant spectator quark

model to predict the transition form factors and the helicity
amplitudes for the γ�N → Nð1710Þ reaction. The covariant
spectator quark model was already applied to several
nucleon resonances successfully. Since we have not
included the meson cloud effects which are known to be
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very important in the low Q2 region, we expect our
prediction to the γ�N → Nð1710Þ helicity amplitudes to
be valid only in the high Q2 region, where the valence
quark degrees of freedom are dominant.
We have assumed that the Nð1710Þ state is the second

radial excitation of the nucleon, similar to the assumption
that the Roper is the first radial excitation of the nucleon.
The wave function of the Nð1710Þ has been uniquely
determined, apart from the sign, by the orthogonality of the
Nð1710Þ wave function with the nucleon and Nð1440Þ
wave functions. The nucleon and Nð1440Þ wave functions
were determined in the previous works [50,51].
For high Q2, particularly for Q2 > 4 GeV2, the calcu-

lated helicity amplitudes for the γ�N → Nð1710Þ reaction
have shown results that are very close to those for the
γ�N → Nð1440Þ reaction. Therefore, the future measure-
ments of the helicity amplitudes in the large Q2 region can
be used to test the assumption that the Nð1710Þ state is the
second radial excitation of the nucleon.
Finally we note that the present formalism can be used to

study the radial excited states in the Δ sector (isospin 3=2)
[61], and also in the strange baryon sector. In the latter
case we can study the transitions γ�Λ → Λð1600Þ1

2
þ,

γ�Λ → Λð1810Þ1
2
þ and γ�Σ → Σð1660Þ1

2
þ (all three-star

resonances). More experimental support is necessary also
in these cases.
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APPENDIX: COVARIANT SPECTATOR
QUARK MODEL

In the following we present some details of the covariant
spectator quark model.

1. Quark form factors

The quark current associated with Eq. (3.3) is expressed
in terms of the quark form factors fi� (i ¼ 1; 2) inspired by
a vector meson dominance form:

f1�ðQ2Þ¼ λqþð1−λqÞ
m2

v

m2
vþQ2

þc�
M2

hQ
2

ðM2
hþQ2Þ2 ; (A1)

f2�ðQ2Þ¼ κ�

	
d�

m2
v

m2
vþQ2

þð1−d�Þ
M2

h

M2
hþQ2



: (A2)

In the above, λq defines the quark charge in deep inelastic
scattering; κ� are the isoscalar and isovector quark anoma-
lous magnetic moments. The mass mv (Mh) corresponds to

the light (heavy) vector meson, and c�, d� are the mixture
coefficients. In the present model we set mv ¼ mρ (≈mω)
for the light vectorial meson and Mh ¼ 2M (twice the
nucleon mass) to represent the short-range physics.
The values of the parameters were previously fixed by
the nucleon elastic form factors [50], and they are presented
in Table II. Note that the present model uses dþ ¼ d−.

2. Wave functions

In the covariant spectator quark model the S-state wave
functions for the nucleon and the nucleon radial excitations
ΨNjðP; kÞ can be represented by Eq. (3.4) for the states
labeled by Nj with j ¼ 0; 1; 2 [50,51,62]. In Eq. (3.4) the
isospin operators ϕ0;1

I act on the Nj’s isospin states χt,
where χþ1=2 ¼ ð 1 0 ÞT and χ−1=2 ¼ ð 0 1 ÞT . The
explicit forms are [50,53]

ϕ0
I χ

t ¼ 1 χt; ðϕ1
I Þlχt ¼ −

1ffiffiffi
3

p ðτ · ξ�l Þχt; (A3)

where ξl is the isospin vector of the isospin-one diquark
defined in a usual way (in the spherical basis),

ξ� ¼ ∓ 1ffiffiffi
2

p

0
B@

1

�i

0

1
CA; ξ0 ¼

0
B@

0

0

1

1
CA: (A4)

As for the spin states ϕ0;1
S , we start to present the spin-1

polarization vector εΛP in a fixed-axis base for the case of a
baryon with momentum P ¼ ðEB; 0; 0; PzÞ, where EB ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

B þ P2
z

p
[53,68]:

εα�P ¼ ∓ 1ffiffiffi
2

p ð0; 1;�i; 0Þ; εα0P ¼
�
Pz

MB
; 0; 0;

EB

MB

�
: (A5)

We can then write

ϕ0
I ¼ uBðPÞ; ϕ1

I ¼ −ðε�ΛPÞαUα
BðPÞ; (A6)

where uB is a Dirac spinor, and [55]

Uα
BðPÞ ¼

1ffiffiffi
3

p γ5

�
γα −

Pα

MB

�
uBðPÞ: (A7)

In the case of the nucleon one may replace uB → u and
MB → M. In the case of a resonance R one may replace the
index B by the index R.

TABLE II. Parameters in the quark current.

κþ κ− cþ c− dþ d− λq

1.639 1.823 4.16 1.16 −0.686 −0.686 1.21

G. RAMALHO AND K. TSUSHIMA PHYSICAL REVIEW D 89, 073010 (2014)

073010-8



[1] I. G. Aznauryan and V. D. Burkert, Prog. Part. Nucl. Phys.
67, 1 (2012).

[2] I. G. Aznauryan, A. Bashir, V. Braun, S. J. Brodsky, V. D.
Burkert, L. Chang, C. Chen, B. El-Bennich et al., Int. J.
Mod. Phys. E 22, 1330015 (2013).

[3] I. Aznauryan, V. Braun, V. Burkert, S. Capstick, R.
Edwards, I. C. Cloet, M. Giannini, T. S. H. Lee et al.,
arXiv:0907.1901.

[4] R. E. Cutkosky, C. P. Forsyth, R. E. Hendrick, and R. L.
Kelly, Phys. Rev. D 20, 2839 (1979).

[5] G. Hohler and H. Schopper, in Landolt-Börnstein: Numeri-
cal Data and Functional Relationships in Science and
Technology, edited by W. Martienssen (Springer-Verlag,
Berlin, 1982), p. 407.

[6] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86,
010001 (2012).

[7] A. V. Anisovich, R. Beck, E. Klempt, V. A. Nikonov, A. V.
Sarantsev, and U. Thoma, Eur. Phys. J. A 48, 15 (2012).

[8] M. Shrestha and D.M. Manley, Phys. Rev. C 86, 055203
(2012).

[9] S. Ceci, A. Svarc, and B. Zauner, Phys. Rev. Lett. 97,
062002 (2006).

[10] S. Ceci, A. Svarc, and B. Zauner, Few-Body Syst. 39, 27
(2006).

[11] H. Osmanovic, S. Ceci, A. Svarc, M. Hadzimehmedovic,
and J. Stahov, Phys. Rev. C 84, 035205 (2011).

[12] V. Shklyar, H. Lenske, and U. Mosel, Phys. Lett. B 650, 172
(2007).

[13] W.-T. Chiang, S.-N. Yang, L. Tiator, and D. Drechsel, Nucl.
Phys. A700, 429 (2002).

[14] M. Batinic, I. Slaus, A. Svarc, and B. M. K. Nefkens, Phys.
Rev. C 51, 2310 (1995); 57, 1004(E) (1998).

[15] T. Feuster and U. Mosel, Phys. Rev. C 58, 457 (1998).
[16] T. Sato and T.-S. H. Lee, J. Phys. G 36, 073001 (2009).
[17] H. Kamano, S. X. Nakamura, T.-S. H. Lee, and T. Sato,

Phys. Rev. C 88, 035209 (2013).
[18] D. Rönchen, M. Döring, F. Huang, H. Haberzettl, J.

Haidenbauer, C. Hanhart, S. Krewald, U. -G. Meißner,
and K. Nakayama, Eur. Phys. J. A 49, 44 (2013).

[19] S. N. Yang, S. S. Kamalov, and L. Tiator, AIP Conf. Proc.
1432, 293 (2012).

[20] T. P. Vrana, S. A. Dytman, and T. S. H. Lee, Phys. Rep. 328,
181 (2000).

[21] W.-T. Chiang, B. Saghai, F. Tabakin, and T. S. H. Lee, Phys.
Rev. C 69, 065208 (2004).

[22] K. P. Khemchandani, A. Martinez Torres, and E. Oset, Eur.
Phys. J. A 37, 233 (2008).

[23] K. Tsushima, A. Sibirtsev, A. W. Thomas, and G. Q. Li,
Phys. Rev. C 59, 369 (1999); 61, 029903(E) (2000); K.
Tsushima, S. W. Huang, and A. Faessler, Phys. Lett. B 337,
245 (1994); J. Phys. G 21, 33 (1995); Aust. J. Phys. 50, 35
(1997); R. Shyam, Phys. Rev. C 60, 055213 (1999).

[24] R. Shyam, H. Lenske, and U. Mosel, Phys. Rev. C 77,
052201 (2008); R. Shyam, K. Tsushima, and A.W. Thomas,
Phys. Lett. B 676, 51 (2009); R. Shyam, O. Scholten, and H.
Lenske, Phys. Rev. C 81, 015204 (2010).

[25] R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, and R. L.
Workman, Phys. Rev. C 74, 045205 (2006).

[26] D. Diakonov, V. Petrov, and M. V. Polyakov, Z. Phys. A
359, 305 (1997); M. V. Polyakov, A. Sibirtsev, K. Tsushima,

W. Cassing, and K. Goeke, Eur. Phys. J. A 9, 115 (2000); K.
Goeke, H.-C. Kim, M. Praszalowicz, and G.-S. Yang, Prog.
Part. Nucl. Phys. 55, 350 (2005).

[27] K. H. Hicks, Eur. Phys. J. H 37, 1 (2012).
[28] R. G. Edwards, J. J. Dudek, D. G. Richards, and S. J.

Wallace, Phys. Rev. D 84, 074508 (2011).
[29] S. Capstick and W. Roberts, Prog. Part. Nucl. Phys. 45,

S241 (2000).
[30] R. Koniuk and N. Isgur, Phys. Rev. D 21, 1868 (1980); 23,

818(E) (1981); N. Isgur and G. Karl, Phys. Rev. D 19, 2653
(1979); 23817(E) (1981).

[31] N. Suzuki, B. Julia-Diaz, H. Kamano, T.-S. H. Lee, A.
Matsuyama, and T. Sato, Phys. Rev. Lett. 104, 042302
(2010); H. Kamano, S. X. Nakamura, T.-S. H. Lee, and T.
Sato, Phys. Rev. C 81, 065207 (2010).

[32] N. Suzuki, T. Sato, and T.-S. H. Lee, Phys. Rev. C 82,
045206 (2010).

[33] D. J. Wilson, I. C. Cloet, L. Chang, and C. D. Roberts, Phys.
Rev. C 85, 025205 (2012).

[34] I. G. Aznauryan et al. (CLAS Collaboration), Phys. Rev. C
80, 055203 (2009).

[35] D. Drechsel, S. S. Kamalov, and L. Tiator, Eur. Phys. J. A
34, 69 (2007); L. Tiator, D. Drechsel, S. S. Kamalov, and M.
Vanderhaeghen, Chin. Phys. C 33, 1069 (2009).

[36] S. Capstick and W. Roberts, Phys. Rev. D 47, 1994 (1993).
[37] S. Capstick and B. D. Keister, Phys. Rev. D 51, 3598 (1995).
[38] S. Capstick, T. S. H. Lee, W. Roberts, and A. Svarc, Phys.

Rev. C 59, R3002 (1999).
[39] T. Melde, W. Plessas, and B. Sengl, Phys. Rev. D 77,

114002 (2008).
[40] E. Santopinto and M.M. Giannini, Phys. Rev. C 86, 065202

(2012).
[41] M. Ronniger and B. C. Metsch, Eur. Phys. J. A 49, 8 (2013).
[42] B. Golli and S. Sirca, Eur. Phys. J. A 38, 271 (2008).
[43] P. Alberto, M. Fiolhais, B. Golli, and J. Marques, Phys. Lett.

B 523, 273 (2001).
[44] Y.-J. Zhang and B. Zhang, Chin. Phys. C 36, 189 (2012).
[45] R. Bijker, F. Iachello, and A. Leviatan, Ann. Phys. (N.Y.)

236, 69 (1994); R. Bijker, F. Iachello, and A. Leviatan, Ann.
Phys. (N.Y.) 284, 89 (2000); E. Tomasi-Gustafsson, M. P.
Rekalo, R. Bijker, A. Leviatan, and F. Iachello, Phys. Rev. C
59, 1526 (1999).

[46] R. Bijker, F. Iachello, and A. Leviatan, Phys. Rev. C 54,
1935 (1996).

[47] N. Matagne and F. Stancu, Phys. Lett. B 631, 7 (2005).
[48] D. S. Roberts, W. Kamleh, and D. B. Leinweber,

arXiv:1311.6626 [Phys. Rev. D (to be published)].
[49] C. E. Carlson, Phys. Rev. D 34, 2704 (1986); C. E. Carlson

and J. L. Poor, Phys. Rev. D 38, 2758 (1988); C. E. Carlson,
Few-Body Syst. 11, 10 (1999).

[50] F. Gross, G. Ramalho, and M. T. Peña, Phys. Rev. C 77,
015202 (2008).

[51] G. Ramalho and K. Tsushima, Phys. Rev. D 81, 074020
(2010).

[52] F. Gross, Phys. Rev. 186, 1448 (1969); A. Stadler, F. Gross,
and M. Frank, Phys. Rev. C 56, 2396 (1997).

[53] F. Gross, G. Ramalho, and M. T. Peña, Phys. Rev. D 85,
093005 (2012).

[54] G. Ramalho, K. Tsushima, and F. Gross, Phys. Rev. D 80,
033004 (2009).

γ�N → Nð1710Þ TRANSITION AT … PHYSICAL REVIEW D 89, 073010 (2014)

073010-9

http://dx.doi.org/10.1016/j.ppnp.2011.08.001
http://dx.doi.org/10.1016/j.ppnp.2011.08.001
http://dx.doi.org/10.1142/S0218301313300154
http://dx.doi.org/10.1142/S0218301313300154
http://arXiv.org/abs/0907.1901
http://dx.doi.org/10.1103/PhysRevD.20.2839
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1140/epja/i2012-12015-8
http://dx.doi.org/10.1103/PhysRevC.86.055203
http://dx.doi.org/10.1103/PhysRevC.86.055203
http://dx.doi.org/10.1103/PhysRevLett.97.062002
http://dx.doi.org/10.1103/PhysRevLett.97.062002
http://dx.doi.org/10.1007/s00601-006-0153-3
http://dx.doi.org/10.1007/s00601-006-0153-3
http://dx.doi.org/10.1103/PhysRevC.84.035205
http://dx.doi.org/10.1016/j.physletb.2007.05.005
http://dx.doi.org/10.1016/j.physletb.2007.05.005
http://dx.doi.org/10.1016/S0375-9474(01)01325-2
http://dx.doi.org/10.1016/S0375-9474(01)01325-2
http://dx.doi.org/10.1103/PhysRevC.51.2310
http://dx.doi.org/10.1103/PhysRevC.51.2310
http://dx.doi.org/10.1103/PhysRevC.57.1004
http://dx.doi.org/10.1103/PhysRevC.58.457
http://dx.doi.org/10.1088/0954-3899/36/7/073001
http://dx.doi.org/10.1103/PhysRevC.88.035209
http://dx.doi.org/10.1140/epja/i2013-13044-5
http://dx.doi.org/10.1063/1.3701233
http://dx.doi.org/10.1063/1.3701233
http://dx.doi.org/10.1016/S0370-1573(99)00108-8
http://dx.doi.org/10.1016/S0370-1573(99)00108-8
http://dx.doi.org/10.1103/PhysRevC.69.065208
http://dx.doi.org/10.1103/PhysRevC.69.065208
http://dx.doi.org/10.1140/epja/i2008-10625-3
http://dx.doi.org/10.1140/epja/i2008-10625-3
http://dx.doi.org/10.1103/PhysRevC.59.369
http://dx.doi.org/10.1103/PhysRevC.61.029903
http://dx.doi.org/10.1016/0370-2693(94)90971-7
http://dx.doi.org/10.1016/0370-2693(94)90971-7
http://dx.doi.org/10.1088/0954-3899/21/1/005
http://dx.doi.org/10.1071/P96052
http://dx.doi.org/10.1071/P96052
http://dx.doi.org/10.1103/PhysRevC.60.055213
http://dx.doi.org/10.1103/PhysRevC.77.052201
http://dx.doi.org/10.1103/PhysRevC.77.052201
http://dx.doi.org/10.1016/j.physletb.2009.04.074
http://dx.doi.org/10.1103/PhysRevC.81.015204
http://dx.doi.org/10.1103/PhysRevC.74.045205
http://dx.doi.org/10.1007/s002180050406
http://dx.doi.org/10.1007/s002180050406
http://dx.doi.org/10.1007/s100500070061
http://dx.doi.org/10.1016/j.ppnp.2005.01.028
http://dx.doi.org/10.1016/j.ppnp.2005.01.028
http://dx.doi.org/10.1140/epjh/e2012-20032-0
http://dx.doi.org/10.1103/PhysRevD.84.074508
http://dx.doi.org/10.1016/S0146-6410(00)00109-5
http://dx.doi.org/10.1016/S0146-6410(00)00109-5
http://dx.doi.org/10.1103/PhysRevD.21.1868
http://dx.doi.org/10.1103/PhysRevD.23.818
http://dx.doi.org/10.1103/PhysRevD.23.818
http://dx.doi.org/10.1103/PhysRevD.19.2653
http://dx.doi.org/10.1103/PhysRevD.19.2653
http://dx.doi.org/10.1103/PhysRevD.23.817.2
http://dx.doi.org/10.1103/PhysRevLett.104.042302
http://dx.doi.org/10.1103/PhysRevLett.104.042302
http://dx.doi.org/10.1103/PhysRevC.81.065207
http://dx.doi.org/10.1103/PhysRevC.82.045206
http://dx.doi.org/10.1103/PhysRevC.82.045206
http://dx.doi.org/10.1103/PhysRevC.85.025205
http://dx.doi.org/10.1103/PhysRevC.85.025205
http://dx.doi.org/10.1103/PhysRevC.80.055203
http://dx.doi.org/10.1103/PhysRevC.80.055203
http://dx.doi.org/10.1140/epja/i2007-10490-6
http://dx.doi.org/10.1140/epja/i2007-10490-6
http://dx.doi.org/10.1088/1674-1137/33/12/005
http://dx.doi.org/10.1103/PhysRevD.47.1994
http://dx.doi.org/10.1103/PhysRevD.51.3598
http://dx.doi.org/10.1103/PhysRevC.59.R3002
http://dx.doi.org/10.1103/PhysRevC.59.R3002
http://dx.doi.org/10.1103/PhysRevD.77.114002
http://dx.doi.org/10.1103/PhysRevD.77.114002
http://dx.doi.org/10.1103/PhysRevC.86.065202
http://dx.doi.org/10.1103/PhysRevC.86.065202
http://dx.doi.org/10.1140/epja/i2013-13008-9
http://dx.doi.org/10.1140/epja/i2008-10677-3
http://dx.doi.org/10.1016/S0370-2693(01)01348-X
http://dx.doi.org/10.1016/S0370-2693(01)01348-X
http://dx.doi.org/10.1088/1674-1137/36/3/001
http://dx.doi.org/10.1006/aphy.1994.1108
http://dx.doi.org/10.1006/aphy.1994.1108
http://dx.doi.org/10.1006/aphy.2000.6064
http://dx.doi.org/10.1006/aphy.2000.6064
http://dx.doi.org/10.1103/PhysRevC.59.1526
http://dx.doi.org/10.1103/PhysRevC.59.1526
http://dx.doi.org/10.1103/PhysRevC.54.1935
http://dx.doi.org/10.1103/PhysRevC.54.1935
http://dx.doi.org/10.1016/j.physletb.2005.09.076
http://arXiv.org/abs/1311.6626
http://dx.doi.org/10.1103/PhysRevD.34.2704
http://dx.doi.org/10.1103/PhysRevD.38.2758
http://dx.doi.org/10.1007/978-3-7091-6800-4_2
http://dx.doi.org/10.1103/PhysRevC.77.015202
http://dx.doi.org/10.1103/PhysRevC.77.015202
http://dx.doi.org/10.1103/PhysRevD.81.074020
http://dx.doi.org/10.1103/PhysRevD.81.074020
http://dx.doi.org/10.1103/PhysRev.186.1448
http://dx.doi.org/10.1103/PhysRevC.56.2396
http://dx.doi.org/10.1103/PhysRevD.85.093005
http://dx.doi.org/10.1103/PhysRevD.85.093005
http://dx.doi.org/10.1103/PhysRevD.80.033004
http://dx.doi.org/10.1103/PhysRevD.80.033004


[55] G. Ramalho, M. T. Peña, and F. Gross, Eur. Phys. J. A 36,
329 (2008).

[56] G. Ramalho and M. T. Peña, Phys. Rev. D 80, 013008
(2009).

[57] G. Ramalho and M. T. Peña, arXiv:1309.0730.
[58] G. Ramalho and M. T. Peña, Phys. Rev. D 84, 033007

(2011); G. Ramalho and K. Tsushima, Phys. Rev. D 84,
051301 (2011); G. Ramalho, D. Jido, and K. Tsushima,
Phys. Rev. D 85, 093014 (2012).

[59] G. Ramalho, M. T. Peña, and F. Gross, Phys. Rev. D 78,
114017 (2008); G. Ramalho, M. T. Peña, and F. Gross,
Phys. Rev. D 81, 113011 (2010); G. Ramalho and M. T.
Peña, Phys. Rev. D 85, 113014 (2012); G. Ramalho, M. T.
Peña, and A. Stadler, Phys. Rev. D 86, 093022 (2012).

[60] G. Ramalho and M. T. Peña, J. Phys. G 36, 115011
(2009).

[61] G. Ramalho and K. Tsushima, Phys. Rev. D 82, 073007
(2010).

[62] G. Ramalho and K. Tsushima, Phys. Rev. D 84, 054014
(2011); G. Ramalho and K. Tsushima, Phys. Rev. D 86,
114030 (2012); G. Ramalho, K. Tsushima, and A.W.
Thomas, J. Phys. G 40, 015102 (2013).

[63] G. Ramalho and K. Tsushima, Phys. Rev. D 88, 053002
(2013); G. Ramalho and K. Tsushima, Phys. Rev. D 87,
093011 (2013).

[64] G. Ramalho andM. T. Peña, Phys. Rev. D 83, 054011 (2011).
[65] J. J. Kelly, Phys. Rev. C 56, 2672 (1997).
[66] Z. Batiz and F. Gross, Phys. Rev. C 58, 2963 (1998).
[67] G. Ramalho and K. Tsushima, AIP Conf. Proc. 1374, 353

(2011).
[68] F. Gross, G. Ramalho, and M. T. Peña, Phys. Rev. C 77,

035203 (2008).

G. RAMALHO AND K. TSUSHIMA PHYSICAL REVIEW D 89, 073010 (2014)

073010-10

http://dx.doi.org/10.1140/epja/i2008-10599-0
http://dx.doi.org/10.1140/epja/i2008-10599-0
http://dx.doi.org/10.1103/PhysRevD.80.013008
http://dx.doi.org/10.1103/PhysRevD.80.013008
http://arXiv.org/abs/1309.0730
http://dx.doi.org/10.1103/PhysRevD.84.033007
http://dx.doi.org/10.1103/PhysRevD.84.033007
http://dx.doi.org/10.1103/PhysRevD.84.051301
http://dx.doi.org/10.1103/PhysRevD.84.051301
http://dx.doi.org/10.1103/PhysRevD.85.093014
http://dx.doi.org/10.1103/PhysRevD.78.114017
http://dx.doi.org/10.1103/PhysRevD.78.114017
http://dx.doi.org/10.1103/PhysRevD.81.113011
http://dx.doi.org/10.1103/PhysRevD.85.113014
http://dx.doi.org/10.1103/PhysRevD.86.093022
http://dx.doi.org/10.1088/0954-3899/36/11/115011
http://dx.doi.org/10.1088/0954-3899/36/11/115011
http://dx.doi.org/10.1103/PhysRevD.82.073007
http://dx.doi.org/10.1103/PhysRevD.82.073007
http://dx.doi.org/10.1103/PhysRevD.84.054014
http://dx.doi.org/10.1103/PhysRevD.84.054014
http://dx.doi.org/10.1103/PhysRevD.86.114030
http://dx.doi.org/10.1103/PhysRevD.86.114030
http://dx.doi.org/10.1088/0954-3899/40/1/015102
http://dx.doi.org/10.1103/PhysRevD.88.053002
http://dx.doi.org/10.1103/PhysRevD.88.053002
http://dx.doi.org/10.1103/PhysRevD.87.093011
http://dx.doi.org/10.1103/PhysRevD.87.093011
http://dx.doi.org/10.1103/PhysRevD.83.054011
http://dx.doi.org/10.1103/PhysRevC.56.2672
http://dx.doi.org/10.1103/PhysRevC.58.2963
http://dx.doi.org/10.1063/1.3647158
http://dx.doi.org/10.1063/1.3647158
http://dx.doi.org/10.1103/PhysRevC.77.035203
http://dx.doi.org/10.1103/PhysRevC.77.035203

