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We study the possibility of intrinsic (nonperturbative) charm in parton distribution functions (PDF) of
the proton, within the context of the CT10 next-to-next-to-leading order global analysis. Three models for
the intrinsic charm (IC) quark content are compared: (i) ĉðxÞ ¼ 0 (zero-IC model); (ii) ĉðxÞ is parametrized
by a valence-like parton distribution (BHPS model); (iii) ĉðxÞ is parametrized by a sea-like parton
distribution (SEA model). In these models, the intrinsic charm content, ĉðxÞ, is included in the charm PDF
at the matching scale Qc ¼ mc ¼ 1.3 GeV. The best fits to data are constructed and compared.
Correlations between the value of mc and the amount of IC are also considered.
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I. CHARM QUARKS IN THE CTEQ-TEA
GLOBAL ANALYSIS

The global analysis uses QCD theory to analyze a broad
range of experimental data. In particular, the theoretical
predictions for short-distance scattering processes allow
the measurement, within some approximations, of univer-
sal parton distribution functions (PDFs) for the proton.
These functions can then be used to predict hadronic cross
sections in the QCD and electroweak theories, and in
beyond-the-standard-model theories. With the new high-
precision data becoming available from the LHC, the goal
of QCD global analysis is to be able to make predictions
that are accurate to be less than about one percent.
The most recent CT10NNLO PDFs (referred to as the

CT10 PDFs in this paper) are based on next-to-next-to-
leading order (NNLO) approximations for perturbative
QCD [1]. That is, NNLO approximations are used for
the running coupling αSðQÞ, for the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution equations, and
for those hard matrix elements for which the NNLO
approximation is available [2–4]. [Next-to-leading order
(NLO) is used only for inclusive jet data.]
Another important approximation in the CT10 analysis

concerns the treatment of charm quark effects. There are
two issues: the dependence on the assumed charm quark

mass and the possibility of a nonperturbative charm
component, intrinsic charm (IC), in the proton. The first
issue has been addressed in many papers [5–9] and was
considered recently in the context of the CT10 analysis in
Ref. [10]. In that work the general dependence on the
charm quark mass was studied and a preferred value of
mcðmcÞ ¼ 1.15þ0.18−0.12 GeV was obtained at 68% C.L., where
the error is a sum in quadrature of the PDF and theoretical
uncertainties. Here, mcðmcÞ denotes the running mass of
the charm quark, defined in the modified minimal-
subtraction (MS) scheme and evaluated at the scale
of mc. This value, constrained primarily by a combina-
tion of inclusive and charm production measurements in
HERA deep-inelastic scattering, translates into mpole

c ¼
1.31þ0.19−0.13GeVand1.54þ0.18−0.12 GeVwhen using the conversion
formula in Eq. (17) of Ref. [11] at the one-loop and two-loop
order, respectively.1 Either converted value is compatible
with the value of mpole

c ¼ 1.3 GeV, which was assumed by
CT10, and which we shall use as our standard charm mass
value in this paper.
The second issue, the possibility of intrinsic charm, is

our primary concern here. In the standard CT10 analysis,
the charm and anti-charm quark PDFs were turned on at the
scale Q ¼ Qc ¼ mc ¼ 1.3 GeV with an initial Oðα2sÞ
distribution, consistent with NNLO matching [13]. Thus,
at higher Q, most of the charm PDF is generated from
DGLAP evolution. However, one can also consider the
possibility of including an additional contribution, ĉðxÞ, to*sdulat@msu.edu
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1The pole mass cannot be used to arbitrarily high accuracy
because of nonperturbative infrared effects in QCD. The full
quark propagator has no pole because the quarks are confined so
that the pole mass cannot be defined outside of perturbation
theory [12].
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the initial charm and anticharm PDFs at the scale Qc,
beyond that required by matching. In principle, this
intrinsic charm content would be suppressed by powers
of (ΛQCD=mc), but since this ratio is not very small, it may
be important.
Thus, in this paper we ask these questions: What are

the nonperturbative c and c̄ components of the proton?
Is intrinsic charm significant? Accurate predictions of the
c and c̄ parton distributions will be relevant to some
important LHC measurements. For example, production
ofW� and Z0 involves cd̄, cs̄, dc̄, sc̄, and cc̄ contributions.
Another example is charm particle production at the LHC,
which will depend quite directly on the c and c̄ partons;
some data for this process have already been published
[14]. In addition, because of the momentum sum rule, an
increase in the charm component of the proton must be
compensated by a decrease in other components. So, in a
model with IC, a compensating change in the gluon PDF
could change the theoretical predictions of other processes,
such as jet production at the Tevatron and Higgs boson
production at the LHC, which are not directly related
to charm.
The current paper updates previous work on the charm

PDFs, which was based on the CTEQ6.5 global analysis
[15]. However, there are some important advances with
respect to the previous work. Most importantly, the PDFs
in this paper will be based on the NNLO approximation of
perturbative QCD; the previous work was NLO. Also,
some more recent data is now available and is used here:
the combined H1 and ZEUS data for both inclusive deep-
inelastic scattering [16] and inclusive charm production
[17] at HERA. Given these improvements to theory and
experiment, we expect that this updated analysis will yield
a better understanding of the charm PDF.
The outline of the paper is as follows. In Sec. II, we

present three models of the intrinsic charm quark PDF
and obtain fits and constraints on these models by perform-
ing a global analysis of the data, using a charm mass2 of
mc ¼ 1.3 GeV. In Sec. III we list the data used in the global
analysis and present comparisons between theory and data
for the data sets that are particularly sensitive to the charm
quark PDF. In Sec. IV we use these PDFs (with the
corresponding PDFs for other partons, of course) in
calculations of processes at the LHC that would be
particularly sensitive to the charm quark PDF. In Sec. V
we consider the correlation of the amount of intrinsic charm
with the value of the charm mass. In particular, we
demonstrate this correlation by redoing the fit for one of
the models with the larger value of the charm mass,
mc ¼ 1.67 GeV. Sec. VI contains our conclusions. We
also include an appendix, which contains the technical

definition of a novel variable that we use to assess the
comparison of theory and data for the individual data sets.

II. FITS WITH AN INTRINSIC CHARM
COMPONENT

Following our earlier study of c and c̄ content of the
proton [15], we will consider three models for the charm
PDF cðx;QcÞ. We set the QCD coupling constant to
αsðMZÞ ¼ 0.118, which is close to the world average
value, 0.1184� 0.0007, given by the Particle Data
Group (PDG) [12]. In all three models, the charm PDF
becomes active at the matching scaleQc ¼ mc ¼ 1.3 GeV.
The first model is of the standard CT10 PDFs; they have an
initial value of cðx;QcÞ ¼ c̄ðx;QcÞ that is fixed by NNLO
matching3 [13] and isOðα2sÞ. ForQ > Qc, additional charm
content is generated by radiation, as required by the
evolution equations of the renormalization group. For most
values of Q (larger than a few GeV) this radiated charm
content dominates the Oðα2sÞ initial contribution.
In the other two models, we assume some additional

nonperturbative IC content, ĉðxÞ, which is added to the
Oðα2sÞ perturbative contribution at the scaleQc. The second
model, which we call the BHPS model, has an IC content
that is parametrized by a valence-like nonperturbative
function,

ĉðxÞ ¼ Ax2½6xð1þ xÞ ln xþ ð1 − xÞð1þ 10xþ x2Þ�: (1)

This model, which is representative of predictions from the
light-cone picture of nucleon structure, is based on the
original work of Brodsky, Hoyer, Peterson, and Sakai [18];
it was also considered in the NLO CTEQ6.5 study [15].
The third model, which we call the SEA model, has an IC
content that is parametrized by a sea-like nonperturbative
function,

ĉðxÞ ¼ Aðd̄ðx;Q0Þ þ ūðx;Q0ÞÞ: (2)

For all three models, we use the Fortran 95 package
HOPPET [19] to include the IC with the NNLO matching
and to evolve the PDFs at NNLO. We also use the NNLO
S-ACOT-χ scheme [20], which is designed to approxi-
mately account for production threshold kinematics.
The other partons are parametrized at an initial scale

Q0 ¼ 1.295 GeV with adjustable shape parameters. The
parametrizations are essentially like CT10, but with some
minor changes especially for the gluon PDF. The values of
the shape parameters are varied to find the best fit to the
global data set, which we shall describe in Sec. III. This
best fit is obtained by minimizing a global χ2 function with

2Throughout this paper, unless otherwise specified, the vari-
able mc will indicate the charm mass in the pole mass scheme.

3Note that, in the absence of intrinsic charm, the condition
cðx;QcÞ ¼ c̄ðx;QcÞ ¼ 0 is only valid for Qc ¼ mc at NLO; at
NNLO, the starting charm quark PDFs are Oðα2sÞ and nonzero,
even for Qc ¼ mc.
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respect to the input shape parameters for different choices
for IC. The fitting procedures include the treatment of
systematic errors and other techniques that have been
described in recent reports on CTEQ-TEA global
analysis [1].
We note here that the scale parameters Q0 and Qc, as

well as the mass scale introduced in the S-ACOT-χ [20,21]
scheme could affect the determination of IC. In principle,
any variation of the scale Q0 can be absorbed into the
parametrization of the initial PDFs, but in practice it can
affect the overall χ2 minimum. In the absence of IC, any
variation of Qc away from mc would produce a change in
the predictions at the next higher order in αs. Similar
dependence on the S-ACOT-χ rescaling variable should
occur at higher order in αs in the absence of IC. The effects
induced from these latter two scales, Qc and the rescaling
variable χ, do not cancel in the presence of nonzero IC,
but instead can be considered as part of the defining
parametrization of IC. However, since we are concerned
here with the relative change in the global χ2 as IC is turned
on, we can consider the dependence on these three auxiliary
scales as part of the systematic theoretical uncertainty of
the global analysis, which is no worse than their con-
tribution to the uncertainty in global fits without IC. Thus,
we keep them fixed, while varying the amount of IC. We
keep fixed Q0 ¼ 1.295 GeV, Qc ¼ mc, and we use the
default definition of the ACOT-χ variable,

χ ¼ ð1þ 4m2
c=Q2Þx; (3)

for evaluating the coefficient functions in charm produc-
tion; note that χ ∼ x for Q ≫ mc. Different choices for
these variables may affect the precise limits that we can
place on IC, but we do not expect them to change our
overall conclusions.
In contrast to the above three auxiliary scale parameters,

we distinguish the charm quark mass parameter of QCD,
mc, which enters in the hard matrix elements through the
coefficient functions. Since this is a fundamental parameter
of the theory, it is possible that there is a correlation
between the value of mc and the amount of intrinsic charm
that is physically significant. We shall postpone the dis-
cussion of this further until Sec. V. In this section and the
following two sections we keep the charm mass fixed at the
CTEQ standard value of mc ¼ 1.3 GeV.
To examine the dependence on the type and amount of

intrinsic charm, we carry out a series of fits, varying the
parameter A in (1) or (2). That is, we minimize χ2 with
respect to all variations of the input parameters, constrained
by a fixed value of the intrinsic charm content, ĉðxÞ, which
we specify by its momentum fraction4 at the scale Qc,

hxiIC ¼
Z

1

0

x½2ĉðxÞ�dx; (4)

which in turn is determined by A. Here, we have multiplied
by a factor of 2 in order to include both the c and c̄
contributions. To satisfy the proton momentum sum rule at
Q ≥ Qc, this momentum fraction has been subtracted from
the total momentum fraction available to the light partons
for Q < Qc.
Figure 1 shows the results of the two IC series. We plot

here the global chi-square function, χ2F, versus the intrinsic
charm content, hxiIC, for the two models of intrinsic charm.
The BHPSmodel is shown in blue; the SEAmodel is shown
in red. The function χ2F, which is called χ2global in Ref. [1],
includes the treatment of correlated systematic errors. The
parabolic curves are determined from fits with many values
of hxiIC. Two exemplary fits for each model are shown as
dots. They have hxiIC ¼ 0.57% and 2% for the BHPS
models; and 0.57% and 1.5% for the SEA models. These
four examples will be used in the subsequent discussion.
Figure 1 provides a first step toward setting upper limits

on the intrinsic charm. As χ2F increases, the goodness of
fit to the global data set decreases, and at some point we
judge that the data has ruled out the theory; this point could
define a maximum acceptable value of hxiIC. However, we
know from experience that relying only on the value of χ2F
is not always the best measure of the goodness of fit. For
example, there may be PDFs with small global χ2F, but for
which one or a few individual data sets are very poorly
fit, balanced by especially good fits to other data sets.
Furthermore, in the global χ2F, a particular experiment that
is very sensitive to a fit parameter but has a small number of
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FIG. 1 (color online). The global chi-square function χ2F versus
the charm momentum fraction hxiIC. The two approximately
parabolic curves are determined from fits with many values of
hxiIC. Two exemplary fits for each IC model are shown as dots.
Blue denotes the BHPS model; the dots have hxiIC ¼ 0.57% and
2%, which are denoted BHPS1 and BHPS2 below. Red denotes
the SEA model; the dots have hxiIC ¼ 0.57% and 1.5%, which
are denoted SEA1 and SEA2 below.

4The notation hxi refers here to the momentum fraction or first
moment of the given PDF; it does not signify the mean value of x,
which is undefined, in general, if the 0th moment is undefined.

INTRINSIC CHARM PARTON DISTRIBUTION FUNCTIONS … PHYSICAL REVIEW D 89, 073004 (2014)

073004-3



data points, will be relatively underweighted compared
to other data sets that are less sensitive but which have
more data points. Thus, in order that the PDFs agree to a
reasonable degree with all the individual data sets, we must
also look at the χ2 values from individual experiments, not
just the overall sum of the χ2 values.
To obtain a measure of the goodness of fit that includes the

separate values of individual experiments, we introduce a
“Tier-2 penalty,” T2ðiÞ, for each experiment i. This measures
the goodness of fit for that experiment; a large value means
that the experiment i is not consistent with the theory. (T2ðiÞ
is not simply χ2i , but they are related. T2ðiÞ is designed to
increase more rapidly than χ2i when χ2i moves beyond the
90% C.L. Additional details are given in the appendix.)
The dotted curves in Fig. 2 show χ2F þ T2 versus hxiIC

for the two models of IC. Our usual choice for the
“tolerance” of a PDF fit is

Δðχ2F þ T2Þ ¼ χ2F þ T2 − ðχ2F þ T2Þmin < 100: (5)

That is, a set of PDFs with Δðχ2F þ T2Þ > 100 is deemed to
be such a poor fit to the data that it is ruled out (at the
90% C.L.). From Fig. 2 we see that, in the present study, the
T2 contribution turns on and rises very sharply with hxiIC,
thus determining the upper limits on IC. The sharp increase
in slope arises when one or more experiments become
poorly fit as the charm momentum fraction increases.
As we shall see and discuss in more detail in Sec. III,
the dominant constraint on the SEA model is from the
combined HERA charm production measurements; how-
ever, the main constraints on the BHPS model come from
several measurements, but not the HERA charm production
experiments. We conclude that the upper limits on hxiIC, at
the 90% C.L., are

hxiIC ≲ 0.025 for the BHPS model;

hxiIC ≲ 0.015 for the SEA model:

Note that the four example PDFs are all within these limits.
The global data does not rule out BHPS2 (which has
hxiIC ¼ 2%) or SEA2 (which has hxiIC ¼ 1.5%). However,
these are close to the upper limits for hxiIC, and can be
taken as representative PDF models with amounts of IC
near the largest acceptable value.
Figures 1 and 2 show that hxiIC > 0.015 is disfavored for

the SEA model, while the BHPS model allows a larger
charm content, up to about hxiIC ¼ 0.025. Furthermore, the
BHPS model provides a value of χ2F þ T2 that is lower
than that of the standard CT10 PDFs for hxiIC < 0.018. The
BHPS model with hxiIC ¼ 0.009 gives the best fit to the
global data set. However, the small decrease,Δðχ2F þ T2Þ≃−20, is really not significant enough to herald the discovery
of intrinsic charm in a sense that the typical allowed χ2

variation is ≲100 in the CT10 gobal analysis. In the rest of
the paper we shall focus on the four IC models marked as
dots in Figs. 1 and 2, labeled as SEA1, SEA2, BHPS1, and
BHPS2. The fraction of intrinsic charm component for
each model is 0.57%, 1.5%, 0.57%, and 2%, respectively,
cf. Table II.
The result in Fig. 1 is rather different from the corre-

sponding result from our earlier NLO CTEQ6.5 study [15].
The order of magnitude of the dependence of χ2F on hxiIC is
comparable to the earlier study. However, the behaviors of
the BHPS model and the SEA model are reversed. In the
current NNLO study, we find χ2BHPS < χ2SEA, leading to a
larger upper limit on hxiIC for the BHPS model. In the older
NLO study the inequality was the reverse. Because of
the advances in both theory and data, listed above, we trust
that the current results are more realistic regarding the issue
of intrinsic charm. The most significant advance in the
theoretical calculation lies in the fact that we have applied a
better treatment of heavy parton mass in the current study.
More extensive comparisons between theory and experi-

ment are given in Sec. III, while a discussion of the
correlation of these fits with the value of the charm mass
is deferred to Sec. V.

A. The charm quark PDF

Figure 3 shows the charm quark PDF for five cases. In
each panel, the product of momentum fraction x and charm
PDF cðx;QÞ is shown for the BHPS1, BHPS2, SEA1,
SEA2, and CT10 PDFs. The four panels correspond to four
values of Q: Q ¼ 2.0, 3.16, 8.0, 85 GeV. CT10 has no IC;
ĉðxÞ ¼ 0. But the charm distribution evolves rapidly from
Qc to 2 GeV. For Q > 8 GeV and x < 0.01, the CT10
charm PDF is comparable to the IC models.
The BHPS model has a valence-like charm distribution

at Qc. So for small Q, the charm density with x > 0.1 is
significantly larger than our standard CT10 charm PDF.
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FIG. 2 (color online). Similar to Fig. 1, but the χ2F þ T2 versus
charm momentum fraction, hxiIC, is also shown as the dotted
curve for both the SEA and BPHS models.
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Even forQ as large as 85 GeV, cðx;QÞ is still notably larger
for the BHPS model than for CT10, for large x. On the
other hand, for small x, say x < 0.05, the BHPS model
and CT10 charm densities are approximately equal for
Q > 8 GeV. Because the IC in this model is concentrated
at large x, the resulting PDFs can fit most data comparably
well as CT10, as long as hxiIC is not too large; cf. Sec. III.
The SEA model has a sea-like charm distribution at Qc.

There is a large c density atQc for small and intermediate x
ranges, say x < 0.2. The charm PDF evolves rapidly from
Qc to 2 GeV, but nevertheless cðx;QÞ continues to be
notably larger than CT10 at small x, even for Q as large as
8 GeV. Because of this large charm density at low x, the
SEA model has a more difficult time fitting the combined
HERA charm data than CT10, or than the BPHS model for
equal values of hxiIC; cf. Sec. III.
To emphasize the differences between the models,

relevant to LHC experiments, Fig. 4 compares cðx;QÞ
for the four examples of the BHPS and SEA models at
the large momentum scaleQ ¼ 85 GeV. For each case, the
ratio cðx;QÞIC=cðx;QÞCT10 is plotted as a function of x.
The shaded region is the uncertainty band for the
charm distribution of CT10 at Q ¼ 85 GeV. Note that
the charm distributions with IC are allowed to be outside
the uncertainty band of CT10, since CT10 was created

with the constraint that the charm PDF was radiatively
generated.
Putting intrinsic charm into the c and c̄ distributions will,

of course, directly affect predictions involving charm
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FIG. 3 (color online). Charm quark distribution xcðx;QÞ from the BHPS1 and BHPS2 PDFs (which have 0.57% and 2% hxiIC); from
SEA1 and SEA2PDFs (which have 0.57% and 1.5% hxiIC); and fromCT10. The four graphs correspond toQ ¼ 2.0, 3.16, 8.0, and 85GeV.

FIG. 4 (color online). Ratios of cðx;QÞIC=cðx;QÞCT10 for
Q ¼ 85 GeV.
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quarks in the initial state. But there will also be indirect
effects. Because of the momentum sum rule or constraints
from the data, other parton distributions must change to
balance the change in the charm distribution. Therefore, we
should also look at other parton distributions in the PDF
sets with intrinsic charm.
Figure 5 shows the gluon PDF for the same four examples

of the BHPS and SEAmodels as in Fig. 4, again plotting the
ratio to CT10 for the momentum scale Q ¼ 85 GeV.
Figure 6 shows the same for the ūþ d̄ quark PDF. The
shaded regions show the uncertainty bands for CT10. We
note that for the BHPS model, the presence of intrinsic

charm pulls momentum from the gluon and the ūþ d̄ quark
at large x; whereas, for the SEA model, the presence of IC
requires reduction of the ūþ d̄ quark PDF at small x to fit
the inclusive deep inelastic scattering (DIS) data. Similarly,
Figs. 7 and 8 are for changes of valence quarks. The uv and
dv of the BHPS models are reduced in the valence region to
balance the charm distribution there, and are increased in
the small x region due to the valence number sum rules.
This will affect LHC predictions in interesting ways; cf.

Sec. IV. Before concluding this section, we note that each
IC fit is a central fit, with a different assumption on the
intrinsic charm distribution at the scale Qc. Hence, if we

FIG. 6 (color online). Ratios of ðūðxÞ þ d̄ðxÞÞIC=ðūðxÞ þ
d̄ðxÞÞCT10 for Q ¼ 85 GeV.

FIG. 7 (color online). Ratios of uvðxÞIC=uvðxÞCT10 for
Q ¼ 85 GeV.

FIG. 5 (color online). Ratios of gðxÞIC=gðxÞCT10 for
Q ¼ 85 GeV.

FIG. 8 (color online). Ratios of dvðxÞIC=dvðxÞCT10 for
Q ¼ 85 GeV.
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computed eigenvector (Hessian) uncertainties for these IC
fits, we would obtain an uncertainty range that expands on
the CT10 uncertainty range for these gluon and quark
distributions.

III. EXPERIMENTAL DATA SETS AND
INTRINSIC CHARM

The experimental data sets included in the global
analysis that led to the results of Sec. II are listed in
Table I. With a few exceptions, they are the same as the data
used in the standard CT10 fit [1]. We note that the CT10
PDFs were fitted to the individual Fc

2 data sets from both
H1 and ZEUS collaborations. As shown in Table I, in this
study we have replaced those individual Fc

2 data sets by the
combined H1 and ZEUS reduced cross section data (called
Data Set 147) for charm production at HERA [17].
We have not used the EMC data on charm production in

muon scatteringon iron [41] in part becausewe cannot be sure
that nuclear effects will not be important there—although, of
course, the same could be said for the NuTeV neutrino
dimuon data, which we do include. An analysis of the EMC
Fc
2 data found ð0.86� 0.60Þ% for the IC probability [42].

However, subsequent studies [43–45] have shown that these
EMC data are consistent with no IC, once the parton

distributions used for the analysis include an appropriate
flexibility. A useful recent review of the IC data can be found
in [46]. Including the EMCdata is not likely to add any strong
constraint to the upper limits of intrinsic charm obtained in
our analysis, due to the uncertainty of nuclear corrections.
The impact of an intrinsic charm component on the fit to

the different data sets can be visualized in several different
ways. In Table I, we have listed the number of data points,
Npt, for each experiment, as well as the χ2=Npt for the CT10
fit, the BHPS2 fit, and the SEA2 fit, which have charm
momentum fractions (hxiIC) of 2% and 1.5%, respectively.
The change in χ2=Npt in the last two columns from the
CT10 fit indicates which data sets are in conflict with a
large intrinsic charm content.
One especially interesting data set for this paper is the

combined H1 and ZEUS data set for charm production in
deep-inelastic ep collisions at HERA [17]. This is Data Set
147 in Table I. Charm particles can be produced in two
ways in an ep collision: the charm-excitation process γ þ
c → cþ X and the charm-creation process γ þ g → cþ c̄.
These are combined consistently in the calculations using
the prescription introduced by ACOT [5]. However, in the
presence of intrinsic charm, the former process becomes
particularly important, since it is directly proportional to the

TABLE I. Experimental data sets employed in the CT10 analysis. Npt ¼ the number of points in the data set. The final three columns
show χ2=Npt for each data set for CT10, the BHPS model with hxiIC ¼ 0.020, and the SEA model with hxiIC ¼ 0.020. The last row
shows the global χ2F for each PDF set for a total of 2625 data points.

ID Experimental data set Npt CT10 BHPS (0.020) SEA (0.015)

101 BCDMS Fp
2 [22] 339 1.158 1.087 1.220

102 BCDMS Fd
2 [23] 251 1.157 1.119 1.187

103 NMC Fp
2 [24] 201 1.656 1.668 1.582

104 NMC Fd
2=F

p
2 [24] 123 1.210 1.311 1.207

108 CDHSW Fp
2 [25] 85 0.832 0.833 0.781

109 CDHSW Fp
3 [25] 96 0.809 0.867 0.810

110 CCFR Fp
2 [26] 69 0.989 1.105 0.943

111 CCFR xFp
3 [27] 86 0.387 0.416 0.417

124 NuTeV ν di-μ SIDIS [28] 38 0.781 0.836 0.745
125 NuTeV ν̄ di-μ SIDIS [28] 33 0.852 0.905 0.864
126 CCFR ν di-μ SIDIS [29] 40 1.195 1.204 1.145
127 CCFR ν̄ di-μ SIDIS [29] 38 0.692 0.728 0.655
147 HERA charm production [17] 47 1.187 1.185 1.424
159 Combined HERA1 DIS [16] 579 1.068 1.086 1.059
201 E605 DY process σðpAÞ [30] 119 0.804 0.845 0.796
203 E866 DY process σðpdÞ=ð2σðppÞÞ [31] 15 0.658 0.789 0.718
204 E866 DY process σðppÞ [32] 184 1.271 1.286 1.277
225 CDF Run-1 W charge asymmetry [33] 11 1.292 1.191 1.285
227 CDF Run-2 W charge asymmetry [34] 11 0.978 0.995 0.978
231 V. M. Abazov et al. (D0 Run-2 W charge asymmetry [35] 12 1.928 2.006 1.972
234 V. M. Abazov et al. (D0 Run-2 W charge asymmetry [36] 9 1.501 1.709 1.371
260 V. M. Abazov et al. (D0 Run-2 Z rapidity dist. [37] 28 0.580 0.551 0.550
261 CDF Run-2 Z rapidity dist. [38] 29 1.586 1.466 1.535
504 CDF Run-2 inclusive jet [39] 72 1.398 1.431 1.311
514 V. M. Abazov et al. (D0 Run-2 inclusive jet [40] 110 1.044 0.950 1.012

Totals 2625 3005 3034 3026
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c and c̄ component of the proton. Thus, one would expect
data set 147 to be particularly sensitive to intrinsic charm.
In addition, this set of combined H1 and ZEUS data has
smaller systematic errors than the separate data sets, which
were used in our previous analysis [15]. Therefore, we are
interested to assess the influence of these newly available
high-precision combined data.
Figure 9 shows a comparison of the H1 and ZEUS

combined data on charm production with the theory
predictions using IC parton distributions. The agreement

between data and theory for BHPS2 is satisfactory, and
almost the same as for the CT10 PDFs. On the other hand,
we see systematic differences between the data and SEA2,
whose prediction is consistently higher than the data over
the full range of Q2 and x. Table II lists the values of χ2 for
CT10 and our four representative IC models with different
amounts of IC. In general, the models with sea-like intrinsic
charm do worse than the standard fit or the fits with the
BHPS model with valence-like intrinsic charm. The sea-
like models have more charm at low values of x, which is

Q 2 5 GeV2 Q 2 7 GeV2

Q 2 12 GeV2 Q 2 18 GeV2 Q 2 32 GeV2

Q 2 60 GeV2 Q 2 120 GeV2 Q 2 200 GeV2

Q 2 350 GeV2 Q 2 650 GeV2 Q 2 2000 GeV2

FIG. 9 (color online). Comparison of theory and data for the H1 and ZEUS combined data on charm production in ep collisions at
HERA. Theory: The blue curves are the result for BHPS2; the red curves are the result for SEA2. The data is plotted as points; the error
bars are the total errors. The CT10 prediction cannot be distinguished from that given by BHPS2.
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disfavored by this HERA data with small x. We note,
however, that the increase in χ2 for SEA2 is only about 13
units, to be compared to 47 data points.
The impact of intrinsic charm on the other data sets

in Table I is not so obvious as for the charm production
set 147. Some data sets favor the SEA models, while other
data sets favor the BHPS models, while still others disfavor
both. One other data set to note in particular is data set 101,
which is the BCDMS Fp

2 data. Although the decrease in
χ2=Npt for BHPS2, and the increase in χ2=Npt for SEA2,
are not obviously significant, the large number of data
points Npt ¼ 339 ensures that these have an effect on the
total χ2. In this case the BHPS2 fit has χ2 reduced by 24
units compared to CT10, while the SEA2 fit has χ2

increased by 21 units. The net effect is that the full
combination of all data sets to the total χ2 disfavors the
SEA model of intrinsic charm more than the BHPS model
of intrinsic charm for a given intrinsic charm momentum
fraction, as seen in Fig. 1.

A. An equivalent Gaussian variable

From the discussion in the last paragraph, we can see that
the naive use of total χ2 as the discriminating variable may
overweight data sets with large numbers of points, even if
the correlation with the fitting parameter is not very
significant. It was for this reason that the Tier-2 penalty
was added to χ2 in the global fitting program. The Tier-2
penalty makes use of an equivalent Gaussian variable Sn,
which gives a measure of the goodness of fit for each of the
individual data sets. It is defined precisely in the appendix.
In other words, for a particular data set we map its

fχ2; Ng value, assumed to obey a chi-square probability
distribution, onto the variable Sn, which has the same
probability but for a standard Gaussian distribution (cf.
Appendix).
The values of Sn can then be interpreted in terms of

probabilities in a normal distribution. Fits with Sn between
-1 and 1 are accepted as reasonable, within the errors. Fits
with Sn > 3 are considered poor fits. Fits with Sn < −3
actually fit the data much better than one would expect
from normal statistical analysis; i.e., they have anomalously
small residuals, presumably because the true experimental
errors are smaller than the published values.

Figure 10 shows Sn for all 25 individual data sets, for the
two models of IC, as a function of hxiIC. The BHPS model
is shown above, and the SEA model is shown below. To
focus on the data sets which are most affected by intrinsic
charm, we select just those in Fig. 11.
For the BHPS model, we see that several of the data sets

have a slow increase in Sn with momentum fraction hxiIC,
while data set 101 (BCDMS Fp

2 ) has a significant decrease
in Sn for small hxiIC, and then levels off for larger hxiIC.
This is consistent with the results of Fig. 1 which showed
that the BHPS models for hxiIC ≲ 0.015 were actually
slightly favored over zero intrinsic charm, but increasing
hxiIC further decreased the overall goodness of fit for the
BHPS model. The increase in χ2F or χ2F þ T2 seen in Figs. 1
or 2 at hxiIC ≲ 0.025 for the BHPS model can be attributed
to several experiments: ID 104 (NMC Fd

2=F
p
2 ), ID 110

(CCFR Fp
2 ), and ID 504 (CDF Run-2 inclusive jets);

note that Sn increases for these experiments in Fig. 11.
The abrupt increase of T2 at hxiIC ≳ 0.025 comes from
experiment ID 110.
In contrast, the SEA model shows a strong increase in

Sn as hxiIC increases for several experiments, in particular
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FIG. 10 (color online). Comparing Sn as a function of charm
momentum fraction, hxiIC, for two models of intrinsic charm.
Upper: BHPS model; lower: SEA model.

TABLE II. χ2 for different models of IC, for data set 147. This
is the combined H1 and ZEUS data for inclusive charm
production in ēp or ep collisions at HERA. The number of
data points is Npt ¼ 47.

Model hxiIC χ2

CT10 0% 55.75
BHPS1 0.57% 55.78
BHPS2 2% 56.29
SEA1 0.57% 57.60
SEA2 1.5% 68.50
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for the HERA combined charm experiment ID 147. (The
CDHSWmeasurement of Fp

2 , experiment ID 108, shows a
strong decrease in Sn; but we note that that experiment is
already anomalously well fit, even for no intrinsic charm.)
Again, this is consistent with the rapid rise of χ2 versus
hxiIC in Fig. 1 at hxiIC ≈ 0.015; but Fig. 11 is more
informative because it shows which experiments are
responsible for the rapid rise in χ2, i.e., which experiments
conflict with the large IC. In fact, it is the HERA
combined charm experiment 147 that gives the dominant
contribution to the Tier-2 penalty for the SEA model,
and determines the limit on charm momentum fraction
from Fig. 2.
Overall, we can use the Sn plots to understand which data

sets can or cannot be fit by a particular model of intrinsic
charm. For instance, the BHPS model actually gives a
better global fit for hxiIC ∼ 0.01 because that significantly
lowers Sn of the BCDMS Fp

2 data set 101; at the same time
it does not conflict with HERA inclusive charm data set
147. Evidently, intrinsic charm at large x at Qc does not
conflict with charm production at HERA (low x and large
Q), while it can improve the agreement with the BCDMS
data which are sensitive to quark distributions at high x
values. On the other hand, any increase in the SEA model
intrinsic charm (predominantly low x charm) worsens the
fit to both data sets 101 and 147.

IV. PREDICTIONS FOR THE LHC

The inclusion of intrinsic charm changes the charm
quark distributions at high Q values significantly, as well
as affects the gluon and other quark PDFs through the
PDF correlations in the global fit as shown in Sec. II.
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FIG. 11 (color online). Comparing Sn as a function of charm
momentum fraction, hxiIC, showing the data sets for which Sn
changes the most significantly. Upper: BHPS model; lower:
SEA model.
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FIG. 12 (color online). Correlation plot for the predictions of W− and Wþ boson production cross sections at the LHC with
ffiffiffi
S

p ¼
8 TeV and 14 TeV. The tolerance ellipses are for 90% C.L. for the PDF uncertainties (unc.).
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Thus, it may have impact on collider observables [47].
For example, in Figs. 12–15 we show the predictions of the
NNLO total cross sections for W and Z boson production,
Higgs boson production through gluon fusion, and top
quark pair production at the LHC at

ffiffiffi
S

p ¼ 8 and 14 TeV.
The NNLO cross sections for W and Z boson production
are computed with FEWZ2.1 [48,49]. The NNLO cross
sections for Higgs boson and top quark pair production are
obtained from iHix1.3 [50] and Topþþ2.0 [51,52], with
mh ¼ 125 GeV, mt ¼ 173.3 GeV, and the QCD scales set
to the corresponding mass values. For each pair of total
cross sections, we show the central predictions from CT10
with the 90% C.L. PDF tolerance ellipse as well as
predictions from the four examples with intrinsic charm.
In Figs. 12–15, generally the predictions from the chosen

IC models differ from the central predictions of CT10 by

less than 2%, which is smaller than the PDF uncertainties of
CT10 but may not be negligible for precise predictions for
the LHC. For the SEA models, the cross sections at the
LHC are almost uniformly smaller, due to the reduction in
momentum fraction remaining for the other noncharm
partons. The only exception is W− production through
the process c̄s → W−, which benefits from the increased c̄
distribution. The production of Higgs bosons and top quark
pairs, in particular, are reduced for nonzero IC SEA, due to
the reduction in gluons and light sea quarks in the relevant
regions of x and Q, as seen previously in Figs. 5 and 6.
For the BHPS models, the situation is more complicated,

since the gluon and light sea quark PDFs are increased in
the region x≲ 0.1 in the BHPS models. In this case the
production of Z and W� (independent of sign) are
increased and the production of top quark pairs is decreased
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FIG. 13 (color online). Correlation plot for the predictions of Z andW� boson production cross sections at the LHC with
ffiffiffi
S

p ¼ 8 TeV
and 14 TeV. The tolerance ellipses are for 90% C.L.
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FIG. 14 (color online). Correlation plot for the predictions of Higgs and Z boson production cross sections at the LHC withffiffiffi
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p ¼ 8 TeV and 14 TeV. The tolerance ellipses are for 90% C.L.
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by an increase of IC in the BHPS models. The production
of Higgs bosons is fairly insensitive to the amount of IC for
the BHPS model. Also, it is interesting to see from Figs. 12,
13, and 15 that the predictions from the BHPS models
follow similar (anti) correlations as CT10 since they
distribute along the diagonal direction of the ellipse, in
distinction from the SEA models.
We can also check the effects of the IC on the rapidity

distribution of the vector boson production. Charm quark
contributions there have different shapes compared to the
light quarks depending on the momentum profile of the
charm quark of the IC models. Figs. 16–18 give the NNLO
predictions of the rapidity distributions ofW� and Z boson

productions from CT10 and the four IC models. They are
calculated with the program Vrap0.9 [53], and both the
renormalization and factorization scales are chosen to be
the mass of the vector boson. The differences are small
among four IC models, and their predictions are all within
the CT10 PDF uncertainties. In Fig. 19 we further plot the
ratios of the rapidity distribution, dσW�=dσZ, which are
presumably more sensitive to the charm quark contribu-
tions due to the cancellations of the uncertainties from light
quark contributions. This is evident from comparing the
size of the error band induced by the PDF uncertainty in
Figs. 16–18 to that in Fig. 19. We can see that in the small
or intermediate rapidity region the predictions of SEA2 lie
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FIG. 16 (color online). Rapidity distribution of the Wþ boson at the LHC with
ffiffiffi
S

p ¼ 8 TeV and 14 TeV. The PDF uncertainties are
for 90% C.L.
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outdide the CT10 PDF uncertainties, similar to that for
BHPS2 in the large rapidity region.
As already pointed out in our previous IC study [15],

and recently in Refs. [54,55], the partonic process gþ
c → γ=Z þ c is directly sensitive to the initial state charm
distribution, although precision measurements could be
experimentally challenging at the LHC. Figure 20 shows

predictions of the differential cross sections of an
on-shell Z boson production in association with a charm
quark at the LHC from CT10 and the IC models. The
matrix element calculations of the process are only
available up to NLO in QCD [56] and are implemented
in program MCFM [57]. We simply convolute them
with our NNLO PDFs in order to show the relative
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FIG. 18 (color online). Rapidity distribution of the Z boson at the LHC with
ffiffiffi
S

p ¼ 8 TeV and 14 TeV. The PDF uncertainties are for
90% C.L.
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changes of the cross sections in the presence of IC.
Figure 20 gives the transverse momentum distribution
of the Z boson with kinematic cuts of pT > 50 GeV, and
jηj < 2.1 applied on the charm quark jet using the anti-kT
algorithm with the radius parameter R ¼ 0.5. In this
calculation, both the renormalization and factorization
scales are chosen to be the scale sum of the transverse
momenta of final state particles. We have checked that
in the large pT region, the theoretical uncertainty induced
by varying these scales simultaneously by a factor of 2

is much smaller than the error induced by the CT10
error PDFs.
We can clearly see that in the large pT;Z region,

predictions from the fits with IC models deviate signifi-
cantly from CT10 as a direct result of the charm distribution
changes shown in Fig. 20. Thus, it shows a potential for
discriminating the possible IC models. In particular, at
large values of pT;Z it is very sensitive to the presence of
IC in the BHPS models, since they have a large enhance-
ment at large x. However, the cross sections are small, and
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FIG. 20 (color online). Transverse momentum distribution of the Z boson in the production of pp → Zc at the LHCwith
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and 14 TeV. Upper panel: differential cross sections; lower panel: ratios normalized to the CT10 central prediction. The PDF
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there are further suppressions from the decay branching
ratios of the Z boson, as well as the charm quark jet-tagging
efficiency. A detailed study of the feasibility of this process
at the LHC is needed, but it is beyond the scope of the
current work.

V. CORRELATIONS BETWEEN THE CHARM
MASS AND INTRINSIC CHARM

The curves in Fig. 3 show that the charm distribution in
the SEA model is very similar in shape to the charm
distribution of CT10 with no IC. It mostly differs in overall
normalization. This then begs the question whether it can
be distinguished from some other physics that may produce
more cc̄ radiation, such as a change in the charm quark
mass, mc. In this section we investigate the correlation
between mc and IC in the SEA model.
A lighter charm quark mass could mimic the effects of

intrinsic charmbecause, with a smallermass, the charmPDF
turns on sooner, resulting in more charm at a given value of
Q. Conversely, a larger value of the charmmass would result
in a smaller charm content at a givenvalue ofQ, which could
then be made up with some intrinsic charm. This possibility
is intriguing because the standard value of the charm mass
mpole

c ¼ 1.3 GeV, which was used in the CT10 analysis [1]
and was shown to be favored by the global analysis data
[10], is smaller than the world average value given by the
PDG [12], which was obtained using a mostly orthogonal
set of data. The PDG gives a world average value of
mcðmcÞ ¼ 1.275 GeV, which translates into pole mass
values of mpole

c ¼ 1.46 GeV and mpole
c ¼ 1.67 GeV when

using the conversion formula in Eq. (17) of Ref. [11] at the
one-loop and two-loop order, respectively. Thus, one may
wonder if the lower value ofmc used in the global analysis is
actually hiding some evidence for intrinsic charm.
Rather than performing a combined fit of mc and IC,

we shall just demonstrate the effect by rerunning the analysis
of Sec. II, using the larger value of mc ¼ 1.67 GeV. We

emphasize that we are not advocating this large value of the
charm mass, but are just using it to observe the correlation
between fits of the charm mass and intrinsic charm. In
Fig. 21 we plot the results of the global fitting for χ2F versus
the intrinsic charm content, hxiIC, for the SEA model, both
for our standard charm mass mc ¼ 1.3 GeV and for the
larger value of mc ¼ 1.67 GeV. We keep the same initial
scale for the light partons, Q0 ¼ 1.295 GeV, for both
choices of mc. As seen previously, the dependence of χ2F
on hxiIC for mc ¼ 1.3 GeV is quite flat for small charm
content and then begins to rise. The curve looks like a
quadratic function with a minimum close to hxiIC ¼ 0. This
is consistent with the fact themc ¼ 1.3 GeV is near the best
fit of the charmmass with zero IC to the global analysis data.
On the other hand, for mc ¼ 1.67 GeV, the χ2F begins at a
higher value for zero IC and then noticeably decreases to a
minimum at around hxiIC ¼ 0.01. Thus, if a larger value of
the charm mass could be decisively shown to be required,
then the global analysis would prefer nonzero IC, even for
the SEA model, although this preference is not currently
statistically significant.
We note, however, that the overall value of χ2F is still

worse for mc ¼ 1.67 GeV and hxiIC ¼ 0.01 than for mc ¼
1.3 GeV with zero intrinsic charm. We investigate this
further in Fig. 22, where we compare Sn as a function of
hxiIC for the same set of experiments that were sensitive to
the SEA model in Fig. 11 for mc ¼ 1.3 GeV. The main
thing to note here is that the Sn for data set 147, the
combined charm production at HERA, is significantly
worse for mc ¼ 1.67 GeV than for mc ¼ 1.3 GeV. For
mc ¼ 1.67 GeV and zero IC, Sn of data set 147 is more
than 5, which indicates a very poor fit to the data.
Increasing the IC content makes the fit better for this
charm mass, but the Sn is still a good bit higher than that
with mc ¼ 1.3 GeV and no IC. In addition, the fit to the
combined HERA1 DIS data set 159 worsens as the charm
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versus the charm momentum fraction hxiIC for the SEA model
with mc ¼ 1.3 GeV and mc ¼ 1.67 GeV.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.005  0.01  0.015  0.02  0.025  0.03

S
n

<x>SEA

101
102
147
159

FIG. 22 (color online). Comparisons of Sn as a function of
hxiIC, showing the data sets for which Sn changes the most
significantly for the SEA model with mc ¼ 1.67 GeV.

INTRINSIC CHARM PARTON DISTRIBUTION FUNCTIONS … PHYSICAL REVIEW D 89, 073004 (2014)

073004-15



momentum fraction increases for the SEA model
with mc ¼ 1.67 GeV.

VI. CONCLUSIONS

The hypothesis of IC is a long-standing question in
high-energy physics, combining QCD theory (both pertur-
bative and nonperturbative) and phenomenology [18].
The purpose of this paper is to reassess the theory based
on an up-to-date global analysis of QCD at the NNLO
approximation.
The final conclusion of this work is that the wide range

of short-distance processes that are commonly used in
global analysis can be described accurately without an IC
component of the proton; however, they do not rule out a
small IC component. Quantitatively, we can construct PDFs
that are acceptable fits to the global data (acceptable within
the 90% C.L.) with hxiIC ≤ 1.5% for a sea-like IC in the
SEA model at Qc ¼ 1.3 GeV; or with hxiIC ≤ 2.5% for a
valence-like IC (i.e., concentrated at large x) in the BHPS
model, cf. Fig. 2.
The HERA combined data on inclusive charm produc-

tion in ep deep-inelastic scattering is particularly important.
It constrains the SEA model more strongly than other data.
On the other hand, it neither constrains nor favors the large-
x IC of the BHPS model.
We also investigated the correlation between IC content

and the value of the charm quark mass in the global fits.
We found that a larger value of mc was better fit with
larger amounts of intrinsic charm, even for the SEA
model. (The best fit for mc ¼ 1.67 GeV required about
hxiIC ≈ 1% for the SEA model.) However, the HERA
combined data on inclusive charm production has a
significant tension with larger values of the mc, which
is only somewhat alleviated by including nonzero IC.
Thus, the overall best fit to the data with the SEA model
still appears to be with the smaller charm quark mass
mc ¼ 1.3 GeV and small or zero IC.
Predictions for LHC measurements, based on the IC

PDFs, are interesting. The figures in Sec. IV show that the
IC models with the largest allowed IC are right up against
the uncertainty limits for the CT10 PDFs. In other words,
the PDF uncertainties are just as large as the IC effects.
Global analysis cannot say more about IC until the PDFs
are more accurately determined. (Special interactions,
especially sensitive to the charm quark but not used in
global analysis, might be able to say more.) But more
accurate measurements at the LHC will reduce the PDF
uncertainties. The results of Sec. IV show that new LHC
results will impact the limit on intrinsic charm. Or, if 2%
intrinsic charm is real, then the results of Sec. IV indicate
that it will show up as a discrepancy between theory and
data in some common LHC measurements. For example,
Fig. 14 shows that the BHPS models can strongly modify
the pT;Z distribution in associated production of Z boson
and charm jet.

Some recent research regarding intrinsic charm has
focused on inclusive charm production at the LHC or
Tevatron [14,58–60], or on associated production of charm
with a prompt photon [61–65]. The IC PDFs constructed
here can be used to make up-to-date predictions for those
processes. This set of CT10 IC PDFs will be made available
via an Internet web site.
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APPENDIX: AN EQUIVALENT
GAUSSIAN VARIABLE

We introduce the variable Sn to simplify the comparison
of data and theory for the many data sets included in the
global analysis. Sn is the equivalent Gaussian variable that
matches the likelihood of the appropriate chi-square
measure.
We could, of course, just use the individual values of

χ2=Npt as measures of the goodness of fit for the different
data sets, e.g., as in Table I. However, that variable has
different meanings for different values of Npt. For example,
χ2=Npt ¼ 11.0=10 has a much different meaning than
χ2=Npt ¼ 1100.0=1000, although they have the same
value. The chi-square probability for χ2=Npt ≥ 11.0=10
is 0.358, while the chi-square probability for χ2=Npt ≥
1100.0=1000 is only 0.015. Different data sets in the global
analysis have very different numbers of data Npt, so the
ratio χ2=Npt alone is not sufficient to characterize the
quality of the fit.
The variable Sn is designed to clarify the goodness of

fit by transforming the cumulative probability from the
chi-square distribution (which can be misleading because it
depends on Npt) to the normal distribution (which is more
familiar).
The variable Sn is a function of χ2 andNpt. LetPðχ2; NptÞ

denote the χ2-probability distribution function for Npt
variables. Its cumulative distribution function (CDF) is

Cðχ2; NptÞ ¼
Z

χ2

0

Pðξ; NptÞdξ: (A1)

The definition of Sn is

Cðχ2; NptÞ ¼
Z

Sn

−∞
e−x2=2dxffiffiffiffiffiffi

2π
p : (A2)
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We find that this variable is very helpful in judging the
goodness of fit for the individual experiments in the global
analysis; cf. Sec. III. The pure definition, as given above, is
not very convenient for computation. Therefore, we use an
accurate approximation for Sn [66],

Sn ≈ Lðχ2; NptÞ (A3)

L ¼ ð18NptÞ3=2
18Npt þ 1

�
6

6 − lnðχ2=NptÞ
− 9Npt

9Npt − 1

�
: (A4)

Ideally, the variable Sn has an approximately Gaussian
distribution with mean 0 and standard deviation 1. For a
good fit to data, the value of Sn should be roughly between−1 and 1. A fit with Sn > 3 should be considered a poor fit.
For a fit with Sn < −3, equivalent to χ2 ≪ Npt, we might
assume that the actual systematic errors are smaller than
the values used in the calculation of χ2.
In reality, the variable Sn is unexpectedly large for some

data sets, which are never fit very well in global analysis.
Therefore, we do not judge the absolute values of Sn, but
rather the relative values—relative to the best global fit—
when comparing different sets of PDFs. For example, in
Figs. 10 and 11 we assume it is not the absolute value of Sn
for a chosen experiment that is relevant, but the change in the
value as a function of hxiIC, which informs about the
sensitivity of the experiment to the amount of intrinsic charm.

1. The Tier-2 penalty

When comparing the quality of agreement between
theory and data, especially when comparing alternative
PDFs to a central fit, we impose an additional penalty, the
Tier-2 penalty, for large increases of Sn.
To compute the Tier-2 penalty for a given PDFand a given

experiment, we first compute χ2 for that experiment using
the PDF under consideration. If χ2BestFit > Npt, we rescale
this χ2 value by a factor ofNpt=χ2BestFit, where χ

2
BestFit is the χ

2

value for using the best-fit PDF. The value of Sn is then

defined as the point in a Gaussian distribution that has the
same cumulative probability as the chi-squared distribution
for the given (rescaled) χ2 and Npt. It is obvious that after
rescaling the χ2, Sn ¼ 0 for the best fit with χ2BestFit > Npt.
On the other hand, for any experiment for which the above
ratio is larger than 1, i.e., for χ2BestFit < Npt, we do not rescale
its χ2 for calculating Sn. Hence, Sn < 0 for the best fit with
χ2BestFit < Npt. Technically, we define the Tier-2 penalty for
experiment i by ðSnðiÞÞp × ΘðSnÞ, where the exponent p is
taken to be 16 in this analysis, and the step function ΘðSnÞ
indicates that the penalty only applies to the case thatSn > 0.
There are two possible outcomes of the comparison for a

given experiment. The first case is that after the rescaling,
Sn ¼ 0 for the best fit, so that the Tier-2 penalty is zero for
the best fit, but rises immediately when the PDFs are moved
in a direction that makes Sn increase. The second case is
that Sn < 0 for the best fit, and the Tier-2 penalty remains
to be zero for PDFs close to the best fit; but the penalty
turns on once Sn becomes positive. By using χ2 þ T2 to
judge the goodness of fit, we can exclude test PDFs that
strongly violate some particular data set at the 90% C.L.,
and also exclude test PDFs for which two or more data sets
come too close to the 90% C.L. limit.
In summary, the Tier-2 penalty is not used in finding the

central fit, but it is used in constructing the error PDFs in
the Hessian error analysis. It helps to avoid error PDFs that
conflict (outside the 90% C.L.) with individual data sets.
We also use the Tier-2 penalty when estimating uncertain-
ties of alternative PDFs in the manner of Fig. 2. The simple
requirement that the global Δχ2 must be less than some
chosen “tolerance” is not adequate; we must also ensure
that no individual experiment would definitively rule out
the alternative PDFs by including the Tier-2 penalty in the
global analysis. Furthermore, the rescaling procedure
described above, for calculating the Tier-2 penalty, is
particularly sensible in cases where a given experiment
cannot be fit well by any choice of PDFs.
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