
Is the Higgs boson associated with Coleman-Weinberg dynamical
symmetry breaking?

Christopher T. Hill
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA

(Received 16 January 2014; published 4 April 2014)

The Higgs mechanism may be a quantum phenomenon, i.e., a Coleman-Weinberg potential generated by
the explicit breaking of scale symmetry in Feynman loops. We review the relationship of scale symmetry
and trace anomalies, and we show that the Coleman-Weinberg potential can be defined as the solution to a
differential renormalization group equation that follows from the trace of the improved stress tensor. We
propose a simple phenomenological model with “maximal visibility” at the LHC containing a “dormant”
Higgs doublet [no VEV, coupled to standard model gauge interactions SUð2Þ ×Uð1Þ] with a mass of
∼380 GeV. We discuss the LHC phenomenology and UV challenges of such a model. We also give a
schematic model in which new heavy fermions, with masses ∼230 GeV, can drive a Coleman-Weinberg
potential at two loops. The role of the “improved stress tensor” is emphasized, and we propose a
nongravitational term, analogous to the θ term in QCD, which generates it from a scalar action.
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I. INTRODUCTION

The discovery of a light Higgs boson presents several
well-known puzzles. What mechanism determines the mass
of the Higgs boson? What is the custodial symmetry that
yields a small mass scale for the apparently pointlike 0þ
particle? Is there any new associated dynamics with the
Higgs boson? These questions revolve around the problem
of the naturalness of the existence of a low mass funda-
mental spin-0 field in quantum field theory.
Supersymmetry offers solutions to these problems.

The custodial symmetry of light Higgs bosons could be
the chiral symmetry of their superpartners, e.g., the
fermionic Higgsinos. This, however, requires proximity
in mass scale of SUSY states and, so far, supersymmetry
has not emerged in searches. SUSY is also highly con-
strained by the relatively heavy ∼125 GeV Higgs boson
mass, and indirect measures, such as the electron EDM
and b → sγ, etc. While SUSY remains a popular candidate
for an ultimate solution to these problems, its relevance to
the electroweak scale has become somewhat clouded by
the necessity of a high degree of fine-tuning [1–4]. SUSY
as the custodial symmetry of the Higgs boson will be
subject to more definitive tests in Run-II of the LHC, circa
2015-18.
Strong dynamics also offers natural solutions, by postu-

lating a mechanism similar to that of QCD for electroweak
symmetry breaking (see the review, [5]). QCD involves
explicit breaking of scale symmetry via the trace anomaly,
proportional to the β function of the QCD coupling
constant. The QCD mass scale, which accounts for the
masses of the nucleons and, hence, most of the visible mass
in the universe, is an example of mass generation by
“dimensional transmutation.” This is inherently a quantum
phenomenon; i.e., it is mass generated from quantum

mechanics itself. The QCD hierarchy arises naturally since
the ratio of the QCD scale ΛQCD, to any large scale in
nature, M, is given

ΛQCD

M
¼ exp

�
−

8π2

jb0jg2ðMÞ
�
; (1)

where b0 ¼ ½ℏ�ð11 − ð2=3ÞnfÞ at one-loop precision. Here
one inputs a small dimensionless coupling constant, g2ðMÞ,
at an arbitrary high energy scale, M. Quantum loops then
generate the small ratio, ΛQCD=M. Equation (1) implies
that the ’t Hooft naturalness, i.e., the custodial symmetry
associated with the smallness of the ratio, ΛQCD=M → 0,
which occurs when b0 → 0, has the interpretation of the
classical scale symmetry of QCD in the ℏ → 0 limit [6,7].
Straightforward attempts to implement an analogous

QCD-like mechanism for generating the weak scale have
generally failed. This approach typically yields light 0−

boundstates, e.g., Nambu-Goldstone techni-pions. These
couple perturbatively to ZZ and WW, through axial
anomalies, and therefore cannot be imposters of a Higgs
boson which couples at tree level and is consistent with
present experimental indications. There is effort underway
to construct viable scenarios (for a partial list, see e.g.,
Refs. [8–13]), but strong dynamical models, as a class,
have been even more severely constrained by LHC data
than SUSY.
The present evidence from the LHC strongly favors a

simple perturbative Higgs boson interpretation of the data
as proposed by Weinberg in 1967 [14]. But to date we have
no understanding as to the origin of the electroweak scale,
first introduced by Fermi in 1934 [15].
Presently we wish to focus upon an alternative approach.

We will argue for a quantum origin of the Higgs potential
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and electroweak scale: We propose that the Higgs potential
is a perturbative Coleman-Weinberg potential [16]. As such,
we ask what the current data might be telling us and what
might be visible consequences of this hypothesis at the LHC
in Run-II and beyond [17]. We emphasize at the outset that
we will not delve in great detail into the UV completion
aspects of this idea. We think the question, “Is the Higgs
potential generated by quantum mechanics?” to be suffi-
ciently compelling that it should be posed in a self-contained
framework, and addressed experimentally in Run-II and
beyond.
Coleman-Weinberg (CW) symmetry breaking is compli-

mentary to a QCD-like, strong dynamical mechanism. It
arises from a stress-tensor trace anomaly; i.e., it relies upon
scale symmetry breaking by perturbative quantum loops.
This means that CW symmetry breaking can be understood
entirely in terms of the renormalization group (RG) running
of the Higgs scalar quartic coupling constant, in analogy to
QCD. We discuss this in greater formal detail in Section II
and Appendices A–C and we’ll introduce a few new
ideas.
With a CW potential the custodial symmetry for the

weak scale again arises like QCD, as the scale invariance of
the action in the ℏ → 0 limit. In this limit quantum loops
are turned off and the trace anomaly goes to zero. The
“improved stress tensor,” [18], defines the renormalization
group of the CW potential, and the trace anomaly is
determined as −ðβ=λÞVðϕÞ. We see that β=λ is the anoma-
lous dimension of the potential. CW symmetry breaking
occurs at a local minimum of the potential, where the
anomalous dimension takes on the value −4 and the d ¼ 4
potential operator becomes pure d ¼ 0 vacuum energy.
The CW potential, expanded about its minimum, depends

only upon the local values of RG β functions and their
derivatives. We give an expression valid to all orders in
perturbation theory, through quintic order in the Higgs
field, for the CW potential. Incidently, in Appendix A we
introduce a novel, nongravitational term, into the scalar field
action that is a nontopological analogue of the θ term in
QCD, but which generates the improved stress tensor from
variation of the action.
The idea that classical scale symmetry can arguably

serve as a custodial symmetry of a fundamental perturba-
tive Higgs boson has been emphasized by Bardeen [6,19].
In implementation of the CW mechanism to obtain the
observed value of vweak ¼ 175 GeV and Higgs boson
mass, mh ¼ 125 GeV, we find, in its simplest and most
obvious incarnation, that additional large bosonic contri-
butions to the RG equation for the Higgs quartic coupling
are required. Recently, various authors have focused on
related models, many of which accomplish this with
bosonic dark matter fields, [20–24]. We will presently
examine a “maximally visible new physics scenario at
LHC” to implement the CW mechanism. We will also
propose a novel mechanism for generating a CW potential

from fermions that emerges upon a more detailed scrutiny
of the RG (see Section V).
In Sections III and IV we consider a bosonic model

consisting of a second, “dormant,” Higgs boson as the
source of new bosonic contributions to the RG equations to
sculpt the CW potential. Here we distinguish the often used
term “inert doublet,” to imply that the second Higgs doublet
does not interactwith standard model SUð2Þ × Uð1Þ gauge
fields (e.g., as in the dark matter models of [21–24]), from
the term “dormantHiggs doublet.” By “dormant”we imply
that the second doublet does interact with standard
SUð2Þ × Uð1Þ interactions, however the second doublet
has no VEV. Such dormant Higgs doublet models are valid
solutions to the original Weiberg-Glashow natural, [25],
two-Higgs doublet schemes [26,27]. Our question is: “How
accessible is the dormant Higgs doublet at the LHC?”
We estimate production and decay rates and, modulo a
more thorough LHC detector based analysis, the results are
encouraging.
Phenomenologically, we find that the new dormant

Higgs doublet must have a mass of about ∼380 GeV.
Since we assume standard model couplings, it is guaranteed
to be pair-produced, above threshold of ∼800 GeV, via
qq̄→ ðγ�;Z�;hÞ→ ðH0H0†;HþH−Þ and qq̄→W�→HþH0

at the LHC. Other production and decay channels are
likely, but model dependent. We think it is most natural,
albeit an additional assumption, that the dormant doublet
couples to b quarks, ∼ðt̄; b̄ÞLH0bR with a large Oð1Þ
coupling constant, gb0. This makes the dormant doublet
the natural flavor partner of the Higgs with it’s large
coupling to the top quark. These b-quark couplings allow
enhanced production of single H0 and H� in association
with bb̄ and t̄b or tb̄, and would also imply decays like
H0 → bb̄ and Hþ → tb̄ which become interesting observ-
ables at the LHC.
One intriguing corollary associated with the CW poten-

tial is that the Higgs potential will have cubic, quadrilinear,
even quintic (and higher order) coupling constants, that
will be significantly different than those of the standard
model [17,23].
In Section V we also present a schematic model of a

Coleman-Weinberg potential for the Higgs generated by
new fermions. This is a novel approach, and arises from a
two-loop effect in the RG structure of the CW potential.
We think this class of models may alleviate some of the
potential problems encountered with new heavy bosons in
UV completion, which requires further development [28].
While we have not examined the full UV structure or
phenomenological implications of this scheme, it suggests
pair produced new fermions with masses ∼200 GeV. These
fermions would have their own strong interaction, and may
be produced in boundstates with a threshold at ∼400 GeV,
or pairs of new heavy meson-like boundstates at ∼800 GeV.
We begin by discussing some general theoretical aspects

of Coleman-Weinberg symmetry breaking.
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II. GENERAL THEORETICAL CONSIDERATIONS

A. Schematic Analysis

To get a feeling for how Coleman-Weinberg symmetry
breaking works, with particular emphasis upon the renorm-
alization group (RG), we consider aUð1ÞHiggs scalar field
potential 1

2
λðH†HÞ2. This classical potential, for λ > 0 has

an uninteresting minimum at hHi ¼ v ¼ 0 as in Fig. 1.
A process with N Feynman loops is of order OðℏNÞ in

field theory. Quantum loops lead to the RG running of
couplings, such as λ, with scale, μ. Typically, we might
have a one-loop, OðℏÞ, solution to the RG equations as in
Fig. 2:

λðμÞ ≈ β lnðμ=MÞ (2)

where β ∝ ℏ. M simply parametrizes the particular RG
trajectory of the running λðμÞ; i.e., we would ask our
experimental colleagues to measure the dimensionless
quantity λ at some energy scale μ, and we would then
chooseM so that we fit their result as λexptðμÞ ¼ β lnðμ=MÞ.
With the running quartic coupling constant, the scale can

be set by the vacuum expectation value, hHi ¼ v, of the
fieldH itself. The resulting scalar potential, as a function of
v ¼ μ, is then:

VðvÞ ¼ 1

2
βv4 lnðv=MÞ (3)

This potential has a local minimum, as in Fig. 3, at
v0 ¼ Me−1=4. A stable minimum of the potential; i.e.,

one with a positive curvature at the minimum, or m2
h > 0,

occurs just below the zero-crossing of λðvÞ from a negative
to a positive value. Hence λmust be negative and β must be
positive at the minimum [we’ll see in Section V that there
are alternative solutions involving two loops in which the
situation is flipped; i.e., β (λ) can be negative (positive)].
If λðμÞ continues to run as ∝ β lnðμ=MÞ, we would see

that the ratio of the VEV, v0, to any other scale M0 is then

v0
M0 ∝ exp

�
−
λðM0Þ
β

�
: (4)

A large hierarchy between v0 and M0 can be exponentially
controlled by the ratio of dimensionless quantities,
λðM0Þ=β. With vweak ≡ v0, the ’t Hooft naturalness of
the “small ratio” of vweak=MPlanck, or vweak=MGUT, would
be, in analogy to QCD, associated with the limit β → 0,
which is again the limit of classical scale invariance, ℏ → 0.
Of course, the RG running of λðμÞ can be complicated over
a large range of μ.
β, which we have approximated as a constant above, is

the β function of λ which defines the Gell-Mann–Low
renormalization group equation [29]

dλ
d lnðμÞ ¼ βðλÞ: (5)

To see the structure of the CW potential in somewhat
greater detail we expand the potential of Eq. (3) in H about
a hypothetical vacuum expectation value v,

jHj ¼ vþ h=
ffiffiffi
2

p
; (6)

where h is a physical Higgs boson field, according to
λðjHjÞ ¼ β lnðjHj=MÞ,

λðvþ h=
ffiffiffi
2

p
Þ ¼ λðvÞ þ β lnð1þ h=

ffiffiffi
2

p
vÞ

≈ λðvÞ þ β

�
hffiffiffi
2

p
v
−

h2

4v2
þ h3

6
ffiffiffi
2

p
v3

−
h4

16v4

þ h5

20
ffiffiffi
2

p
v5

�
þOðh6Þ: (7)

FIG. 1. Classical ∼λv4 potential.

FIG. 3. Resulting CW potential, ∼βv4 lnðv=MÞ.

FIG. 2. Typical RG trajectory λ ∼ β lnðv=MÞ.
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We thus have the CW Higgs potential

VCWðhÞ ¼
1

2
λðvþ h=

ffiffiffi
2

p
Þðvþ h=

ffiffiffi
2

p
Þ4

¼ 1

2
λv4 þ

�
λþ 1

4
β

� ffiffiffi
2

p
v3hþ

�
3

2
λþ 7

8
β

�
v2h2

þ
�
1

2
λþ 13

24
β

�
v

ffiffiffi
2

p
h3 þ

�
1

8
λþ 25

96
β

�
h4

þ 1

40
ffiffiffi
2

p
v
βh5 þOðh6Þ: (8)

The extremum of the potential is given by

dV
dh

����
h¼0

¼
ffiffiffi
2

p
v3
�
λþ 1

4
β

�
¼ 0; (9)

which requires

β ¼ −4λ: (10)

The Higgs boson mass is then given by

d2V
dh2

¼ m2
h ¼

�
3λþ 7

4
β

�
v2: (11)

If the extremum is to be a minimum we must impose the
positivity condition

m2
h > 0: (12)

Therefore, from Eq. (10),

m2
h ¼ −4λv2 ¼ βv2 > 0: (13)

This shows that β > 0 and λ < 0 at the minimum of the
potential (we’ll see in Sec. V that there is a flipped solution
arising at two loops with λ > 0 and β < 0).
The resulting Higgs potential, expanded about the

minimum and using Eq. (10) through quintic order, is

VCWðhÞ ¼ −
1

8
βv4 þ 1

2
βv2h2 þ 5

6
ffiffiffi
2

p βvh3 þ 11

48
βh4

þ 1

40
ffiffiffi
2

p
v
βh5 þOðh6Þ: (14)

B. All-orders RG improved potentials

The above analysis of the CW Higgs potential is
schematic, relying upon a particular solution and expanding
in a leading logarithm. The trace anomaly of the “improved
stress tensor” implies an exact equation for the Coleman-
Weinberg potential of a scalar field ϕ (Sec. II.C),

ϕ
δ

δϕ
VðϕÞ − 4VðϕÞ ¼ β

λ
VðϕÞ: (15)

We can view this as the definition of the CW potential for
the VEV of ϕ. Here β is the all-orders β function of λ.
The solution is

VðϕÞ ¼ 1

2
λðϕÞϕ4; where

dλðμÞ
d ln μ

¼ βðλÞ: (16)

(the normalization 1
2
is locked to the definition of the

classical potential, and defines βðλÞ). This is formal, but a
useful application to the previous model of Sec. II.A, with
ϕ ∼ jHj, applies to both CW and standard model Higgs
potentials, involves the expansion of λðvþ h=

ffiffiffi
2

p Þ in terms
of the β functions computed to all-orders of perturbation
theory in all relevant couplings.
We label all relevant coupling constants that enter in any

order of the loop diagrams for the running of λ (e.g., gtop,
g2, gQCD, etc.) as λi. We denote the scalar quartic (Higgs)
coupling as λ≡ λ1 with β function β1ðλiÞ. Each λi has its
own βi,

dλi
d lnðμÞ ¼ βiðλjÞ: (17)

The derivatives of λ1 about the VEV v can be written in
terms of the β functions,

v
dλ1
dv

¼ β1 (18)

v2
d2λ1
dv2

¼ βj
∂β1
∂λj − β1 (19)

v3
d3λ1
dv3

¼ βiβj
∂2β1
∂λi∂λj þ βj

∂βi
∂λj

∂β1
∂λi − 3βj

∂βi
∂λi þ 2β1 (20)

v4
d4λ1
dv4

¼ βiβjβk
∂3β1

∂λi∂λj∂λk þ βk
∂βj
∂λk

∂βi
∂λj

∂β1
∂λi

þ βkβj
∂2βi

∂λj∂λk
∂β1
∂λi þ 3βkβj

∂βi
∂λk

∂2β1
∂λi∂λj

− 6βiβj
∂2β1
∂λi∂λj − 6βk

∂βj
∂λk

∂β1
∂λj

þ 11βi
∂β1
∂λi − 6β1; (21)

(we tabulate the quintic order in Appendix D). Each βi ¼
βiðλjðvÞÞ is a function of the couplings, λjðvÞ, evaluated at
the scale, v. We use the summation convention for repeated
indices, i; j; k.
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The leading terms in the CW potential now take the form
to all orders in ℏ,

VCWðhÞ ¼
1

2
λðvÞv4 þ

ffiffiffi
2

p �
λ1 þ

1

4
β1

�
v3hþOðh3Þ:

(22)

The extremum condition is therefore formally the same as
in the schematic case,

β1ðλiðvÞÞ ¼ −4λ1ðvÞ; (23)

but note that this is now an all-orders in ℏ condition and,
likewise, the anomalous dimension of the potential when
we impose the extremum is β1=λ1 ¼ −4 to all orders.
Imposing the extremum condition, Eq. (23), we obtain

the Coleman-Weinberg potential expanded about the
energy minimum,

VCWðhÞ ¼ −
1

8
β1v4 þ

1

2
v2h2

�
β1 þ

1

4
βj

∂β1
∂λj

�
þ 5

6
ffiffiffi
2

p vh3
�
β1 þ

9

20
βi
∂β1
∂λi þ

1

20
βjβi

∂2β1
∂λj∂λiþ

1

20
βj

∂βi
∂λj

∂β1
∂λi

�

þ 11

48
h4
�
β1 þ

35

44
βi
∂β1
∂λi þ

5

22
βjβi

d2β1
∂λj∂λi þ

5

22
βj

∂βi
∂λj

∂β1
∂λi þ

1

44
βkβjβi

d3β1
∂λk∂λj∂λi

þ 1

44
βk

∂βj
∂λk

∂βi
∂λj

∂β1
∂λi þ

1

44
βjβi

d2βi
∂λj∂λi

∂β1
∂λiþ

3

44
βjβk

∂βi
∂λk

d2β1
∂λj∂λi

�
þ… (24)

(the quintic term, …, is tabulated in Appendix D). As a
check on these results, notice that if we keep only the
leading OðℏÞ terms, we recover the schematic model case
of Eq. (8).
Note that we can also apply this expansion to the

standard model,

VSM ¼ 1

2
~λðvþ h=

ffiffiffi
2

p
Þðv2 − ðvþ h=

ffiffiffi
2

p
Þ2Þ2

¼ ~λv2h2 þ 1ffiffiffi
2

p ð~λþ ~β1Þvh3

þ 1

4

�
1

2
~λþ ~β þ ~βi

∂ ~β1
∂ ~λi

�
h4

þ 1

24
ffiffiffi
2

p
�
~β þ 2~βj ~βi

∂2 ~β1
∂ ~λj∂ ~λi

þ 2~βj
∂ ~βi
∂ ~λj

∂ ~β
∂ ~λi

�
h5

v

þO

�
h6

v2

�
: (25)

Here we use ~ to designate the SM quantities which
generally differ from the CW quantities. Equation (25) is
a “low energy theorem” for the SM Higgs potential in a
limit in which the Higgs boson is considered an approxi-
mate dilaton [30]. We have retained a quintic term to
remind the reader that the standard model will have such
terms, and beyond, owing to the RG running of λ.
Remarkably, we see that the Coleman-Weinberg poten-

tial expanded about its minimum, v, depends only upon β
functions and their derivatives at v, i.e., is wholly deter-
mined by the renormalization group. Of course, we have
swapped λ1ðvÞ for v, having used the extremal condition,
λ1ðvÞ ¼ −β1ðvÞ=4, to eliminate λ1ðvÞ. The standard model
has an input mass, and therefore we cannot eliminate the
separate λ1 and β1 dependences. We will use the improved

potentials for comparson of the trilinear, quartic and quintic
terms below.

C. Role of the “improved stress tensor”

Here we emphasize the underlying canonical aspects of
the dynamical Coleman-Weinberg potential and renormal-
ization group, in part to give a formal basis to the idea of
couplings that run with field VEVs and a derivation of
Eq. (15). (A reader interested only in our phenomenologi-
cal model can skip this section and go directly to Sec. III.
The material is summarized here, and is developed in
greater detail in Appendix A.)
The canonical stress tensor of a real scalar theory with

potential VðϕÞ is

Tμν ¼ ∂μϕ∂νϕ − ημν

�
1

2
∂ρϕ∂ρϕ − VðϕÞ

�
: (26)

The “scale current,” the Noether current associated with
scale symmetry, takes the form Sμ ¼ xνTμν, and divergence
is given by ∂μSμ ¼ Tμ

μ. These are defined and derived in
Appendix A.
The problem now arises that the canonical stress tensor

has a nonvanishing trace, Tμ
μ ≠ 0, even for a scale invariant

theory. Yet, we see that the trace represents breaking of
scale symmetry since it is the divergence of the scale
current. Therefore, an “improved” stress tensor for scalar
fields, T̂μν was introduced by Callan et al. [18]:

~Tμν ¼
2

3
∂μϕ∂νϕ −

1

6
ημν∂ρϕ∂ρϕ −

1

3
ϕ∂μ∂υϕ

þ 1

3
ημνϕ∂2ϕþ ημνVðϕÞ: (27)

The scale current now takes the form Ŝμ ¼ xνT̂μν. and the
trace is found to be
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∂μŜμ ¼ T̂μ
μ ¼ 4VðϕÞ − ϕ

δ

δϕ
VðϕÞ; (28)

where we’ve used the equation of motion, ∂2ϕþ
δ
δϕVðϕÞ ¼ 0. Classically, T̂μν is then traceless for a poten-
tial of the form VðϕÞ ∝ λϕ4, where λ is a constant,
reflecting the exact classical scale invariance of the theory.
The improved stress tensor is therefore required to discuss
the scale symmetry of scalar fields.
[Note: The stress tensor is derived canonically from a

scalar field action by performing a coordinate variation,
called a “diffeomorphism.” It can alternatively be derived
by performing a variation of the background metric. The
improved stress tensor is generally viewed as emerging
from a scalar field action, Sðϕ; gμνÞ, which includes the
gravitational “conformal coupling term,” 1

2
ξϕ2R with

ξ ¼ 1=6, and is given by T̂μν ¼ −2δS=δgμν. However, there
must exist, for symmetry reasons, another way of obtaining
the same improved stress tensor without considering the
metric variation.
In Appendix Awe provide a modified scalar field action

which generates T̂μν while maintaining a fixed flat-space
metric. Such a “dual derivation” of T̂μν exists because of the
defining gauge symmetry of general relativity, general
(Einstein) covariance: if we simultaneously do the diffeo-
morphism and the covariant metric variation (i.e., the
particular metric variation under the diffeomorphism as
dictated by general covariance) then the action must be
invariant [31]. The modifed action that generates the
improved stress tensor in flat space has an additional term,
one that is a total divergence, ξ∂2ϕ2. This term, albeit
nontopological, is similar to a θ term in QCD, undergoes a
nontrivial variation when we perform the flat-space diffeo-
morphism. It generates a correction, Qμν which adds to the
canonical stress tensor and yields the improved stress
tensor. The ξ∂2ϕ2 term remains a surface term when the
metric is nonflat, and it does not affect either the equations
of motion, or any local variation of a nonflat metric.]
When the matrix elements of the operator T̂μν are

evaluated at the quantum loop level for the classically
scale invariant λϕ4 theory, they are found to be nonzero at
OðℏÞ, taking the operator value

T̂μ
μ ¼ 4VðϕÞ − ϕ

δ

δϕ
VðϕÞ ¼ −

βðλÞ
λ

VðϕÞ: (29)

Equation (29) is the RG equation for the potential VðϕÞ. The
rhs is the “trace anomaly” and it reflects the OðℏÞ breaking
of scale symmetry. (We carry out a Feynman loop evaluation
of the trace anomaly in Appendix B. We also reproduce the
classic Coleman-Weinberg potential for massless scalar
electrodynamics using the RG in Appendix C, and discuss
some subtleties.)
Formally we see that we can represent the trace anomaly

in the action when the RG running of λðϕÞ as a function of

ϕ is incorporated. By “ϕ” we mean the VEV, or soft
classical field configurations. This is much like the repre-
sentation of the chiral anomaly by shifts in pNGB’s, e.g.,
the pion or gauge fields, in a Wess-Zumino-Witten (WZW)
term: The running coupling constant scalar potential plays
the analogous role for scale symmetry anomalies that the
WZW term plays for chiral anomalies. In the WZW term
the axial anomaly is represented entirely bosonically, i.e.,
the pion shift under a chiral transformation generates the
axial anomaly. We emphasize that the trace anomaly is an
explicit, not spontaneous, breaking of scale symmetry and
there is no associated Nambu-Goldstone boson; i.e., no
dilaton needs to be here [30].

D. The trace anomaly is the “anomalous dimension”
of the potential

Equation (29) informs us that the ratio βðλÞ=λ is indeed
the anomalous dimension of the potential. This must
become large, to manufacture mass from no mass. In fact,
the condition that the induced potential has an extremum,
hence a local minimum, is precisely that of Eq. (10):

β=λ ¼ −4: (30)

This result is true to all orders in a perturbation theory in ℏ
as we’ve seen Section II.B. At the extremal point hϕi ¼ v
in field space the potential is converted to D ¼ 4 − 4 ¼ 0,
which corresponds to vacuum energy, i.e., a cosmological
constant.
If dimensional transmutation is to occur, we see that

the condition β ¼ −4λ implies that an OðℏÞ quantity, β, is
being equated to an Oð1Þ coupling constant λ. This would
seemingly violate perturbation theory. However, if there are
additional coupling constants beyond λ that appear in β,
e.g., β ∝ ℏλ02, then the ratio λ02=λ can easily be much
greater than unity, while maintaining perturbativity, and
the relationship Eq. (30) can consistently occur. This is at
the heart of the Coleman-Weinberg phenomenon, as
emphasized in their paper [16].

III. PHENOMENOLOGICAL MODEL OF THE
HIGGS BOSON POTENTIAL

We now wish to apply the above apparatus to a model of
the Higgs potential. For simplicity, first consider the Higgs
and top quark subset of the standard model,

L ¼ Lkinetic þ gtψ̄LtRH þ H:c: −
λ

2
ðH†HÞ2; (31)

where ψ ¼ ðt; bÞ. The one-loop RG equation for λ is [32]

dλðμÞ
d lnðμÞ ¼ βðλÞ ¼ 3

4π2
ðλ2 þ λg2t − g4t Þ; (32)
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where we neglect the electroweak couplings presently
(we include these below).
Let us approximate β as a constant in the SM. Note that,

using the phenomenological values gt ≈ 1 and λ ≈ 1=4, we
infer from Eq. (32):

β ≈ −5.22 × 10−2 in the SM: (33)

λ is positive in the standard model, and β is negative.
However, as we’ve seen in the previous section, if we want
a CWeffective potential for the Higgs we require a negative
value of λ and a positive β.
Numerically, if a CW potential is to fit the observed

Higgs boson, we would require

βðvÞ ¼ m2
h

v2
¼ ð126 GeVÞ2

ð174 GeVÞ2 ≈ 0.52 and

λðvÞ ¼ −
β

4
≈ −0.13: (34)

To make β large and positive to OðℏÞ requires more
bosonic degrees of freedom [6].
Perhaps the simplest and most natural model for a CW

potential of the Higgs boson is to introduce a heavy second
Higgs doublet, H2. With a new Higgs doublet we have
additional cross-coupling terms ∼ðH†

1H2Þ2. The most gen-
eral classically scale invariant potential with two massless
Higgs doublets and “Weinberg-Glashow naturalness” is
well known [25], [26], [27],

VðH1;H2Þ¼
λ1
2
jH1j4þ

λ2
2
jH2j4þλ3jH1j2jH2j2

þλ4jH†
1H2j2þ

λ5
2
½ðH†

1H2Þ2eiθþH:c:�: (35)

By judicious choice of parameters we can have one Higgs,
H1 develop a VEV, whileH2 remains dormant, i.e., no VEV.
The potential of Eq. (35) has a “Higgs parity” symmetry

H2 → −H2. Without couplings to fermions, additional
Higgs doublets are therefore stabilized by this symmetry,
if they are dormant, and would become stable dark matter.
Our present goal, however, is to maintain reasonable
visibility of the second doublet at the LHC and we therefore
require that H2 can decay into visible final states.
Weinberg and Glashow [25] noted that such a parity

symmetry amongst the Higgs multiplets alone, can be
broken by couplings to fermions, but then a larger reflection
symmetry can exist where sets of the coupled right-handed
fermions are also reflected, e.g., ψR → −ψR, H2 → −H2.
The overall symmetry can be maintained if we allow one
new doublet per right-handed charge species in the standard
model. This suppresses flavor changing neutral Higgs boson
couplings at tree-level that would otherwise threaten such
things as the small mass difference of the KLKS, but it now
allows H2 to decay into the fermions it couples to.

For visibility at the LHC the H2 parity symmetry must
therefore be broken via coupling to fermions, but the
overall symmetry of Weinberg-Glashow maintained as
much as possible. However,H2 is dormant, so the fermions
coupled to it exclusively cannot then get mass. We therefore
ultimately require some small breaking of the overall
Weinberg-Glashow symmetry.
There are two possibile schemes: (A)We can have the bR

couple, with possibly a large coupling constant, to H2,
respecting Weinberg-Glashow symmetry, but with its
smaller SM coupling to H1 allowing mb to be generated
by the H1 VEV; (B) we can add new “centi-weak” bosonic
terms to the Higgs potential that break the parity symmetry.
In scheme (A) all quarks and leptons couple toH1 just as

they do to the standard model Higgs, and acquire mass via
the H1 VEV. We postulate that the b quark, however, also
has a large coupling g0b to H2,

g0bψLHc
2bR þ H:c:; (36)

where ψL ¼ ðt; bÞL and Hc ¼ −σ2H� (the choice of b
quark, as opposed to other down quarks, is a modeling
assumption, motivated to maintain a ðt; bÞ symmetry). We
are therefore slightly violating the Weinberg-Glashow
symmetry. This then raises the question: are we now in
trouble with flavor constraints, such as b → sþ ðg; γÞ?
Not definitively, but the full analysis of the flavor physics of
this scheme is beyond the scope of the present paper. There
is, however, always an escape route that was employed in
“topcolor” models: we can assume flavor textures, such as
in [33], where essentially the CKM matrix arises via the
up-type quarks, and the Higgs couplings of down types
are diagonal. This suppresses any large flavor changing
neutral Higgs mediated transitions. In any case, a more
detailed analysis of flavor constraints is warranted.
Certainly the model survives in the g0b → 0 limit where
the Weinberg-Glashow symmetry is recovered, but gluon
fusion associated production ofH2 at the ∼100 fb level will
then turn off, while EW production at the ∼1 fb level
remains [see Sec. IV.A].
Alternatively, in scheme (B) all þ2=3 quarks and leptons

couple to H1 as in the standard model, and acquire mass via
theH1 VEV, but we have no coupling of −1=3 quarks toH1

to the b quark. Here the down quarks coupled only to H2,
which maintains the Weinberg-Glashow symmetry. We then
break this symmetry by introducing a bosonic interaction,

λ0

2
ðH†

1H1ÞðH†
1H2Þ þ H:c:; (37)

(of course, this new interaction would be induced by
fermion loops involving down quarks, if they coupled to
both H1 and H2). Since this interaction also breaks
Weinberg-Glashow naturalness, we therefore expect λ0 to
be small.
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The bosonic interaction of Eq. (37) leads to an interest-
ing effect that may explain the flavor hierarchy between
þ2=3 and −1=3 charge species. When the Higgs H1

acquires a VEV, hH1i ¼ ðv; 0Þ it induces a tadpole inter-
action to the neutral component of H2,

λ0

2
ffiffiffi
2

p v3H0; (38)

whereH2 ¼ ððH0 þ iA0Þ= ffiffiffi
2

p
; H−Þ.H2 is initially dormant

and will acquire a large positive mass from the H1 VEV,
∼M2H†

2H2. But, through the tadpole, we obtain a small
induced VEV for H0:

hH0i ¼ λ0ffiffiffi
2

p
M2

v3: (39)

The down quarks will then have small induced masses,
∼λ0v3=M2 and λ0 ∼Oð10−2Þ. The interaction Eq. (37) also
splits the neutral and charged members of the dormant
doublet.
In scheme (B) the dormant Higgs will have decay modes

via Eq. (37) such as H0 → 3h, and/or H0 → 2hþ
ðh� → bb̄Þ, etc., and radiative modes H�→W�þ2hþh�,
etc. These are interesting modes to search for, but their
detailed analysis is beyond the scope of the present paper
and require further study. We will focus here upon the
phenomenology of scheme (A).
The general RG equations for two-doublet models are

given in Ref. [32]. We introduce fermionic couplings and
we choose as a starting point Model IV as defined in [32].
We assume operationally that H1 couples to the top quark
via gt and H2 couples to the b quark via g0b (we ignore all
other smaller Higgs-Yukawa couplings),

gtψLH1tR þ g0bψLHc
2bR þ H:c:; (40)

where ψL ¼ ðt; bÞL and Hc ¼ −σ2H�.
With the additional λi of Eq. (35) the RG equations

become [32]

16π2
dλ1ðμÞ
d lnðμÞ ¼ 12λ21 þ 4λ23 þ 4λ3λ4 þ 2λ24 þ 2λ25

− 3λ1ð3g22 þ g21Þ þ
3

2
g42 þ

3

4
ðg21 þ g22Þ2

þ 12λ1g2t − 12g4t (41)

16π2
dλ2ðμÞ
d lnðμÞ ¼ 12λ22 þ 4λ23 þ 4λ3λ4 þ 2λ24 þ 2λ25

− 3λ2ð3g22 þ g21Þ þ
3

2
g42 þ

3

4
ðg21 þ g22Þ2

þ 12λ2g02b − 12g04b (42)

16π2
dλ3ðμÞ
d lnðμÞ ¼ ðλ1 þ λ2Þð6λ3 þ 2λ4Þ þ 4λ23 þ 2λ24 þ 2λ25

− 3λ3ð3g22 þ g21Þ þ
9

4
g42 þ

3

4
g41 −

3

2
g21g

2
2

þ 6λ3ðg2t þ g02b Þ − 12g2t g02b (43)

16π2
dλ4ðμÞ
d lnðμÞ ¼ 2ðλ1 þ λ2Þλ4 þ 4ð2λ3 þ λ4Þλ4 þ 8λ25

− 3λ4ð3g22 þ g21Þ þ 3g21g
2
2 − 12g2t g02b (44)

16π2
dλ5ðμÞ
d lnðμÞ ¼ λ5½2ðλ1 þ λ2Þ þ 8λ3 þ 12λ4

− 3ð3g22 þ g21Þ þ 2ðg2t þ g02b Þ�: (45)

We’ve analyzed many variations of this model with λ3,
λ4, and λ5 all active. Presently we’ll discuss only the
simplest case with λ5 ¼ λ4 ¼ 0. λ5 breaks a global sym-
metry, H1 → eiθH1, H2 → e−iθH2, and is therefore multi-
plicatively renormalized. Hence, it remains zero once
set to zero, and this is evident in the RG equation above
for λ5. Moreover, in the absence of λ5 and ignoring the
SUð2Þ × Uð1Þ gauge fields, we see that λ4 breaks a larger
symmetry, SUð2Þ × SUð2Þ → SUð2Þ, and it too is then
multiplicatively renormalized. If λ4 is set to zero at some
high scale, it therefore remains reasonably small and can be
ignored.
Let’s estimate the required effect of λ3 needed to create

the Coleman-Weinberg potential for H1. We have at one-
loop order from Eq. (24),

m2
h ¼ v2β1 and; λ1 ¼ −

1

4
β1; (46)

hence,

β1 ¼
m2

h

v2
≈ 0.524 λ1 ¼ −0.131: (47)

From Eq. (41) we also have

16π2β1 ¼ 12λ21 þ 4λ23 þ 4λ3λ4 þ 2λ24 þ 2λ25 þ 12λ1g2t

− 3λ1ð3g22 þ g21Þ þ
3

2
g42 þ

3

4
ðg21 þ g22Þ2 − 12g4t

≈ 0.0253λ23 − 0.0668; (48)

which yields

λ3 ≈ 4.83: (49)

(We use mh ¼ 126 GeV, v ¼ 174 GeV, mt ¼ 173.5 GeV,
so gt ¼ 0.997; also g22 ¼ 0.425, g21 ¼ 0.127). While this is a
rather large coupling, it is still perturbative, as its contri-
bution to the βi ≲ 1.
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When the Higgs, H1, acquires its VEV the λ3jH1j2jH2j2
term of the potential, Eq. (35), will induce a mass for H2,
M2

H2
¼ λ3v2. We require that the dormant doublet H2 have

a positive M2
H2

and therefore, λ3 is positive. We thus
estimate

MH2
≈

ffiffiffiffiffiffiffiffiffi
4.83

p
× ð174Þ GeV ≈ 382 GeV: (50)

With such a large λ3 we can improve the prediction by
including the two-loop effect of Eq. (24). The Higgs mass is
given by

m2
h ¼ v2

�
β1 þ

1

4
β3

∂β1
∂λ3

�
; (51)

where the second term arises at two-loop level. We can use
the leading dependence upon the large λ3 in the last term
[34]. From Eq. (41),

β3 ≈
λ23
4π2

∂β1
∂λ3 ≈

λ3
2π2

; (52)

hence,

0.524 ¼
�
β1 þ

λ33
32π4

�
(53)

(note that λ33=8π
4 ≈ 0.0362 which is the scale of these

higher order corrections is small). Solving again for λ3, we
now obtain

λ3 ≈ 4.68 MH2
≈

ffiffiffiffiffiffiffiffiffi
4.68

p
× 174 GeV ¼ 376 GeV:

(54)

Of course, the large λ3 leads to a “UV challenge” for this
scheme. Since λ3 is large, it’s RG running into the UV leads
to a Landau pole. Indeed, we see this from a numerical
integration of Eqs. (41) in Fig. 4. We have considered the
effects of the additional couplings, λ4 and λ5 and have not

found an elegant or simple remedy to this problem without
a significant extension of the model.
We note that we can somewhat improve the UV behavior

of this scheme by consideringH2 to be a QCD color triplet,
ð3; 2; Y ¼ 1=3Þ, and Q ¼ I3 þ Y=2. In this structure then
ðH1; H2Þ form a bosonic generation, similar to a lepton-
quark generation, with H2 ¼ ðHþ2=3; H−1=3Þ. H2 can then
couple to a quark-lepton combination, e.g. gνqψ̄H2νR or
glqψ̄Hc

2lR. H2 thus becomes a leptoquark. The νR case is
intriguing, as we would integrate it out as in neutrino
Majorana masses, and H2 then becomes dark matter.
We can drastically modify the scheme to push the Landau

pole upwards in energy scale, by imbedding SUð2Þ ×
Uð1Þ → SUð2Þ × SUð2Þ ×Uð1Þ at some high energy scale,
Λ, below the Landau pole. This is analogous to top-flavor
models [35], and can be done in a flavor democratic way.
The effect is to replace g2 with a larger g0b ¼ g2= sinðχÞ in the
RG equations. This improves the UV behavior. Landau poles
generally reflect compositeness of fields [11]. The compos-
iteness conditions are associated with the vanishing of
wave-function normalization constants, ZH.

IV. PHENOMENOLOGY OF H2

A. Production and decay of the dormant Higgs

We have carried out estimates of decay widths and
production cross sections of the dormant doublet,H2, using
CalcHEP. We’ve adapted the “inert doublet model,” with
inclusion of the Yukawa couplings to the b quark (see [36]).
Since our goal was to maintain “maximal visibility” of the
new bosons that allow a Coleman-Weinberg potential for
the Higgs, H2 is necessarily coupled to the SUð2Þ ×Uð1Þ
gauge fields of the standard model. The doublet does not
have a VEV, but (ignoring fermion couplings) the neutral
components, which we denote as H0 and A0, are pair-
produced via γ�, Z�; the charged components H� are
likewise pair produced via W�.
We follow the conventional nomenclature of the SUSY

two doublet schemes, but we emphasize that the minimal
theoretical scheme maintains an approximate degeneracy
between H0 and A0, and H�, hence the doublet is defined
as H2 ¼ ððH0 þ iA0Þ= ffiffiffi

2
p

; H−Þ. The degeneracy is broken
by the Yukawa couplings to matter, gb0ðt̄; b̄ÞTLHC

2 bR þ H:c.,
where HC ¼ iσ2H�. New quartic interactions that lift the
degeneracy by way of the normal Higgs boson VEV (which
is the neutral member of H1) will be induced by fermion
loops. Throughout we have assumed the degenerate dou-
blet with MA0 ¼ MH0 ¼ MH� ¼ 380 GeV=c2.
In principle H2 could exist with no coupling to matter.

However, as described in the previous section, we will
allow a large Oð1Þ coupling gb0 to the b quark. As such, the
neutral H0 and A0 can then be pair produced in association
with bb̄, and the charged H� in association with bt̄ and tb̄.
The decay widths ΓðHþ → tþ b̄Þ ¼ ΓðH− → bþ t̄Þ,

and ΓðH0 → bþ b̄Þ ¼ ΓðA0 → bþ b̄Þ are then generated

FIG. 4 (color online). UV running of the dormant Higgs model,
λi vs lnðμ=vweakÞ (black-λ3, red-λ1, green-λ2, blue-gtop). This
shows Landau singularity at lnðμ=vweakÞ ∼ 3 ∼ 4, where
vweak ¼ 175 GeV, or μ ∼ 3 ∼ 10 TeV.
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and computed in Table I. Note that in our minimal scheme a
parity H2 → −H2 that would make the H2 components
stable is broken only by the Yukawa coupling to ðt; bÞLb̄R.
Therefore, at tree level the decays ΓðH0 → 2h; 3hÞ,
ΓðA0 → 2h; 3hÞ are absent in the model. The decay widths
are of order ∼10 GeV for gB0 ∼Oð1Þ. The distributions for
these processes are indicated in Figs. (5,6).
The SM gauge production cross sections are computed

for the LHC RUN-II at
ffiffiffi
s

p ¼ 14 TeV. While small,

∼Oð1Þ fb, these may be observable with ∼100 fb−1 of
data and judicious cuts.
We have also computed the model dependent (∝ gb02

associated production rates for pp → bþ b̄þ ðH0; A0Þ,
pp → tþ b̄þ ðH−Þ and pp → t̄þ bþ ðHþÞ. These are
predominantly gluon fusion processes at the LHC. We have
applied various pT cuts as indicated on final state particles,
but we have not done a detailed signal/background analy-
sis, requiring more careful detector dependent study.

FIG. 5. HþH− production at LHC. FIG. 6. HþA0 production at LHC.

TABLE I. Predicted decay widths and production cross sections for the dormant Higgs bosons. We used CalcHep,
and production runs with CTEQ61 proton structure functions, 1.64 × 105 calls. All cross sections are evaluated at
14 TeV cms energy with the mass ofH2 doublet set to 380 GeV=c2. Model-dependent processes have rates or cross
sections that are indicated as ∝ ðgb0Þ2.
Process Value Comments

ΓðHþ → tþ b̄Þ ¼ ΓðH− → bþ t̄Þ 14.5ðgb0Þ2 � 5 × 10−5% GeV

ΓðH0 → bþ b̄Þ ¼ ΓðA0 → bþ b̄Þ 5.67ðgb0Þ2 � 5 × 10−5% GeV

ΓðH0 → 2h; 3hÞ ¼ ΓðA0 → 2h; 3hÞ absent in model
pp → ðγ; Z0Þ → HþH− σt ¼ 1.4 fb

pp → ðγ; ZÞ → H0H0 absent in model

pp → ðγ; ZÞ → A0H0 σt ¼ 1.3 fb

pp → ðγ; ZÞ → A0A0 absent in model

ppðggÞ → h → H0H0 or A0A0 σt ¼ 1.7 × 10−5 fb

pp → Wþ → H0Hþ σt ¼ 1.8 fb

pp → Wþ → A0Hþ σt ¼ 1.8 fb

pp → W− → H0H− σt ¼ 0.74 fb
pp → W− → A0H− σt ¼ 0.74 fb

pp → bþ b̄þH0 or A0 σt ¼ 1.8ðgb0Þ2 pb� 2.4% No pT cuts

σt ¼ 67ðgb0Þ2 � 5% pTðbÞ and pTðb̄Þ > 50 GeV

σt ¼ 9.6ðgb0Þ2 fb� 3.5% pTðbÞ and pTðb̄Þ > 100 GeV

pp → tþ b̄þ ðH−Þ σt ¼ 220ðgb0Þ2 fb No cuts

σt ¼ 44ðgb0Þ2 fb pTðtÞ, pTðb̄Þ> 50 GeV

σt ¼ 14ðgb0Þ2 fb pTðtÞ, pTðb̄Þ> 100 GeV

pp → t̄þ bþ ðHþÞ σt ¼ 270ðgb0Þ2 fb No cuts

σt ¼ 46ðgb0Þ2 fb pTðt̄Þ pTðbÞ> 50 GeV

σt ¼ 14ðgb0Þ2 fb pTðt̄Þ pTðbÞ> 100 GeV
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B. Trilinear, quadrilinear, and quintic Higgs coupling

A characteristic feature of the Coleman-Weinberg poten-
tial is that the trilinear, quadrilinear, and quintic Higgs
couplings differ dramatically from that of the standard
model [17], [23].
With the standard model polynomial potential, we have

VSMðHÞ ¼ λ̂v2h2 þ λ̂ffiffiffi
2

p vh3 þ 1

8
λ̂h4 þ 1

24
ffiffiffi
2

p
v
β̂h5

¼ 1

2
m2

hh
2 þ m2

h

2
ffiffiffi
2

p
v
h3 þ m2

h

16v2
h4 þ 1

24
ffiffiffi
2

p
v
β̂h5

þ � � � : (55)

From the Coleman-Weinberg potential expanded to quintic
order, keeping the leading two-loop λ3 terms, we have

VCWðHÞ ¼ 1

2
m2

hh
2 þ 5

6
ffiffiffi
2

p
v
h3
�
β1 þ

9

20
β3

∂β1
∂λ3

�

þ 11

48v2
h4
�
β1 þ

35

44
β3

∂β1
∂λ3

�

þ 1

40
ffiffiffi
2

p
v
h5
�
β1 þ

25

12
β3

∂β1
∂λ3

�
þ � � � : (56)

The ratios of the Coleman-Weinberg to standard model
trilinear, quadrilinear and quintic terms are then (see
footnote [39])

trilinear ¼ 5

3

�
1þ v2

5m2
h

λ33
8π4

�
≈ 1.75

quadrilinear ¼ 11

3

�
1þ 35v2

44m2
h

λ33
8π4

�
≈ 4.43

quintic ¼ 3

5

�
β1
β̂
þ 25

12β̂

λ33
6π4

�
≈ −8.87; (57)

where β̂ ≈ −0.0522 is the SM β function for λ. The leading
terms in the above, independent of the new bosonic physics
∼λ33 are valid to OðℏÞ, while the ∼λ33 are the leading largest
Oðℏ2Þ terms.
The sensitivity at the LHC Run II is expected to be

comparable to these departures from the standard model,
and in future high-luminosity mode these effects should
be observable with precision. Future eþe− Higgs factories
would have sensitivity at the level of ∼10% or better.
While this is a model-independent check on the “Higgs

with CW potential” scheme we are considering, it is not
the case in other models. For example, in [21] the second
doublet is inert and does not couple to the standard model
SUð2Þ × Uð1Þ. The second doublet H2 couples to a new
SUð2Þ gauge interaction and develops a large VEV. The
new SUð2Þ0 gauge fields together with H2 become a dark
matter ecosystem. In this model the Higgs acquires a

negative mass2 via a negative λ3 (“Higgs portal interac-
tion”), and the resulting H1 potential is classical. There
would be no large trilinear effect in this model, and it is
presumably hard to test this scheme at the LHC.

V. FERMIONIC ORIGIN OF A CW
HIGGS POTENTIAL

Remarkably, the full structure of Eq. (24) admits an
alternative origin of a Coleman-Weinberg potential for the
Higgs boson via fermions. This exploits the two-loop
contribution to the h2 term. We will presently give a
schematic discussion of this possibility, but it requires more
model building effort which we will pursue elsewhere [28].
Suppose there exists a new fermion SUð2ÞL doublet

ψL ¼ ðT; BÞL, and a pair of singlets ðTR; BRÞ. Hence the
ψL fermion couples to the standard model SUð2ÞL ×Uð1Þ,
gauge bosons while ψR has only Uð1Þ weak hypercharges.
We further assume these new fermions are “hyperquarks,”
forming a Nc fundamental representation, coupled to an
unbroken strong gauge interaction, SUðNcÞ, “hypercolor,”
with coupling constant ~g. We’ll ignore the issue of anomaly
cancellation presently.
We assume the Uð1Þ charges are so chosen that the

interaction with a massless Higgs boson can occur as

gψ̄LHTR þ gψ̄LHcBR; (58)

and we’ll assume a common Yukawa coupling (we’ll work
in the approximation of custodial SUð2Þ invariance).
The Higgs boson is massless but has the usual quartic

potential with RG equation for λ dominated by the Higgs-
Yukawa g4 term [32]

dλ
d lnðμÞ ¼ β1 ¼

1

4π2
ð3λ2 þ 2Ncλg2 − 2Ncg4Þ

≈ −
Nc

2π2
g4; (59)

where we’ve neglected the top Yukawa and electroweak
contributions. Likewise, the RG equation for the Yukawa
coupling g takes the form [32]

dg
d lnðμÞ ¼ βg ¼

g
16π2

ð2Ncg2 − ðN2
c − 1Þ~g2Þ: (60)

The Higgs potential can develop a dynamical minimum
for a VEV, v, provided that

β1ðvÞ
λðvÞ ¼ −4: (61)

Previously we have studied that case where β1ðvÞ > 0 and
λðvÞ < 0. We will now discuss a case with the new
fermions in which β1ðvÞ < 0 and λðvÞ > 0, and we assume
at some v that Eq. (61) holds.
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A stable minimum of the potential requires m2
h > 0.

From Eq. (24), including the two-loop term, we see that

m2
h ¼ v2

�
β1 þ

1

4
βg

∂β1
∂g

�
> 0: (62)

Using the approximate form of Eq. (59), we have (see
footnote [34]; here we are ignoring the two-loop contri-
bution to β1, though we expect this behavior for the
potential on general grounds),

1

4

∂β1
∂g ¼ −

Nc

2π2
g3; (63)

hence,

m2
h ≈ v2

�
−
Nc

2π2
g4
��

1þ 1

16π2
ð2Ncg2 − ðN2

c − 1Þ~g2Þ
�

≈ v2β1

�
1þ βg

g

�
: (64)

The condition that m2
h is positive is now the simultaneous

conditions of Eq. (61) and

βg
g
< −1: (65)

The latter condition states that the anomalous dimension of
the Higgs-Yukawa interactions Eq. (58) is less than −1, and
thus the dimensionality of this operator is reduced to
D < 4 − 1 ¼ 3. Equation (65) can be realized by

~α

4π
>

1

ðN2
c − 1Þ þ

Ncg2

8π2ðN2
c − 1Þ ; (66)

where αg ¼ ~g2=4π. The subsequent running of the
hypercolor αg into the infrared is model dependent. With
Nf additional inert fermion flavors [not coupled to
SUð2Þ × Uð1Þ], αg will blow up at a scale ΛHC ∼
v expð−6π=ð11Nc − 2NfÞα̂ðvÞÞ and confine. This could
in principle be a walking theory. With the minimal
ðT; BÞ, ðNf ¼ 0Þ we see that ΛHC ∼ 0.6v. We prefer a limit
λHC ≪ v so that the masses of the ðT; BÞ states are far above
the confining scale of hypercolor, and no chiral condensates
are formed.
The Higgs mass at the minimum is therefore given by

m2
h ¼ v2

Ncg4

2π2

����� βgg
���� − 1

�
: (67)

If we assume Nc ¼ 3ð4Þ and j βgg j − 1 ¼ κ ≈ 1, we find
that the masses of the new hyperquarks are M ≈ 236=
ðκÞ1=4ð219=ðκÞ1=4Þ GeV.
Note that these objects would appear effectively as new

leptons since they do not interact with ordinary QCD

SUð3Þc and are not produced in gluon fusion. Hypercolor
could be QCD-like and confine at some scale λHC. We
assumed that this is less than the inferred Higgs-induced
masses, ∼230 GeV of ðT; BÞ; therefore, the resulting states
are analogues of heavy quarkonium bound states in QCD,
and there are no light pNGB’s.
The new states will be pair produced via a single Z� or

W� at a threshold ∼2M, into a single Q̄Q heavy meson,
(plus recoil jets of conventional quarks). The heavy Q̄Q
decays into electroweak gauge bosons. Open Q̄þQ
requires the recombination into pairs of mesons, Q̄Qþ
Q̄Q and a threshold energy of 4M.
Using fermions to engineer the CW potential may allow

a much more natural UV completion than the bosonic H2

model presented above. The detailed model structures,
production and decay phenomenology is beyond the scope
of the present discussion. Our interest here is to give a
proof of principle of the phenomenon of fermion-driven
Coleman-Weinberg potentials.

VI. CONCLUSIONS

We have discussed the possibility that the electroweak
scale is a quantum phenomenon, i.e., that it arises via
particle loops leading to a perturbative Coleman-Weinberg
potential. We have developed the renormalization group
formalism for the Coleman-Weinberg potential, and its
relationship to the trace anomaly of the improved stress
tensor for scalar fields. An expansion of the CW potential
about its minimum, valid to all orders of perturbation
theory, is also described and suggests new possibilities for
the underlying dynamics.
We have surveyed the possibility that the observed Higgs

boson with a Coleman-Weinberg potential is maximally
observable at the LHC. To achieve this we assume a minimal
extension of the standard model consisting of a second,
“dormant,” Higgs doublet that couples to the standard model
SUð2Þ × Uð1Þ gauge fields. The dormant Higgs doublet can
sculpt a Coleman-Weinberg potential for the Higgs boson
provided it has a mass of about ∼380� 10% GeV.
The new doublet, coupled to standard model

SUð2Þ × Uð1Þ, is pair produced at the LHC in pp → γ;
Z0 → HþH−; H0A0 and pp → W� → H� þ ðA0; H0Þ at
the∼1 fb level. It can naturally couple strongly to some SM
fermions, and we consider the case of Oð1Þ coupling to the
b quark. In this case the production can be via gluon fusion
with ∼10 to 100 fb cross sections. The coupling to the
fermions, albeit model dependent, is essential to make
visible final states at the LHC. In the cases considered we
are encouraged that the new states may be observable in
Run-II at the LHC.
The departures from the standard model Higgs potential,

the trilinear, quadrilinear and even quintic self-couplings,
are fairly significantly modified in this scenario, and may
also be addressable at the LHC, and certainly at future
Higgs factories.
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We have also described a schematic model in which the
CW potential arises at the two-loop level via new fermions.
These would have masses at the order of ∼230 GeV, and
would be pair produced at the LHC. We will develop this
idea further elsewhere.
The general idea that “the Higgs mass comes from

quantum mechanics” is, to us, sufficiently compelling to
warrant the present phenomenological approach and ask if
there is any evidence, potentially visible to experiment, that
can determine whether the CW mechanism is operant for
the Higgs boson. As such, our focus has presently largely
left the UV completion issues untouched.
Yes, there are certainly challenges and difficulties in

constructing a UV complete scenario (see, e.g., [37,38]).
Themain problemwith our simple phenomenological model
is the occurrence of nearby Landau poles in the running
quartic couplings, that are reached at ∼10 TeV. These are
either blemishes on the scheme, or may be harbingers of new
physics, such as compositeness of the new bosonic states,
[10–13]. We’ve only briefly discussed UV completion
issues, as we feel these issues are secondary. We plan to
return to these issues in greater detail elsewhere [28].
If we could establish a Coleman-Weinberg origin of

the Higgs boson mass, we would then have two scales in
nature generated by quantum loop effects: ΛQCD and vweak.
The hypothesis that “all mass in nature comes from quantum
mechanics” would gain significant validation. This hypoth-
esis may ultimately imply a radically different view of
nature than our current “GUTs to strings” philosophy.
Some of these issues and “predictions” have been dis-

cussed elsewhere [7]. For example, we live in a D ¼ 4
universe, and it is striking that D ¼ 4 is the only possibility
for classical scale symmetry given Yang-Mills field theories
as an underpinning of nature, since the trace of the Yang-
Mills field stress tensor is classically zero only in D ¼ 4.
Quantum mechanics then supplies the trace anomaly and
allows for the generation of mass and large hierarchies
through the renormalization group. We see this with QCD
and the compelling question is whether it also applies to
the weak scale and Higgs boson. Hence, the hypothesis that
“all mass in nature comes from quantum mechanics” already
seems broadly consistent with our D ¼ 4, large universe.
The stakes are high: this may ultimately require a classically
scale-invariant approach to gravity, such as D ¼ 4 Weyl
gravity with a quantum, QCD-like origin of MPlanck [39]
(see also [7] and references therein).
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APPENDIX A: SCALAR FIELD
STRESS TENSORS

Consider a scalar field theory in flat spacetime with
Minkowski metric ημν,

S ¼
Z

d4xL ¼
Z

d4x

�
1

2
∂μϕ∂μϕ − VðϕÞ

�
; (A1)

where the Euler-Lagrange equation of motion is

∂μ δS
δ∂μϕ

−
δS
δϕ

¼ ∂2ϕþ δ

δϕ
VðϕÞ ¼ 0: (A2)

We perform an infinitesimal diffeomorphism in the flat
space theory holding the metric fixed,

xμ0 ¼ xμ − ζμðxÞ; (A3)

where the scalar field is invariant, ϕ0ðx0Þ ¼ ϕðxÞ [40], but
the coordinate differentials transform as

δdxμ ¼ −dζμðxÞ ¼ −ð∂λζ
μÞdxλ

δ∂μ ¼ ð∂νζμÞ∂ν

δd4x ¼ −ð∂μζ
μÞd4x: (A4)

The action transforms as:

δS ¼
Z

d4x

�
−
1

2
ð∂ρζ

ρÞ∂μϕ∂μϕþ ð∂ρζμÞ∂ρϕ∂μϕ

þ ð∂μζ
μÞVðϕÞ

�

≡ 1

2

Z
d4x½ð∂μζν þ ∂νζμÞTμν�; (A5)

and the resulting canonical stress tensor is

Tμν ¼ ∂μϕ∂νϕ − ημν

�
1

2
∂ρϕ∂ρϕ − VðϕÞ

�
: (A6)

Note the divergence of the stress tensor:

∂μTμν ¼ ∂2ϕ∂νϕþ ∂μϕ∂μ∂νϕ − ∂ν

�
1

2
∂μϕ∂μϕ − VðϕÞ

�

¼ ∂νϕð∂2ϕþ V 0ðϕÞÞ: (A7)

The stress tensor is the Noether current associated with
translations in space and time. The conservation of the
stress tensor is a consequence of these symmetries and
implies the equation of motion.
We can choose, however, ζμ ¼ −ϵxμ, corresponding

to an infinitesimal scale transformation. The action then
varies as
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δS ¼
Z

d4x½ð∂μϵxνÞTμν�; (A8)

and the scale current is defined by

δS
∂με

≡ Sμ ¼ xνTμν; (A9)

with divergence

∂μSμ ¼ Tμ
μ: (A10)

The canonical stress tensor, however, has a nonzero trace,
even when VðϕÞ is scale invariant:

Tμ
μ ¼ −∂ρϕ∂ρϕþ 4VðϕÞ: (A11)

It can be “improved” to yield a vanishing trace in the scale
invariant case, e.g., when VðϕÞ ∝ ϕ4 [18].

1. Stress tensor improvement

We add to the action a total divergence,

S → Sþ S2 S2 ¼
Z

d4xξ∂2ϕ2; (A12)

where ξðxÞ can be viewed as an arbitrary function of space-
time, but we take the limit ξ → ξ0 (constant) after manipu-
lating the action. With constant ξ this is a surface term and
does not affect the equations of motion. However, it varies
under the diffeomorphism to produce a nonvanishing
result:

δS2 ¼
Z

d4x ξ½−ð∂μζ
μÞ∂2ϕ2 þ ∂μðð∂νζμÞ∂νϕ

2Þ

þ ð∂νζμÞ∂ν∂μϕ2� þOð∂ξÞ: (A13)

Note that the second term in the ξ → ðconstantÞ limit is an
irrelevant surface term, but the first and third terms yield

δS2 ¼ −ξ0
Z

d4xð∂μζνÞ½ημν∂2ϕ2 − ∂ν∂μϕ2�

≡ 1

2

Z
d4xð∂μζν þ ∂νζμÞ½Qμν�; (A14)

where

Qμν ¼ ξ0ð∂μ∂υϕ
2 − ημν∂2ϕ2Þ: (A15)

Qμν has the trace

Qμ
μ ¼ −3ξ0ð∂2ϕ2Þ ¼ −6ξ0ðϕ∂2ϕþ ∂ρϕ∂ρϕÞ: (A16)

We thus choose ξ0 ¼ − 1
6
and obtain the “improved stress

tensor,”

~Tμν ¼ Tμν þQμν

¼ 2

3
∂μϕ∂νϕ −

1

6
ημν∂ρϕ∂ρϕ −

1

3
ϕ∂μ∂υϕ

þ 1

3
ημνϕ∂2ϕþ ημνVðϕÞ: (A17)

The conservation of the stress tensor is unaffected by
adding the conserved improvement term Qμν. However, we
see that the trace now yields

~Tμ
μ ¼ ϕ∂2ϕþ 4VðϕÞ ¼ −ϕ

δ

δϕ
VðϕÞ þ 4VðϕÞ: (A18)

We can also generate the improved stress tensor by
including the “conformal coupling” of the scalar field to
gravity, in the action

S ¼ 1

2

Z ffiffiffiffiffiffi
−g

p
d4xðgμν∂μϕ∂νϕ − VðϕÞ − ξ0Rϕ2Þ: (A19)

In weak field gravity the metric is expanded about the flat
Minkowski metric,

gμν ¼ ημν þ hμν gμν ¼ ημν − hμν; (A20)

and to OðhμνÞ,

R ¼ ∂2h − ∂μ∂νhμν
ffiffiffiffiffiffi
−g

p ¼ 1þ 1

2
h; (A21)

where ημνhμν ≡ h (signs are tricky here).
We choose ξ0 ¼ 1

6
and the first-order action becomes

S ¼ 1

2

Z
d4x

�
ημν∂μϕ∂νϕ − VðϕÞ − hμν∂μϕ∂νϕ

þ 1

2
ημνhμνð∂ρϕ∂ρϕ − VðϕÞÞ − 1

6
ð∂2h − ∂μ∂νhμνÞϕ2

�

¼ S0 −
1

2

Z
d4xhμν ~Tμν: (A22)

Hence, a small variation in the metric about flat spacetime,
δgμν ¼ hμν, generates the improved stress tensor with the
inclusion of the conformal term.
Note that the ξ∂2ϕ2 term does not affect the local metric

variation in curved space since

Z
d4x

ffiffiffiffiffiffi
−g

p
Dμ∂μϕ2 ¼

Z
d4x∂μð

ffiffiffiffiffiffi
−g

p ∂μϕ2Þ; (A23)

where Dμ is the covariant derivative. We see that this is a
surface term and is insensitive to a local variation δgμν.
We’ve seen that the variation of the action in flat space by

the diffeomorphism, δxμ ¼ ζμ generates the improved
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stress tensor ~Tμν in the presence of the ξ∂2ϕ2 term.
Likewise a variation of the metric generates the improve-
ment with the conformal coupling term. An Einstein
transformation (general covariance) implies

δgμν ¼ hμν ¼ ∂μζν þ ∂νζμ: (A24)

If we perform both of these transformations together we
obtain

δS ¼ 1

2

Z
d4x½ð∂μζν þ ∂νζμ − hμνÞT̂μν�; (A25)

which is zero when Eq. (A24) is applied. This is now a
gauge transformation. The diffeomorphism on the “matter
side” cancels the variation with respect to the metric on the
“gravity side,” and both transformations generate a con-
served improved stress tensor. This is analogous to any
gauge theory, such as QED, where we can generate the
current by doing a local gauge transformation of the
electron wave function (∼ matter side) or by varying
the action with respect to the vector potential (∼ gravity
side). We can define the Noether current for scale symmetry
by either procedure.

APPENDIX B: TRACE ANOMALY AND
FEYNMAN LOOPS

A classically scale invariant potential is defined by the
condition

ϕ
δ

δϕ
VðϕÞ ¼ DVðϕÞ where D ¼ 4: (B1)

For a classically scale invariant potential the improved
stress tensor trace, Eq. (A18), vanishes, and the associated
scale current is conserved.
In general, D ¼ 4þ γ where γ is the “anomalous

dimension” of the potential. Such is the case for
Coleman-Weinberg potentials where the running of the
coupling is included. For example, if we choose

VðϕÞ ¼ λðϕÞ
4

ϕ4; and ϕ
δ

δϕ
λðϕÞ ¼ βðλÞ; (B2)

then we see

~Tμ
μ ¼ −ϕ

δ

δϕ
VðϕÞ þ 4VðϕÞ ¼ −

βðλÞ
λ

VðϕÞ: (B3)

This is called the trace anomaly; γ ¼ β=λ is the anomalous
dimension.
Let us examine how the trace anomaly arises at the one-

loop level via a direct calculation of the effective potential.
Consider the real scalar field theory Lagrangian,

L ¼ 1

2
ð∂ϕÞ2 − 1

2
m2ϕ2 −

1

4
λϕ4: (B4)

We define renormalized couplings and OðℏÞ counterterms,

m2 ¼ m2
r þ ½ℏ�δm2

λ ¼ λr þ ½ℏ�δλ: (B5)

The counterterms can be computed from the 1PI scattering
amplitudes of Figs. 7(a) and 7(b). We obtain

δm2 ¼ −
3λ

16π2
ðΛ2 −m2

r lnðΛ2=μ2ÞÞ

δλ ¼ 9λ2

16π2
ðlogðΛ2=m2

rÞ − 1Þ: (B6)

Here we define the Feynman loops with Euclidean momen-
tum space cut-off and neglect external momenta in the
loops. There is no wave-function renormalization constant
as there is no external momentum flow through the loop of
Fig. 7(A).
We use the ℏ expansion and work in a classical back-

ground field, ϕc. We introduce a classical source term in the
Lagrangian, −Jϕ. This induces the shift in the field,

ϕ ¼ ϕc þ ℏ1=2ϕ̂; (B7)

where ϕc satisfies the renormalized equation of motion,
∂2ϕc þm2

rϕc þ λrϕ
3
c þ J ¼ 0 [41]. The Lagrangian

becomes

L ¼ L0ðϕcÞ þ ½ℏ�L̂ðϕc;ϕÞ (B8)

where, to OðℏÞ,

L0ðϕcÞ ¼
1

2
ð∂ϕcÞ2 −

1

2
m2

rϕ
2
c −

1

4
λrϕ

4
c; (B9)

and

L̂ðϕc;ϕÞ ¼
1

2
ð∂ϕ̂Þ2 − 1

2
ðm2 þ 3λϕ2

cÞϕ̂2 þ � � �

−
1

2
δm2ϕ2

c −
1

4
δλϕ4

c; (B10)

where the þ � � � refers to terms of higher order in ℏ.

(a) (b)

FIG. 7. Diagrams for counterterms (A) δm2, (B) δλ.
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We now integrate out the quantum fluctuations, ϕ̂.
Let Z ¼ R

Dϕ̂ expði R d4xL̂=ℏÞ be the path integral.
The effective Lagrangian becomes L0 − iℏ lnðZÞ, which
takes the form

Leff ¼ L0ðϕcÞ þ iℏ
Z

d4l
ð2πÞ4 lnðl

2 −m2
r − 3λrϕ

2
cÞ

−
1

2
δm2ϕ2

c −
1

4
δλϕ4

c: (B11)

Note that the second term acquires a sign flip since
−iℏ lnðZÞ ∼ −iℏ

R
lnð1=ðl2 − m2ÞÞ ∼ iℏ

R
lnðl2 − m2Þ.

We drop irrelevant additive constants.
The integral can be done by performing a Wick rotation

(l0 → il0, l2 → −l2
0 − ~l2, and d4l → idl0d3l) and we

use a Euclidean momentum space cutoff, Λ. Up to additive
constants ∝ Λ4; m2

rΛ2, we obtain

iℏ
Z

d4l
ð2πÞ4 lnðl

2 −m2
r − 3λrϕ

2
cÞ ¼ −

1

32π2

×

�
3λϕ2

cΛ2 −
1

2
ðm2

r þ 3λϕ2
cÞ2

�
ln

�
Λ2

m2
r þ 3λϕ2

c

�
−
1

2

��
:

(B12)

If we now add in the counterterms of Eq. (B6) as in
Eq. (B11), we have

Leff ¼
1

2
ð∂ϕcÞ2 − Veff; (B13)

where the effective potential is

Veff ¼ V0ðϕcÞ þ
1

32π2

�
3λm2

rϕ
2
c þ

1

2
m4

r þ
1

2
9λ2ϕ4

c

�

× ln

�
1þ 3λϕ2

c

m2
r

�
−

1

64π2

�
3λm2

rϕ
2
c þ

1

2
9λ2ϕ4

c

�
;

(B14)

where

V0 ¼
1

2
m2

rϕ
2
c þ

1

4
λrϕ

4
c: (B15)

The classically scale invariant limit corresponds tom2
r → 0.

The potential then becomes

Veff ¼
1

4
λrϕ

4
c þ

9λ2ϕ4
c

64π2

�
ln

�
3λϕ2

c

m2
r

�
−
1

2

�
: (B16)

Note that there is an infrared divergence in the limitm2
r → 0

and we retain the m2
r in the argument of the log as an

infrared regulator.

We can now construct the improved stress tensor from
the full effective Lagrangian Eq. (B13),

~Tμν ¼
2

3
∂μϕc∂νϕc −

1

6
ημν∂ρϕc∂ρϕc −

1

3
ϕc∂μ∂υϕc

þ 1

3
ημνϕc∂2ϕc þ ημνVeffðϕÞ: (B17)

The equation of motion of ϕc is now ∂μT̂
μ
ν ¼ 0 and includes

the OðℏÞ quantum effects,

0 ¼ ∂2ϕc þ
δ

δϕc
VeffðϕcÞ: (B18)

The trace of the improved stress tensor is therefore

~Tμ
μðϕcÞ¼−ϕc

δ

δϕc
VeffðϕcÞþ4VeffðϕcÞ¼−

9λ2ϕ4
c

32π2
(B19)

where the latter term arises from the derivative of the
logarithm in Eq. (B16).
Note that we can infer the β function of λ from δλ in

Eq. (B6). With our sign convention, λr ¼ λ − δλ, and we
can identify the “running RG scale” μ with mr, hence,

dλr
d lnðμÞ ¼

9λ2

8π2
: (B20)

Comparing expressions we thus see that the trace anomaly is

~Tμ
μ ¼ −

1

4
βðλÞϕ4

c ¼ −
β

λ
V0ðϕcÞ: (B21)

We therefore observe that, for a theory with vanishing
renormalized mass, m2

r ¼ 0, we have a violation of scale
symmetry by the trace anomaly, ∝ βðλÞ, which is OðℏÞ and
represents the RG running ot λ. We have no other such
source of scale violation in this limit. There are, of course,
infrared singularities in higher order terms in the expansion,
ϕ2N
c =μ2N for N > 2, but these are associated with the long-

distance physics of the matrix element of the trace anomaly
operator itself.
The important implication of this result, as emphasized

by Bardeen, [6,19], is that the additive quadratic divergence
needed to renormalize the mass is an artifact of our
calculational procedure and has nothing to do with the
physics of mass generation. The scale current and its
divergence controls the physics of mass generation.
A scale invariant field theory is one whose scale current
is strictly conserved to all orders in perturbation theory; a
classically scale invariant theory will typically experience
scale breaking by the trace anomaly, but the additive
quadratic divergence, Λ2, encountered in the calculational
procedure is a red herring.
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APPENDIX C: CLASSIC COLEMAN-WEINBERG
POTENTIALS FROM THE

RENORMALIZATION GROUP

There are various renormalization groups. The relevant
RG depends upon the application. For example, running a
set of coupling constants in external momenta for scattering
amplitudes, such as the QCD coupling g3 with a single
scale μ, is a typical application. Particles such as the top
quark then decouple at μ ∼mt, and the β function counts
only the active light quarks below that scale, and this affects
the evolution of g3 and contributes to the value of ΛQCD.
In applications to the CW potential we are interested in

running of coupling constants where the scale μ is replaced
by the field, ϕ, itself. Here we are only including the low
momentum components of ϕ, in particular the zero-
momentum VEV of ϕ. If ϕ is the standard model Higgs
boson, with its classical mass term set to zero, we want to
vary ϕ over a large range of scales to find a minimum of
the effective potential. Since the top quark receives its mass
from this VEV, then the top quark never decouples as we
run ϕ to lower values. The same is true for any field, such
as H2, that receives its mass from the VEV of ϕ.
This is a surprising and counterintuitive effect: if we were

to run ϕ down to the QCD scale, for example, the QCD
coupling would run with ϕ as well, but the top quark (and b
and c quarks as well) would remain active far into the
infrared. This has the stunning effect of reducing ΛQCD to
about half of its normal value. Of course, the QCD chiral
phase transitionwould still occur, at about∼500 GeV, and the
resulting SUð6Þ × SUð6Þ → SUð6Þ chiral breaking would
occur, with 35 Nambu-Goldstone pions, and a QCD constitu-
ent quark mass would be generated for all six quarks. The
Higgs doublet has the control VEV, ϕ, and this yields three
additional massless NGBs. These would mix with some
of the pions, three of which would be eaten to break the
SUð2Þ × Uð1Þ electroweak symmetry. This is a dynamically
stable “minimum of the Higgs effective potential,” and it is
similar to the way in which QCD would act as technicolor if
there were no Higgs boson in the standard model.
Let’s consider in greater detail the direct derivation of

Coleman-Weinberg potentials using the renormalization
group. As an exercise, comparing to the derivation of
Ref. [16], we’ll use the RG method to derive the potential
for massless scalar electrodynamics:

jði∂μ − eAμÞϕj2 −
λ

2
jϕj4: (C1)

The RG equation for the quartic coupling is

βðλ; eÞ ¼ dλ
d lnðμÞ ¼

1

16π2
ð10λ2 − 12λe2 þ 12e4Þ: (C2)

Note that this is similar to the RG equation for λ1 for a
single Higgs boson in the standard model, as in [32],

Eq. (6a). The term, 12λ21=16π
2 has become 10λ21=16π

2

since the coefficient is ∝ 8þ 2N where N ¼ 2 for a Higgs
doublet and N ¼ 1 for a complex singlet ϕ, and N ¼ 1=2
for the real scalar field as we discussed above. The other
terms are obtained by setting g2 ¼ 0 and 1

2
g1 ¼ e where the

1
2
factor is the weak hypercharge.
Consider the classical effective potential,

VðϕÞ ¼ λðjϕjÞ
2

jϕj4; (C3)

and we again obtain λðjϕjÞ by solving the RG equation.
We thus obtain in leading order where on the rhs λ and e
are approximated as constants:

VðϕÞ ¼ λ0
2
jϕj4 þ 1

16π2
ð5λ2 − 6λe2 þ 6e4Þjϕj4 ln

�jϕj
M

�
:

(C4)

To compare to Ref. [16], Eq. (4.5), we note the CW
normalization conventions,

ϕ2
c ¼ 2jϕj2 and

λCW
4!

ϕ4
c ¼

λ0
2
jϕj4; (C5)

thus λCW ¼ 3λ0. We are consistent in the λ2 and e4 terms
with their result, Ref. [16] Eq. (4.5),

Vðϕ0
cÞ ¼

λCW
4!

ϕ04
c þ

�
5λ2CW
1152π2

þ 3e4

64π2

�
ϕ04
c ln

�
ϕ2
c

M02

�
;

(C6)

where M02 ¼ 2M
We see one discrepancy in the presence of the e2λ term in

Eq. (C4) which is absent in Eq. (C6). The e2λ term arises
for us because we have enforced the canonical wave-
function normalization (kinetic term normalization) in our
definition of ϕc; i.e., canonical wave-function normaliza-
tion is implicit in our RG equation. To this order, however,
we can absorb away the e2λ term by a field redefinition and
it therefore does not affect the potential. We then identically
reproduce the exact form of CW Eq. (C6).
We also see, however, that the λ2 term is irrelevant since

we can absorb an additional λ factor into ϕ. With the net
redefinition,

ϕ ¼ ϕ0
�
1þ

�
6

16π2
e2 −

5

16π2
λCW

�
ln

�
ϕ

M

��
; (C7)

the resulting effective potential then contains only two
relevant terms, the classical quartic coupling and the Oðe4Þ
interaction term

VðϕÞ ¼ λ0
2
jϕj4 þ 3e4

16π2
jϕj4 ln

�jϕj2
M2

�
: (C8)

IS THE HIGGS BOSON ASSOCIATED WITH COLEMAN- … PHYSICAL REVIEW D 89, 073003 (2014)

073003-17



Indeed, as discussed by Ref. [16], the only possible
nontrivial perturbative minima of the effective potential
involves exclusively these two terms. Moreover, the
rescaled RG equation takes the form

β0ðλ; eÞ ¼ dλ0

d lnðμ0Þ ¼
12e4

16π2
: (C9)

We also see that the RG admits a solution in which
λðϕÞ can be negative and cross to positive values with
positive β. The Landau pole occurs at ϕL and is is
determined by the condition that the wave function of
ϕ is vanishing:

Z0ðϕLÞ ¼ 0 ¼
�
1þ

�
6

16π2
e2 −

5

16π2
λCW

�
ln

�
ϕL

M

��
:

(C10)

This form of the potential makes contact with the
functional integral calculation where the photon mass is
M2

γ ¼ e2jvj2,

~Vðϕ0
cÞ ¼

X
i

M4
γi

64π2
ðϕ04

c =v4Þ ln
�

ϕ2
c

v02e−1=4

�
; (C11)

where the sum counts the three spin states of the photon.
Note that the massive ϕ contribution is not counted in this
normalization. If we had not absorbed away the λ2 term we
would find a mismatch in the coefficient of the m4

ϕ term
with the usual log path integral result. The RG equation is
counting degrees of freedom in the symmetric phase, while
the ln detð∂2 þm2Þ result counts only the real scalar
(“Higgs”) degree of freedom and not the eaten Nambu-
Goldstone modes (which are counted in the factor of 3 for the
massive photon). The mismatch is present in general in this
term, but is irrelevant for perturbative Coleman-Weinberg
potentials.
We finally remark that for applications to dynamical

situations, such as slow-roll inflationary models, it would
be a blunder to ignore the wave-function renormalization
terms, and one should adopt the canonically normalized
form of the potential as in Eq. (C4). The slow-roll physical
field motion is defined by the canonical normalization, so
predictions of observables may depend upon maintaining
the canonical normalization.

APPENDIX D: QUINTIC-ORDER TERMS IN THE
COLEMAN-WEINBERG POTENTIAL

The fifth derivative of the quartic coupling is

v5
d5λ1
dv5

¼ βiβjβkβl
∂4β

∂λi∂λj∂λk∂λl þ βl
∂βk
∂λl

∂βj
∂λk

∂βi
∂λj

∂β
∂λi þ 6βiβjβk

∂βl
∂λk

∂3β

∂λi∂λj∂λlþ3βlβk
∂βj
∂λk

∂2βi∂λj∂λl
∂β
∂λi þ 4βiβl

∂βk∂λl
∂βj
∂λk

∂2β
∂λj∂λi

þ 4βiβjβl
∂2βk
∂λl∂λj

∂2β

∂λk∂λi þ βlβkβj
∂3βi

∂λj∂λk∂λl
∂β
∂λi þ 3βlβi

∂βk
∂λl

∂2β

∂λk∂λj
∂βj
∂λi þ βlβk

∂2βj
∂λlλk

∂βi
∂λj

∂β
∂λi

− 10βk
∂βj
∂λk

∂βi
∂λj

∂β
∂λi − 10βkβj

∂2βi
∂λj∂λk

∂β
∂λi − 30βkβj

∂βi
∂λk

∂2β

∂λi∂λj − 10βiβjβk
∂3β

∂λi∂λj∂λk
þ 35βk

∂βj
∂λk

∂β
∂λj þ 5βiβj

∂2β

∂λi∂λj − 50βi
∂β
∂λi þ 24β: (D1)

This leads to the quintic-order contribution to the Coleman-Weinberg potential,

¼þ h5

40
ffiffiffi
2

p
v

�
β þ 25

12
βi

dβ
dλi

þ 35

24
βjβi

d2β
dλjdλi

þ 35

24
βj

dβi
dλj

dβ
dλi

þ 5

12
βkβjβi

d3β
dλkdλjdλi

þ 5

12
βk

dβj
dλk

dβi
dλj

dβ
dλi

þ 5

12
βjβi

d2βi
dλjdλi

dβ
dλi

þ 5

4
βjβk

dβi
dλk

d2β
dλjdλi

þ 1

24
βiβjβkβl

∂4β

∂λi∂λj∂λk∂λl þ
1

24
βl

∂βk
∂λl

∂βj
∂λk

∂βi
∂λj

∂β
∂λi

þ 1

4
βiβjβk

∂βl
∂λk

∂3β

∂λi∂λj∂λl þ
1

8
βlβk

∂βj
∂λk

∂2βi
∂λj∂λl

∂β
∂λi þ

1

6
βiβl

∂βk
∂λl

∂βj
∂λk

∂2β

∂λj∂λi þ
1

6
βiβjβl

∂2βk
∂λl∂λj

∂2β

∂λk∂λi
þ 1

24
βlβkβj

∂3βi
∂λj∂λk∂λl

∂β
∂λi þ

1

8
βlβi

∂βk
∂λl

∂2β

∂λk∂λj
∂βj
∂λi þ

1

24
βlβk

∂2βj
∂λlλk

∂βi
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∂β
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�
þOðh6Þ: (D2)
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to a chiral Lagrangian of mesons for QCD. Research into
Weyl gravity was largely superceded by superstring theory
in 1984. String theory, however, assumes a classical input
mass, the string constant, and is a priori hard to reconcile
with the hypothesis of classical scale invariance and mass
generated by quantum loops.

[40] This dual derivation of the conserved current is fundamental
to any gauge theory, and is analogous to the fact that the
electromagnetic current can be obtained by locally varying
the vector potential in the Dirac action, δAμ, or by varying the

phase of the electron wave function, δψ ¼ iθðxÞψ . Doing
both at the same time with δAμ ¼ ∂μθ is just a gauge
transformation, under which the Dirac action is invariant.

[41] The reason for introducing the source term is to remove all
the linear cross terms, ∝ ϕ̂, arising from the shift. In this
perturbative approach there remain Oðℏ3=2Þ terms,
∼δm2ϕcϕ̂. These we ignore since we are working to
OðℏÞ. We then add back a term þJϕc which cancels the
−Jϕc arising from the shift. The general formalism of the
Legendre transformed potential is given in Ref. [16].
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